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8.12.1 INTRODUCTION

Combined atomistic and continuum simula-
tion plays an important role in nanomechanics
because of three reasons: multiscale failure
behaviors, ever-limited computational re-
sources even though they are much powerful
than before, and insufficient experimental
information at the atomistic scale. Continuum
theory by itself is insufficient to explain
nanoscale observations. Materials have ato-
mistic scale structures that affect their macro-
scopic behavior. Though it is fundamental,
atomistic vision of material behavior is limited
by the computational possibilities.

Fracture involves phenomena occurring at a
range of length scales. While a crack propa-
gates in the macroscopic scale, the crack tip
always involves atomic scale behavior of
successive atomic debonding. With modern
computers the atomistic simulation tends to
larger scale and continuum simulation goes to
smaller scale. Continuum method is excellent
in describing the large field. However, the
approach generally represents an averaged
characteristic. It gives an incomplete prediction
of the local state of a nanoscale structure.
Studies at the atomistic level are needed to
understand the exact nature of the crack-tip
responses. The requirement is a proper descrip-
tion of the interatomic potential.

In corrosion science, traditional electroche-
mical, surface analytical, and spectroscopic
studies gave only integral information on
electrochemical processes occurring at solid/
liquid interfaces. Local atomistic events and
the influences of surface imperfections on the
interfacial processes could not be directly
analyzed. Interatomic forces often determine
macroscopic phenomena in corrosion. The
more or less hypothetical interpretation of
integral results in terms of local atomic
phenomena requires combined simulations to
understand corrosion and corrosion inhibition
reactions on an atomic level. Molecular simu-
lations, such as lattice-gas Monte Carlo (MC),
are best suited to model intermolecular forces
along with their influence on corrosion ki-
netics. However, a major disadvantage of MC
simulations is their computational intensity
that limits calculations to small length scales
and short times. In contrast, many experimen-
tal techniques in corrosion science are limited
to micrometers, and real systems are of even
larger macroscopic length scales.

Continuing improvements in high-perfor-
mance computing over the last decade have
made it possible to carry out atomic-scale
simulations of material failure processes in-
cluding fracture and corrosion. Technology
now promises the great advance in computing
power towards teraflop and even petaflop
speeds employing very large parallel machines.
On this new generation of computers, simula-
tions can be carried out for systems thousand
times larger or over timescales thousand times
longer than previously engaged, permitting
performing trillion-atom simulations to include
the effects of microstructures that span diverse
length scales up to the mesoscale regime above
micron. However, because of system-size con-
straints even the fastest algorithms available
for such atomistic models cannot represent the
whole multiscale picture.

In microscopic scale atomistic models, simu-
lations are required to properly capture the
spatiotemporal evolution of pattern formation.
In macroscopic scales, continuum-type partial
differential equations are typically used to
describe the conservation equations of con-
tinuity, momentum, energy, and species. For
the practical needs of the engineer trying to
prevent material failure, the simulation of real
material behavior on much larger space scales
must be realized. One way to achieve this is by
bringing together continuum and atomistic
descriptions of matter into a seamless union.
This chapter covers topics in combined ato-
mistic and continuum simulation for structure
failure including fracture and corrosion. It
focuses on numerical methods dealing with the
bridging in length and time scales. Other
important issues in nanoscale simulations, such
as potential construction and choices, are not
included.

8.12.2 NANOSCALE BEHAVIORS

There are processes on macroscopic length
scales that, for fundamental reasons, cannot be
described by continuum theory. They must be
treated on the discrete atomistic scale. Famous
examples of such processes include the dy-
namic fracture instability, intersonic crack
motion, dynamic competition of dislocation
emission and cleavage, atomic inertial effect,
chaotic atom motion at the crack tip, stress-
corrosion cracking, point defects and radiation
damage, pitting corrosion, etc. The increasing
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power of high-speed computation has made a
major impact on studying material behaviors.
Phillips (2001) systematically examined recent
efforts that treat problems involving multiple
spatial and temporal scales simultaneously.

8.12.2.1 Dynamic Fracture Instability

There is a long-standing problem in the
dynamics of fracture. Cracks in brittle materi-
als are supposed to accelerate up to the
Rayleigh wave speed according to theory,
while experiments seldom show them exceeding
half this speed. The problem is actually about
energy balance. Cracks suddenly cost much
more energy to propagate as they exceed a
critical speed on the order of half the theore-
tical limit. Continuum fracture theory typically
assumes that cracks are smooth. An initially
smooth and mirror-like fracturing face begins
to appear misty beyond a speed of about one-
third the Rayleigh speed and then evolves
into a rough, hackled region as the crack
accelerates to a limiting velocity of about six-

tenths the Rayleigh speed. The origin of the
disagreement between theory and experiment
suggests questions of microscopic impurities or
imperfections in the material, experimental
uncertainties, or failure of theory. All of these
features cannot be explained using continuum
theory, and experiment suggests a crack-
instability beyond one-third of the Rayleigh
wave speed (Fineberg ef al., 1991, 1992).
Abraham (2001) reported that fracture
dynamics shows instability in the straight-line
motion at one-third of the Rayleigh wave speed
from a two-dimensional (2D) molecular dy-
namics (MD) simulation (Figure 1). A brittle
crack initially propagates in a straight line and
leaves mirror-like cleaved surfaces. However,
at the crack speed of one-third of the Rayleigh
wave speed (second image), the crack begins to
roughen, and then to oscillate back and forth
(third image) achieving a forward speed equal
to approximately two-thirds of the Rayleigh
speed. Similarly, for speeds less than one-third
of the Rayleigh speed, the acceleration of the
crack tip is quite smooth; however, the

Figure 1 The dynamic regimes of brittle fracture in a two million atoms MD simulation. The brittle crack
initially propagates in a straight line and leaves mirror cleaved surfaces. At the crack speed of one-third of the
Rayleigh wave speed (the second image), the crack begins to roughen, and then to oscillate back and forth (the
third image) achieving a forward speed equal to two-thirds of the Rayleigh speed (after Abraham, 2001).
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instantaneous tip speed becomes very erratic
after reaching one-third of the Rayleigh speed.
This transition from smooth, mirror-like mo-
tion to rough, erratic motion signals the
instability in the dynamics of the crack.

Dislocations appear after the onset of the
instability and are apparent in the gray-scale
pictures. The spacing between these disloca-
tions is quite regular. There are also delays in
the zigzagging of the crack that must be
accounted for and which further reduces the
speed estimated by simple geometry. If crack
zigzagging can be prevented, its forward
motion would be much faster and maybe equal
to the Rayleigh speed. Abraham et al. (1994,
1997a, 1997b) discussed this issue in detail
through atomic simulations.

8.12.2.2 Dislocations Emission and Cleavage
Competition

Dynamic dislocations are observed emitting
from the crack front in large-scale MD
simulations. Tan and Yang (1994a) and Zhang
and Wang (1995) simulated the nucleation and
emission of dislocations by MD method. The
sequence of dislocation emission events, essen-
tial for establishing an intrinsic ductility
criterion, strongly depends on the crystallo-
graphic orientation of the crack front (Zhou
et al., 1997). Branching follows dislocation
emission along a slip plane. The branching
instability requires the crack to achieve a
critical velocity, as well as an induction time
for energy buildup at the crack tip (Zhou et al.,
1996). Tang and Wang (1999) simulated the
behavior of a crack in body-centered-cubic
metal Mo under different loads and observed
dislocation emissions near the crack tip.

Through MD simulations in nanoscale
fracture, Tan and Yang (1994a) established a
critical rate theory for the competition between
dislocation emission and cleavage. Figure 2
defines four different loading histories. Those
loading histories lead to different atomistic
fracture patterns after 12 ps of loading. When
the loading magnitude is low, the fracture
process is dominated by dislocation emission
insensitive to the loading rates. For the same
material under high loading magnitude, how-
ever, the atomistic failure patterns shift from
dislocation emission to cleavage as the loading
rate increases. They explain the above observa-
tions by the following critical rate theory. For a
given solid aggregate, there exist three material
parameters characterizing the cleavage vs.
dislocation emission response near a nanoscale
shape crack tip. They are: Keni(, the K field at
which the crack begins to emit dislocations;
K leave, the critical K value at which a nanoscale

07 ¢

06 — — [— /— - = = —

cleave

st DG B

04 [

03 — - = - — — —

K (MPa m'/2)

02 F

0 2 4 6 8 10 12

t(ps)
Figure 2 Four loading histories: (A) K= oo,
Kmdx =0.325 MPaIIll/2 (B) K 0. lMPaml/2 psfl
Kmmax = 0.65 MPam!/; (C) K = 0.15 MPam!/2 ps ',
Ko = 0 65MPam'? (D) K = 0.225MPam!/’

ps™!, Kmax = 0.65 MPa m'/? (after Tan and Yang,
1994a).

shape crack begins to cleave; and T, incuba-
tion time to nucleate a dislocation from
the crack tip. The value of K. is lower
than that of Kgeae for most metals. For
aluminum, the atomistic simulation suggests
the following values: Keeave = 0.6 MPam'/?,
Kemit = 0.5K jeave, and Ty, = 2ps. A disloca-
tion emits from the crack tip at a velocity of
~1,000ms ' in aluminum, and an apparent
complete dislocation is formed only at several
Burgers vectors away from the crack tip. The
time elapse for a dislocation to pass over one
interatomic distance is 0.4 ps, which is only a
fraction of Tp,.

When K applied is below Kenit, the material
only sustains elastic deformation. When K is
raised above K. but still below K jeave, dis-
locations emit from the crack tip and loading
rate has little effect on the fracture process.
When K is above Keave, however, the loading
rate begins to control the fracture process and
the ductility in the nanoscopic core. A critical
loading rate, K, is introduced as

: Kclcave — Remit
K, = —cleave — emit 1
¢ THLl ( )

If the loading rate K is less than K¢, the crack
tip has enough time to generate dislocations
after K surpasses Kemii- As shown in Figure
3(a), dislocation emissions sufficiently blunt the
crack tip before the apparent value of K
reaches Kieave, and the material behaves
nanoscopically ductile. The ductility is reduced
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Figure 3 Atomistic fracture patterns of pure aluminum under the loading rates and loading magnitudes
described in the above figure. Simulation time is 12 ps (after Tan and Yang, 1994a).

when higher loading rates are imposed. When
K is close to K. (loading history C in Figure 2),
the nanoscopic crack-tip configuration shifts
from ductile to brittle. Figure 3(b) shows the
co-existence of dislocations and cleavage em-
bryos. If the loading rate K is higher than K,
the crack cleave when the load K shoots from
Kemit 10 Keave before a dislocation has time to
emit from the crack-tip, as shown in Figure
3(c). As the material begins to cleave, the
dislocation emission is suppressed, and pre-
mature dislocations are left behind the cleavage
tip. Cleavage proceeds much faster than the
dislocation nucleation. In fact, cleavage ad-
vances 4-5 bonds per picosecond (1,600—
2,000ms ') when K is above Kgeue, while
dislocation nucleation needs 2 ps. Eight to 10
bonds ahead of the crack tip will be broken
before a dislocation may emit from the original
crack tip, and the fracture response is brittle.
Consequently, the critical loading rate in
Equation (1) plays an important role in
dynamic ductile-to-brittle transition.

When atomistic simulations go to a large-
scale the results can be compared with experi-
mental test. Horstemeyer ez al. (2001a, 2001b,
2002) performed large deformation MD
calculations using the embedded atom
method to investigate the material plasticity

at highly applied strain rate (10°~10'*s™"). The
increase of flow stress at increasing strain
rates results from phonon drag. The simula-
tions agree well with the experiments using
interfacial force microscopy and nanoindenta-
tion test.

When atomistic simulations go to a large-
scale the results can be compared with theore-
tical analysis. For the transient nature of
dislocation emission from a crack tip, Yang
et al. (2001) examined the issue from con-
tinuum mechanics aspect and demonstrated the
phenomena from a clear mathematical analy-
sis. It should be mentioned that there are other
possibilities to bridge the scale. Beltz and
Lipkin (2000) showed that discrete dislocation
theories could be exploited to explain certain
fracture phenomena in a way that links
theories appropriate for vastly differing length
scales.

8.12.2.3 Intersonic Crack Motion

Abraham and Gao (2000) performed atomic
simulations of crack propagation along a weak
interface joining two harmonic crystals. The
simulations show that a mode II shear domi-
nated crack can accelerate to the Rayleigh
wave speed and then nucleate an intersonic

SX0080

SX0085



S$X0090

6 Combined Atomistic and Continuum Simulation of Fracture and Corrosion

daughter crack that travels at the longitudinal
wave speed. Gao et al. (2001) studied mechan-
isms of intersonic crack propagation under
shear dominated loading by both MD and
continuum elastodynamics methods. A MD
simulation gave the mechanism for a mode II
crack “jumping” over the forbidden velocity
zone (Figure 4) where a series of color maps of
the shear stress component is used to reveal the
details of this process. This transition occurs by
the nucleation of an intersonic daughter crack
ahead of the mother crack traveling at nearly
the Rayleigh wave speed.

As the mother crack approaches the critical
state of nucleation, the crack tip region is
asymmetrically distorted with a bulge on the
right side of the crack face, as shown in Figure
4(a). The linear elastic solutions of dynamic
crack tip field (Freund, 1990) predict that the
opening displacements along the crack face are
symmetric with respect to the crack line under
mode I loading and zero under mode II loading.

Figure 4 Nucleation of intersonic daughter crack
at the mother crack. The figures represent a
progression in time from (a) through (d). (a) The
approach of the critical state for the mother crack.
Note the asymmetrically distorted crack-tip region.
(b) The birth of the intersonic crack. A very sharp
slit is born ahead of the tip of the mother crack.
(c and d) The daughter crack joins the mother crack
and quickly approaches the longitudinal sound
speed. The color bar shows the color map for the
shear stress component. The bulged mother crack is
still propagating at the Rayleigh wave speed (after
Gao et al., 2001).

There is only slip-like motion of crack surfaces
under mode II situation. According to these
solutions, the crack opening displacements
should remain symmetric even under mixed
mode conditions, which is inconsistent with the
asymmetric distortion observed in the simula-
tion. Figures 4(b)—(d) show the detailed process
of the birth of the intersonic daughter crack. It
is seen that a sharp intersonic crack is nucleated
at a small distance ahead of the mother crack.

The MD simulations demonstrate intersonic
crack propagation and the existence of a
“mother”—“daughter” crack mechanism for a
subsonic shear crack to jump over the for-
bidden velocity zone. This mechanism is remi-
niscent of the Burridge-Andrews mechanism
(Burridge, 1973; Andrews, 1976; Burridge et al.,
1979) based on continuum theories, although
the continuum description cannot provide an ab
initio description for crack formation, and the
details of crack-tip distortion are not consistent
with the continuum solutions. The birth of the
daughter crack cannot be characterized by a
critical energy release rate or a critical stress
intensity factor near the mother crack because
both these quantities vanish at the Rayleigh
wave speed. It seems that the only possible
mechanism by which the daughter crack can be
nucleated is by the finite stress peak ahead of
the mother crack, and along the weak bonding
line, as measured in the stress field and
discussed by Burridge (1973).

Large-scale atomistic simulation is becoming
mature and can be compared with analytical
results. Guo er al (2002) gave analytical
solutions for a sub-Rayleigh or an intersonic
crack accelerating or decelerating to a different
(sub-Rayleigh or intersonic) cracking speed.
Numerical simulations and theoretical analyses
describe the problem from different point of
view and still give the similar results.

8.12.2.4 Atomic Inertial Effect

The important difference between conti-
nuum and MD models is the role of inertia,
which dominates in the atomistic models. The
transition from a stationary to a moving crack,
as a function of the applied driving force,
occurs continuously in continuum models
(Freund, 1990). However, in atomistic models
with strong short-ranged bonds the transition
is discontinuous and exhibits hysteresis as a
function of the driving force (Langer, 1992;
Ching et al., 1995; Fisher et al., 1997; Persson,
1998). The absence of atomic inertia effects in
continuum models cause this difference.

Tan and Yang (1995) devised a simplified
combined atomistic and continuum model, the
crack-tip atom string model (Figure 5), to
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Figure 5 Crack-tip atom string model. The crack is
viewed as a semi-infinite slit in an otherwise
unbounded solid, with mode II loading applied at
infinity through a crack-tip singularity field de-
scribed by Kjj. N columns of atoms ahead of the
crack tip are considered (after Tan and Yang, 1995).

analyze the mass effect on nonlinear motion of
atoms during dislocation emission processes.
In the figure, the continuum exerts force F; and
constraint to the sliding atom i, under the
framework of linear fracture mechanics. The
results show that the dislocation emissions are
inherently transient; a dislocation is formed
near the crack tip by an atomistic catastrophic
process, and the sudden release of energy sets
the dislocation in transient motion. The
occurrence of chaos initiates the emission
process of a dislocation. Cloud-like motion of
the dislocation core position ahead of the crack
tip is revealed. Similar models were used to
study nonlinear crack-tip atom motion during
cleavage (Tan and Yang, 1996a) and fracto-
emission (Tan and Yang, 1996b).

8.12.2.5 Stress-corrosion Cracking

Stress-corrosion cracking (SCC) is a term
used to describe service failures in engineering
materials that occur by slow, environmentally
induced crack propagation. The observed
crack propagation is the result of the combined
and synergistic interaction of mechanical stress
and atomic reactions. Atomistic simulations of
SCC become more and more realistic. During
fracture, sufficiently strong mechanical forces
separate atoms that are chemically bonded. In
this sense fracture may be regarded as some
kind of “mechanical chemistry” and it is most
natural that the environment, if it contains
reactive molecules, influences fracture. The
mechanics of growing cracks with their singu-
lar stress and strain fields and strongly non-
linear material behavior is intermingled with
the chemical action of adsorbing and diffusing
chemical species. See Section 8.12.4.7 on
numerical simulations of hydrogen—dislocation
interaction.

8.12.2.6 Point Defects and Radiation Damage

The energetics of point defects provides the
controlling factor in determining the atomistic

mechanisms in a wide range of solid-state
processes. Varied approaches were followed in
the past in modeling the relevant perfect
crystals for interatomic forces of nonionic
solids and potentials for ionic materials. MD
has been applied to problems with point
defects. Embrittlement of ferritic steels due to
long-term neutron irradiation is one of the
most important issues facing the nuclear power
industry today. Identifying the mechanisms of
embrittlement is a key requirement to guaran-
tee the safety and economic viability of
operating light-water reactors.

In the study of radiation damage, MD
simulations have played a very important role
in understanding the details of defect produc-
tion in displacement cascades, and in helping to
construct empirical models. Extensive reviews
of recent MD simulations of radiation damage
can be found in Jaraiz et al (1996). At a
sufficiently high temperature and over long
time scales, the defects generated by the
displacement cascade interact and migrate over
long distances. One of the key quantities
required to make quantitative predictions of
microstructure evolution in irradiated materi-
als, and to extrapolate the results of experi-
ments on model systems to actual operating
conditions, is the fraction of freely migrating
defects, that is the fraction of produced defects
that can escape recombination reactions within
their nascent cascade to migrate freely through
the lattice. This fraction strongly depends on
the form of the primary damage state, and on
the relative mobility of the various point defects
and defect clusters produced by the cascade.

From a simulation perspective, although
MD techniques can be used to study the
structure and the initial evolution of the as-
produced damage, the computational time
becomes prohibitive beyond the first few
nanoseconds, even for state-of-the-art scalable
parallel machines. To overcome these limita-
tions, a way of connecting the MD simulation
results to other simulation methods such as
rate theory (Phythian er al, 1995) or kinetic
MC simulations (for example, Heinisch, 1995;
Heinisch and Singh, 1996; Jaraiz et al., 1996) is
required. In particular, MC simulations appear
very promising because they provide the ability
to perform atomic-level simulations of the
defect kinetics and microstructural evolution
over relevant length and time scales.

Radiation-induced microstructural and com-
positional changes in solids are governed by
the interaction between the fraction of defects
that escape their nascent cascade and the
material. Soneda and Rubia (1998) used a
combination of MD and kinetic MC simula-
tions to calculate the damage production
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Mobile defects can esgape from kMC box

/

MD computation box
(max: 17x17x17nm)

kMC computation box
(100x100x100nm)

Figure 6 Schematic view of the computational box for the KMC simulations. The MD cascade simulation
results are placed at the center of the KMC box. The dimensions are 17 nm x 17 nm x 17 nm for the MD box
and 100nm x 100 nm x 100 nm for the KMC box (after Soneda and Rubia, 1998).

efficiency and the fraction of freely migrating
defects in a-Fe at 600 K. As shown in Figure 6,
MD simulations provide information on the
nature of the primary damage state as a
function of recoil energy, and on the kinetics
and energetics of point defects and small defect
clusters. The kinetic MC simulations serve as
the input of the MD calculations and provide a
description of defect diffusion and interaction
over long time and length scales.

8.12.2.7 Pitting Corrosion

Pitting corrosion is a localized corrosion that
is exceedingly aggressive, since it does not
extend over the metal surface and tends to
penetrate into the interior that causes the
majority of failures in metallic structures.
Pitting corrosion of an initially passivated
(oxide-covered) metal in contact with anionic
aqueous solutions is normally triggered by the
localized breakdown of the extremely thin
(~1Inm thick) and highly stable passivating
layers. Due to its intrinsic localized nature, this
starting episode is commonly considered as a
sporadic and stochastic event. This random
nature manifests itself both in the distribution
of induction times, i.c., the onset time for pit
initiation, or in the generation of fluctuations
in the free potential and, most frequently, of
the current at constant applied potential. It is
difficult to experimentally observe the atomis-
tic nature of the fluid/metal interface.

MCI,, layer

© (d)

Figure 7 A schematic representation of the pro-
gress of a tunneling event: (a) pit nucleation; (b)
oxidation advance; (c) slowing down of the tunnel
growth due to the formation of a salt layer; and (d)
final stage of the tunnel realization (after Reigada
et al., 1994).

Reigada et al (1994) developed a MC
simulation model for pitting corrosion that
intrinsically incorporated the statistical nature
of the process to analyze both electrochemical
responses and morphological features of the
growing pits. Figure 7 shows the simulation on
tunneling mechanism for localized pitting
corrosion. Once initiated from a more or less
semicircular nucleus, the tunnel progresses by
metallic dissolution in a burst-like way, turning
into a crystallographic front as the local
oxidation is progressively completed.

Strobel et al (2001) simulated the ion
erosion of FCC (1 1 1) surfaces. In a fully 3D
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kinetic lattice MC model thermodynamically
activated processes like adatom, step-edge, or
surface vacancy diffusion are combined with
ballistic effects due to single ion impacts, i.e.,
sputtering, adatom, and surface vacancy gen-
eration. In the course of erosion nucleation of
surface vacancy islands, their growth, both
laterally and vertically, and subsequent coar-
sening of these pits is observed.

8.12.3 SIZE EFFECTS

In investigating fracture and corrosion be-
haviors at different size scales, it is desired to
bridge concepts from the continuum to the
atom. Continuum mechanics is founded on the
assumption that the spatial variations in a
given field variable are sufficiently slow as to
make possible the smearing out of the atomis-
tic degrees of freedom upon which they are
founded. Many nanoscale problems cannot get
answered only from continuum point of view.
The problem arises from the continuum
assumption of material. Length scale comes
into the continuum equations in nanoscale.
The length scale problem also exists in
mesoscale (see Needleman, 2000 for computa-
tional mechanics in that scale).

8.12.3.1 Elastic Solids with Holes

Lamé’s classical solution for an elastic 2D
plate, with a hole of radius ¢ and uniform
tensile stress o applied at the far field, gives the
stresses distribution expressed in cylindrical
polar coordinates as

o, =0o(1 —a*/r)

O'():O'()(l+(12/}’2) @)
for a<r< oo, 0<60<2m, where r is the distance
to the center of the hole. The companion shear
stress component is zero by virtue of the
axisymmetry of the configuration. Setting r =
a in oy reveals a stress concentration factor
(SCF) of two at the edge of the hole. Consider
what happened to this concentration factor if
a—0. The SCF is independent of a, so it
remains equal to two even when the hole
disappears. This is inconsistent with what one
would expect physically, namely that the limit
a—0 should be the same as when the plate is
whole without a hole and has no stress
concentration. What is missing in the classical
statements of Lamé’s hole problems is the
recognition that atoms or molecules on oppo-
site sides of any hole must start to interact with
each other as the hole closes. This interaction
produces cohesive stresses on walls of the hole.

Sinclair and Meda (2001) provided a cohesive
stress model and introduced a length scale
parameter, the equilibrium separation of the
atoms or molecules comprising the plate.

Horstemeyer et al. (2001b) examined the size
scale effects on single-crystal FCC metals with
MD simulations on single-crystal nickel ran-
ging from 100 atoms to 100 million atoms.
They found that plasticity as reflected by the
global averaged stress—strain behavior is char-
acterized by four different length scales: (i)
below 10* atoms, (ii) between 10* atoms and
10° atoms (2um), (ili) between 2pum and
300 um, and (iv) above 300 pum.

8.12.3.2 Evolution of Surface Roughness

Surface roughening of long wavelength can
be modeled with continuum energetics and
kinetics. In continuum models the tendency of
the surface to change the shape of its reference
configuration is represented by the total
chemical potential variation with respect to
admissible variation of the surface configura-
tion. A positive surface energy tends to flatten
the surface, while a positive strain energy is
inclined to roughen the surface, lowering the
chemical potential. This competition depends
on the special frequency of the surface rough-
ness. Kim et al. (1999) built the evolution of
surface-roughness spectrum theory. As shown
in Figure 8, they found that when chemical
etching applied to a stressed surface, there
comes a length scale, namely the critical
wavelength

2mpy
/,{Cl' - m (3)
where 7y is the surface energy density, u is the
shear modulus, and v is Poisson’s ratio. For the
evolution of surface roughness with a shallow
chemical etching, the surface roughness grows
with spatial wavelength A> /1., and decays
with 1< /.

Zhang and Bower (1999) carried out 3D
numerical simulations of island formation in a
strained layer epitaxial system. The simulation
showed a similar size scale dependent phenom-
enon in the surface diffusion driven deforma-
tion of thin films.

The stress-induced roughening of solid
surfaces is considered to be the main cause of
failure process in MEMS devices (Kim and
Hurtado, 2000). Using a general kinetic law,
Yu and Suo (2000), and Liang and Suo (2001)
developed a linear perturbation analysis to
compute the evolution of the shape of the
interface. Prevost et al. (2001) formulated a
finite element (FE) method to simulate the
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Etching liquid

P11

h(x,0) H(xt)
v

h(x) <H()>
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b

Figure 8 Schematic of chemical etching of a solid surface under stress. The height and roughness of
the surface, at time ¢ and position x, are represented as { H(x,t)» and H(x,t), respectively (after Kim

et al., 1999).

stress dependent surface reaction. Brok and
Morel (2001) studied experimentally the effect
of compressive elastic strain on the micro-
structure of free faces of stressed solids on
soluble salt held in an aqueous solution.

8.12.3.3 Oxide Surfaces

Oxide surfaces are technologically important
in a range of applications, including catalysis,
corrosion, gas sensors, ceramics, and high-
temperature superconductivity. Nanophase ma-
terials have a large fraction of atoms in the
interfacial regions, which have a dramatic effect
on the structure and physical properties of these
materials (Siegel, 1994; Stern et al, 1995;
Kalia et al, 1997). Campbell et al (1999) and
Vashishta et al (2001) studied the oxidation
process of an aluminum nanocluster (diameter
200 A) using MD simulations. They investigated
the structural and dynamic correlations in the
oxide region and the evolution of various
quantities including surface oxide thickness,
diffusivities of atoms, and local stresses. The
simulation results, shown in Figure 9, gave the
oxide thickness as a function of the simulation
time. The oxide thickness increases linearly with
time during the first 50 ps and subsequently the
rate becomes smaller and the thickness saturates
at 33 A. The figure is a plot of the inner and
outer radial extents of the oxide. The growth of
the oxide scale is both inward and outward:
inward because of the movement of oxygen
towards the interior of the cluster and outward
because of the movement of aluminum towards
the oxide surface. The inward and outward
growth of the oxide saturate at 77 A and 110 A,
respectively, with the inward growth saturating
later than the outward. Analysis of local stresses
reveals large stress gradients throughout the
nanocluster with the oxide largely under nega-
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Figure 9 Thickness of the oxide layer as a function
of simulation time. The inner and outer radial
extents of the oxide layer as a function of simula-
tion time are shown in the inset (after Campbell
et al., 1999).

tive pressure and the metal core under positive
pressure. The large stress gradients give rise to
diffusion of atoms in the oxide region. The
radial and tangential diffusivities remain about
equal, indicating that while the oxide grows in
radial direction, high tangential diffusion causes
uniformity in the oxide thickness with respect to
polar angles (Figure 10).

Aluminum nanoclusters of diameters 100
700 A are known to form an oxide scale with
thickness between 20A and 50 A in oxygen
gases at room temperature (Suits et al., 1995;
Aumann et al, 1995; Sanchez-Lopez et al.,
1996, 1998; Nieh et al., 1996). The thicknesses
of oxide scales were measured (Sako et al,
1990) as a function of cluster size for small
metallic clusters. For aluminum clusters of
diameter 200 A the thickness is 3040 A. The
MD simulations show remarkable similarity in
the oxide thickness with the experimental
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t.

vF

Figure 10 Defect subspace. A set of bonds in the
super-cell is altered, forming a “defect subspace” in
the lattice. The number of such altered bonds is
small compared to the number in the supercell. In
the figure, a crack is represented by bond annihila-
tion over a plane constituting the cleavage plane of
the crack. Forces, F, are applied to the center of the
crack, which provide the load on the crack. At the
ends of the crack, a ““cohesive zone” is defined over
which nonlinear bond forces may be reconstituted,
consistent with an assumed force law. Dotted lines
in the figure correspond to bonds that have been
annihilated, and wavy lines to bonds that have been
first annihilated and then reattached with nonlinear
bonds (after Thomson et al., 1992).

observations. Subsequent MD simulations
showed the detailed structural analysis of the
oxide scale on aluminum nanoclusters.

Dynamic charge transfer in the simulation
gives rise to a computationally intensive
Coulomb interaction which, for the number
of atoms necessary in a realistic simulation,
requires highly efficient algorithms that map
well onto parallel architectures. The fast multi-
pole method of Greengard and Rokhlin (1987)
was applied for the long-range Coulomb
interaction with extensions for stress calcula-
tions, and the multiple time-step algorithm of
Tuckerman et al. (1990). Both algorithms are
well suited to parallel architectures.

Oxidation has a deliterious effect on the
physical and mechanical properties of materials,
including premature failure of otherwise prop-
erly designed systems. Using the MD approach,
Campbell et al. (1999) studied effects of
oxidation on fracture in aluminum. The simula-
tion requires models of interatomic potentials
that are much more refined than those used in
conventional MD simulations. The variable-
charge interatomic potential is used because it
can handle bond formation and bond breakage
(Streitz and Mintmire, 1994). For these simula-
tions, Nakano (1997) developed a multilevel
preconditioned conjugate-gradient method by
splitting the Coulomb-interaction matrix into
short- and long-range components. Multireso-
lution MD algorithm was realized on parallel
computers (Nakano, 1993, 1994b, 1998a, 1998b,
1999; Kalia et al., 1993).

8.12.4 MULTISCALE MODELING

Material failure is a process with informa-
tion at several scales. The geometric complexity
is complicated further by the interactions
among structural features at different scales.
In addition to the structural hierarchy of
polycrystalline materials it is essential to
recognize their dynamical nature. Processes at
various length scales usually possess different
relaxation times, suggesting that in addition to
the spatial hierarchy a temporal one exists.
Microstructures are only a reflection of the fact
that a polycrystalline material has not had
enough time to reach equilibrium. Also,
microstructures are path and history depen-
dent, adding further complexity to under-
standing and controlling their evolution.

Combined atomistic and continuum simula-
tion provide a basic tool in understanding
multiscale material behaviors. The main idea in
the coupled atomistic and continuum approach
is to use atomistic modeling at places where the
variation i1s on an atomic scale, and the
continuum approach elsewhere. The challen-
ging problem comes with the communication
between two descriptions of the materials.

8.12.4.1 Lattice Green’s Function

Thomson et al. (1992), Zhou et al. (1993),
and Schigtz and Carlsson (1997) used lattice
Green’s function for calculating the static
structure of defects in a lattice. In this approach,
the actual number of atomic degrees of freedom
is not changed, but rather a large proportion of
the atoms are treated using a linear approxima-
tion to their response. These linear atoms, while
they are still explicitly modeled, demand con-
siderably less computational overhead than
fully nonlinear atoms. Thus, this approach
greatly reduces the calculation time. The 2D
and 3D Green’s function techniques newly
developed by Rao et al (1999) are used to
relax the boundary forces in the simulations of
cross-slipped core structures of (a/2)[110] screw
dislocations in modeling FCC structures.

Imagine that an atom at the lattice point I’ is
given a displacement w;(I’). The applied force
F; on atom at the lattice point / required to
maintain the balance is given simply by

Fi(l) =y (L, 1)uy(I')
(4)
F =0u
where ¢;(1,1'), or “dynamic matrix,” is defined
as an appropriate second derivative of the total
strain energy of the lattice, and is the balancing
force in the i direction on an atom at the lattice
point, /, because of an atom at the lattice point
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I’ is displaced a unit distance in j-direction.
Inverting the equation yields

ui(l) =g (LU)F;(I')
u=>0"'F=GF (5)

which identifies g;;(Z,1') as the Green function
matrix for the spring system.
In the perfect lattice,

(L1 = (1 =T) (6)
and
gi(1,1) = gy(1 =1 (7)

because of the lattice translation symmetry.
From

D) =g S dyRexplik 1 (8)

keB zone

G can be easily obtained in k space,

$y(k) = > ¢y(l)exp[—ik -1] ©)

leshell

where “B zone” stands for Brillouin zone, and
¢;(k) is understood to be the transform
function of ¢(1).

The Green’s function operator has a similar
Fourier expansion, and the inversion of ¢ is
simply

-1

9s(k) = [0y 0)] = {Z by (Dyexp[—ik-1]| ~ (10)

leshell

Since ¢ is a 3 x 3 matrix in 3D situation, the
right-hand side of the above equation requires
the inversion of a small matrix for each value
of k. Noting that ¢;(k) in the above equation
is the sum over the shell of atoms within the
range of the force law, the perfect lattice
Green’s functions are easily determined nu-
merically. When the inverse Fourier transfor-
mation is performed on g;(k), the Green’s
function operator in real space, g;(l), is
determined.

In heterogeneous problems, the value of @ is
not the same for every lattice atom due to the
broken strings (cracks) or modified springs,
and so in principle the entire matrix ® must be
inverted to obtain the entire matrix G, which is
a large numerical problem. Solving Equation
(5) for G in a far more efficient manner is
accomplished by the following procedure.
First, the ® and G for the perfect lattice of
springs are calculated and denoted as ®° and
G°. Since the perfect system is periodic, Four-
ier transformation technique can be utilized to
calculate G°. For the heterogeneous system of

interest containing n defects, the force constant
matrix @ can be defined as

O =@’ + 50 (11)

where 0® is a matrix having only # entries that
are coupled to the defects. G for the hetero-
geneous material can be solved in terms of G°
and 0O as

G=[-G%D"'G" =G’ + G"50G (12)

which is the so called Dyson’s equation, with
being the unit matrix. With appropriate label-
ing of the atoms, one can arrange for all the
entries in 0®, of which there are only n xn
items for defects, to be in the upper left corner
of the matrix,

oo, 0
00 = ( r ) (13)
0 o
Then, G and G° can be partitioned similarly as
G G
G — 11 12 (14)
Gy G»
and
Go _ G(l)l G?z (15)
Gy Gy

and hence Equation (12) can be written as four
separate equations

G =G), + G),60,G,
G =G, + G 60,G,
Gy =G, + G 60,Gy
Gy =G + G00,Gx

(16)

In the separate equations, however, Gy, G?l,
and J® are only matrices of size n x n, and so
the first equation can be solved for G; by
inversion of only an n x n matrix. The remain-
ing components of the G matrix can be
calculated by matrix multiplication. The major
numerical requirement is the inversion of the
n X n matrix but the result is the total G for a
much larger system of atoms. Displacements
and local spring forces are then calculated by
applying Equation (5).

Green’s functions generally are used for
static systems. For a dynamic fracture MD
simulation, the initial atomic structures of the
crack are determined from the lattice Green’s
function method (Masuda-Jindo ez al., 2001).
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8.12.4.2 FE and MD Handshaking

To model defects with long-range stress
fields atomistically, one should make sure
that the boundary conditions applied to the
atomistic region are appropriate. This means
that either they have to be applied very far
away from the defect that causes a lot of
unnecessary computational effort, or some sort
of flexible boundary conditions have to be
applied. One way of doing the latter is to
surround the atomistic region with a FE
continuum.

The atomic and the continuum regions are
divided into two zones. Seamless coupling is
required for combined FE/MD computations
(Kohlhoff et al., 1991; Hoover et al., 1992; Tan
and Yang, 1994a, 1994b; Yang et al, 1994
Yang and Tan, 1996; Rafii-Tabar et al, 1998;
Abraham et al, 1998; Nakano et al, 2001).
There are two methods to combine the MD
and FE region, one is through the imaginary
surface, the other is through the overlapping
layer.

8.12.4.2.1 Imaginary surface
(i) Methodology

This FE/MD coupling method attempts to
avoid the use of forces in the coupling of FE
and MD. A one-to-one correspondence of FE-
nodes and atoms is required in the transition
zone. Atoms and FE-nodes are coupled by
mutual displacement boundary conditions
using an imaginary surface. Equilibrium is
guaranteed if the elastic constants in the
continuum region match those of the atomis-
tically modeled region.

As shown in Figure 11, the imaginary
surface is placed at the interface between the
FE and MD regions. On both sides of this
fiducial surface within a fixed distance equal to
the range of the MD interatomic potential, FE
mesh points are placed at the equilibrium
position of the MD atoms. An assumption is
made that there is no diffusion at the FE/MD
interface, so that atoms remain near the
corresponding mesh points on either sides of
this interface. This assumption makes artificial
constraints on the atomic system so that no
atomic defects can move across the conti-
nuum-atomistic interface. Moving away from
the handshaking region into the FE region, the
mesh spacing may be made larger. This is the
principal reason that the FE algorithm is
computationally efficient.

An example is applying hybrid FE/MD
method to simulate silicon and quartz micro-
systems. Empirical potentials by Stillinger and
Weber (1985) and Vashishta (Nakano et al.,

MD/FE 'interface

®

®

®

®

L

@

FE Region MD Region

MD/FE Region

Figure 11 [Illustration of FE/MD handshaking
couplings for the crack simulation, with only a few
representative MD examples shown. The FE/MD
fiducial interface is the dashed vertical line. FE
elements contributing to the overall Hamiltonian
with full weight have dark shading; those contribut-
ing with half weight have light shading. Two- and
three-body atomic interactions crossing fiducial
interface also carry half weight, and are shown with
dotted lines (after Rudd and Broughton, 2000).

1994a) are used in these simulations. They
involve both two- and three-body interatomic
terms:

Vap = _ VO () + > VOryra) (17)

i<j i.(7<k)
The potential in the continuum FE system is

Neell Pmax

1
Vee=3d > wKuy (8)

m=1 p,q=1

where the indices p and ¢ run over the pp.x = 6
degrees of freedom associated with the 2D
displacements at the three apexes of a trian-
gular element, and pnax = 12 degrees of free-
dom of 3D displacements at the four apexes of
a tetrahedron.

Rudd and Broughton (2000) differ from the
prior work in the dynamics of the handshaking
region. They defined the kinetic and strain
energy for the entire system including the
handshaking region. Two different description
of the material are envisioned, as shown in
Figure 11, sitting on either side of the interface:
in one case it is FE silicon and in the other it is
MD silicon. The handshaking interactions at
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the interface to the first order can be approxi-
mated by means of two descriptions. More
precisely, the handshaking potential is given by

Pmax

1 m m., m
VrE/MD =2 Z Zl y Kpgtty
MET, p,g=

1

+3 D V0w

(i<j)€Pa

+ Z V(3) (VU', ij) (19)

(i,(<k)) € Bsc

where 7. is the set of FE elements that cross the
FE/MD interface, f5,, and f;, are the sets of
two-body and three-body bonds, respectively,
that cross. Indeed, Vig/mp is only defined for
interactions that cross the boundary. The other
terms in Equations (17) and (18) define the
forces at atomic and continuum region, respec-
tively. The formalism in the above equation is
meant to imply that any one atom of the triplet
in the three-body terms can be on an opposite
side of the interface to the other two.

It is necessary to refine the FE mesh in the
FE/MD handshaking region to coincide with
the perfect atomic lattice. In this limit the
kinetic energy is localized to the nodes since
that is where the atoms are situated. Thus, for
the FE region, the “lumped mass” approxima-
tion was used. One third of the mass in each
2D triangular element, and one fourth of the
mass in each 3D tetrahedron, are apportioned
to each apex in silicon. The kinetic energy is
thus given by

Ninesh
Keg =Y EMa|aa|2 (20)
a=1

where a labels the FE mesh points, of which
there are Npesn total, and

M, = p ZZTT Z?:] 6u,m, Vm/3 in2D
’ p Zﬁej? Z?zl 6{1,111, Vm/4 in 3D

where m; labels the mesh point index at each of
the apexes of element m. The total number of
FE elements is Nejem-

Effectively, the FE algorithm involves an
average over the atomic degrees of freedom
that are missing from the mesh. Thus, to bring
the atomic and continuum thermal energies
onto an equivalent footing, the total FE
thermal energy must be offset. These corrected
energies are denoted by a prime:

K = 3ANKsT + Kig + 10Nmenks T (22)

VII:E = %ANkBT + VFE + %5NmesthT (23)

where AN = Naiom — Nmesh and 6 1s 0 or 1 for
3D or 2D FE, respectively. Nyiom is the number
of atoms contained within an equivalent 3D
volume, and kg is the Boltzmann constant.
Equipartition has been invoked, and fluctua-
tions about the average energy are neglected in
this expression. It is further assumed that the
background temperature is constant during the
simulation. The first term, therefore, accounts
for the missing degrees of atomic freedom
while the last term augments the 2D FE plane-
strain simulation for the missing third dimen-
sion in its degrees of freedom. These offsets do
not affect the dynamics of the system and the
thermal corrections can be apportioned to each
mesh point as described above for the zero
temperature FE potential energy. For finite
temperature simulations, the i@, degrees of
freedom are thermalized to a Maxwellian
distribution. Also, the appropriate elastic con-
stants for that temperature should be used in
the FE equations of motion so as to make the
MD and FE regions seamless and compatible.
Further, since this methodology requires a
continuation of ideal lattice sites into the FE/
MD handshaking region in order to determine
mesh coordinates, the appropriate lattice para-
meter for given temperature should be used.

(ii) Validation

Figure 12 shows the coupled FE/MD simu-
lation on rapid brittle fracture of a silicon slab
flawed by a microcrack at its center and under
uniaxial tension. The waves pass through the
MD/FE coupling interface with no visible
reflection.

A hybrid MD/FE simulation can be com-
pared with a large-scale pure MD result.
Lidorikis et al. (2001) demonstrated a detailed
comparison between hybrid simulation results
and full MD multimillion-atom simulations in
the study on stress distributions in silicon/
silicon-nitride nanopixels. The hybrid approach
provides atomistic description near the inter-
face and continuum description deep into the
substrate, increasing the accessible length scales
and greatly reducing the computational cost.
The results of the hybrid simulation are in good
agreement with full multimillion-atom MD
simulations: atomic structures at the lattice-
mismatched interface between amorphous sili-
con nitride and silicon induce inhomogeneous
stress patterns in the substrate that cannot be
reproduced by a continuum approach alone.

8.12.4.2.2 FEM/|MD overlapping belt

FE/MD coupling based on one-to-one dis-
placement connection causes artificial blocking
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Stress waves pass from MD to FE

Figure 12  Elastic energy waves propagating through the slab, visualized using a potential-energy color scale

(after Abraham et al., 2000).

against dislocation transition. Tan and Yang
(1994b) and Yang and Tan (1996) developed a
more flexible combined continuum and atomis-
tic simulation method to simulate fracture
process. At the crack tip, the innermost conti-
nuum elements overlap the border rings of the
atom aggregate by three to four interatomic
distances. The overlapping area is denoted as L,
continuum area as C, and atomic area as 4. In
region L, each FE node is surrounded by a
group of atoms. A matrix 7} _ , is introduced
to convey the displacement from the atomic
group to the corresponding FE node, and T° ﬁ(_ I
for the force from FE node to the associated
atoms. Thus, the transmission from atomistic
description to continuum description in the
overlapping layer for the displacement, velocity,
and force can be expressed, respectively, as

up = Tp
i = TY it (24)
fa= TQ_LfL

The system potential energy is a functional of
displacements in continuum, overlapping layer,
and atom aggregate, that are uc(¢), u(2), and
u4(1), respectively

fuc(1),ur (1), u4(1)]
—l(uT al) Kce Kco ) [uc
22 M\ Kie K )\ m

“or (f)esew) e

icA

where Kcc, K¢cr, K;c, and K;; are standard
FE stiffness matrices, E; is the embed energy of
atom i.

The kinetic energy of the system is

Tluc(t),ur (1), uy(t)]

:l(i;T i) Mcc McL (ac
227 A\ Mpe My )\
1

+§;‘4§MA1'4A (26)
where Mcc, MCL, MLC, and M, are stan-
dard FE mass matrices, and M, is the mass
matrix of the atom aggregate that can be
expressed as

n 0
M, = (27)
0 M/
where m; (i = 1,...,n) is the mass of atom [

and n is the total number of atoms.
The Hamiltonian of the system is

Hiuc(0)0 (00400} = [ Tl (), ue (1), wa0)]

141
— M[uc (1), ur(t), uq(t)])ds
(28)
According to the Hamiltonian’s principle, the
Hamiltonian of the displacement fields should

be stationary under actual motions uc(?),
llL(t), llA(t), i'e~7

5H[”C(t)7”L(t)7uA (t)] =0 (29)
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In the above equation, all virtual displacements
satisfying (i) boundary conditions, (ii) initial
and terminal conditions at #; and #,, respec-
tively, and (iii) the atomistic—continuum corre-
spondence

ur (1) =T7 . qua)
i (1) = T4 _ iea(t) (30)

should be satisfied.

The modified Hamiltonian functional is
introduced to include the atomistic—continuum
correspondence constraints (iii) into the Ha-
miltonian in Equation (28), and can be
expressed as

H” ["C(t)v uL(t)v uy (t)v )vL(t)v ,uL(t)]
= Hluc(1),ur(1), us(1)]

[0 - T 0] 2200

1

o [l (0) = Thyina(8)] " (1) e (31)

By variational principle, among all the avail-
able displacements satisfying the above con-
straints (i) and (ii), the first variation of the
modified Hamiltonian functional would vanish
by the actual displacements

OH [uc(t), ur (1), ua(t), 2L(1), ur (1)) = 0 (32)
The governing equations of the atom aggregate

can be obtained through straightforward alge-
bra and expressed by

(MA+MA)IL1 =f(uA)+I:"A+IA’AfIA(AAuA (33)
where ﬁA, KAA, and P, are the forces, elastic
constraints, and the D’Alembert inertia forces
of the continuum acting on the atoms in the
overlapping belt, and the matrix M4 denotes

the additional mass adhered to the overlapping
atoms. They can be expressed as

Fi=T,_,(fL — KicKchf o) (34)

Rua =T, (Ko — KicKoeKe) Ty oy (39)

ﬁA = T,);FL(KLCKZ’]CMCC_MLC)ﬁC (36)
o 1 u

My=T, ML — KrcKeceMer)Ty 4 (37)

Equation (33) allows the updating of atom

locations with the interaction of overlapping
continuum.

8.12.4.2.3 Multiscale defect propagation

Yang et al. (1994), Tan and Yang (1994b),
and Yang and Tan (1996) simulated the
transmission of crack-tip dislocations from
the atomistic assembly to the overlapping
continuum. Initially an interfacial crack is
located on a zigzag interface. Different modes
of loading are applied to examine the disloca-
tion behavior. In atom assembly, no disloca-
tion nucleation criterion is required. Atoms
move under the interatomic potential described
for the system. When an atomistic dislocation
moves to the continuum region, it will be
substituted in situ by a dislocation of the same
Burgers vector but embedded in the FE-
described continuum. As the consequence of
the newly created continuum dislocation, the
extra half-plane of atoms in the atomistic
assembly is removed from the MD calculation
to retain the global conversation of mass. In
the continuum region, dislocation motion is
directed by the crystal slip system with speed
given by the dislocation dynamics curve. A
singularity exclusion scheme is used to remove
the strong singularity associated with disloca-
tion self-stress fields and to achieve numerical
efficiency (Zhang and Yang, 1994). Accord-
ingly, the stress and deformation fields asso-
ciated with a dislocation embedded in an
otherwise infinite elastic continuum are eval-
uated analytically and subtracted from the
overall field, and the complementary nonsin-
gular fields due to the traction difference
between the actual exterior boundary condi-
tion and the negating forces for dislocation
self-stress can be solved by the FE.

The simulation shown in Figure 13 demon-
strates the multiscale dislocation propagation.
The atomistic dislocations nucleated from the
crack tip can penetrate the atom-continuum
overlapping layer by a technique that converts
the lattice defects (atomistic dislocations) to
the discrete singularities (continuum disloca-
tions). The velocity vs. crack-tip distance curve
indicates that the propagation of the disloca-
tion from the atom assembly to the surround-
ing continuum is continuous. The dislocation
velocities predicted by MD simulations agree
well with the phenomenological dislocation
dynamics curve.

Noguchi and Furuya (1997) proposed a
method that combines a crack-tip MD enclave
with a linear elastic outer domain in simulating
elastic-plastic crack advance. An MD model
was applied to the crack-tip region and a
micromechanics model to the surrounding
region. In this mixed model, however, crack
propagation simulation must be stopped when
the crack tip reaches the boundary of the two
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Figure 13 Combined MD/dislocation/FE simula-
tion interfacial fracture. The model consists of a
nanoscopic core made by atomistic assembly and a
surrounding elastic continuum with discrete disloca-
tions. Atomistic dislocations nucleated from the
crack tip and move to the continuum layer where
they glide according to the dislocation dynamics
curve. An atoms/continuum overlapping belt is
devised to facilitate the transition between the two
scales. The effect of atomistic zigzag interface on the
fracture process is revealed: it hinders dislocation
emission from the crack tip, especially under high
mode mixity.

regions. The method can be improved by
moving the MD region successively with crack
propagation (Furuya and Noguchi, 1998).
Furuya and Noguchi (2001) and Furuya et al.
(2001) simulated the crack propagation and
brittle fracture with a combined model of MD
with micromechanics. The critical stress inten-
sity factor for dislocation emissions was
discussed to investigate the thermal effect on
the brittle fracture processes.

8.12.4.3 Quasicontinuum Method

Ortiz and Phillips (1999) reviewed quasicon-
tinuum (QC) theory of Tadmor et al. (1996a,
1996b). The method is becoming mature for
multiscale simulations, Ortiz et al. (2001). The
QC theory starts from an underlying conven-
tional atomistic model and strives to system-
atically eliminate redundant degrees of
freedom. In this method, interatomic interac-
tions are incorporated in the model via the
discrete lattice calculation based on the local
state of deformation. Shenoy et al (1999)
reformulated this model to examine the inter-
actions between grain boundaries, dislocations,
and cracks. The QC method differs from FEM
in that the constitutive input is drawn directly
from calculations at the atomic scale. The QC
method links atomistic and continuum models
through the device of the FE method that
permits a reduction of the full set of atomistic
degrees of freedom. They tie the need for
automatic adaptation to an estimate of the
error introduced by the reduction of the
degrees of freedom. It is then possible to
identify regions where the error estimator is

high, and subsequently to add degrees of
freedom in these regions. Based on lattice
statics, however, the QC method is a non-
dynamical formalism that brings atomic in-
formation into the continuum mechanics of
deformation. Currently, the QC method is
limited to static energy minimization.

Knap and Ortiz (2001) presented a stream-
lined and fully 3D version of the QC theory
and analyzed its accuracy and convergence
characteristics. Consider a crystal whose N
atoms occupy a subset of a Bravais lattice

X(0)=> la, leLcZ! (38)

where d <3 is the dimension of the lattice. The
coordinates of the atoms in a deformed
configuration of the crystal are {x(/),leL.
Collect all atomic coordinates in an array x
and regard such array as an element of the
linear space X = R, the ‘“configuration”
space of the crystal.

On loading the solid, the equilibrium con-
figuration of the body is defined by the set of
displacements #; that minimizes the potential
function

N

uy) =Y fiw (39)

i=1

H(u) = Emt(uh .

where E, is the total energy of the system
obtained from an atomistic formulation, f; is
the external force acting on the atom /, and u
satisfies essential boundary conditions of the
problem. It is assumed that E;, can be
decomposed as a sum over the energies of
individual atoms E;, i.e.,

Etot(”la~~~7”N):ZEI’(”I~,~-7”N) (40)

The spirit of the problem is now identical to
that of numerical quadrature, and what is
required at this point is a scheme for approx-
imating the sum given above by summing over
the representative atoms with appropriate
weights selected so as to account for differences
in element size and environment. In particular,

R

Eox Y nyE, (41)

a=1

The crucial idea embodied in this equation
surrounds the selection of some set of repre-
sentative atoms, each of which is intended to
characterize the energetics of some spatial
neighborhood within the body as indicated by
the weight n,. Physically the quantity n, may
be interpreted as the ‘“‘number of atoms
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represented”’ by the representative atom «. The
problem is
min IT(u) (42)

u

8.12.4.3.1 Interpolation

The essence of the theory of Tadmor et al.
(1996a, 1996Db) is to replace Equation (42) by a
constrained minimization of TI(z) over a
suitably chosen subspace Xj of X. In order to
define X}, one begins by selecting a reduced set
L,c L of N,<N representative atoms (Figure
14). The selection of the representative atoms is
based on the local variation of the fields. In
addition, introduce a triangulation 7}, of L;. It
bears emphasis that the triangulation 7, may
be unstructured. In particular, L, need not
define a Bravais lattice. The positions of the
remaining atoms are determined by piecewise
linear interpolation of the representative atom
coordinates. One should regard the resulting
coordinates {x;(/),leL;} as belonging to a
linear space X, of dimension N;d.

Let o(X|1;), 1€ Ly, be a collection of shape
functions for 7). Thus, ¢(X|l;) is continuous
and piecewise linear, its domain is restricted to
the simplexes of 7}, incident to X(/;), and it
vanishes at all nodes of the triangulation except
at X (1), where it takes the value 1, i.e.,

(X)) = 6(I'nlln) (43)
By construction,

xil) =Y ou(ll)x(l) (44)

el
where one writes

@ (U|ln) = @ (X (D)[11) (45)

Figure 14 Example of triangulation 7, of the
crystal (after Knap and Ortiz, 2001).

Evidently, {¢@,(/|l;),1,€ L,} constitutes a basis
for X, and the fields x;(I) are entirely
determined by their values xj;(I;) at the
representative atoms. In addition, the basis
lattice functions are required to satisfy the
identity:

S oulin) = 1 (46)

el

1.e., the basis lattice functions must be a
partition of unity over L. This requirement
ensures that constant fields are interpolated
exactly by the basis lattice functions.

8.12.4.3.2 Reduced equations

The reduced counterpart of problem Equa-
tion (42) is now
min IT(u;) (47)

up € X

The minimizers of the reduced problem satisfy
the reduced equations of equilibrium

Full) = fUoulli) =0 (48)

leL

Here,
Sir(x) =Tx(x) (49)

are the forces corresponding to x and f(/|x;) is
the value of f(x) at site /. Thus, the reduced
problem entails the solution of N,d unknowns
x(ly), l,e Ly, from Equation (48) of the same
order.

8.12.4.3.3 Application: interactions between
cracks and grain boundaries

Using QC simulations, Miller ez al. (1998a)
studied the problem of interactions between
cracks and grain boundaries. Mechanistic
understanding of the role of grain boundaries
in fracture of polygranular materials requires a
correct atomic-level description of both the
advancing crack tip, and the structure of the
grain boundary itself. The QC formulation was
extended to treat polycrystals by Shenoy et al.
(1998). In the same work it was demonstrated
that the method predicts grain boundary
structures in excellent agreement with fully
atomistic models. Miller et al. (1998b) coupled
the accurate modeling of grain boundary
structure with the ability to model fracture
processes demonstrated in the previous section.
This is a problem whose size scale is well suited
to the QC method, as multiple length scales are
clearly at work. These length scales range from
those needed to capture the elastic differences
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between the two grains to the detailed atomis-
tic mechanisms of fracture, dislocation genera-
tion, and grain boundary migration.

In Figure 15, the nickel bicrystal considered
contains a X21(421) symmetric tilt boundary,
which has a [112] tilt axis and a tilt angle of
44.41°. A crack is initiated in the model by
removing a single (111) plane from one of the
grains. The crystallography of this grain
boundary dictates that such a (111) plane is
oriented at an angle of 67.8° to the grain
boundary. The two crystals are oriented such
that the crack plane lies on the x-axis and the
grain boundary extends obliquely through the
model. The initial mesh is shown in Figure 15,
with a close-up of the fully refined crack-tip
region in the inset.

The QC technique has been applied to
defective systems (such as cracks, dislocations,
and interfaces) in both 2D and 3D, where the
defects are treated in an atomistic region
embedded in a continuum. This approach has
the advantage that it avoids the usual assump-
tions inherent in continuum models, such as
the rather ad hoc criterion typically used for

failure in a given region of space. It also allows
for slip within the FE. The QC technique has
also been used to study nanoindentation
(Shenoy et al., 2000; Smith et al., 2001). Qian
et al. (2002) extended the QC method to the
analysis of the nanotube system with some
treatments because nanotube is composed of
atomic layers.

8.12.4.4 Coarse-grained Molecular Dynamics

Rudd and Broughton (1998) developed
coarse-grained molecular dynamics (CGMD).
In this approach, the continuum-level (or
coarse-grained (CG)) energy is given by an
ensemble average over the atomic motions in
which the atomic positions are constrained to
give the proper coarse-scale field. In this way,
the fine scale quantities that are not included in
the coarse scale motion are not neglected
completely, as their thermodynamic average
effect is retained.

CGMD is a substitute for FE that connects
to MD in the atomic limit. It also reproduces
the results of FE, with slight improvements, in

(VAN

IZ\

h

Figure 15 Mesh used in the QC model of the interaction between a crack and a grain boundary.
Approximate dimension is shown, and the inset shows a close-up of the fully refined region near the crack tip.
The regions in the mesh where adaptation is not allowed to take place are shown schematically by the shaded

gray boxes (after Miller ez al., 1998b).
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large element size. The method provides
spatially optimized algorithms based on statis-
tical mechanical coarse-graining procedures.
The equations of motion in the formalism are
similar in flavor to FE, but they do not rely on
the assumptions of continuum elastic theory.
The constitutive equations used in FE are
modified in an element-size-dependent fashion.
The MD equations of motion are recovered in
the atomistic limit, and those of continuum
elastic theory in the bulk in the macroscopic
limit. Thus, a single simulation has MD regions
running concurrently and seamlessly with
improved FE regions much larger in size. This
is ideal for the study of mesoscopic elastic
solids.

Given a microscopic potential energy ex-
pression describing the motion of atoms in a
solid, crystalline or amorphous, and a CG
mesh partitioning the solid into elements. The
mesh size may vary, so that in important
regions a mesh node is assigned to each
equilibrium atomic position, whereas in other
regions the elements contain many atoms and
the nodes need not coincide with atomic sites.
CGMD produces equations of motion for a
mean displacement field defined at the nodes.
In particular, the conserved energy functional
for the CG system is a constrained ensemble
average of the atomistic energy under fixed
thermodynamic conditions. The equations of
motion are Hamilton’s equations for this
energy functional.

The classical ensemble must obey the con-
straint that the position and momenta of the
atoms are consistent with the mean displace-
ment and momentum fields. Let the displace-
ment of atom u be u, = x, — x,0, where x,0 is
its equilibrium position. The displacement of
mesh node j is an average of the atomic
displacements

u = Zﬁu”u (50)
I

where fj, is a weighting function, related to the
microscopic analogy of FE interpolating func-
tion. An analogous relation is implied for the
momenta p,,. Since the nodal displacements are
fewer or equal to the atomic positions in
number, fixing the nodal displacements and
momenta does not necessarily determine the
atomic coordinates. Some subspace of phase
space remains, corresponding to degrees of
freedom that are missing from the mesh. The
CG energy is defined as the average energy of
the canonical ensemble on this constrained
phase space,

E(u, i) = / dx, dp, Hype P A/Z - (51)

where f = 1/kT is the inverse temperature, Z
is the partition function and

oIl (o)

(52)

where 6(u) is a 3D delta function. The delta
function enforces the mean field constraint.
Note that Latin indices, J, k,..., denote mesh
nodes and Greek indices, u, v,..., denote
atoms. The energy is computed as follows.

When the mesh nodes and the atomic sites
are identical, the CGMD equations of motion
agree with the atomistic equations of motion.
As the mesh size increases some short wave-
length degrees of freedom are not supported
by the coarse mesh. These degrees of freedom
are not neglected entirely, because their ther-
modynamic average effect has been retained.
The CG energy may be computed using
standard techniques. The atomistic Hamilto-
nian is

2
Py
Hvp = - + E u, - DHV “ Uy (53)

- 2m o
where D,, is the dynamical matrix. It acts as a
tensor on the components of the displacement
vector at each site. Define the mass matrix by
the matrix inverse

-1
My =m (Zﬁm) (54)

and the stiffness matrix in a similar way

-1
I(}'k =m <ijuDlek,u) (55)
1

The CG energy for a monatomic harmonic
solid of N atoms CG to Njog nodes is
computed to be

E(u,iv) = Ui + Y _ (it - Myt + ;- Ky - ;) (56)
Jk

where Uint = 3(N — Nnode)kT. The energy con-
tains terms representing the average kinetic
and potential energies, plus the thermal energy
term expected from the equipartition theorem
for the modes that have been integrated out.
This Hamiltonian is generalized easily to
polyatomic solids, where the optical modes
may be CG in several ways to represent
different physics.

The stiffness matrix Kj; is to be computed at
the start of a simulation, and it remains
unaltered during the subsequent dynamics. It
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does not matter whether atoms vibrate across
element boundaries, as long as diffusion is
negligible. An efficient computation of Kj is
achieved through a normal mode decomposi-
tion of D,,,. Use of Bloch symmetry reduces
the size of the dynamical matrix to be inverted
to the size of the superelement of which the
system is comprised. Note that for T#0 the
finite temperature dynamical matrix should be
used for D,,,. This ensures consistent thermo-
dynamics. e.g., in ergodic systems the time
average of the kinetic energy term in the CG
energy is related to the temperature. In general,
the dynamical matrix may depend on other
macroscopic parameters, as well, such as
slowly varying external magnetic and electric
fields. D,,, should be evaluated under these
conditions. Also note that while the harmonic
approximation may be good in peripheral
regions, it may not be appropriate for the
important regions.

The CGMD and MD equations of motion
agree in regions where the mesh coincides with
the atomic sites. In these regions, the full MD
potential is restored, so that effects such as
diffusion and dislocation are allowed.

1D chains of atoms with periodic boundary
conditions are considered for validation of the
method. Figure 16 shows the phonon spectrum
for atoms with harmonic interactions CG to a
regular, but not necessarily commensurate
mesh. The normal modes are plane waves both
on the underlying ring of atoms and on the CG
mesh. The wave vector k is a good quantum
number for both. The nonzero terms of the
dynamical matrix are of the form: D,, = 2K
and D, 11 = —K.

Figure 16 shows that CGMD gives a better
approximation to the true phonon spectrum
than two kinds of FE. All three do a good job
at the longest wavelengths, as expected, but
CGMD offers a higher order of accuracy. The
relative error for CGMD is O(k*) while that of
two versions of FE is only O(k?). At shorter
wavelengths, there are significant deviations
from the exact spectrum. The worst relative
error of CGMD is ~6%, three times better
than that for FE. This improvement is made
possible by the longer-ranged interactions of
CGMD as compared to FE. The continuity
condition satisfied by linear interpolation is
enough to ensure that the hydrodynamic
modes (k~0) are well modeled, but the lack
of continuity of the derivatives shows up as
error in the spectrum of the modes away from
the zone center. This error vanishes for the
smooth, nonlocal basis consisting of the long-
est wavelength normal modes. It turns out that
the CGMD error at the CG zone boundary is
relatively small (less than 1%) for technical
reasons. Also note that even though the
number of atoms varies from element to
element in the incommensurate mesh, the
CGMD spectrum is free of anomalies. Other
computations have shown that CGMD with
linear interpolation is well-behaved on irregu-
lar meshes.

8.12.4.5 Lattice Material Point Method

The basic idea of lattice material point
method (LMPM) is that a continuum material
point is also an aggregate of atoms. LMPM
evolves from MD, an atomistic method, and

L 2 L
0.1 = il
L = 1 = o
0.08( X, ot A
o 0087 e, -7 0 wa ", o°
v’K!m ; x :
0-041' B x - K "
] 5 4 ]
e . " exact +
0.02. CGMD* |
' " dist. mass =
. lump mass o
0
__30n 0 30n
1024a K 1024a

Figure 16 The phonon spectra shown result from various treatments of a ring of 1024 atoms and an
incommensurate regular mesh of 30 nodes. The inset is the exact phonon spectrum, where the CG spectrum
occupies the small box near the zone center. The error in the CGMD spectrum is much less than that of the FE

spectra (after Rudd and Broughton, 1998).

SX0455

SX0460



S$X0465

22 Combined Atomistic and Continuum Simulation of Fracture and Corrosion

material point method (MPM), a continuum
method. The MD/MPM connection is realized
by lattice material point (LMP) and the back-
ground grid.

8.12.4.5.1 Material point method

MPM has evolved from an earlier method
developed for fluid dynamics at the Los
Alamos National Laboratories, called the
particle-in-cell method. The MPM has been
validated on such problems as elastic wave
propagation (Sulsky et al, 1994), the Taylor
impact problem (Sulsky et al., 1995; Sulsky and
Schreyer, 1996), the upsetting problem (Sulsky
and Schreyer, 1996), granular materials (Bar-
denhagen et al, 2000), and contact problems
(Bardenhagen et al., 2000, 2001). Guilkey and
Weiss (2002) developed and implemented an
implicit integration strategy for MPM. As
shown in Figure 17, MPM utilizes two
representations of the continuum—one based
on a collection of material points and the other
based on a computational grid. In the method,
the bulk material is discretized into a finite
collection of material points. The material
points are followed throughout the deforma-
tion of a solid and provide a Lagrangian
description that is not subject to mesh tangling.
Each material point is given an initial mass
consistent with the material density and a
volume of the point. Material parameters such
as mass, displacement, velocity, stresses,
strains, and temperature are assigned to each
material point according to the material it
represents. As the numerical solution proceeds,
the material points are tracked and their states
updated so that they carry the complete
solution. To determine the motion of the

..........................................................................

............................................................................

...........................................................................

Figure 17 A schematic view of a 2D MPM
calculation. The solid line is an outline of the body
analyzed. The black dots are the material points.
The dashed lines here show a regular, background
grid for calculation.

material points in an efficient manner, infor-
mation from the material points is projected
onto a background computational grid. The
motion and temperature equations are solved
on the grid. The solution on the grid is then
used to update the position, velocity, and
temperature of the material points. Velocity
increments computed on the grid are inter-
polated to the material points to evaluate
constitutive equations and update stress states
for each material point.

MPM is chosen for continuum simulations
that will be coupled with atomistic MD simula-
tions for the following reasons: (i) MPM has the
ability to handle large deformations in a more
natural manner. Usually there is large deforma-
tion gradient at the atomic region. (ii) Parallel
processing is more straightforward because of
the use of a structured grid. (iii) Because of the
particle description of the material, the method
can be integrated with MD simulations, where
material is handled as a collection of atoms
(another kind of particles), in a unified way. (iv)
The use of a background grid enables structured
adaptive refinement. The MPM cell can adapt
to different local resolution requirements by
dividing into smaller cells. Dividing the time
step in half successively as the cells get smaller
can include time adaptivity. The computational
grid is discarded once the material points have
been updated and a new (undeformed) grid is
defined to begin the next time step. As the new
grid has no relation to the previous one,
adaptive refinement based on the current
solution is naturally available. This feature is
of great benefit in interfacing MPM with MD
simulations.

8.12.4.5.2 MPM for mechanical systems

Basic theory for MPM of the deformation of
a solid system is described here.

(i) Governing equations and weak form

Newton’s equations of motion for a solid
material are

Gi/j+bi = da; (57)

where b; is the force density, a; is the
acceleration, and o; is the specific stress tensor
defined as the regular stress tensor divided by
the mass density p. The material constitutive
equations can be represented as

O",'j = ijkl“k.,l (58)

where v; is the velocity and Ejy, is the specific
elastic tensor defined as the regular elastic
tensor divided by the mass density p.
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The general equations in weak forms are

/ wT,»dS+/pb,-de
90 Q

= / pawdV + / payw,; dV (59)
Q Q
and
/ (O",'j - Ei]-k/v/ﬂ;)pw dV=0 (60)
Q

where w is an arbitrary spatial function and
boundary traction force

T; = poyn (61)

where 7; is the normal vector at the boundary
surface. The solution of system Equations (59)
and (60) need discretization of the domain and
interpolation scheme to describe the field.
MPM uses particles to isolate the domain into
small material points. A background grid is
used to describe the field and facilitate the
interpolation.

(ii) Particle discretization

The problem domain is divided into discrete
small regions. Each small region Q% is called a
particle, and given a label as particle p. The
entire problem domain is (J, Q). The mass
density can thus be approximated with a Dirac
function

p(x) = Zm(/’)é [x — x(”)} (62)

(02

where m" is the mass of particle p, which is

m?) = / p(x)dV (63)
QP
Applying this approximation, one converts the

weak form Equations (59) and (60) into each
isolated particle as

wTl;dV + rn(")bl(-mw(/’)
friov+ S

7
= S ) 3 g (64)
p P
and
¢ = Egavy!) (65)
respectively.

(iii) Interpolation

Further conversion of the field Equation (64)
into each isolated particle needs grid interpola-

tion scheme

x) = 3 FONO(x) (66)

where ¢ is the grid value at node n. Here the
bar symbol is used to denote the node value.
The shape function between node »n and
particle p is denoted as NU?) = N0 [x?)],
Under this interpolation scheme, one can
interpolate the particle value of arbitrary
spatial function w, velocity v, and acceleration
a from the corresponding node values.

Applying the interpolation scheme for accel-
eration to the weak form of Newton’s Equa-
tion (64) gives

A B (o)

where the external force on node n is

FY = [ NOTQAV + 3 mPpPNe2 - (68)

20 >
the internal force caused by stress gradient is

= -3 w0 ) (©9)
P

and the mass matrix between nodes n and n’ is

) — Zm(mN(n‘P)N(n"p) (70)
P

(iv) Broken cell shape function

Tan proposed the broken cell shape function
for fracture simulation in MPM (CSAFE,
2000, 2001; Tan 2002). When a crack propa-
gates and passes a particle, a particle variable
(vector) named crack surface normal is asso-
ciated to that particle. To handle explicit crack
tracking in MPM, the particle-node visibility
information is used to modify the normal
shape functions used for field interpolations.
In other words, a particle in a cell will not
interpolate information to a grid node if a
crack surface blocks the particle-node connec-
tion (Figure 18). The visibility connection
between particle p and node n, Vis"?) is
defined as

Vis(")
1, particle p can see node n
= ¢ 0, if particle pis blocked fromnode  (71)

n by crack surface

The total number of the visible nodes to
particle p is Sy = Znenodes around p Vist 7).
The regular shape function between particle p
and node n, N is modified into broken cell
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Figure 18 A crack surface can block the visibility
of a cracked particle to a node at the other side of
the crack. In the figure particle p loses direct
interpolation relationship with node 5 and 8,
because the visibility between particle p and node
5, 6 is blocked by the crack surface.

shape function, N"?) as

Np) — p(p)
Zmenodes around p NO) [1 B Vis(m’p)]

S(P)

vis

+ (72)

This modified broken cell shape function
satisfies the basic shape function require-
ments.

The fracture simulation using broken cell
shape function is demonstrated on a three-
point bending problem. Our simulations are
consistent with the theoretical predictions on
the critical loading that causes fracture in the
material (CSAFE, 2000). By analyzing the
particle stress tensors computed via MPM, a
determination is made where cracks would
initiate and in what direction they should
propagate. The crack initiation and propaga-
tion are simulated by creating a new micro-
crack surface facet associated with a broken
particle that will block the particle-node
visibility, thus modifying the shape function
and creating a numerical microcrack. In
addition, in analyzing the crack-tip energy
release rate, the simulation computes how
much heat is transferred from mechanical
strain energy around the crack tip zone.

8.12.4.5.3 MPM for thermal system

To describe a thermal system, each material
point has temperature 0% and temperature
gradient r,@. The interpolation from grid to

particle gives

P — Z o) pr(mp) (73)

and

o) =3 0N (74)

where 0" is the temperature on node n. The
mapping from particle to grid can be expressed

by

ZN("’/’)M(‘”)Q(‘”) — M™am (75)
P

where M™ is the lumped mass as node n and is
defined as

A_J(n) _ Zm(n.,n’) (76)

The heat conduction equations are solved on
nodes as

eMOFn — g 4 jo (77)

where ¢ is the thermal conductivity. The heat
rate generated by heat sources can be expressed
as

H" — ZM(P)N(”J')q_(p) (78)
p
P

where ¢ is the heat source at particle p. The
heat rate generated by heat flux is

_ k?)
A p— ZM(P) (;) N‘([n-p) (79)
p
P

Figure 19 shows our simulation on crack tip
temperature field. The crack was assumed to
propagate when the dynamic energy release rate
G(t) was equal to the toughness of the material
that was taken as G, = 100Jm2. In this
simulation, G, was assumed to be independent
of crack velocity and 100% of the released
energy was converted to heat. Another con-
tribution to heat source is plastic work. Near a
running crack tip, the plastic work rate is high.
According to the theory of irreversible thermo-
dynamics, the majority of the plastic work
will be converted into heat that may lead
to high temperature rise at the running crack
tip. The plastic zone is regarded as the zone of
heat source, and the plastic work rate as the
strength of heat source. In the simulation, we
assume that plastic work is transferred fully
to heat.
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8.12.4.5.4 Adaptive material point method

To refine material points adaptively during
an MPM calculation, Tan and Nairn (2002)
introduced a dimensionless refinement para-
meter at grid node n, Rilr;de. Based on the
gradient of a current grid calculation result of a

field value ¢(x), the refinement parameter is

() ’<¢(i)>_1‘ (80)

node (n)

where <(¢*)) is the average of ¢(x) at the
four neighboring nodes. In the adaptive MPM
calculations, the value of Rgz))de at each grid
node is evaluated for each time step. Then, for
each cell in the calculation grid, we evaluate
R which is the average value of R". from
all nodes for that cell. If R}, > Rerig, Where Reyig
is a predetermined critical value, each material
point in that element was split into four points
as shown in Figure 20. The adaptivity is
hierarchical because at the next step the four
new elements are examined individually and
one or more may continue to refine. The
refinement process is illustrated in Figure 20.
In problems with crack propagation, it is
possible to recombine material points when
refinement is no longer needed. In other words,
if R£21<Rcrit for some previously refined
elements, the material points can be recom-
bined. Recombination should be straightfor-
ward for elastic materials but might require
some approximations for history-dependent

a =100 m/sec
—

AT=600K

materials. Finally, notice that after the second
refinement in Figure 20 the upper-right and
lower-left cells do not refine, but each has an
extra mid-node in the sides connected with the
refined cell. Thus the shape functions for
upper-right and lower-left cells, generally
expressed in Equation (66), should take ac-
count of these extra mid-nodes. Basically the
adaptive-mesh shape functions accounted for
such adaptive cells by allowing the n in
Equation (66) to be 4-8 for a 2D grid.

We tested the adaptive MPM on a double
cantilever beam (DCB) with energy release rate
calculation. The material points and the initial
unrefined, background grid are shown in
Figure 21. The beam dimensions were
100mm long with a square cross-section
10 mm x 10 mm. The crack length was 50 mm
long or the crack tip was in the middle of the
specimen. The load was applied at the end of
the specimen. The displacements of the back-
ground grid nodes in the vertical direction were
constrained to zero as indicated. The crack tip
is at the left-most constrained node. This grid
models only half the specimen; the other half is
formed by symmetry. The material was as-
sumed to be linear elastic with modulus
E=70GPa and Poisson’s ratio of v=0.3. A
load of 1 N was applied instantaneously at time
zero. In a linear elastic material, the stress state
and energy release rate would oscillate forever.
To eliminate the oscillations, a damping force
was applied to each particle proportional to the
amplitude of the particle’s velocity but in the

700K

100ms™!

10nm
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Figure 19 Transient isotherms of temperature rise A7 caused by a running crack. The crack grows at

in a material following a Mooney—Rivlin constitutive law in which all the fracture energy

(G.=100 J m?) is released as heat. In the figure, the size of the crack tip high plastic zone is ~ 10 nm.
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Figure 20 The left side shows the initial material points in a single cell. If Rgl > Rit, any cell can refine by
splitting all material points in that element into four new material points. The refinement can continue for
more levels as required by the problem being analyzed.
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opposite direction. At long times, these
damped MPM calculations should converge
to static loading of an end-loaded DCB speci-
men for which all velocities approach zero, the
damping term ceases to contribute, and thus
the response is linear elastic.

MPM calculations were compared both with
and without adaptive meshes. The grid in
Figure 21 shows the grid at the start of the
calculation that uses uniform, square elements.
Figure 22 shows the crack tip region of the
mesh at later stages in the calculation. The top
half of the figure plots Rgl for the cells in the

fP

plane of the crack. The bottom half of the
figure shows the adaptive mesh reflected across
the midplane for clarity. In this calculation, the
cells around the crack tip refine. After one level
of refinement, however, all Rczll drop below
Rt and adaptation stops.

Dynamic energy release rate is calculated
using crack closure based on the MPM results.
Figure 23 plots the MPM results for G(¢)
calculated with a regular grid or an adaptive
grid and calculated with a lumped mass matrix
or a full mass matrix. At long times, the
numerical results should approach the exact

AAAAANAANANAANAAANANANAAANAAA

Figure 21 The initial unrefined, background grid for the MPM calculations of a DCB. The mesh is for only
half the specimen; the other half is found by symmetry. The specimen is end-loaded with load P. The crack tip
is at the first constrained node in the middle of the specimen.
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Figure 22 An adaptive mesh calculation when R = 0.03. The top half of the plot gives the average value of
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RS, in the elements along the crack. The bottom half shows the adapted mesh reflected about the mid-plane

for clarity.
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static result. Refining the mesh near the crack
tip appears to be more efficient to get accurate
results.

8.12.4.5.5 Lattice material point

A LMP has double identities—a lattice from
an atomistic perspective and a material point
from a continuum perspective. Providing a
smooth transition between these two represen-
tations is the spirit of LMPM. From an
atomistic point of view, a LMP represents a
lattice, a set of atoms. Each LMP has corner
points to define the occupied space. Figure 24
shows a 2D LMP and its four corner points
before and after deformation. The corner
points update the position according to the
interpolated velocity field from the MPM grid.
The movement of the lattice atoms is not
explicitly calculated.

When continuum to atomistic transition is
required, the motion of each atom contained in
a LMP should be explicitly tracked. The lattice
atoms will be released from LMP with
velocities interpolated from the background
MPM grid plus thermal disturbance related to
LMP temperature.

When atomistic to continuum transition is
required, the positions and velocities of the
LMP can be extracted as the average value of
the associated atoms. From a continuum point
of view, an LMP represents a material point,
which can map information on to the grid, and
interpolate updated information back from the
grid. For MD computation, information about
atom position and velocity is sufficient. How-
ever, for thermomechanical continuum com-
putation, extra information about stresses and
temperature is required. The LMP continuum
stresses are the average of atomic stresses,

14 | | |
Adaptive and “Unlumped”

\

Unmodifed MPM

Adaptive
“Unlumped”

10 20 30

50 60 70 80 90

time (arbitrary units)

Figure 23 Dynamic energy release rate calculated by four different methods. The “Unmodified MPM” and
“Unlumped” results used the regular mesh shown in Figure 21. The two “Adaptive” results started with that
mesh but included refinement in the crack-tip region during the calculations. The horizontal line is the “‘exact
“result from the beam-on-elastic-foundation model. All results are normalized to a reference energy release
rate, Gy, defined as the simple beam theory result for a DCB.

corner 2

Initial LMP

corner 2
corner 1

LMP after deformation

Figure 24 LMP corner points and atoms aggregate. In a 2D description, a LMP has 4 corner points and is
initially a square that contains the lattice atoms. The corner points move in the deformation field. Movement
of the included lattice atoms is interpolated from the LMP corners.
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which can be evaluated through statistical
average of the force on each atom from the
local neighboring atoms. The stress tensor with
respect to an atom o is evaluated by

1 neighbors rl(fx«ﬁ) (2.8)

T
> v a8

PH#o

where Q@ is the atomic volume of atom a, V is
the interatomic potential, #**? is the distance
between atom o, and atom f, #*P) is the ith
component of the vector pointing from atom f
to atom o. The LMP temperature can be
measured from the associated atomic velocity
distribution.

Continuum material point can be refined to
the nanoscale. However, there is a limit for the
refinement. From the requirement of atomic
stress analysis, the minimum size of a material
point should not be smaller than the neighbor
size as needed for the above atomic stress
calculations. There is also a lower limit on the
number of atoms associated in temperature
analysis.

8.12.4.5.6 Connectivity between the atomistic
and continuum regions

LMPM uses a uniform background grid that
hosts both continuum and atomistic cells. The
simulation region is divided into two regions—
an atomistic region and a continuum region;
grid nodes connect two regions. In the con-
tinuum computations, the grid serves as an
interpolation space for solving the continuum
equations. In an atomistic computation, the
grid helps to define the particle neighbors. The
separation of continuum from atomistic re-
gions is dynamic and is adapted during the
simulation.

Nodes at the interface between the conti-
nuum and atomistic regions, such as node m in
Figure 25, collect stress and temperature
information from LMP in both continuum
and atomic side. The stress and temperature
calculations are described in the last section for
LMP in atomic sides. After forming the nodal
force and temperature gradient, the motion
and temperature equations can be solved. On
the continuum side, the continuum LMP will
interpolate the value from grid nodes and
update. On the atomic side, the MD simulation
needs the information of neighboring atomic
positions to compute the energy potential, thus
the force on each atom. The position of
neighbor atoms in the continuum side can be
interpolated from the LMP corners.

8.12.4.5.7 Application

Novel superhard nanocomposites with Vick-
ers hardness of more than 40 GPa have been
developed in recent years (Veprek, 1999;
Veprek and Argon, 2002). Tan and Yang
(1998) identified three toughening mechanisms
in Al,O3/nano-SiC composite ceramics: (i)
switching from intergranular to transgranular
cracking due to nanoparticles along the grain
boundaries, (ii) fracture surface roughening, or
a zigzag crack path promoted by the internal
stresses caused by nanoparticles within the
grains, and (iii) shielding by clinched rough
surfaces near the crack tip. Using LMPM, Tan
(2001) simulated an intergranular crack that is
propagating to an intergranular nanoparticle
SiC under mode I extensional load. As shown
in Figure 26, the matrix grain is Al,O;. The
simulation shows where the crack goes under
different dynamic loading magnitudes and
rates, interfacial bonding properties, and back-
ground residual stresses. The atomistic lattice

continuum cell Y

nodem

atomistic cell

Figure 25 Connection between the continuum and the atomistic regions. In the continuum region, material
points (black particles) are tracked explicitly using continuum MPM. The corresponding lattice atoms (gray
particles) are used only for linking with the atomistic region as neighboring atoms. In the atomistic region,
lattice atoms (black particles) are tracked explicitly using MD.
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Figure 26 Combined continuum/atomistic simulations of crack-tip process zones when a transgranular crack
is approaching an intergranular nanoparticle. There is mode I tensile load applied in the far field and

nanoscale residual stresses around the nanoparticle.

follows the crack tip as it moves along the
grain boundary, matrix/nanoparticle interface,
or enters the matrix grain. The matrix grain far
from the crack tip is computed using con-
tinuum MPM. The simulation shows that
strong cohesion between the nanoparticles
and the matrix steers the crack into the matrix
grain.

Ayton et al (2001) developed a computa-
tional methodology including the continuum
level simulation using MPM as well as the
microscopic method of nonequilibrium MD.
They examined the behavior of a membrane
bilayer/solvent system using this micro-to-
macro dynamical feedback simulation techni-
que. With this method, two simulations at
different time and length scales are interfaced
into a unified simulation methodology. The
interface is accomplished via an information
transfer where selected material properties
(transport coefficients) and state parameters
(density) are calculated in one spatial/temporal
regime and then used as initial input in
another. What results is a closed feedback
loop.

8.12.4.6 Compound Wavelet Matrix Method

Frantziskonis and Deymier (2000) designed
compound wavelet matrix (CWM) method to
bridge multiscale models over different ranges
of spatial and time scales. Based on wavelets
that can establish a bridge between simulation
techniques, CWM captures the physics at
significantly different scales as long as there
exists a region of overlap in the domain of
scales.

CWM was introduced to study grain growth.
Normal grain growth achieves a quasistation-
ary distribution of grain sizes after a transient
period. Understanding grain growth necessi-

tates an accurate description of the spatial and
temporal evolution of polycrystals during this
transient and, more importantly, the quasista-
tionary stage of the process.

Two computational methodologies exist to
describe the grain growth. On the finer scale is
the MD simulation of the Lennard—Jones (L-J)
system. On the coarser scale is the MC
simulation of the Q-states Potts model. Two
methods are applied to a region of material
simultaneously. Matrices of the wavelet coeffi-
cient are produced from energy maps repre-
senting the spatial distribution of the local
excess energy in the microstructures obtained
with both methodologies. The full description
of the material then is obtained by merging the
matrices of the wavelet coefficients represent-
ing the material at different scales through the
CWM method. The CWM then characterizes
the materials over a range of scales that is the
union of the scales treated by the two
methodologies. This method possesses several
advantages. First, it does not assume a priori
that a collection of small microscale systems is
equivalent to a microscale-based model of a
large system. Second, the simulation time of
the coarsest methodology is not controlled by
the methodology with the slowest dynamics.

To illustrate the CWM method applied to
2D grain growth, an MD simulation of a 2D
L-J system and an MC simulation of a Q-
states Potts model that can overlap over a
range of spatial and time scales was presented.
These simulations were bridged by the overlap
in scale of the “‘mesoscopic” Q-states Potts
model with the atomistic L-J model.

Figure 27 shows a schematic diagram of the
construction of the CWM on a 2D grain-
growth problem described as L-J system on a
finer scale and Potts system on a coarser scale.
After having established a correspondence
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Figure 27 Schematic diagram of the construction
of the CWM: (a) from the L—J system of 1 x 1 units
of length discretized into 256 x 256 points and (b)
from the Potts system of 2 x 2 units of length
discretized into 128 x 128 points. The arrows
indicate the substitution (transfer of matrix statis-
tics) of matrices in forming the compound matrix.
Only three such substitutions are shown for illustra-
tion (after Frantziskonis and Deymier, 2000).

between the L-J model and the Q-states Potts
model of microstructures and their evolution,
wavelet transforms can be used to analyze
microstructures scale-wise as well as to bridge
the L-J system to the Potts model. As an
example, consider an L-J system of 1 x 1 units
of length discretized into 256 x 256 points.
Next consider a larger Potts system with a
physical size of 2 x 2 units of length discretized
into 128 x 128 points. Figure 27 illustrates the
construction of the compound matrix. Con-
sidered in Figure 27(a) are the wavelet coeffi-
cients of the L—J system and in Figure 27(b) are
those of the Potts system. Note that the
discretization and the units of length can vary,
and this is only an example illustrating the
ideas. The problem addressed herein is that the
Potts system cannot represent the details
“seen”” by the L-J system. Submatrix A shown
in Figure 27(b) represents the details appearing
when 2 x 2 units of length are discretized into
64 x 64 points; yet this is equivalent to 1 x 1
units of length discretized into 32 x 32 points.
The same type of discretization (1 x 1 units,

32 x 32 points) in the L—-J system is represented
by submatrix A in Figure 27(a). Thus, by
making the substitutions as indicated by the
arrows, the compound matrix has now statis-
tical information at those scales not “seen” by
the Potts model, yet seen by the L-J models. Of
course, all the corresponding matrices (those
with corresponding scale and discretization)
are substituted, yet only three such substitu-
tions are shown in Figure 27. The compound
martrix is a representation of the microstructure
over the range of scales. Now it represents the
union of the scales of the L-J and Potts
systems.

Consider simple and classical “versions” of
two simulation methods (MD and MC) and
concentrate on their bridging and their over-
lapping over a region of scales. In CWM
method, a large L-J system is statistically
equivalent to the combined models of Potts
and small L-J. The method of classical MD
consists of solving simultaneously the equa-
tions of motions of an assembly of particles
interacting with each other through some
interatomic potential. The MD method is
atomistic and allows investigation of grain
growth from the atomic scale up, yet it is
limited (by computer power) to small numbers
of particles (nowadays in the hundreds of
millions) and short periods of time. The
microstructure is characterized by calculating
the excess atomic potential energy of each
individual atom (relative to the potential
energy of an atom in a perfect lattice at the
same temperature). The excess atomic energy is
then normalized by the total excess energy of
the microstructure at ¢ = 0. The spatial dis-
tribution of the normalized excess atomic
energy is then mapped onto a 512 x 512 square
matrix to obtain what will be referred to as an
energy map. Note that the L-J system includes
grain boundary anisotropy. The grain bound-
ary energy varies with the degree of misor-
ientation between adjacent grains. A
microstructure may, therefore, contain low-
energy low-angle grain boundaries and high-
energy high-angle grain boundaries. Moreover,
the anisotropy in the grain boundary energy
also results in fixed misorientation from the
inclination of the grain boundary plane.

In an MC simulation of grain growth with a
Potts model, both spatial and “MC time”
scales are coarser than those in MD. The Potts
model maps the microstructure onto a discrete
lattice that is coarser than the atomic scale, and
the “spin” state S = 1, ..., Q of each lattice site
represents the orientation of the grain in which
it is embedded. A grain boundary exists
between two adjacent lattice sites with different
orientations. Now employ a Potts model with a
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square lattice containing 128 x 128 sites and
QO = 10 (see following discussion) with only the
nearest-neighbor interactions. This model is
designed to represent a piece of material with
dimensions similar to those of the MD system.
A square lattice is chosen to mimic anisotropic
grain growth.

An MC algorithm is used to evolve this
model. Initial microstructures are produced
from totally random configurations. A total of
four such initial configurations corresponding
to microstructures optically similar to the
initial configuration of the L-J system are thus
obtained (the similarity between the initial
Potts microstructures and the initial L-J
system was further confirmed by their wavelet
transformation showing similar statistics at the
equivalent scales). Subsequently, long MC
simulations were run to anneal the initial
microstructures, until the total energy averaged
over the four systems decreased to nearly 63%
of the average energy of the initial configura-
tions. Matrices of size 128 x 128 containing the
value of energy at every lattice site characterize
the final MC microstructures. Note that the
energy in the Potts model represents an excess
energy relative to a perfectly ordered system
(perfect crystal). Normalization of the energy
at each lattice site by the total excess energy of
the initial microstructure allows a direct
comparison with the energy maps produced
from the MD simulations.

In order to bridge the two simulation
techniques, correspondence should be estab-
lished between the MD and MC times and
energies. Several approaches have been pro-
posed in the literature; e.g., MC time can be
related linearly to real time (Ling and Ander-
son, 1998). The conversion from the MC time
to real time has an implicit activation energy
factor that corresponds to a jump. On the other
hand, in the Potts model a grain boundary
exists between two adjacent lattice sites with
different orientations. Therefore, the time for
reorientation of a lattice site may be related to
the time for migration of a segment of a grain
boundary. On this premise, a time conversion
scheme, based on grain boundary migration,
may be applicable (Gao and Thompson, 1996).

Wavelet method is suitable for multiscale
simulation. The different scales can be either
the wave numbers corresponding to spatial
variables or the frequencies corresponding to
temporal variables, and each scale response can
be examined separately. Liu and Chen (1995)
and Liu et al (1996, 1997) introduced wavelet
into the meshless unstructured adaptive refine-
ments. A space-scale and time-frequency loca-
lization process is achieved by dilating the
flexible multiple scale window function.

8.12.4.7 Numerical Simulations of Hydrogen—
Plasticity Interaction

Hydrogen induced plasticity is increasingly
invoked in many SCC cases. Sydow and
Wahnstrom (1996) carried out MD simulations
for hydrogen diffusion in niobium. They found
that hydrogen reduces the velocities of disloca-
tions and that the hydrogen distribution in the
glide-plane is essentially unaffected by that
motion. Zhou et al. (1998) studied the effects
of hydrogen on the dislocation emission from a
crack tip. The simulated results showed that
hydrogen reduced the cohesive strength for
aluminum single crystal. The simulation also
shows that hydrogen atoms can gather and turn
into small bubbles, resulting in enhancement of
the equilibrium vacancy concentration. Dela-
fosse et al. (1999) examined by simulation the
effect of hydrogen on the density of a disloca-
tion pile-up. The particular situation at the tip
of a loaded crack is examined via the introduc-
tion of image forces on diffusing interstitial
hydrogen. Baranov et al (2000) simulated
crack propagation in hydrogen-containing o-
iron using MD method and found hydrogen
formed Cottrell clouds around dislocations,
thus suppressing their movement and genera-
tion. In addition, an increase in the hydrogen
concentration in iron near the crack mouth
makes the material more prone to oo —7y phase
transition. As a result, crack propagation is
observed, i.e., the material embrittles.

It is important to show how hydrogen—
plasticity interactions evolve during SCC of
engineering materials. Delafosse and Magnin
(2001) investigated the interaction between
hydrogen and mobile dislocations by means
of a set of equations in which the diffusion and
stress gradients are coupled. The problem of
crack hydrogen—dislocation interactions in the
case of SCC crack tip is investigated within this
framework.

The first order elastic interactions between
diffusing hydrogen and mobile dislocations
stem from the dilatation strains induced by
the presence of hydrogen in interstitial octahe-
dral sites in the austenitic matrix. This is
characterized by the partial molar volume,
V*, and the unconstrained volume dilatation of
the host metal due to the introduction of 1 mol
of hydrogen. If H is the expansion tensor
associated with one hydrogen atom, the strain
tensor due to a hydrogen concentration C is
purely hydrostatic:

8,‘/' = H,/(C — C())Nav = %(C — C())V*(s,'j (82)

where Cj is the concentration in the reference
state, N,y 18 Avogadro’s number, and ¢ is the
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Kroneker delta. In the presence of a stress field,
the chemical potential of a hydrogen atom in
solid solution is given by Sofronis (1995),

C
W=l +kT1n(FO> 7Hijaij

C V*
=g +kT1n(a> -5 “g" (83)

From this, the first and second Fick’s laws are
derived and are seen to include stress-induced
terms:

_ DyC _ DyV* Ok
and
aC
= —_v.J
ot v

DyV* 0 o
— 20 _ZH 20kk R valil
= DV C - (cv % yve V3>(85)

where Dy is the diffusion coefficient of hydro-
gen at temperature 7 and R is the ideal gas
constant. The diffusion equation is solved
numerically within a finite difference scheme
on a square grid with a typical node spacing of
2 nm.

The coupled elasticity-diffusion equations
are applied to elementary configurations con-
sisting of one isolated edge dislocation and two
coplanar edge dislocations. Because of its
positive partial molar volume, hydrogen dif-
fuses from the compression zones towards the
zones under hydrostatic tension. Figure 28(a)
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presents the concentration profile. It can be
seen that the iso-concentration lines precisely
map the contours of the hydrostatic stress
around the dislocation. When computing the
sum of the hydrostatic stresses stemming from
the local concentration in each box, one can see
that the antisymmetrical hydrogen distribution
with respect to the slip plane yields a net shear
stress with the same singularity but with a sign
opposite to that of the resolved shear stress of
the mere dislocation (Figure 28(b)). In other
words, the equilibrium hydrogen distribution
screens the resolved shear stress of an edge
dislocation.

8.12.4.8 Continuum Fluid and Atomistic
Surface Hybrid Simulation

The challenge in continuum fluid and
atomistic surface hybrid simulation is that the
particles follow random trajectories and mass
flow across the continuum-—particle interface
may occur. Several multiscale coupling
schemes designed specifically to explore hydro-
dynamic problems were presented. O’Connell
and Thompson (1995) studied the Couette flow
problem using an overlap region mediating
between a particle ensemble and a continuum
described by the incompressible Navier—Stokes
equation. This approach is limited to scenarios
in which there is no mass and energy exchange
between the discrete and the continuous
phases. Moreover, in their model momentum
is conserved only in the special case in which
the continuum equations exactly describe the
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Figure 28 (a) Equilibrium hydrogen distribution around a single edge dislocation at 7'=300K.
The hydrogen migrates from the “upper” side of the dislocation (compression) to the “lower” side of the
glide plane (tensile zone). (b) The sum of the dilatation strains due to the hydrogen anti-symmetric distri-
bution gives a shear stress profile along the glide plane which is similar to that of the dislocation, but with
opposite sign. The net effect is a relaxation of the resolved shear stress of the dislocation (after Delafosse

and Magnin, 2001).
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particle system. Li et al (1998) studied the
general problem of obtaining boundary condi-
tions from a particle ensemble. Hadjiconstan-
tinou (1999a, 1999b) used the flow field
observed in conventional MD simulations to
provide the boundary conditions for separate
FE computations. Thus microscopic and
macroscopic length scales were coupled ele-
gantly, at the price of limiting the approach to
the study of steady-state solutions. Garcia et al.
(1999) coupled multigrid continuum equations
to a direct simulation MC particle simulator.
This sophisticated approach includes the ex-
change of mass, momentum and energy but is
limited to dilute systems.

Differential equations for continuum fields
describe many macroscopic phenomena. Hy-
drodynamics, e.g., is described by the Navier—
Stokes equations, and their solutions depend
on boundary conditions. However, boundary
conditions are set by the interactions at the
atomistic or molecular scale. Flekkoy et al
(2000) introduced a ‘“hybrid model” that
permits a continuum description in one region
to be coupled to an atomistic description in
another region. The coupling is symmetric in
the sense that the fluxes of the conserved
quantities are continuous across the particle—
field interface.

Lam and Vlachos (2001) introduced multi-
scale integration hybrid (MIH) algorithms to
model catalytic reactors, epitaxial growth,
chemical vapor deposition, and flow through
tubes. The basic idea of MIH algorithms is
to decompose the domain into two subdo-
mains, one for the macroscopic scale (fluid
phase) and one for the microscopic scale (top
layers of the film). The partial differential
equations characterizing the fluid phase are
then discretized and solved through a conven-
tional method, such as finite difference scheme
and Newton’s algorithm for steady state or the
method of lines for time-dependent situations.
The surface is modeled with a master equation
(a stochastic partial differential equation) that
is solved using a continuous time MC algo-
rithm. The coupling of the two subdomains
is done at the fluid-film interface through
a homogenization of the boundary conditions,
i.e., incorporation of mesoscopically average
rates computed from molecular model into
the boundary conditions of the fluid phase
model.

8.12.5 PARALLEL ADAPTIVE MESH
REFINEMENT

The goal of combined atomistic and con-
tinuum simulation is to follow the atomic
aggregates adaptively with regions where na-

noscale size effects are important, and to
simulate all the remaining regions using con-
tinuum method with adaptive mesh refinement
towards the atomic core. As of early 2000s, all
the simulations are in research stage. In order
for combined atomistic and continuum simula-
tion to be practical and to get the industry
strength, techniques on parallel adaptive mesh
refinement (AMR) are crucial.

The parallelization of an AMR algorithm
offers challenges. Implementations of AMR
algorithms are typically quite complex. The
individual grid-patches of an AMR algorithm
are not uniform, and cover a broad span of
sizes and shapes. High parallel efficiency is
achieved by maintaining an equal distribution
of work among processors. Otherwise proces-
sors will be forced to wait in idleness while an
overburdened processor completes its work.
Maintaining an equal distribution of work
among processors is an issue when the work
quanta are not uniform, as is true in AMR
with grid objects of greatly differing sizes.
Since the results of the competition for
resources cannot be predicted at compile time,
it is necessary to adjust the work distribution as
the parallel program runs.

In order for the combined atomistic and
continuum simulation to take advantage of the
power of parallel computing the code should
be built on a parallel AMR infrastructure
library. The goal of a parallel AMR library is
to facilitate the development of structured
AMR applications involving coupled physics
models and sophisticated numerical solution
methods. The library should provide flexible
and extensible tools for structured AMR
applications. The library should contain a suite
of well-designed, and efficiently implemented,
modules that perform operations in a typical
parallel AMR process. As shown in Figure 29
the combined atomistic and continuum simula-
tion can interact with AMR infrastructure
through (a) hierarchy and data struc-
ture management as detailed in Figure 30,
(b) algorithm framework, and (¢) numerical
routines.

There are two kinds of AMR, structured
and unstructured. Structured methods employ
a hierarchy of nested mesh levels in which each
level consists of many simple, rectangular
grids. Each rectangular grid in the hierarchy
represents a structured block of many thou-
sands of unknowns. Unstructured adaptive
methods store the solution using graph or
tree representations; these methods are called
“unstructured” because connectivity informa-
tion must be stored for each unknown.
Because of these dissimilar data representation
strategies, structured adaptive methods require
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Figure 29 Parallel AMR software provide framework on connection with combined atomistic and

continuum simulation.
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different software support and implementation
approaches than unstructured methods.

8.12.5.1 Structured AMR

Structured local mesh refinement possesses
numerous advantages over less structured
mesh approaches (Garaizar et al., 1998). These
advantages are due primarily to the description
of the mesh in terms of a hierarchy of global
index spaces and patches suitable for the
storage of most mesh data in logically rectan-
gular arrays. The patch-based structured AMR
approach provides a paradigm in which
applications can be composed of a relatively
small set of computationally rich tasks, defined
in terms of operations on mesh patches,
organized in a highly structured fashion.

A significant amount of research and devel-
opment has been done to create robust soft-
ware tools for the fundamental tasks associated
with mesh management on parallel computers.
As of early 2000s, there are several parallel

structured-AMR libraries available. The SAM-
RAI (Structured Adaptive Mesh Refinement
Application Infrastructure) library is an object-
oriented C+ + software framework. SAMRAI
is supported by the Lawrence Livermore
National Laboratory and the US Department
of Energy’s Accelerated Strategic Computing
Initiative program. The PARAMESH (PAR-
Allel adaptive MESH refinement), supported
by NASA'’s High Performance Computing and
Communications program, provides a package
of Fortran 90 routines.

8.12.5.2 Parallel LMPM Simulation Based on
SAMRAI

In the following we discuss how to connect
LMPM with SAMRALI parallel infrastructure.
In SAMRALI, the “Hierarchal” package sup-
ports abstract index spaces and box calculus on
which most operations on a structured AMR
patch hierarchy depends. Structural classes
such as patch, patch level, and patch hierarchy,
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and base classes for managing variables and
data living on the hierarchy also reside here.

LMPM provides for the skeletal SAMRAI
grid structure with detailed material points as
shown in Figure 30. In LMPM, a continuum
material is discretized into a collection of
material points in a manner similar to repre-
senting an image with pixels. Each material
point is assigned a mass consistent with the
material density and all the variables describ-
ing the problem (e.g., position, velocity, strain,
stresses, temperature, etc.). LMPM then uses a
background calculation grid to solve the
equations of motion for the particles at each
time step of the analysis.

LMPM uses SAMRATI’s hierarchy manage-
ment to handle splitting and merging of
LMPM cells and particles. In 3D, one cell
can be split into eight child cells, forming an
oct-tree structure. Figure 20 shows the splitting
of cells and material points in LMPM calcula-
tion (2D case). In the refining and coarsening
process, the state variables of the material
points are interpolated to the new points, such
that the interpolated values of variables onto
the grid are the same before and after the
refining/coarsening process. In the finest level,
all the atoms are uniformly distributed in the
paralleled processors.

In SAMRALI, cells on each hierarchical level
are clustered to form logically rectangular
patches. SAMRAI’s “PatchData” package
provides support for various concrete patch
data types that reside on a structured AMR
patch hierarchy. LMPM uses SAMRAI’s
node-centered PatchData to implement node
information such as velocity, acceleration,
mass, temperature and temperature gradient.
LMPM uses SAMRAT’s particle PatchData to
implement atomic information, as well as
material points information, such as particle
position, velocity, mass, stresses, and tempera-
ture.

In SAMRALI, the ‘“Algorithm™ package
houses classes that are useful for constructing
solution algorithms for certain classes of
partial differential equations on a structured
AMR patch hierarchy. Basic MPM algorithm
includes three steps in each time step integra-
tion cycling. They are: (i) map particle infor-
mation to grid, (ii) solve motion equations on
grid, and (iii) interpolate grid information to
particles. This MPM basic algorithm was
implemented into the SAMRAI (CSAFE,
1999).

The kernel motion and thermal equations in
LMPM are Equations (67) and (77), respec-
tively, with atomistic modifications discussed
in Section 8.12.4.5.1. Use of “unlumped” mass-
matrix can give higher accuracy. However, this

requires solving a large system of equations.
The SAMRAI “Solver” package provides
support for applying linear, nonlinear, and
ODE solvers on a structured AMR patch
hierarchy. The LMPM’s unlumped mass-ma-
trix motion and thermal equations can be
solved with these solvers.

8.12.5.3 Unstructured AMR

There are several parallel unstructured-
AMR libraries available. The PYRAMID,
developed at California Institute of Technol-
ogy under support from NASA, is a software
library for performing parallel AMR on
unstructured meshes (Norton et al, 2001).
The main structure is the computational mesh
that represents a complex geometry with many
components. Object-oriented methods, using
C++, have been applied to manage the
complexity for this problem. Another software,
SUMAAZ3D (Scalable Unstructured Mesh Al-
gorithms and Applications), represents colla-
borative efforts from Argonne National
Laboratory, Penn State University, Virginia
Tech., and The University of British Columbia.

8.12.6 CONCLUDING REMARKS

Major multiscale numerical methods in
simulations for fracture and corrosion are
reviewed. Both lattice Green’s function and
QC methods are static methods. These meth-
ods are effective in seeking long-term balanced
configurations, and time scale is not a difficult
issue in these approaches. However, as shown
in Section 8.12.2, dynamic effects are impor-
tant at nanoscale. Coupled FE/MD and
LMPM provide dynamic solution. In FE/MD
coupling, one-to-one node/atom connection
provides extra constraint and blocks the move-
ment of atomic defects into continuum region.
Overlapping approach gives a more flexible
solution. MPM/MD coupling has advantages
over FE/MD coupling in parallel simulation,
adaptivity, large deformation, uniform conti-
nuum, and atomic descriptions. However,
because both FE/MD and LMPM are dynamic
methods, they suffer from atomic timescale
simulations. WCM and adaptive LMPM pro-
vide coupling not only in space but also in
time. The material point/atoms linkage in
LMPM has some similarity with CGMD,
where a material point can be viewed as a
CG atom group.

Most of the current parallel AMR libraries
are still projects in the developing and optimiz-
ing stage. Depending on the methodology
chosen, all combined atomistic and continuum
simulations will finally be built on a parallel
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AMR infrastructure in order to use the super-
computing resources. In the future, the parallel
version of LMPM can be developed based on
SAMRAI or a similar structured parallel
AMR library, parallel version of QC and
coupled FE/MD can be developed based on
PYRAMID or a similar parallel unstructured-
AMR library.
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