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Abstract

This paper explains the basics of thermoplasticity in the context of multiplicative decomposition kinematics.

1 Introduction

The purpose of these notes is to provide some of the details of the formulation of thermoplasticity by Wright and
coworkers [SWOI1, Wri02]. We start with the assumption that the basics of thermoelasticity and the notation used
are known (the details can be found in my notes on thermoelasticity).

As the first point of departure from thermoelasticity, we consider the (now classical) multiplicative decomposi-
tion of the deformation gradient into elastic and plastic parts:

F=F, F,. (1)

Note that even though F' represents a physical gradient, neither F; or F), has to be a gradient of a physical quantity
by itself. However, for our purposes, we require the additional restriction that

det(Fe) >0 and det(F,) > 0. ()

This decomposition is usually interpreted to mean that there is an unstressed intermediate configuration that can
be attained instantaneously by unloading elastically from the current configuration. Figure 1 shows a schematic of
the situation.

Clearly, the intermediate configuration can be identified only modulo a rigid rotation ) since

F=(F.-Q) Q" F)=(F.-Q:-Q) (Q Q) F,)=... 3)

We will not concern ourselves with such issues here. Detailed discussions can be found in many places, for example
[SWO1, NNO4]. Instead, we will follow the lead of Wright [Wri02] and assume that the plastic component of the
deformation gradient is invariant under a rigid rotation . That is, if

F'=Q F=Q F. F,=F" F". )

then
FerOt =Q-F. and F;Ot =F,. 5)
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Figure 1: The initial, current, and intermediate configurations in plasticity.

2 Conservation of Mass

Experimental data strongly favors the assumption that plastic flow is volume preserving metals. However, in
macroscopic scale deformations, voids and other defects in the material may cause small volume changes. To keep
the analysis general we assume that plastic deformation is not necessarily volume preserving.

Thus there may be a change in volume in going from the initial to the intermediate configuration. Let the
density in the initial configuration be py, that in the intermediate configuration be py, and the density in the current
configuration be p.

Then the overall conservation of mass (from the initial to the current configuration) implies that

p det(F) = po . (6)
Plugging in the decomposition for F' gives
p det(Fe - F,) = p det(Fe) det(F,) = po . 7

If we define the density in the intermediate configuration via

p det(F.) =: pr | (8)

we get

pr det(F,) = po . )

Equation (9) represents the conservation of mass from the initial to the intermediate configuration while equation
(8) represents the conservation of mass from the intermediate to the current configuration.

The quantity p; is assumed to be an internal variable (or at least a function of other internal variables). In the
following we often replace p; with gg, where g;, 7 = 0...n represents a set of internal variables.




3 Stress Tensors

Let o be the Cauchy stress. Then the 2nd Piola-Kirchhoff stress is defined as
S=LF1 45 FT (10)
p

i.e., it is the pull-back of o to the initial configuration. Now, let us plug in the decomposition of F into this formula
to get
S=2pl.pl.o. ;T . FT (11)
p P e e p
Define the 2nd P-K stress in the intermediate configuration as the pull-back of the Cauchy stress by the elastic part
of the deformation gradient, i.e.,

S; = ‘:Fgl o -FT, (12)
Then we can write
S = Z(I)Fp_l I o (13)

This is equivalent to a pull-back by F), of the 2nd P-K stress in the intermediate configuration to the initial config-
uration. Note that if py = py, i.e., for isochoric plasticity, we can use the Kirchhoff stress

T:=det(F) o = g (14)

p

instead of the Cauchy stress without any effect on our analysis.

4 Thermodynamic Potentials

Following Wright [Wri02], we assume that the Gibbs free energy is regarded as fundamental (rather than the
Helmbholtz free energy). Then the Gibbs free energy functional is a function of the 2nd P-K stress in the intermediate
configuration (S7), the temperature (7'), and a set of internal variables (¢; j = 0...n). That s,

g=9(81,T,q) (15)

The internal variables evolve only during the plastic part of the deformation. The intermediate configuration is
considered to be the reference configuration as far as any elastic deformations are concerned.

We assume that the elastic strain (F.) and the entropy (7)) are given by (see [SWO1] for a detailed justification
of this assumption and its connection to an instantaneous theromoelastic response)

0
E, = PI 87.59'1

16
o 1o

T or

We will assume that equations (16) are invertible.
The elastic strain E. is related to the elastic part of the deformation gradient by
L

Ee:§(Fe -F.—1). 17)




Recall that for thermoelastic processes, the Helmholtz free energy () is defined as
Yp=e—Thn (18)
where e is the internal energy, 1" is the temperature, and 7 is the entropy. Also, the Gibbs free energy is defined as

1 1
g=—e+Tn+—8S:E=—y+—8:E (19)
Po Po

where py is the density in the initial configuration, S is the 2nd P-K stress and E is the Green strain.
For thermoplasticity, since all elastic processes are with respect to the intermediate configuration, we may write

1 1
g=—e+Tn+—8S:E.=—¢Y+—81: E,. (20)
PI PI

4.1 Functional dependencies of i) and ¢

Since g = g(S1, T, q;), we have

Jg

49 =55,

d51+ — dT+Z ~ 1)
Using the relations in equation (16) we can write
1 " dg
dg=—E,. :dS; +ndT + — dg; . (22)
pr-° ;0 dg;
Now, from equations (20), we have

1
e=—g+Tn+— SI E.; ¢= _g"‘*SI:Ee' (23)
PI PI
If we set pr = qo (the first internal variable in the list), we can write
e=-g+Tn+qy Si:Ee; ¢=—g+q," Sr:E.. (24)
The differentials of equations (24) are

de=—dg+ndT +Tdy—qy2Sr: Ecdgo+qy" E.:dS;+ ;' S;: dE,

9 1 1 (25)
dp = —dg —qy° Sr: E.dgo+qy E.:dS;+q, S;:dE..

Plugging in the expression for dg from equation (22) gives

de = —qyt E.:dS; —ndT — Za dgj +ndT +Tdy—qy2 Sr: Ecdgo+ gy E.:dSr+q," Sr: dE.

7=0
dp = —qy ' E. : dS; —ndT — Z dgj — 2 Sr: Ecdgo+ gy E.:dSr+¢q," Sr: dE.

j= 0

(26)

or,

. Jg 2 1

de:—za—qdqj—i—Tdn—qa S;:E.dgo+qy" S;:dE,
— Jj
= 27)

n 8 B _
dwz—ndT—ZaTdej—qOZSIiEedq0+qO1511dEe-
—o Y9



Collecting terms containing dgp and rearranging, we get

_ o) _ "0
de:qolsl‘dEeJern* <5;J+QOQSIIE€>dQOZdoqJ
— ]

9g " g (28)
_—1 . 2 g ,
d = g3t Sy - dE, —ndT — <a+q0 Sr: >dq0—z;aqjdq].
Therefore, the differentials of the three potentials can be written as
dg=q;' E, :dS -l—ndT—i-ﬂdq +zn:@dq
0 S dqo 0 = dq; ’
n 89
de:q(;lSI:dEe—l—Tdn—( 2 Ee>dq0_zaquj (29)
] ¥l
9 ~ g
— 1 . = 2 _ —J
dy =gy Sy : dE, —ndT — (a Sr: )dqo ;ajdq]
Let us define
0 _ 0 .
QO::—qg(g+q02.S'1:Ee) and Qj == —qo 71— J ,j=1...n. (30)
dq0 9q;
Then we can write
n
dg=q;" Be:dS;+ndT — (o' Qo+ q° Sr: Ee) dgo — g > Q; dg;
j=1
n
de=q;" S :dE.+Tdn+q;" Qodgo+¢p" Y Qjdy 31)
j=1
n
dp =qy' Sy :dE. —ndT +q5" Qodgo+qp ' > Qjdg; .
j=1
The above equations suggest the following functional dependencies:
=9(51,T,q0,4) ; e=e(Ee,n,q0,¢); ¥ =v(Ee,T,q0,q5), j=1...n. (32)
The partial derivatives of the potentials give us
99 _ 1 9g 9g 1 —2 99
gg, —90 Bei  gp=m Das (00" Qo+ay° Sr: Ee) 94, %' Qj
Oe 1 Oe Oe 1 Oe 1
OE, o P1 on 7 9 Qo 94, 7 Qj (33)
oy O op o _

We can also find other relations between these partial derivatives. For example, equating the partial derivative of
5%2 with respect to Sy with the partial derivative of a%"} with respect to qg, we have

_, OE, 0%g 0Qo OF,
—¢ 2 E, 1 = — 2R, 2 c 4
G~ He Tl 5" 54008, (‘IO 95; T Feta Si: as[> (34
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or,

or,

aEe _ 1 8@0 -9 S . 8Ee
6q0 N 0 35[ 0 T (95[
8@0 -1 . aEe o _% . .
s, 0 5155, = a8, O

or,

L OE. ¥y L, 0Q;

D o T 9q;08; 1 98,

If we consider mixed second partial derivatives of g with respect to gg and 7', we have

on _
dqo

or,

OB, __0Q,
aq]' N 85’1 .
829 -1 8@0 —92 aEe
9000 (qO or T St aT>
o _ 0@ 1g  OF

Do~ or T PTiTar

Similarly, derivatives with respect to the ¢; s lead to

or,

Several other relations can be derived based on mixed partial derivatives of g. For example,

0%g

Also,

Therefore,

We can also show that (see Appendix)

on O _1 0Q;

dq;  0q;oT 0 T

o _ 09
©oq, = 0T -

_ 9 (99 \_9 1gpy_ 10
aTdS; ~ aT (as) =or (W0 Be) = ‘

0%g 0 <8g> on

oTdS; — 98, \or ) ~ as; "
On _ 4 OE.
s, 1 a1 -

877(517 T7 4o,4q;

1 86(SI7T7 907(]])

oT T oT
877(E67T7 QO7QJ) _ l 8€(E€7T7 QU7QJ)
oT T oT
677(Ee7T7 qu q]) _ -1 @
OE, o

— 'S

OE.
T

(35)

(36)

(37

(38)

(39)

(40)

(4D)

(42)

(43)

(44)

(45)

(46)



Now if the specific heat at constant stress is defined as

(96(5[, T7 q0, QJ)

Cp = 47
P oT 47
we have
on 1 1 OE.
— ==|C)— Sr: 48
or —T|* P 2T %)
S Entropy Inequality in Thermoplasticity
Recall that the entropy inequality for thermoelasticity can be written as
-VT
p(é—Tﬁ)—o’:vaq . (49)
Also, the internal energy for thermoplasticity can be written as (see equation (20))
1 -1
e:—g—l—Tn—l—p—S[:Ee:—g—l—Tn—l—qo Sr: E.. (50)
I
Therefore, '
é=—g+Tn+Ti—q°8:Ecdo+qy' Sr:EBetqy' Sr:E (51
Now,
. Og g 99 . <= 0Jg . _ . L _ R :
g= S+ T+ +Z =G =qy Ee:Si+nT—q;" (Qo+qy" Sr: Ee) do—qp ZQj qj -
aS; - oT dq0 = 0q; =
(52)
Plugging the expression for g into the expression for é gives us
. . n
e=—q " Be:Si—nT+q "' Qudo+a>Sr:Ecdo+a5' Y Qs
j=1 (53)
+Tn+Ti—a°Sr:Eedot+dy' Sr: Eet+qy" Sr:Ee
or
n .
e-Ti=q " Qudo+q 'Y Qidj+a Si:Ee (54)
j=1
or,
n .
e=Ti=q" [ Qidj+81:Ec| . (55)
j=0
Substituting (55) into (49) and reverting to p; = qg leads to
p ” . q-VT
— Qiqgi+S:E,| —0:Vv< . (56)
Since 1
a:Vv:EU:[Vv—i-(Vv)T]:a:d (57)



we can write the entropy inequality as

p P q-VT
oc:d——S;: E. — — Qjq; — >0. (58)
PI e pI jz:;) 7 T
Note that for purely elastic deformations, we have
p .
o:d=—S;: E, 59)

P

since these terms represent the stress power. Also, if the internal variables do not evolve during such deformations,
we have

n
14 .
— > Qj4=0 (60)
PI =5
J
and we are left with the heat conduction inequality
q-VT
<0. 61
—< (61)

Also, in the event that the temperature gradient vanishes, we must have

p D
o:d——S;:E,.— — iqgi >0. (62)
PI ! PIZQ]%

§=0

Equations (61) and (62) represent a split of the entropy inequality into purely mechanical and purely thermal parts.

5.1 Elastic-Plastic decomposition of entropy inequality

Recall that !
d=[Vv+ (vv)I]  and Vv=F.F'. (63)
Therefore, .
d:§<F-F_1+F_T~FT> . (64)
Also,
F=F, F,. (65)
Hence,

F=F. F,+F. -F,; F'=F - F'+F -F'; F'=F ' F'; FT=F"-F,7. (66

Plugging these into the expression for d, we have

d= % [(Fe Fy+F.-F) - (F, - F Y+ (F,T-F 7). (FT - FT + FT . Ff)} “
— B E R B R R R B R BT
or,
d= [E F7 (B B 4 [R B B R (R BB R | 6w




Define

BB+ (B BT

N =N

F. B, F - F ' 4 (F-F, F - F)T|

d=d,+d,.

Then we can write

Now, form equation (12), we have

Si=" Rl BT — o=LF .8 FT.
p pr

We can show that (see Appendix:item 5 for details)

oid=Ls B (FeT-Fe+FZ-Fe)+;(FeT-Fe-Fp-Fp_l+Fp_T-FpT-FeT-Fe)} .
Recall that 1
Ee:§(FeT'Fe_1)'
Hence,
D, ::Ee:%(FeT-FE—FFZ-Fe).
Also, define

1
)

D,:= (FI-F.-F, F, '+ F, " E] -FI -F.) .

Then we can write equation (72) as

a:dzﬁsl:Ee+£SI:Dp.
PI PI

‘We can also show that

ZISI . D, = % w((F ' o F ) (FL F. B, F,'+F,T - Fl . F - F,))
- %tr (Fto-F By Fl) + %tr (B, 7 B F o FT)
- %tr (F 2 e a) n %tr (0' FT FT BT FT>
:%a:(Fe-Fp-Fp_l-Fe_l—i—Fe_T-Fp_T-FpT-FeT).
From the definition (69) we then have
I;OISI:Dp:U:dp-

The entropy inequality in equation (62) may now be expressed as

n
P .
O'de—fZqu]‘ZO.
ij_O

where

1 :
dy =5 [F.-L, F.'+(F.-L,-F, )" ; L,=F,-F,'.

The quantity d,, can be interpreted as a rate of plastic deformation.

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(719)

(80)



5.2 Is d, really a plastic rate of deformation?

Note that

1 _ _
tr(dy) = 5 [tr(F. Ly - F;Y) +u(F, T LT FI)]
1 _ _
=5 [w(FoH B Ly) +ur (FI-F; 7. L] (81)
1
=3 [tr (Lp) + tr (L;‘DF)] =tr(Lp) .
Therefore,
tr(dy) = tr (Fp : Fp_1> (82)
which is similar in form to the relation
tr(d) = tr (Vv) = tr (F : F—l) . (83)

Also, recall that the rate of change of volume is give by

J=Ju(d) ; J:=det(F)= ’Z. (84)

Similarly, let us define
Jp(Fp) = det(F) . (85)

If the tensor F), is invertible, then the directional derivative of .J,, is given by (see for instance [Gur81] p. 23)
DJ,(F,)[A] = det(F,) tr (A-F, ') = J,tw(A-F, ) (86)

for all tensors A.
In addition, from the chain rule (see [Gur81] p.26)

d

—Io(Fp(t)) = DIy (Fy) [F (1)) - (87)
Therefore, using (82), we get
Jp= Ty (B F') = Jyw(dy) . (88)
Also, from (9), we have
J, = det(E,) = 2. (89)
PI
Hence,
g, =2t (d,) . (90)
PI
Now,
. dJ, d [ po Po .
Comparing equations (90) and (91), we get
tr(dy) = 2L 92)
PI
which has a form similar to ‘
w(d)=-". 93)
0

These relations indicate that the quantity d,, may be considered to be a plastic rate of deformation tensor just as d
is considered to be the total rate of deformation tensor.
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5.3 Decomposition into volumetric and distortional components

The Cauchy stress can be decomposed into volumetric and distortional components as

1
a:§tr(a)1+s:—p1—|—s. (94)

It may not be obvious that we can do the same for the plastic rate of deformation d,,. The question arises that if we
decompose d), into volumetric and deviatoric parts as

1
dy = tr(dy) 1+, (95)

then is 7, truly a distortional term or does it contain a volumetric component too? Indeed, it can be shown that the
deviatoric part of d,, does not contain any volumetric terms (see Appendix: item 6) .
Then we can write

o:d,

1
(p1+s): (3tr<dp> 1+np)
=—ptr(d,) —ptr —i—ftr M—i—s Mp (96)
p
:—ptr(dp)+s:np:p——i—s:np:p——i—s:np.
PI do

Recall the entropy inequality in equation (79)

n
14 .
=D Q¢ =0 97)
I3
which can be written (with p; = qo) as
o d, —onf—fZqujzo (98)
We can now express the above equation as
s:mp+(p—p Qo) ———Znggzo (99)
or,
n
simp+(p—p Qo Z Q; ;> (100)
]:1

This is another form of the Clausius-Duhem inequality. From equation (100) we can see that for us to have a well
posed problem it is necessary that rate equations for 7, o7, and ¢; must be provided. Clearly these constitutive
relations must be prescribed in such a way that the inequality in equation (100) is never violated.

5.3.1 Special cases

1. Isochoric plastic deformation:
If the plastic volume change is zero, then the Clausius-Duhem inequality takes the form

-3 Q¢ >0. (101)
=1

11



2. Internal energy and free energy do not depend in p;:
If we have the situation

pr = p1(q;)

and

g:g(SI,T,C_I]), 626(E6777 QJ) %Z) w(Ee’TQJ)v ]:171

(102)

(103)

we can show that these conditions are equivalent to assuming that ()9 = 0 (see Appendix:item 7). In that

case the Clausius-Duhem inequality becomes

s: 77p+Pp**p*ZQJqJ>O
j=1

or,

91. I~ )
S : T]p—i-* g P i —*E qu]‘ZO
8q PI “
j =1

or,

n

P D Opr| .

s:np§:[Qj—,] Qj 0.
,01'j:1 98%

6 Energy Equation for Thermoplasticity

Recall that the balance of energy for thermoelastic processes is given by
pe=oc:Vo+ps—V-q.

From equation (55) we have

n
e=Tni+q " | Y Qjdj+Sr:E.
§=0

Therefore we can write the energy equation as

n
PTﬁ+PQ()_1 Zquj+S]:Ee —o0:Vo—ps+V.-q=0.

j=0
Reverting to p; = qo, we can write
an—i—p— ZQJ% —|— SI —o0:Vv—ps+V-q=0.
I
7=0

From equations (76) and (78) we see that

ﬁSl:Ee:a':d—a':dp.
PI

Substituting (111) into (110) gives

n
pT7'7+pp Zqu'j +o:d-o:d,—0:Vvo—ps+V.-q=0.
1

J=0

12
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(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)



Recall that

Hence,

7=0

an—i—— ZQJQJ —o0:d,—ps+V-q=0.

Recall from equations (33) that the entropy 7 can be derived from a thermodynamic potential, i.e.,

99 _ oY

9T oT

where, from (32),

g:g(SbTaqO’Qj); ¢:¢(E€’T7QU7QJ')7 j: I...n

There can be two forms of the energy equation based on which variables we consider to be independent.

1. If we consider the Helmholtz free energy to be fundamental, then we have

n:n(E€7T7q07qj) 5 ] =1...n
Therefore, using the chain rule,

877 . on .
=3B E+6—TT+— 0+Za qj -

Now, from equations (33), we have

Y o
oB, M

oY

oT 8(]0 an

om0 [ _, 0S;
oE, aT oE,) ~ " 1
on _ % —1 9Q;
dq; aT ag;) ~ P ar

Also, the specific heat at constant strain is defined as

8€(Eea Ta q0, QJ)

Therefore,

Cy = T
which implies that
oY on on
T —=T —.
Co=grWtTm=gptntT o =T 57
Hence,
n_G
or T
Plugging (120) and (123) into (118) gives
0S . C, . n 9Q
. -1 1 —1 7 .
=— —E,+—T— — g
="t p iRt i T T W

13

Sri 55 =-1; 7:(10_1@0? o =4

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)



Substituting the expression for 7) above into equation (114) lead to

1081 1= 00Q; . 1w .
pCT—pTap' o i Be—pTay' Y o dj+tpag' D Qjdj—o:dy—ps+V-q=0 (125)
=0

J=0

or,
. L OS] " 0 .
pCyT=pTq' a7 B+ pay Z( %9, QJ) Gjto:d,+ps—V-q

Using p; = qp and rearranging gives us the new form of the energy equation:

oSr . 0
pCyT =—-V- q+ps+TpaTI:Ee+5 E < 96; QJ> gj+o:dp.
14
Jj=0

(126)

(127)

For a thermoelastic process, the last two terms above evaluate to zero and we are left with the energy equation

for thermoelasticity.

If the heat flux q can be derived from a temperature potential 7" as
q=—-k-VT
where & is the thermal conductivity tensor, and if the coefficient of thermal stress is defined as

oSy

,633:87

then we can express the energy equation as

) . n B
pCUT:V‘(K‘VT)—Fps—i—T,:,BS: < 9Q; Q]> g +o:d,.
I
]0

The coefficient g can be difficult to determine for the general anisotropic case.

Recall from equation (96) that
do pr
o:d,=p—+s:mp=p—+s:1,
40 PI

Using this relation, we can provide another form of the energy equation:

J=0

. . 0 . )
pCvT:V.(n.VT)—Fps—FTppBS:EE—FppZ< 96, Q]> Qj+pff+s:np.
I I I

. If we consider the Gibbs free energy functional to be fundamental, then we have

:ﬁ(SIaTﬂOan), ]:1n

Therefore, using the chain rule,
On In
:Si+—T — g .
=25, St ar + o+ Z 9g; ¥

14
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(129)

(130)

(131)

(132)

(133)

(134)



Now from equations (45), (40), and (42), we have

o _ 1 OF
as; D ar
00 —qy a7 Sr: a7 (135)
o 109
6%‘ 0 oT '
Also from equation (48),
877 1 -1 8Ee
oT — T [C ~q 51 8T] (136)
Plugging the relations in equations (135) and (48) into (134), we get
. 4, 0E. 1 OE.N . _1(0Qo  _ OE.\ . 1 ~00Q; .
— 1 €. = -1 T g7t [ 2=V 1 L e _ 1 TRy
=9 g St (C” St a:r) o \gr T Srigp Jdo— ; or ¥
137)
or,
1 _ OE, OE, OE, "L 0Q;
. . 1 . e . . C Oy .
77—T<Cp 9o Sl'aT)T o aT'S O S or — or ¥
- (138)
1 .. OE. 0B (o g 1\~ 9Q
= = — Sr: T S — S — — g .
T(Cp do =1 8T) N7y (816" S1do) 4o or ¥
Therefore (with the substitution ¢y = pr), we get
. 1 OE, p OFE, : 0Q; .
Tn= C,——Sr: : S——S’ - qj - 139
PUP(;;IOIJ(?T) p18T<I I> Z (139)
Plugging the expression in equation (139) into the energy equation (114) gives
1 OFE., p OFE, . Pr 0Q);
C,——S: T | Sr——857] — —
p<pﬂIIaT>+ 13T<1P11> Z(:)T
n (140)
p .
+fZquj—a:dp—ps+V~q:0
PI “—
7=0
or,
1 OFE, p OFE, . Pr
C,——S: =-V- T — | Sr——8
p ( P I 8T> q+ps+ o1 OT (1 o1 1>
(141)

+ — Z(QJ_TaQ]) j—o:dp.

J=

This is a slightly more complicated version of the energy equation for thermoplasticity and the form in
equation (127) is preferable since strain rates are more accessible than stress rates.

If the heat flux q is related to the temperature gradient by

4= —k-VT (142)
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and if the coefficient of thermal expansion is defined as

OE,
ap = o (143)

then the energy equation can be written as

1 . . )
0 (Cp—Sl:aE> T=-V.qtpstT Lap: (sl—msl)
PI PI PI

P~ 3@;’).
+ 2 7% 4o d,.

(144)

7 Constitutive Relations

To close the system of equations in thermoplasticity, we have to provide constitutive relations that can be used to
determine the plastic part of the deformation. The usual situation is that the total deformation gradient is known
and the decomposition of the deformation gradient into elastic and plastic parts have to be computed.

For elastically anisotropic materials, the orientation of the material in the intermediate configuration needs to
be known before an the correct elastic stress-strain relation can be used. We will avoid the related complications
for now and deal only with the elastically isotropic materials. However, it is important to know what the fuss is all
about.

Consider an elastic material. The deformation gradient F' can be decomposed into a pure stretch and a rotation
in two ways, i.e.,

FF=R-U.=V,-R where R-R'=R' R=1. (145)

A schematic of the polar decomposition theorem (and what the decomposition means in terms of Lagrangian
triads) is shown in Figure 2. Now, suppose that we rotate the reference configuration by a rotation @ so that the
deformation gradient becomes

F*'=F.-Q"=R-U.-Q"=(R-Q")-(Q - U.-Q") =R - U™. (146)

In this situation, the actual amount of stretch remains unchanged. However, the rotation is felt by the eigenvector
triads of the stretch tensor and also be the original rotation tensor. Such a rotation of the reference configuration
should not affect the Cauchy stress whether the material is isotropic or not. Let us now check how the 2nd P-K
stress transforms under a rotation of the reference configuration. Recall that

e

§s="p1 5. FT, (147)
P
If F©° = F, - Q7 then we have
s =R QN e (F-Q")T="Q T F o FFT.Q' =Q-5-Q".  (148)
p p

Therefore, the 2nd P-K stress S also transforms in the same way as the elastic stretch tensor Uk.
Now, suppose that the constitutive model of the material relates the 2nd P-K stress to the elastic stretch via

S =C(U.). (149)
A rotation of the initial configuration then implies that we should have

Srot — Crot ( UéOt) (150)
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Figure 2: A schematic of the polar decomposition theorem (based on [NNO04], p. 60).

" Q-5-QN=C"Q-U.-Q) = §$=Q"-CQ-U.-Q)-Q. (151)
Therefore the two constitutive models are related by
CU)=Q"-C"(Q - U.-Q)-Q (152)
or
CUU) =Q-C(QT-UM-Q)- Q. (153)

In general, C™" # C except for special values of the rotation Q. However, if we know the constitutive relation in
one configuration, we can evaluate the response in a rotated configuration by

1. Rotating the stretch back to the reference configuration.
2. Evaluating the constitutive relation in that configuration.
3. Rotating the result back to the rotated configuration.

Of course, things simplify greatly if the material is isotropic.

Similar considerations hold for elastic-plastic materials. In this case, the deformation gradient is decomposed
into elastic and plastic parts with the restriction that det(F¢) > 0 and det(F)) > 0. Hence we can use the polar
decomposition theorem to write

F.=V.,-R.; F,=R,-U,. (154)

Hence,

F:Ve-Re-Rp-Up:VE-Q'Up.‘ (155)
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Figure 3: A decomposition of the deformation gradient into a plastic stretch U,,, and rigid rotation @, and an elastic
stretch V., [NNO4], p. 251).

Since the product of two orthogonal tensors is an orthogonal tensor, the tensor @ represents a rotation. Note that
the rotation Q) is uniquely defined in this decomposition. A schematic of the above decomposition is shown in
Figure 3.

In the figure, N; are the principal directions of U and n; are the principal directions of V where F' = R-U =
V - R. The triad P; represents the principal directions of the plastic stretch U),.

There are clearly two intermediate configurations in this case. The first intermediate configuration is achieved
by purely plastic loading from the unloaded configuration. The second intermediate configuration is achieved by
a pure rotation from the first (no elastic or plastic deformations). The final configuration is achieved by a purely
elastic deformation from the second configuration. The internal variables do not evolve in this phase. For further
discussions in the context of anisotropic elastic behavior see [NNO4].

Also note that from (155) we have

V' F=Q U,. (156)

Since the right hand side consists of a rotation and a pure stretch, we can interpret the product to be the result of
a polar decomposition of the left hand side. This implies that if we know V. and F' then we can find U, using a
polar decomposition. An additional implication is that det(V,~!) = 1/det(V,) > 0, i.e., det(V,) > 0. Another
implication is that @) is fully determined if V, and F' are known.

For elastically isotropic materials, the Cauchy stress (o) is an isotropic function of the left stretch (V;). Then

18



the elastic constitutive equation may be written as
o=C(V.,) where C(Q-V.-Q")=Q-C(V,)-Q" (157)

for any rigid motions Q.
Also, o and V, are coaxial in the sense that their eigenvectors point in the same directions (they have the same
principal directions).

7.1 Stress power in current configuration

Let us now check how the rotation @ in the decomposition (155) and its rate Q affect the stress power in this
situation. The total stress power is given by

PZUZdZ%O’Z[VV—F(VV)T]. (158)

Since o and V, are coaxial, we can show that stress power can be expressed as (see Appendix, item 8)

cid= o (Vo VI 4V Vo)t

N |

. ' (159)
o-:(%'Q'Up'Up_l'QT"/e_l_F‘/e_l'Q'Up_l‘Up‘QT“/e)

The first term in this expression can be interpreted as the elastic stress power while the second term is the plastic
stress power. Also observe that there are no terms containing the rate of rotation Q in the expression.
This makes life easier for us because we can now assign the entire rotation @ to the elastic part of the deforma-
tion gradient, i.e., we can write
F.=V,.-Q and F,=U,. (160)

Now, a polar decomposition of F also gives us
F.=Q- U.. (161)

Hence, we can express the decomposition (155) alternatively as

]F:Q-Ue-Up\ and V,=Q U, -Q". (162)

If we know U, and @, we can compute the Cauchy stress for isotropic elastic materials using the constitutive
relation. The decomposition in (162) thus treats the plastic part of the deformation as a pure stretch and simplifies
things considerably.

If we substitute V, = Q - U, - Q" in equation (159) we get (see Appendix, item 9)

1 . .
oid= [cr:{Q-(Ue-UglJrUgl-Ue)-QT}
_ _ (163)
+0:{Q-(Ue'U,fUp*l-Ug1+U;1~Up*1-Up-Ue)-QT}],
Now recall from (69) that
171 .
d.:= 5 [F Fl 4 (- Fe_l)T]
1 : . (164)
dy =5 [F F,-F,'.F,'+(F.-F, F, . F;l)T} .
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Substituting F, = Q - U, and F}, = U, in these definitions can be expressed as (see Appendix, item 10)

1 . .
d.=3|Q-(U. .U + U UL) - Q7]
1 . . (165)
d=3|Q-(U. U, U U+ U U0, U - Q7
Hence we can write the stress power in equation (163) as
P=oc:d=o:(d.+dp). (166)

We can show that the elastic and plastic rates of deformation transform in the same way as the Cauchy stress under
rigid body motions and hence are objective rates.

7.2 Stress power in intermediate configuration

Alternatively, we can show that the stress power in the intermediate configuration can also be decomposed into a
product of the tensor Sy and rates of deformation in the intermediate configuration.
We can show that the stress power can be written as (see Appendix, item 11 fro details).

P=J'8:(D.+D,). (167)
where
1 7. .
D =3 |U.-U.+U. U]
2 ‘ ' (168)
D, = U0, U + Ut U, U2
If we push forward the rates of deformation D, and D, by F¢, we get
1 . .
F,7-D. F'=- [Q U U,-Q"+Q U, U Q"] = d.
2 (169)

FT.D, F'= [Q-Ue'Up~Up’1~Ugl-QT+Q~U51-U;1-UP-U6'QT] ~d,.

N

7.3 Relation between U, U, and U,

Given any deformation gradient F', we can eliminate the rotation by using a deformation measure of the form
C=F" F=U"-U=U" (170)

where U is a pure stretch. Substituting the decomposition

F=Q U, U, (171)
into (170) gives
U’=U,-U.-Q")-(Q-U.-U,)=U,-U.-U.-U, . (172)
Hence,
Uu.-U*U.= U, U, U) (U,-U,-U,) = (U.-U,-U.)*. (173)
This leads to
U,=U' (U, -U*U)Y? Ut (174)
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7.4 Rate equation for the total stretch

Recall that
U?=F".F. (175)
Differentiation with respect to time gives us
S U= P4 F 176
G U)=F -F+F -F. (176)

A bit of algebra shows that (see Appendix, item 12)

d
a(U2) =U,  (D.+ D,)-U,. (177)

If the history of S7, T, qo, and g; are known then we can find D, as shown in the following section. We can then
solve for U, using the definition of D.. Since U, can be expressed as a function of U and U,, we can use (177)
to solve for U. Note that this approach is different from that used in most numerical codes where the stretch U is
assumed to be known and it is the stresses that are computed.

7.5 Elastic constitutive relations

To determine the elastic response of the material we need constitutive relations. In most computations, we usually
know the total deformation gradient. Suppose, for the time being, that we also know V, or U.. Then our goal is to
compute the Cauchy stress o (or the 2nd P-K stress S7).

The elastic part of the rate of deformation in the intermediate configuration D, is given by (see Appendix, item
13 for proof)

’r

. : I L = 0Q; .
D.=E.=p;S:|S;——=S;|+a.T- == . 178
Pr (I ol 1) JZ;@SI% (178)

where the fourth-order elastic stiffness tensor and the second-order thermal expansion tensor are defined as

0?%g 0E,
S = ais’% ; Qe 1= T .

179)

This is a rate equation that can be solved either for D, or S

7.6 Plastic flow rules and evolution of internal variables

We also need a relation (flow rule) to determine D),,. The usual assumption is that D, also depends on the same
variables as the Gibbs function, i.e.,

Dp:Dp(S[; TaQOij) j:1n (180)
The evolution equations for the internal variables are also assumed to have the same dependencies, i.e.,

¢ =a(Sr; T,q,q;) i=0...n,5=1...n. (181)
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7.6.1 Isotropic material with scalar internal variables

If the material is isotropic and all the internal variables are scalars, then the functions ﬁp and @; are isotropic
functions of the stress S;.

Recall that
S;=J.F ' o-F,T and F.=V,-Q; J.= PL_ det(F,) = det(V,) . (182)
P
Therefore we can write
S;=J1.Q" - vl.e.v1.Q. (183)
Also, recall that
d,=F"-D,F/'=v.'.Q-D,-Q"-v,'. (184)

Hence, from (180) and relations (184) and (183), we have
dy=V."Q-D,(J. Q" -V, o -V Q; Ty0,q5)- Q" V.. (185)

Since the function D), is isotropic, we have

Q.f)p.QT:f)p' (186)
Therefore,
_v-1. 9 T yr—1 -1 . -1
dy=V, -Dy(JeQ -V, -0V, Qi Tqo,q5) Ve (187)
The isotropy of the material also implies that
Vo =Vi(o; T.q0,q); Jo=det(V.) = J.(o; T,q0.0;) (188)

where V, and J. are isotropic functions of o. Hence,

dy = dy(o; T,4,4;) (189)
where the function cip is given by
T (o V—v-l.D T y-1 -1. . , -1
dp(o; T.q0,q5) =V. ' Dy (JeQ V.-V -Q; T.qo,q5) Ve (190)

and is an isotropic function of o.
Similarly, the evolution equations for the internal variables also involve isotropic functions (¢;) of o and can be
written as
G =a(o; T,q0,4;) - (191)

Since these internal variables are scalars, the functions ¢; depend only on the invariants of o (see Appendix, item
14 or [Gur81], p. 230 for a proof of the scalar representation theorem) which are

L(o)=tr(o); Ix(o)= % [(tr(a))2 —tr (0'2)] ; Is(o) = det(o) . (192)

The representation theorem for isotropic tensor valued functions of second order tensors implies that, since d,
is an isotropic function of o, we can write (see Appendix, item 15 or [Gur81], p. 233 for a proof)

~

dy(o; T,q0,q;) = eo(l1, I2, I3; T, q0,q;) 1 + p1(I1, Iz, I3; T, qo,qj) o + p2(I1, Ia, I3; T, qo,q;) o* | (193)

where ¢1, @2, (3 are scalar valued functions of the invariants of o, the temperature, and the internal variables.
The flow rule is commonly expressed as a function of the pressure and the invariants of the deviatoric stress.
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Recall that the Cauchy stress can be decomposed as

1

U:§tr(a)+s:—p1+s. (194)
Hence,
o’=0c-0c=p>1-2ps+s-s. (195)
Therefore, the flow rule (193) can be written as
dp=901+¢1(-p1+s)+p2(®1-2ps+s’). (196)
Also recall that
1 ‘ pr 1 pr1
dp:§tr(dp) 1+mn,; tr(d,) = —— = dp:—g—l +7p . (197)
PI PI
Combining (197) and (196) gives
pr
dp = _@1 +1p=(po—pp1+p° ¢2) 1+ (o1 —2pp2) s+ 2 8 (198)
or,
p'l 2 )
np=<3m+soop901+p 902> 1+(p1—2pwp2)s+p2s . (199)
Equation (198) can then be written as
dp = 50(1% Ia'a T) q0, QJ) 1 + gl(pu Iow Ta q0, q]) s+ 52(-[0'7 Ta q0, q]) 82 (200)
while equation (199) can be written as (recalling that ¢o = pr)
Np = §(§(pa Io'a T7 qo, q]) 1+ gl(pv IO'> Ta q0, QJ) s+ 52(103 Ta q0, QJ) 32 . (201)
An alternative expression can be obtained by observing from equation (198) that
pr
r(dy) =—"=3(p0—pn +p% 2) + @ tr (s) (202)
which implies that
2 1Lpr 1 2
o —p1+p 902:—§f—*<pztr(8). (203)
pr 3
Now, pr = Go(o; T, qo, ¢;) = go- Hence we can write (198) as
1 o 1 1 1
dp:fg EI + (01 —2p ) 8+ 2 (323&(32) 1) =-3 El +& 54+ & <323tr(.52) 1>
(204)
or,
2 1 2
=& s+& (s —gtr(s)l ) (205)
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Entropy inequality for isotropic materials with scalar internal variables. Recall from (79) that the entropy
inequality can be written as

o: d_fzcgjqpo (206)
7=0
or alternatively from (100) as
PP
simp+(P—pQo) ——— > Qi >0. (207)
prPr oD

If we plug the expression for 7, from (205) into (207) we get (using the substitutions p; = Go, §; = )

s {§1s+£2 <sz—;tr(82) 1)} +(p—p Qo) f—fZQ]quo (208)

or,
0
f18:8+& ((s-s):s—;tr(ﬁ)tyéffjﬂp p Qo) ———Zngﬂo (209)

or,

G (%) + & u(s’) + (p— p Qo) ———ZQ] g >0. (210)

If the internal energy and the Gibbs free energy do not depend upon the plastic volume change we get, using (106),

n a R
fltr(32)+§2tr(33)_’iz[Qj_iggji G >0. 211)
j=1

Equations (210) and (211) can be used to restrict the possible forms of &; and &5. If the latter, the first two terms
represent the rate of deviatoric plastic work. The terms containing p represents the rate of volumetric plastic work.
The terms containing (); represent the rate of storage of cold work.

We assume that plastic work is always positive. This constraint may be construed to imply that &; is positive
and the sign of &3 is always the same as that of tr (33) (see [Wri02], p. 47-49, p.67 for more details).

7.6.2 Isotropic material with some tensor internal variables
7.7 Plastic Yield

Recall that the 2nd P-K stress Sy refers to the intermediate configuration and is unaffected by rigid body rotations.
If we define the yield function as
fi1(S1; T,q5) <0 (212)

then the yield surface is also unaffected by rigid body rotations.
Recall that

€ &

SI:%Fgl-a-F—T:%QTV‘@—l-a-V—l-Q. (213)

Hence the yield surface may alternatively be expressed as

fr (‘Z QT Vv, e V] Q; T7‘Jj> <0. (214)
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7.7.1 Isotropic elastic material and scalar internal variables

If the material is isotropic and all the internal variables are scalars, then f; is an isotropic function of S7. Also, fr
is unaffected by rigid body rotations. Hence we can write the yield function as

f1 (ppl Ve VI T qj) <0 (215)

or

UV o VL Tog) <05 J, = det(F,) = ppf. (216)

Also, if the material follows an isotropic elastic constitutive relation, then the Cauchy stress (o) is an isotropic
function of the left stretch (V.). Hence the yield function may alternatively be expressed as

flo; T,q5) <0. (217)

This function is also invariant with respect to rigid body rotations and is an isotropic function of o.
Recall that the plastic rate of deformation in the current configuration can be written as

~

dy(o; T,q0,q;) = po(I1, Io, I3; Ty qo,q5) 1 + ¢1(Ih, Ia, I3; T, qo,q5) o + @a(Ih, Ia, I3; T, qo,q5) o2 . (218)

On the yield surface, the plastic rate of deformation is zero. Hence the arbitrariness of o implies that on the yield
surface

po=p1=p2=0. (219)

Also, if we consider the alternative expression for d, from equation (204):

1 Qo 9 1 9 1 Qo 9 1 9
dp:—551+(s01—2p902)s+g02 <s —gtr(s ) 1> :_§EI+£1S+£2 <s —gtr(s ) 1) (220)
we notice that on the yield surface we must have
Go=&=E&=0. (221)

7.7.2 Isotropic elastic material and tensor internal variables

If one of the internal variables is a second order tensor, then frame indifference of the yield function is more difficult
to achieve in general. More details can be found in [SWO1].

7.8 Plastic flow potentials
It is common in plasticity theory for the rate of plastic deformation d, to be derived from a flow potential ¢ such

that
_ 99
= 59
The principle of maximum plastic dissipation is has been used by some researchers to prove the existence of a
plastic potential. However, the existence of such a potential does not have the same theoretical standing as the free
energy and internal energy potentials.

d, (222)
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7.8.1 Isotropic material with scalar internal variables

For an isotropic material with scalar internal variables, the plastic flow potential can be assumed to have the form

¢E¢(p7 J27J3; TaQO,Qj) (223)
where p is the pressure and .J2, J3 are invariants of the deviatoric stress s defined as
1 1 1
Jo = —3 [(tr(s))2 —tr (32)] =3 tr (32) =588
1 (224)
J3 := det(s) = 3 tr(s®) .

Then,
_ 06 _ 00 0p 90 0% 00 01y

P~ 90 Op o 0Jy 0o 0J; o
Now, using the expressions for the derivatives of the invariants of a second-order tensor (see [TN92], p. 26, equation
9.11 and Appendix, item 16) and noting that tr (s) = 0, we have

(225)

1 dp 1
1 0J2
Jy = (s?) — 50 = ° (226)
0J3 1
J3 = det(s) — % = 32 — 5 tr (32) 1.

Therefore (225) can be written as

dp:—;gi1+§zs+§}i [32—;&(32) 1]. (227)
Hence, r _@ -
P) = ap
" np:dp—;tr(dp):gzwgz [32—;&(32) 1} : (229)
Clearl
o8 100, -

np_@a 3 Op

implies that the usual assumption that 7, = d¢/Jo only holds when d¢/0p = 0.
From equation (204) we have

1 qo 1
dp:_§E1+§1s+£2 [32—3tr(32) 1} : (231)
Comparing expressions (225) and (231) we see that
o Qo I¢ 0¢
L= L =¢; —=&. 232

We can normalize equation (231) to get

. 2
1 qo : s . s 1



or,

o~

1 q

2
S 8 1
dp:—ga1+€1(\/2<]2) <m>+§2(2J2) ( 2J2) —51

or,
1 q 2 9
q0 S S
d,=——-—1+ Jo —+& J — | —=1
P 3 o1 51\/2\/72 & Jo (@) 3
Define,
I =26V Jo; Tei=3& Js.
Then

Hence, the derivatives of the flow potential are also required to be related to the functions I'; and I'y vis

d - %, v s 12
N N s A

1 Qo Iy s Iy |s? 21
Jy 3 '

op  qo 09 v 09 Iy

DA YA VoA VA VS

8 Appendix

1.

If the internal energy and the Gibbs free energy have the functional dependence
9=9(51,T,q,q;) and  e=e(S1,T,q,q)

show that
O _ 1[0 1o  OF.
or — T |ar % ST

Recall that (for j =1...n)

g(SI7Ta q07qj) = 7€(SIvT7 quqj) +T77(SI7T7 q07qj) + q(;l Sr: Ee(SI,T,Q(),qj) .

Therefore, 5 5 5 5
g € 7 —1 Ee
= — T — : .
or = “ar TN T g a0 Sty
Now,
99 _
oT
Hence,
_ Oe on _1 OFE.
0=—gr+Tor+o 5 %p
or,
% i %, -1g .BEE
or — T |or ™ "' or
. Show that if
6:6(E5’T7q07qJ) and 77:77(E87T7q07%‘)
then
on _ 1 0e
oT T oT

Recall that the Helmholtz free energy is given by
w(Eev T7 qo, q]) = e(E57 T7 q0, q]) =T W(Ee’ T7 qo, q]) .

Therefore,

Op _ 0e . 0n
ar —aor " Toar-
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(238)
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(240)
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Now
oY _
or

Hence we have

o= e _p0n
- or oT

or,

on 1 de

oT ~ T aT

. If the Helmholtz free energy and the entropy are given by

1/’:w(EeaTquan) and n:W(Ee,TaQO’Qj)

show that
on 108
TEE =4 T
Recall that
oY
5=
Therefore,
0% 0 oY\ On
OE.OT ~— aT <8Ee) ~ OE.
Now 5
ng =q ' Sr.
Hence,
on 4108

0B, P a1 -

. For thermoplastic materials, show that the specific heats are related by the relation

051 | OB,
or ) oT

Cp—Co=qy" (SI—T

The specific heats at constant strain and constant stress are defined as

I 86(E€7T7 qovqj) R
Cy = T and Cp =

From the previous results in this Appendix, we have

oT

86(E€7T7 q0, 9; an(EEvTa quqj)

=T

oT oT
and Oe(S1, T ) on(Sr, T ) OF.
eor1,4,490,495) o1, 1,4qo,q; -1 . e
T =T aT o St
Therefore,
_ (81,7, q0,95) | 1 o . OB on(Ee, T, qo,4;)
Cp—C,=T 5T +4qy Sr: 5T T 5T .

Now, note that
n=mn(Ee,T,q,q) =n(S1,T,q,q;) -

Therefore we can write

on(Sr,T,q0,q;)  O(Ec,T,q0,q;) OE.  0n(Ee,T, qo,q)

oT OFE. - oT oT
Hence,
(B Tq0,45) OEe . On(Ee,T,q0,¢5) -1 o . OFe
Cp C,=T IE. CBT +T o7 +qo Sr: T
or,
_ 677(E€7T7 qonj) —1 . aEe
& C”_<T8—Ee+qo St) T
Since
on _ 10
oE. " ar

86(SI7T> q07Qj)

877(Ee7 Ta q0, Qj)

(249)

(250)

(251)

(252)

(253)

(254)

(255)

(256)

(257)

(258)

(259)

(260)

261)

(262)

(263)

(264)

(265)

(266)



we then have

o dS; OE.
Cp—Cy=qp ( T o +Sr) (267)
. Show that
. — P . 1 T " T 1 T - -1 T T T
a.d_p—Sl. 3 (F B+ Bl F.)+ 5 (F-F.-F,-F,'+F, " F -F/-F)| . (268)
I
Recall that
tr(AT~B) :tr(A-BT> :tr(BT~A> :tr(B-AT) —A:B=B:A. (269)
Then, from equations (71) and (68) we have
a:d:tr(ch-d) =tr(o-d)
- Ltr((Fe S F'). (F.-F,'+F " F'+F. F, - F' F'+F T . FT.F. Ff))
2 pr
(270)
g p . . T . ; . 71 . . ; T . . T . . ; . 71 . 71
= w(Fo-s0 F7-Fo F) 4w (P S0 BT ) 4w (P81 FF - F. By F - F)
+u(F. s F" B FD)]
Since
r (AT : B) —tr (B : AT) @71)
we have
tr ([Fe -S;-FT].[F. . F;l]) —tr ([Fe F7Y.[F.-S;- FZ]) _ (F - S;- FZ)
, . (272)
:tr(SI~FeT-Fe) -8, (F' - F.).
Also,
tr(Fe-sf-FeT):tr(sf-FZ-Fe):51;(F6T-Fe). (273)
Similarly,
tr ([Fe .S;-F'|.|F. - F, F,’ -F;l]) =tr ([Fe E,-F,' F'[F.- S FZ])
—tr (F E, F,'. 8- FT) (274)
:tr(SI-FeT-Fe-Fp-Fp_l) =S, :(F'.F..E,-F").
And,
w(F-S BB FD)=u (BB FlF..S)) =S (F," B -F/-F). 275)
Therefore,
N . 1 T  r nil 1 T - -1 —T T T
a.d_;sf. 3 (F B+ Bl F)+ o (F/-F.-F,-F,'+F, " -F -F/ F)| . (276)
’
. Show that 1 . .
=3 [F F, - F,' F'+(F.-F, F .Fgl)T} Q77)
The volumetric/distortional split of the deformation gradient is given by
F=J"F where J:=det(F); det(F)=1 (278)

where F is the distortional component of the deformation gradient. Clearly, we can perform the same decomposition for the elastic
and plastic parts of the deformation gradient, i.e.,

F.=J!*F.; F,=J)*F, (279)
where N ~
Jo :=det(F.); det(F.)=1; J,:=det(F,); det(F,)=1. (280)
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Since

J = det(F) = det(Fe - Fp) = det(Fe.) det(Fp) = Je Jp . (281)
we can check that the product of the two decompositions gives us the original decomposition of f back, i.e.,
F=F. F,=UYF) (J,*F)=J'""F. . F,=J/F = F=F. F, (282)
and R o R N
det(F) = det(F. - F,) = det(J2/® F.) det(J,® F,) = J. det(F.) J, det(Fy) = Jo Jp = J . (283)
Recall that L
dy =5 [F E, F,' F,'+(F. F, F;' -F;I)T} 4 (284)

We want to express the quantities F. and F), in the expression in terms of their volumetric and distortional components. Let us
consider the rate quantities first. We thus have

~ . d =~ = 1 _5/3ddp = =
F,=J)*F, = Fp:a(J;“) F, +J)/3 F,=3 7, Z/Sd—thp—i—J;/s F,. (285)
Now, from (88) and (92), we have
dJ pr
T: =Jptr(dp) =—Jp pT (286)
Therefore,
By—-Lp sl p g E, - |- P F P (287)
pP— T3 p1 P 1 P P
Also, N
F =g PR (288)
Then -
O S ) LRSS ) S - R RS I 2
p'p*—7p+p'p*—ﬂ+p'p- (289)
This leads to the next step
Fe’FP'Fpil'F;l:(Jel/?)ﬁﬁ) 3p;1+ﬁp'Fp1:| (Jeil/gFil)
I
=F. [—3’3 p’ 1+F, Fpl] F! (290)
I
pI 5 5 p-1 -1
——"1+4+F -F, F ' F
3p1 + P P
Using equation (92) we get
F.-F, F, ' F.'= étr (dy)) 1+F.-F, - F,' F.'. (291)
It follows that 1 )
(F.-F,-F," F.-H)' = Fu(dp) 1+ (Fe-Fp- EVETHT. (292)
Therefore,
11 ~ N A4 o~ 1 ~ AN o~ o~
dp =5 |:§tr(dp) 1+F.-F, F,' - F. 1+§tr(dp) 1+ (F.-F, F, ' F; I)T} (293)
or,
1 1Ta & oo a-1 .8 & a1 o
dy=gtr(dy) 1+ [FE-FP-FP L F'4+(F,-F, F;'-F 1)T] . (294)
Comparing the above equation with (95) we see that
1Ta & 51 51 . .8 & 5.1 o5
ny=5 BBy BB (B By BB (295)

This expression contains only distortional terms of the deformation gradients and hence must be distortional too. Therefore, the

standard volumetric/deviatoric split of d), is acceptable.

. If we have the situation

pr = pi(q;) (296)
and
g:g(SI7Tan)7 e:e(EEan7QJ)a w:w(EeaT7QJ)7 ]Zln (297)
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then we can show that Qo = 0.
To see this, let us revisit the differentials of the internal energy and free energy functions. For this situation we have

Og dg
dg = 95 1dSr+ o dT+Za dg; = ¢ ' E. c:lSI+7;dT+Z8 dg;
(298)
de=—dg+ndl+Tdn+q¢; " E.:dSr+¢;" Sr:dE,
dwz—dg—i—qgl Ee:dSI—&—qgl Sr:dE. .
Plugging in the expression for dg into those for de and dy> gives
de = —¢; ' E. :dSI—ndT—Zaa—;dqj +ndl+Tdn+q " E.:dSr +¢5* Sr: dE,
i J
! (299)
_ 0 _ _
dwz_qolEe:dSI—ndT—Za—qg_dqj_i_qolEe:d.5’1+q01 Sr:dE,
j=1 "
or,
Z qu—O—Tdn—qu Sr:dE.
(300)
0 _
dw:—ndT—Za—jdqj +q' S :dE, .
j=1
After rearranging, the differentials of the three potentials can be written as
1 — g
dg =q;' E. :dSz+77dT+Za—q dg;
de=qy' S;:dE. + T dn Z 9a, dg; (301)
J
dy =gy ' S;:dE. —ndl — 28 dg; .
q;
For the general case discussed earlier, we had defined
dg g .
= — : B i=—=q — ,j=1... 2
Qo Q0 (8(] +q5° Sr E> and  Q; © g, 1...n (302)
so that would could write
dg=qo' Be:dSi+ndT — (¢ Qo+qo” Sr: Ee) dgo—qy' Y Q;dg;
j=1
de=gqo' Sr:dE.+Tdn+q;" Qodao+q' Y Q;dg (303)

Jj=1

dy =gy Sr:dE.—ndT+q;' Qodgo+qp' D> Q;dg; .

j=1
Comparing (301) and (303), we clearly see that this special circumstance leads to equations that are equivalent to
assuming that Qo = 0.

. Show that the stress power can be expressed as

a:d:%[a:(\'fe-n*er/:l.ffe)Jr

. (304)
o (Ve-QU, U, QT VT 4V QU U, QT V)
The stress power is given by
P:U:d:%o’:[Vv—&—(Vv)T]. (305)
Now . R
Vv=F.F' — (V)" =FT.F". (306)
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Using the decomposition (155), we can write
-1 -1 -1 y,—1 -1 AT -1 -7 -7 -7
F'=U,"-Q@q " v.'=u,"-Q"- v, FT=v.".qQ U,

and

F=V.QUy+VeQUp+ Ve Q:Up; F' =U/-Q"- V) +U, Q" V. +U, - Q" V..

From the symmetry of V. and U, we have

V.=V = Vv.'=v," ad U,=U] = U '=U;".

P
Also, ] ) ] )
V.=V U, =0y ;
Hence ) ) ) )
FT=v.' QU F'=U,Q" V.+U, Q" - V. +U,-Q" - V..
The velocity gradient can then be expressed as
Vv=(Ve-Q U,+V.-Q U, +V.-Q-U,)- (U, - Q" -V, 7)
=V..V.'4+Vv..Q- Q" V.'+V..Q-U,- U, -Q" -V, ".
Similarly, the transpose of the velocity gradient can be written as
(VW) =V QU Y) (U Q1 Vet Up Q1 Vet Up- Q1 V)
:%71-‘C+‘Q71-Q-QT~‘/;+‘/'[1-Q-U;1~UP~QT-VE.

Therefore the contraction of the velocity gradient with o gives

o:Vv=0: (V.. Vo) +u (o V. Q- QT Vo ) 4o (Vo QU Uy QT V)
=o:(Ve-V.)+(@Q-Q"): (V. o Vo) +0o:(V.-Q-U,-U, ' -Q"-V.T)

and
o (V) = (V. V) (0 VI Q QT V) 4o (Vo QU T, QT V)
=o: (V' V)+(Q-QN): (Voo V. )40o: (V.- Q- U, U, Q- V).
Now, . .
Q-Q'=1 = R-Q'=-Q-Q".
Hence,

o (V) =0 (V' V) - (Q-Q"): (V.- oV, N+eo: (V:'-Q U, U, - QT V2).

Adding the two terms, we get

U:d:%|:a':(‘};"/;_1+‘/;_1"};)+(Q"QT):(‘/;_1'0"‘/@_‘/6'0"‘/8_1)4—

0’:(VE-Q-Up~Up_1~QT-V5_1+V5_1-Q-UP_1~Up~QT~Ve)} )

Since o and V. are coaxial, their spectral decompositions (eigenprojections) are

3 3
G'IE Uini®ni§‘/e:§ Ajnj @ n;
i=1

i=1

and
5.1
D PR
k=1
Therefore,
3.4 3 3
—1
V. o-V.= (ZMnk(X)nk) : (me@m) : <Z>\j nj®nj> ;
k=1 i=1 j=1
Since
0 if #4374
(n; ®n;) - (n; @n;) = . .#J.
n;,®n; if i=j
we have

3
Ve_l~0-Ve:ZJini®ni=%-U~Ve—1~
i=1
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10.

Hence the stress power takes the form

Since

we have

Therefore,

o:(V.-Q-U, U, Q" V. Y=0:

c:(V.'Q U, U, Q" V) =0

g

d= o (Vo Vo 4 Vo Vot

N[ =

0':(VE-Q-UP-UITI~QT-V;1+V;1~Q-U;1-UF-QT~VE)] .

o

. Show that the stress power may also be expressed as

:d:% [o:{e @. v +u v, Q")

+o:{Q . U, U U U U U, U QT

V.=Q -U.-Q"

V= UTQT; Ve=Q-U.-Q"+Q-U.-Q"+Q - U.-Q".

o: (V.- V. Y=¢

o (V. V) =

U-QM)-(Q U, U, -Q") - (Q-U - Q)]
c:[Q-U.-U,- U, - U Q"]
Q-U!-QNH-(Q U, U, Q") (Q-U.- Q")
o:Q-U U U, -U.-Q"].

[
[
[
=0
[
[
[
[

Since the stress power does not contain any terms containing Q, we can ignore these terms to get

or,

o

show that the equations

can be expressed as

Since

we have

:d:%[0':(Q-Ue-Urjl'QT+Q‘U;1'U8'QT)
+0:(Q-U.-U, U, U QT +Q-UN U, U, UL Q)]
d=Llo{Q w. vt +U " U QT
+o:{Q . U, U U U U U, U QT
F.=Q- U. and F, =0,
d. = % [F F 4 (P Fe‘l)T}
dp:%[Fe'Fp'Fp_l'Fe—l+(F€'FP'FP_1.Fe_l)T] ’
1 : -1 -1 7 T
deZE[Q'(Ue'UE +Uﬁ UE)Q}
1 - -1yt
d=5[Q WU, U U+ U U U] -0 - QT

F.=Q U, and F,=U,

F.=QU.+Q-U.; F.'=U.'-Q"; F,=U,; F,'=U,".

33

QU Q"+Q - U.-Q"+Q -U.-Q"-(Q-U - Q")
c: Q- Q"+Q-U..U/" Q"+Q U.-Q"-Q-U"- Q"

QU QN (QU.Q"+Q U.-Q"+Q U.-Q")
QU Q" QU.-Q"+Q-U"U.-Q"+Q - Q"
Q

(324)

(325)

(326)

(327)

(328)

(329)

(330)

(331)

(332)

(333)

(334)

(335)



Therefore,

o:(F.-F.)
D(Fe-FOHT
:(F.-F,-F,'-F. ")
a:(Fe-Fp-Fpl.Fgl)

(o2
(o
o
o

(
Q
(QUU Ut Ut QY)
(

<Q U.4+Q-U)- U QN =0:(Q Q" +Q - U. - U Q")

Ty u 't .U.-Q"

Q-U!-U U -U.-Q")

Since o : d = o : (d. + d,) does not have any terms containing @, we have
oido= [0 @ U U Q) o (@ U UL QT
a;d,,:%[a:(Q-US-UP.U,;I.U;PQTHU:(Q~U;1~U*1-U§-UC~QT)]
Therefore,
d. = [@ @ U+ U0 Q7]
dp:% @ w.-u, v U U U U0 -Q

11. Show that the stress power can be expr

where

Recall that St and o are related by

St

Therefore, the stress power can be written a

P=o:d=

essed in the intermediate configuration as

P=J'S;:(D.+D,).

1 1. .
e*§|:UE'Ue+Ue'Ue:|

1 - .
p:§[U52-Up~Up1+Up1-Up-U3] .
—JLF e FT. g = det(Fe):p—pI.

S

(J;1 F. - Sz-FeT) :(de +dy)

=J! [tr (FE.SI.FET -de) +tr (Fe~Sz-FeT ~d,,)]

=J [SI:(FeT-de-Fe)JrSI:(FeT-dp-Fe)] .

Since F. = Q - U., we then have

P=J'8

1 (U.Q"d.-QU.+U.-Q" 4, Q- U.) .

Using the definitions of d. and d, from (165) we have

Ue'QT'de'Q'Ue

Ue-QT-dp-Q-Ue

Recall from equations (74) and (75) that

D. =

D, =

N =N =N =N =

U. (U.- U+ U UL - Ue]

~UE+U5~U6]

S

(U0, U U U U U, UL UL

ﬁﬁﬁﬁ
S

Uf-Uva;1+UZ,_1~Up~U§] .

(FEFP+F3F6)

N — N~

(FI-F. B, -F,'+F,"-F -F-F.) .

Recall that F. = Q - U, and F;,, = U, which implies that

F.=Q - U.+Q U.; F/ =

U.-Q"

+U.-Q"; FT=U.-Q"; F,=U,; F,'=U;'; F, " =
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Substituting these into the expressions for D, and D,,, we get

1 . . . .
D .= [U.-Q"+U.-Q")- (@ -U)+U.-Q") - (Q-U. +Q-U.)|
:% [UE.QT'Q'U€+U6.UE+U6'QT.Q..US—’_UE'U6:|
(347)
1 . _ _ .
D, =3 [U.-Q") QU -U, U, + U, U, (U Q") - (Q-UL))
= % v2-u,-u, U U, 02
Since Q7 - Q = —Q7 - Q, we get
De:% |:U6'U6+UE'U6:|
n . _ (348)
D, = [Uf-Up-Up_l+Up_1-Up-U§] .
Comparing (348) with (344) and (343), we see that
‘P:Je_l S; (De—&—Dp).‘ (349)
12. fU? = FT - F, show that
d
E(Uz) =U, - (D,+ D.)-U,. (350)
Differentiation with respect to time gives us
%(UQ):FT~F+FT-F. (351)
Recall that
F=Q U..-U, = F'=UU!Q". (352)
Hence,

F=Q U.-Uy+Q-U.-U,+Q -U.-U, and F' =U! .U -Q"+U! - Ur Q" +Ul - U Q". (353)
Taking products gives us
F'F= (0 U Q" +U] U7 -Q"+U; UL Q") (Q-U.-Uy)
=U, U -U,+U,-U.-U. U, +U,-U.-Q"-Q-U. -U,.

. . . . (354)
F'.F= (v -0 Q") (QU. U,+Q -U. .U, +Q U.-U,)
=U, U.-Q"-Q-U.-U,+U, U -U. - Uy + U, - UZ - U, .
Adding the two terms, we get
F'. F+F . F=U, U2 U,+U, U>-U, +U,- (UE-UE—FUevUe) U,
. . (355)
+U, - (erQT»Q»UG+UE-QT»Q»Ue) U, .
Since QT - Q = 1 we have QT~Q: —Q7 - Q. Hence,
FT . F+F" . F=U, U2 U,+U, U> U, +U,- (Ue-Ue+UE~Ue> U, (356)
or,
%(UQ):Up~(U;1~Up-U3+U3-Up~U;1)~Up+Up~ (Ue~Ue+Ue-Ue) U,. (357)
Comparing with equation (168) we see that
d oo
U ) =Up(Dp+De)-Up . (358)
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13. Show that the strain rate in the intermediate configuration can be expressed as

. 2 pI 8Q]~
D.=E.=p;S: S-S/ | +a.T— i
o ( i ) o 2 5

where )
0°g OE,
s"as;’ X = Tar -
Now, from (74) we have D, = E. and from (33) we have
09
FE. =
~Pas
Hence D. is completely determined by the Gibbs free energy functional g. Also
dg 8%g pI d (dg
E, = = —EFE, .
=P s TP s T o et g \ o

Since the Gibbs free energy functional is given by g = g(Sr1,T), qo, g;) we have

99 _ 99 99 4 09 . N~09
ot ~as; St tar L +aq0q°+;aqjq“

From equations (33) we have

g Jdg —1 —2 dg —1
— = L= = — — : Ee s = == j -
ar =" By g0 Qo—qo SI 0, 90 Qj
Hence,
dg _ 99 - . ~ .
5 = 08, SrHnT — gt (QO—&—quS]:Ee)qo—E_ @ Qi

Taking the derivative with respect to St gives us

o (0 o an
(9>: I8+ 2 gt <Q0+q01E +q0 S,.

88 \ ot 65’2 oS oS
Now,
dg OE. 0%g
E.=p; -2 Ile _ (0 99
Plos;,  — as; Yase
and from equation (45) we have
oy _ i 0.
as; — " “ar -
Hence we can write
8 [dg 9%g _, OE, o . 1o 0% . N
a8, (f%) pgz S1a0 G T =" Bedo— a0 Sr: 5 do £y %0

Recall that

5 —1 0 dg
E. = qq Eeqo+qoas (61& .

Plugging the expression from (369) into (370), we get

%9 OE. . _62g,_ 0Q; .
asf oT "957 T 2 s,

Ee:‘]o

Reverting back to p; = qo and collecting terms gives

. 9%g
D.=E. = S S
Pros?’ ( ' ) o7
If we define the fourth-order elastic stiffness tensor and the second-order thermal expansion tensor as

629 aEe
—= Qe =
052 aT

aQJ .

S :=

we then have

De:Ee:p]SZ<S]—pSI>+aeT ZaQJ
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14.

15.

Let S be a second-order tensor and let g(.S) be a scalar valued function of S. Show that g is an isotropic function of S if
and only if there exists a function (I, I2, I3) such that

q(S) = q(I1, I>, I3) (375)
where I1, I, I are the invariants of S defined as
Li(S) =tr(S) ; I(S)= % [(tr(S))? —tr (S%)] 5 I3(S) = det(S) . (376)

The scalar function ¢ is invariant under rigid body rotations R if

q(S)=qR-S-R"). (377)
An isotropic function is a function that is invariant under rigid body rotations. We will first show that the three invariants of S are
isotropic functions.

Thus,

Il(R~S~RT):tr(RAS~RT) :tr(S-RT»R) = (S) = L1(S)

LRS- R =1 [(R-5-R")? —u((R-5 R")?)| =

. [(u(S))2 —u (R.S-S-RT)}
1
2

(378)

= [(w(S)? —tr (S?)] = I(S)
L(R-S -R")=det(R-S-R") = det(R) det(S) det(R”) = det(S) = I3(S) .

Hence I1, I2, I3 are isotropic functions of S. Therefore, any function g(11, I2, I3) is also an isotropic function of S.

Conversely, we can establish the requirement in equation (375) by assuming that g is isotropic and then showing that g(.S) = q(B)
whenever the invariants of S and B are identical and vice versa.

If the tensor S is symmetric then it is completely characterized by its invariants via the spectral decomposition theorem. Let us
therefore assume that S and B are symmetric. Then we can write

3 3
S:Z)\is‘.i@si; B:Z)\ibi(g)bi. (379)

1=1 =1

Also let s; = Q - b; where Q is a rotation. Then

Q- (b; ®b;)- Q" = Qmjbibe Que=(Q b)) ®(Q b)) =5, Rs;. (380)

Therefore s s
Q- B-Q'=>10Q 1b:®b) Q => Asi®s)=S5. (381)

i=1 i=1

But s isotropic, i.e. §(Q - B - QT) = q(B). Therefore §(S) = g(B) and hence the representation (375) holds.

~

Suppose that o is a symmetric second-order tensor and let d(o") be a symmetric second-order tensor valued function of
o. Show that the function d is isotropic if an only if there exist scalar functions o, 1, @2 of the invariants I, = (I1, I2, I3)
of o such that N

d(a’) = Lpo([l, 12, ]3) 1 + Ap1 (Il, 12, 13) (o —|— @2([1, [2, 13) (7'2 . (382)

Recall that a tensor valued function of a second order tensor is isotropic if
R.-d(o)-R"=d(R-o-R") (383)
for all rigid body rotations R.
Let us assume that the representation (382) holds. Let B = R - o RT where R is a rotation tensor. Then
R-d(o) - R" = po(Io)R-R* + p1(Is) R-o- R" + ¢3(I,) R-o° - R”
=po(ls)1+¢p1(Is5)R-R" -B-R-R" +p2(I,)R-R" -B-R-R" -B-R-R" (384)
=¢o(lo) 1+ ¢1(Is) B+ ¢2(I5) B*.
Since the invariants of o are isotropic functions, we have
I, =1Ip. (385)

Therefore, R N R
R-d(o)-R" = ¢o(Ig) 1 +¢1(I) B+ ¢2(Ig) B>=d(B) =d(R-o-R") . (386)
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This implies that the function d(o) is isotropic.

We prove the converse by using the spectral representation of o. Special treatments are needed for the cases where eigenvalues are
repeated. Let us examine the case where the eigenvalues are distinct (for the other cases consult [Gur81], p. 234).

Let the spectral representation of o be

3
G:Z(L; n¢®ni. (387)
=1
Then, assuming that the function dis isotropic, we have
R 3
d(o)=> din;,®n;. (388)
i=1
Since the eigenvalues are distinct, we have
span(1,o0,0°) = span(n; ® ni,ny ® Nz, n3 ® nz) . (389)

Hence we have the alternative representation of d(o) as a sum of the three linearly independent bases, i.e.,
3(0') =ao(o) 1 4+ ai(o) o+ as(o) o° (390)
where a1, aa, g are scalar valued functions of o and hence of the invariants of o.

16. Let A be a second order tensor and let Iy, Iz, I3 be its principal invariants. Show that
ol 0I5 0l3

_ 4. 92 _ _ AT . Yi3 42 T
8A_1’8A I 1 A,aA (A I1A+121) . (391)
The derivative of a scalar valued function ¢(A) of a second order tensor A can be defined via the directional derivative using
09 d
—:B=—¢(A B 392
54 oAt B)| (392)
where B is an arbitrary second order tensor.
The invariant I3 is given by
I3(A) = det(A) . (393)
Therefore, from the definition of the derivative,
013 d
—:B=— A B
3A o det(A+ s B) -

(394)

d 1 1
= —det|sA|-1+A  -B
ds s e

1
-4 [53 det(A) det ( 1+A7" B>:|
ds S

Recall that we can expand the determinant of a tensor in the form of a characteristic equation in terms of the invariants [1, I, I3

s=0

using
det(A 1 4+ A) = N+ 1(A) A\ + L(A) A+ [3(A) . (395)
Using this expansion we can write
ol; , d | 3 1 —1 1 ~1 1 -1
= det(A) d% 1+ NL(A™ - B)s+L(A™" - B)s*+(A™" - B) s’ (396)
s=0
=det(A) [L(A™'-B)+2L(A™" -B)s+313(A™"-B) s’]| _,
=det(A) (A" - B).
Recall that the invariant I; is given by
L(A)=tr(A) . (397)
Hence,
% : B =det(A) tr (A_1 - B) = det(A) [A_l}T :B. (398)
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Invoking the arbitrariness of B we then have

0I3 —1T

— =det(A) [A . 399
g4 = det(4) [A7] (399)
In an orthonormal basis the components of A can be written as a matrix A. In that case, the right hand side corresponds

the cofactors of the matrix.

For the derivatives of the other two invariants, let us go back to the characteristic equation
detA1 +A) =X + [1(A) N 4+ L(A) A+ I3(A) . (400)

Using the same approach as before, we can show that

a% det(\1 +A)=det(A\1+A)[(AN1+A)7"". (401)
Now the left hand side can be expanded as
0 0
——det(A 1 + A) = = [\’ + [1(A) N + L(A) A + I3(A)]
0A 0A
(402)
— % )\2 + % by + %
T 0A 0A 0A "
Hence oI oL, . ol
142 2 3 _ -7
or,
v |01 (o Ol ol |
A1+ A) {BA)\ +6A)\+8A =det(A1+A)1. (404)
Expanding the right hand side and separating terms on the left hand side gives
7y [0l 2 Ol Ol3 | 13 2
(/\1+A)-[8A>\ +5a N A =NHLh XN+ LA+1]1 (405)
or,
ol (3 Olx o  OI3 r Ol o r 0D r Ol3 .3 2
LM,\ taaN taa 1T TA Gy N+ A A A 8A_[/\ + LN+ LA+ 1. (406)
If we define Iy := 1 and I, := 0, we can write the above as
oL (3 0lx o  OI3 0ly r 0o .3, ,r O o 7 O r Ol 3 2
[aA/\ AN oAt ItA AN HA G N HA S ATA 8A_[IOA +h XN +LA+L]1.
(407)
Collecting terms containing various powers of A\, we get
o1 01 oI ol
3 1 T 0 2 2 T 1
Iy1-—1-A" . L1-—1-A  —
A (O 9A aA>+A (1 9A aA>+
oI oI ol oI (408)
L1-221-A". 22 Is1—=21-AT. 22 ) =0.
A(2 A 8A)+(3 9A oa) ="
Then, invoking the arbitrariness of A\, we have
o6 r Oy
2P 013 T Ol
— =1 - -1 LI = 409
I 1 8A1 I 1 8A1 A 9A 0 (409)
614 T 813 _
This implies that
o . 0l 4. Oz AT AT\ _ a2 T
Other interesting relations that can be inferred based on the above are
S I A A (1)
det(A) ! 2
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and

Recall that

Therefore,

Also recall that

Hence,

Finally,

Therefore,
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