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The effective thermoelectric behavior of layered heterogeneous medium is studied, with the

distribution of temperature, electric potential, and heat flux solved rigorously from the governing

equations, and the effective thermoelectric properties defined through an equivalency principle. It is

discovered that the effective thermoelectric figure of merit of a composite medium can be higher than

all of its constituents even in the absence of size and interface effects, in contrast to previous studies.

This points toward a new route for high figure of merit thermoelectric materials. VC 2012 American
Institute of Physics. [doi:10.1063/1.3674279]

I. INTRODUCTION

Thermoelectric materials have attracted significant inter-

ests recently for their capability in converting waste heat

directly into electricity utilizing the Seebeck effect,1 wherein

a voltage difference proportional to temperature difference is

developed when two dissimilar materials are joined together

and the junctions are held at different temperatures. The effi-

ciency of thermoelectric conversion is governed by a dimen-

sionless figure of merit ZT, which is intimately related to

electric and thermal transport properties of thermoelectric

materials,2

ZT ¼ e2rT

j
; (1)

where e, r, and j are Seebeck coefficient, electric conductiv-

ity, and thermal conductivity, respectively, and T is the tem-

perature. Clearly, in order to have high ZT and thus high

conversion efficiency, the thermoelectric material needs to

have not only high Seebeck coefficient, but also high electric

conductivity and low thermal conductivity. This turns out to

be rather difficult, since all these properties are intimately

related to each other, making it hard to control them individ-

ually. For example, while high electric conductivity requires

high concentration of charge carriers, a modest carrier con-

centration is optimal for high Seebeck coefficient. Further-

more, high electric conductivity is usually accompanied by

high thermal conductivity because of Wiedemann-Franz

Law.3 As a result, it is very challenging to achieve high elec-

tric conductivity and Seebeck coefficient and low thermal

conductivity simultaneously in a single-phase material.

In the past decade, there are mainly two strategies in

developing high performance thermoelectric materials, includ-

ing (1) searching for bulk materials with intrinsically high fig-

ure of merit and conversion efficiency; and (2) engineering

hybrid composite materials to enhance and optimize their con-

version efficiency. Hybrid materials, especially nanostructured

materials, are very attractive for thermoelectric energy con-

version. By combining different materials together, it is possi-

ble to overcome the intrinsic constraints between electric

conductivity, thermal conductivity, and Seebeck coefficient in

a single-phase material through microstructure engineering

and optimization, and thus achieve high electric conductivity,

Seebeck coefficient, and low thermal conductivity simultane-

ously. For example, a large enhancement in thermoelectric

power was observed in nanocomposites consisting of bismuth

nanowires embedded in porous alumina and porous silica,5

and a ZT value as high as 1.6 has been reported in K1-x

PbmþdSb1þcTemþ2 system containing nanoinlcusions, which

possesses simultaneously low thermal conductivity and high

electrical conductivity.6 Other high thermoelectric figure of

merit heterogeneous systems include La-doped n-type PbTe-

Ag2Te nanocomposites with large nanometer-scale precipi-

tates,7 melt spun Bi0.52Sb1.48Te3 bulk materials with nanocrys-

tals embedded inside the amorphous matrix,8,9 and

nanostructured Ag0.8PbmþxSbTemþ 2,10 among others.

While vast amount of experimental works in thermoelec-

tric materials focus on nanostructured composites,4–14 there

have been only very limited theoretical efforts toward the

analysis and understanding of the effective behavior of hetero-

geneous thermoelectric materials, despite their importance.

Instead, most previous theoretical studies focused on size and

interfacial effects at nanoscale using molecular dynamics and

quantum mechanics.15–23 This motivates us to examine

whether the effective thermoelectric figure of merit of a heter-

ogeneous composite can be higher than all its constituents,

excluding the effects of size and interface. If the answer is

yes, it will offer us a new route for high figure of merit ther-

moelectric materials, while the current state of art focuses on

nanocomposites that utilize quantum effects at nanoscale and

phonon scattering at interfaces,4–23 which are much more dif-

ficult to process and control than regular composites. The

question has actually been visited by a number of investigators

before. In 1991, it was shown that the effective figure of merit

of a composite can never exceed the largest figure of merit in

any of its constituents, in the absence of size and interfacial

effects.24,25 This conclusion was drawn from a variational

principle similar to Hashin-Strikman bound in elasticity.26

However, for thermoelectric materials, temperature, which is
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not uniform in general and varies from point to point, enters

into constitutive equations as a coefficient, and thus should

not be treated as material constants. Furthermore, heat flux

was often assumed to be divergence free,27 and under such

assumption, temperature distribution satisfies Laplace equa-

tion, as in a regular heat transfer problem uncoupled from

electric current. For thermoelectric materials, especially those

with high figure of merit, this is also not true.

Because of these difficulties, very few works on the ho-

mogenization of thermoelectric composites exist in literature,

far less than elastic composites, despite their obvious techno-

logical importance in energy harvesting and solid state cool-

ing. We seek to address these issues in this paper, by

analyzing the effective thermoelectric properties of layered

heterogeneous medium. More complicated three-dimensional

composites as studied in Ref. 32 is currently under investiga-

tions. The paper is organized as follows. The governing equa-

tion of thermo-electricity is introduced in Sec. II, and the

one-dimensional (1D) analysis of temperature and electric

field distribution in layered heterogeneous medium is pre-

sented in Sec. III, from which the effective thermoelectric

properties can be derived. Numerical results and discussion

are then given in Sec. IV, confirming that the effective ther-

moelectric figure of merit of composites can indeed be higher

than both of its constituents.

II. GOVERNING EQUATIONS OF
THERMOELECTRICITY

We consider the coupled transports of heat and electrons

in a thermoelectric material, with the respective transport

equations given by28,29

� JN ¼
Tr
e2

� �
1

T
rl� T2re

e

� �
r 1

T
; (2)

JQ ¼ �
T2re

e

� �
1

T
rlþ ðT3re2 þ T2jÞr 1

T
; (3)

wherein the electron flux JN is coupled with the heat flux JQ

through the Seebeck coefficient e, with e and l being the

charge and electrochemical potential of the electron, respec-

tively. Assume that the chemical potential is independent of

temperature and thus can be ignored, such that

l ¼ e/; (4)

where / is electric potential, and notice that the electric cur-

rent density can be derived from electron flux,

J ¼ eJN; (5)

the transport equations governing electric current density

and heat flux can be derived as follows:

� J ¼ rr/þ rerT; (6)

JQ ¼ �Terr/� ðTe2rþ jÞrT ¼ TeJ� jrT: (7)

In the absence of thermoelectric effect where e¼ 0, the

uncoupled transport equations of electricity and heat are

recovered. Since energy is transported by both electrons and

heat, the energy flux JE can also be derived from the current

density and heat flux as

JE ¼ JQ þ /J: (8)

Notice that both temperature gradient rT and temperature T
enter the thermal transport Eq. (7), making the coupling non-

linear and thus much more difficult to solve than a normal

heat transfer problem in uncoupled medium.

We consider a system wherein both charges and energy

are conserved, such that both current density and energy flux

are divergence-free,

r � J ¼ 0; (9)

r � JE ¼ 0: (10)

On the other hand, the heat flux is no longer divergence-free,

r � JQ ¼ �r � ð/JÞ; (11)

in contrast to a normal heat transfer problem in uncoupled

medium.

III. ONE-DIMENSIONAL ANALYSIS

We consider a layered thermoelectric medium, wherein

all the material properties and field variables are only de-

pendent on spatial coordinate x, and independent of y and z.
Since the current density is divergence-free, its magnitude J
turns out to be a constant in such a

1D configuration,

J ¼ jJj ¼ const; (12)

which simplifies the governing equations of thermoelectricity

considerably, making analytic solutions possible. Meanwhile,

such 1D configuration is most relevant for practical thermo-

electric modules. In the following subsections, we examine

the solution for a homogeneous thermoelectric first, and then

extend the solution to a layered heterogeneous medium.

A. Analysis of a homogeneous thermoelectric

We first consider a homogeneous material with uniform

distribution of material properties, as shown in Fig. 1(a), and

subjected to specified temperatures and electric potentials of

(T0, /0) and (T1, /1) at both ends. All the material properties

FIG. 1. (Color online) Schematics of lay-

ered thermoelectric medium; (a) homoge-

neous thermoelectric; (b) layered

heterogeneous thermoelectric.
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are assumed to be independent of temperature, and thus

Thomson effect is ignored.29 This allows us to simplify the

field equations governing temperature and electric potential

distributions as follows:

d2T

dx2
¼ � J2

rj
; (13)

d2/
dx2
¼ e

J2

rj
: (14)

Equation (13) can be solved for temperature distribution as

T ¼ � J2

2rj
x2 þ c1xþ c2; (15)

with integration constants determined from boundary condi-

tions as

c1 ¼ ðT1 � T0Þ þ
J2

2rj
; c2 ¼ T0; (16)

where all the dimensions are normalized with respect to L,

the length of the thermoelectric medium.

To solve for the yet to be determined current density J,

we notice from Eq. (6) that the distribution of electric poten-

tial is govern by

d/
dx
¼ eJ2

rj
x� eJ2

2rj
� J

r
� ðT1 � T0Þe; (17)

so that

/ ¼ eJ2

2rj
x2 � eJ2

2rj
þ J

r
þ ðT1 � T0Þe

� �
xþ c3; (18)

which allows us to solve c3 and current density from electric

boundary conditions as

c3 ¼ /0 (19)

and
J ¼ reðT0 � T1Þ þ rð/0 � /1Þ: (20)

The heat flux JQ can then be calculated using Eq. (7). This

completely solves the distribution of electric potential and

temperature in a homogeneous thermoelectric.

B. Analysis of a layered thermoelectric

We then consider a layered heterogeneous medium con-

sisting of two homogeneous thermoelectric phases A and B, as

shown in Fig. 1(b), and subjected to specified temperatures

and electric potentials of (T0, /0) and (T1, /1) at both ends,

identical to those of homogeneous medium considered in the

last subsection. Since the layered medium is pieces-wise uni-

form, Eq. (15) is still applicable to individual segments, with

T ¼
� J2

2rAjA
x2 þ aAxþ bA; 0 � x < f ;

� J2

2rBjB
x2 þ aBxþ bB; f < x � 1;

8>><
>>: (21)

where f¼ xm/L is the volume fraction of phase A. Assume

both temperature and electric potential are continuous at

interface, x¼ f, and notice that energy flux is a constant, so

that the heat flux is also continuous at the interface. Combin-

ing these two continuity conditions with two boundary con-

ditions, we derive the following equation that can be solved

for the integration constants:

0 1 0 0

0 0 1 1

f 1 �f �1

JðeA � eBÞf � jA JðeA � eBÞ jB 0

2
666664

3
777775

aA

bA

aB

bB

2
6664

3
7775

¼

T0

T1 þ
J2

2rBjB

� J2

2rBjB
f 2 þ J2

2rAjA
f 2

ðeA � eBÞJ3f 2

2rAjA
þ ðrA � rBÞJ2f

rArB

2
666666666664

3
777777777775
:

(22)

In a similar manner, the electric potential can be solved from

Eq. (17) as

TABLE I. Thermoelectric properties of Bi2Te3 (Ref. 30) and

Ag(Pb1�ySny)mSbTe2þm (Ref. 31).

Material e (�10�6 V/K) r (�103 S/m) j (W/m/K)

Bi2Te3 200 110 1.6

Ag(Pb1�ySny)mSbTe2þm 270 22 0.77

FIG. 2. (Color online) The distributions of temperature, electric potential, and heat flux in a homogeneous thermoelectric under an imposed temperature

difference.
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/ ¼

eAJ2

2rAjA
x2 �

 
J

rA
þ eAaA

!
xþ cA; 0 � x < f ;

eBJ2

2rBjB
x2 �

 
J

rB
þ eBaB

!
xþ cB; f < x � 1;

8>>>>><
>>>>>:

(23)

with the integration constants cA and cB determined from the

boundary conditions as

cA ¼ /0; (24)

cB ¼ /1 þ
J

rB
þ eBaB �

eBJ2

2rBjB
: (25)

From the continuity of electric potential at the interface, the

current density can then be solved as

J ¼� 1

ðeB � eAÞf ð1� f ÞðrAð1� f Þ þ rBf Þ
� ðW1 þW3 �

ffiffiffiffiffiffi
W4

p
Þ; (26)

with

W1 ¼ rAð1� f Þ þ rBf½ � jAð1� f Þ þ jBf½ �;
W2 ¼ ðeB � eAÞf ð1� f ÞrArB;

W3 ¼ W2ð/1 � /0 þ eBT1 � eAT0Þ;
W4 ¼ �2W2 W1ð/1 � /0Þ þ rAð1� f Þ þ rBf½ �½jAeBð1� f Þf

þjBeAf �ðT1 � T0Þg þ ðW1 þW3Þ2:

The heat flux JQ can then be calculated by using Eq. (7).

This completely solves the distribution of electric potential

and temperature in a layered heterogeneous thermoelectric.

C. The effective thermoelectric properties

To describe the effective behavior of a heterogeneous

thermoelectric, we define its effective thermoelectric properties

through the following equivalency principle—given identical

boundary conditions of temperature and electric potential, a

heterogeneous thermoelectric with a set of effective thermo-

electric properties should have identical current density and

energy flux as a homogeneous thermoelectric with the same set

of properties. With such equivalency, it is clear that the hetero-

geneous and homogeneous thermoelectrics can be exchanged

under the specified boundary conditions. We examine the

effective electric conductivity first. Consider a boundary condi-

tion of imposed electric potential difference only with DT¼ 0,

and compare the current density between homogeneous ther-

moelectric and layered medium, we conclude that the effective

electric conductivity of the layered composite is given by

r�ðD/;DT ¼ 0Þ ¼ J

/0 � /1

¼ � J

D/
; (27)

with the current density given by Eq. (26). Expanding cur-

rent density J into Taylor series of (eB�eA), we derive the

effective conductivity of the layered thermoelectric to the

first order of (eB�eA),

r�ðD/Þ ¼ rArB

rAð1� f Þ þ rBf

� f ð1� f Þr2
Ar2

BD/ðeB � eAÞ
2ðrAð1� f Þ þ rBf Þ2ðjAð1� f Þ þ jBf Þ

; (28)

which clearly depends on the boundary condition in addition

to the material constants of the constituents and the volume

fraction, a characteristic distinct from linear medium. On the

FIG. 3. (Color online) The distributions of temperature, electric potential, and heat flux in a homogeneous thermoelectric under an imposed electric potential

difference.

FIG. 4. (Color online) The distributions of temperature, electric potential, and heat flux in a layered thermoelectric under an imposed temperature difference.
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other hand, if we impose open-circuit boundary condition

such that J¼ 0, then the effective Seebeck coefficient can be

derived as

e� ¼ jAð1� f ÞeB þ jBf eA

jAð1� f Þ þ jBf
; (29)

while the effective thermal conductivity can be derived as

j� ¼ � JQ

T1 � T0

¼ jAjB

jAð1� f Þ þ jBf
: (30)

Although they do not appear to be dependent on the bound-

ary condition explicitly, open- circuit boundary condition is

implied implicitly. From the effective thermoelectric proper-

ties, the effective thermoelectric figure of merit is then

defined as

Z� ¼ r�e�2

j�
; (31)

and we are interested in whether Z* of the heterogeneous

thermoelectric can be higher than both its constituents.

IV. RESULTS AND DISCUSSION

A. Homogeneous thermoelectric

We first consider a homogeneous thermoelectric Bi2Te3

of L¼ 0.01 m, with its thermoelectric properties listed in Ta-

ble I. Consider first that only a temperature difference is

imposed, with T0¼ 300 K at cold end and three different

temperatures of T1¼ 800, 1000, 1500 K at hot end. Notice

that the hot end temperatures could be higher than the melt-

ing point of material, and these are used solely for mathemat-

ical argument. The distributions of temperature, electric

potential, and heat flux are shown in Fig. 2, where it is

observed that the nonlinearity in temperature distribution is

small for small and modest temperature differences, but

becomes significant under relatively large temperature dif-

ference. For T1¼ 1500 K, the maximum temperature occurs

inside the medium, not at the end, due to Joule heating.

Associated with such nonlinear distribution of temperature,

substantial variation in heat flux is also observed under large

temperature difference, though such variation decreases

FIG. 5. (Color online) The distributions of temperature, electric potential, and heat flux in a layered thermoelectric under an imposed electric potential

difference.

FIG. 6. (Color online) The effective

Seebeck coefficient, thermal conductiv-

ity, electric conductivity, and figure of

merit as functions of volume fraction.
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significantly when temperature difference is reduced.

Regardless of the temperature difference, the distribution of

electric potential is highly nonlinear, despite that both ends

are imposed with same potential, resulting in an current den-

sity of J¼�1.1, �1.54, �2.64� 106 A m�2, respectively.

On the other hand, if only an electric potential difference is

imposed with /0¼ 0 and /1¼ 0.01, 0.1, 0.2 V, the corre-

sponding results are shown in Fig. 3. It is observed that the

nonlinearity in the distribution of electric potential becomes

substantial under a relatively large potential difference,

while the temperature distribution is highly nonlinear regard-

less of potential difference. Large variation in heat flux is

also observed when the potential difference is large, and sub-

stantial temperature increase is observed inside the medium.

These results suggest that neither temperature nor electric

potential of thermoelectric materials satisfies Laplace equa-

tion, and the deviation is particularly large under large tem-

perature or potential difference.

B. Layered thermoelectric

We then consider a layered thermoelectric consisting of

Bi2Te3 as phase A and Ag(Pb1�ySny)mSbTe2þm as phase B,

with their thermoelectric properties listed in Table I. Notice

that both phases have excellent Seebeck coefficient that are

comparable to each other, yet Bi2Te3 has relatively high ther-

mal conductivity, while Ag(Pb1�ySny)mSbTe2þm has relatively

low electric conductivity, not desirable for high thermoelectric

conversion efficiency. We consider the distribution of tempera-

ture, electric potential, and heat flux in the layered thermoelec-

tric first, with either temperature difference or electric potential

difference imposed, identical to those considered in the last

subsection. The volume fraction of Bi2Te3 is taken to be

f¼ 0.42, and the length remains to be 0.01 m. The correspond-

ing results are shown in Figs. 4 and 5, respectively. The quali-

tative trends are similar to those observed in homogeneous

Bi2Te3 under imposed temperature difference. In particular, it

is noted that although the thermal conductivity of Bi2Te3 is

more than 100% higher than that of Ag(Pb1�ySny)mSbTe2þm,

temperature drops in these two materials appear to be similar.

On the other hand, quite different trends are observed under

imposed electric potential difference, where majority of elec-

tric potential drop occurs in Ag(Pb1�ySny)mSbTe2þm, which

has much smaller electric conductivity.

The effective electric conductivity, Seebeck coefficient,

thermal conductivity, and figure of merit of Bi2Te3-Ag

(Pb1�ySny)mSbTe2þm layered medium are shown in Fig. 6,

with the following boundary conditions imposed:

T0 ¼ T1 ¼ 300K; /0 ¼ 0V;

/1 ¼ f�0:35;�0:2; 0:2; 0:35gV: (32)

While the effective Seebeck coefficient and thermal conduc-

tivity only show slight deviation from the rule of mixture, as

observed in Figs. 6(a) and 6(b), the nonlinear dependence of

electric conductivity on volume fraction is significant, and it

is sensitive to the voltage difference imposed on the bounda-

ries, as shown in Fig. 6(c). This results in large difference in

the effective thermoelectric figure of merit shown in Fig.

6(d). What is most interesting is that there is a peak, albeit

small, in the effective thermoelectric figure of merit that

exceed both constituents, at f¼ 0.973, when the imposed

potential difference is /1¼�0.35. This is significant, since

it demonstrates that the effective thermoelectric figure of

merit of a heterogeneous medium can be higher than both of

its constituents, in contrast to previous studies. The distribu-

tions of temperature, electric potential, and heat flux for this

particular layered structure under imposed boundary condi-

tion is given in Fig. 7, where substantial temperature

increase, though still in the acceptable range, is observed.

The distributions of temperature, potential, and heat flux are

all highly nonlinear, which is essential for enhanced thermo-

electric figure of merit. With higher potential difference

imposed at boundary, higher enhancement in thermoelectric

figure of merit will be obtained, though it may lead to unreal-

istic high temperature inside the medium.

V. CONCLUDING REMARKS

In conclusion, we have developed rigorous 1D analysis of

layered thermoelectric medium, from which the effective ther-

moelectric properties have been established using an equiva-

lent principle. It is found that the thermoelectric figure of merit

of layered medium can be higher than both its constituents,

and the key is to utilize the nonlinear distribution of tempera-

ture and electric potential inherent in thermoelectric transport.
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FIG. 7. (Color online) The distributions of temperature, electric potential, and heat flux at the maximum Z* with f¼ 0.973.
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