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Abstract. An expression for the T-stress in a bi-material strip with a semi-finite 
interfacial crack is derived for general edge loads using a conservation integral 
method. The expression is explicit except for two non-dimensional constants, 
which are determined from a finite element analysis and which are tabulated as a 
function of the Dundurs’ parameters and the thickness ratio of the strip.  
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1. Introduction. The T-stress is the first non-singular term in William’s eigen-
function expansion of a crack tip stress field. It is an important parameter that 
together with the stress intensity factor characterizes the crack field. Its value, for 
instance, affects both shape and size of the plastic zone at the crack tip. The T-
stress also governs the configurational stability of a growing crack (Cotterell and 
Rice, 1980). One of the most promising methods for evaluating the T-stress makes 
use of a conservation integral first introduced by Chen and Shield (1977). Beom 
and Earmme (1993) and Cho et al. (1994) obtained an explicit expression for the 
T-stress for a semi-infinite interfacial crack in an infinite isotropic bimaterial solid 
using this approach. Sladek and Sladek (1997) used the conservation integral 
method combined with a boundary element analysis to compute the T-stress of an 
interfacial crack in a finite body. Moon and Earmme (1998) obtained expressions 
for the T-stress under in-plane and anti-plane loading conditions. Kim et al. 
(2001) calculated the T-stress for anisotropic bimaterials using complex potentials.  

 
Figure 1. A bimaterial strip specimen under generalized edge loads.  

The bi-material strip specimen (shown in Fig. 1) has been used extensively in 
fracture mechanics tests such as the four point bending test and the double 
cantilever beam (DCB) test. The stress intensity factor for the bi-material strip 
geometry is readily available (Suo and Hutchinson, 1990), but evaluating its T-



stress is not trivial and requires careful numerical analysis. In this study, an 
expression for the T-stress of the bi-material strip specimen is obtained for 
general edge loads using the conservation integral method. The thicknesses of the 
two layers composing the strip are taken to be finite, while the interfacial crack 
between them is semi-infinite. The expression is explicit except for two non-
dimensional constants that are determined from a finite element analysis. It is 
assumed throughout this paper that the materials of the specimen are linearly 
elastic and isotropic.  

2. J-based mutual integral method for calculation of the T-stress. Consider an 
arbitrary path Γ  around the tip of a crack aligned with the x1-axis. The J-integral 
is then defined as (Rice, 1968)  

  J = wn1 − ti
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Here w is the strain energy density, in  the unit normal vector component, it  the 
traction vector component, and iu  the displacement vector component. A repeated 
index implies summation over this index running from one to three. The strain 
energy density for a linearly elastic material is given by  

  w =
1
2

σ ijε ij , (2) 

where  
σ ij  and  

εij  are the stress and strain components, respectively. The J-
integral is path-independent and is a generalization of the energy release rate 
concept. Now consider two independent equilibrium stress states in a cracked 
body, identified by (A) and (B), respectively. The J-based mutual integral 
proposed by Chen and Shield (1977) is then defined by  
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where   
2w( A,B) = σ ij

( A)ε ij
( B) = σ ij

( B)ε ij
( A) . Note that the J-based mutual integral has 

the same path-independence as the J-integral.  



 
Figure 2. Analysis of the auxiliary field for T-stress evaluation; (a) auxiliary field for a bimaterial strip 
specimen, (b) point force at a semi-infinite crack tip in an infinite bimaterial body, (c) a bimaterial strip 

specimen under prescribed traction and point forces. 
 
Consider as state (A) the problem to be analyzed (Fig. 1) and as state (B) the 
auxiliary stress state that arises when a point force ƒ is applied at the crack tip 
(Fig. 2(a)). The asymptotic stress field at the tip of an interfacial crack (Fig. 1) can 
be expressed as 
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m
=

Re(Kriε )
2πr

σ ij
I θ ,ε( )+

Im(Kriε )
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Here, the subscript m (=1,2) identifies the upper and lower strips, respectively, 

  K(= K1 + iK2 ) is the complex stress intensity factor, and Tm is the T-stress. The 

angular functions   
σ ij

I θ ,ε( ) and σ ij
II θ ,ε( ) can be found in (Sladek and Sladek, 

1997) and δij is the Kronecker delta. Dundurs’ parameters for a bimaterial 
structure with prescribed traction are defined by 
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where μ is the shear modulus, κ = 3− 4ν  for plane strain and κ = 3− ν( ) 1+ ν( ) 
for plane stress; ν is Poisson’s ratio. The oscillatory index, ε, is given by 
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The asymptotic stress field for the auxiliary problem shown in Fig. 2(a) is given 
by (Moon and Earmme, 1998) 
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Here   σ11
f = cos3θ ,   σ12

f = σ21
f = cos2 θ sinθ , and σ22

f = cosθ sin2 θ . Using Eqs. (4) 

and (7), the J-based mutual integral for a path Γδ  enclosing the crack tip with a 
vanishingly small radius can be written as (Moon and Earmme, 1998) 
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where   c = (1+κ ) / μ . Note that the J-based mutual integral does not depend on 
the T-stresses Tf 1  and   

Tf 2  of the auxiliary field. When K f  is equal to zero – say, 
for a semi-infinite crack in an infinite body – the J-based mutual integral is 
linearly proportional to the T-stress of interest. More generally, Eq. (8) allows 
evaluation of the T-stress if K and Kf are known. Since the J-based mutual integral 
is path-independent, its value can also be determined for an integration path Γ 
along the surface of the specimen. Such a path allows expression of the integral in 
terms of the edge loads as 
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In this equation,   η = h / H ,   P = P1 − C1P3 − C2 M3 / h , and M = M1 − C3M3 . The 

constants   C1, C2 ,   C3 ,   A0 ,  I0 , and δ  are defined in (Suo and Hutchinson, 1990). 
Note that there are a total of six forces and moments in Fig. 1, but that the mutual 
integral ),( BAIΓ  can be expressed in terms of just four loading parameters because 
of the force and moment equilibria. The complex stress intensity factor for a strip 
specimen is expressed by (Suo and Hutchinson, 1990) 
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where A, I, γ, and ω can be found in (Suo and Hutchinson, 1990). This expression 
contains only two loading parameters as discussed in (Suo and Hutchinson, 1990). 
From dimensional considerations, the complex stress intensity factor of the 
auxiliary field can be written as 
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where ξ and ωf are real non-dimensional constants that depend on the Dundurs’ 
parameters and on the thickness ratio η. By combining Eqns. (8)-(11), the T-stress 
can be obtained explicitly as a function of the two constants ξ and ωf. After some 
algebra, one finds 
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The T-stress in the lower strip, T2 is easily obtained from T2 = T1 c1 c2 . Note that 
the expression for the T-stress contains four loading parameters, P3, M3, P and M, 
unlike the stress intensity factor, which depends on two parameters, P and M, only. 

3. T-stress for a homogeneous strip specimen with equal layer thicknesses. 
The homogeneous strip specimen with equal layer thicknesses is widely utilized 
in fracture toughness testing. The T-stress expression for this type of specimen is 
a special case of Eq. (12) and is practically useful. By taking c2 = c1  and  η = 1, 
the T-stress is obtained as  

  
  
T1 = T2 =

(3 − 2 3ξ)(Ph + 2M )
h2

−
P3

2h
, (13) 

Note that 
  
ω f = 0 , 

 
cos ω( )= 3 7 , and sin(γ + ω ) = 1  because of the symmetry 

of the strip specimen in this case. It is noted that this expression for T-stress of a 
homogeneous strip contains three loading parameters. The real constant ξ can be 
found in Table 1 (the calculation details are described in the next section), and is 
independent of elastic modulus and strip thickness. For example, the T-stress for a 
DCB test specimen under applied moment Mo is given by T = (6 − 4 3ξ)M0h−2 , 

and that for a 4-point bending specimen is T = (3 − 2 3ξ)M0h−2 . 



Table 1. Two non-dimensional constants ξ  and fω   

 



4. Analysis of auxiliary field. In order to determine the non-dimensional 
constants, ξ and ωf, the elastic solution to the auxiliary problem shown in Fig. 2(a) 
is needed. The solution could be obtained directly using finite element analysis, 
but one has to be careful when calculating the stress intensity factor because of 
the combined 1 / r  and   1 / r  stress singularities. Alternatively, the solution for 
this boundary value problem can be obtained as the superposition of the solutions 
for the problems shown in Fig. 2(b) and Fig. 2(c). In Fig. 2(c), the tractions on the 
top and bottom surfaces are prescribed such that the tractions on the top and 
bottom surfaces of the strip specimen in Fig. 2(a) are zero; i.e., they are equal and 
opposite to the tractions on x2 = h and x2 = -H in Fig. 2(b). The elastic solution for 
Fig. 2(b) is well known and can be expressed as (Moon and Earmme, 1998)  

  
  
σ ij( )

m
= −

(1− (−1)mα ) f
πr

σ ij
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where 
 
σ ij

f  has been defined before. The solution for the problem shown in Fig. 

2(c) is not trivial and can be obtained using the finite element method or through 
the numerical solution of an integral equation (Suo and Hutchinson, 1990). In this 
study, the solution was obtained using the finite element code ABAQUS. The 
calculations were performed using second-order continuum elements with reduced 
integration and a mesh with at least 60000 elements depending on the thickness 
ratio of the strip. The complex stress intensity factor was calculated using the 
ABAQUS contour integral option. The complex stress intensity factor for the 
problem shown in Fig. 2(a) can then be found through superposition. In fact, it is 
equal to the stress intensity factor for Fig. 2(c), because the stress intensity factor 
for Fig 2(b) is equal to zero. Finally, the two non-dimensional constants, ξ and ωf 
are determined by comparing the value of the stress intensity factor obtained from 
the finite element analysis with Eq. (11). They are tabulated in Table 1 as a 
function of the Dundurs’ parameters and the thickness ratio of the strip. 

5. Summary and conclusion.  
Bi-material strip specimens are widely utilized in interfacial fracture toughness 
measurement and sub-critical fracture tests. The complex stress intensity factor 
for a bi-material strip can be found in Suo and Hutchinson (1990), but the T-stress 
is not readily available. Since the T-stress is an important crack-tip parameter that 
affects the plastic zone at the crack tip as well as crack stability, it is necessary to 
evaluate the T-stress for this specimen geometry. In this study, the T-stress of a 
bi-material strip under general edge loads is explicitly obtained as a function of 
two real, non-dimensional constants. The two non-dimensional constants are 
calculated using a finite element analysis, and are tabulated as a function of the 
Dundurs’ parameters and the thickness ratio of the strip. 



Acknowledgement. This work was funded by the Korea Research Foundation 
under grant KRF-2005-214-D00215, and by the Semiconductor Research 
Corporation under grant 2005-KC-1292.010. 
 
References 
Cotterell, B., Rice, J.R. (1980). Slightly curved or kinked cracks. International Journal of  
 Fracture 19, 155–169. 
Beom, H.G., Earmme, Y.Y. (1993). Evaluation of elastic T-stress using a conservation integral. 
 Computational Engineering (Edited by B.M. Kwak and M. Tanaka). Proceedings of  
 the First Pan-Pacific Conference on Computational Engineering-PCCE93, 43–48. 
Cho, Y.J., Beom, H.G., Earmme, Y.Y. (1994). Application of a conservation integral to an interface crack  
 interacting with singularites. International Journal of Fracture 65, 63–73. 
Sladek, J., Sladek, V. (1997). Evaluations of the T-stress for interface cracks by the boundary element  
 method. Engineering Fracture Mechanics 56, 813–825. 
Moon, H.J., Earmme, Y.Y. (1998) Calculation of elastic T-stresses near interface crack tip under in-plane  
 and anti-plane loading. International Journal of Fracture 91, 179–195. 
Kim, J.H., Moon, H.J., Earmme, Y.Y. (2001) Inplane and antiplane T-stresses for an interface crack in 
 anisotropic bimaterial. Mechanics of Materials 33, 21–32. 
Suo, Z., Hutchinson, J.W. (1990) Interface crack between two elastic layers. International  
 Journal of Fracture 43, 1–18. 
Rice, J.R. (1968) A Path Independent Integral and the Approximate Analysis of Strain Concentration by 
 Notches and Cracks. Journal of Applied Mechanics 35, 379–386. 
Chen, F.H.K., Shield, R.T. (1977) Conservation laws in elasticity of the J-integral type. ZAMP 28, 1–22. 
Hutchinson, J.W., Suo, Z. (1992) Mixed mode cracking in layered materials. Advances in  
 Applied Mechanics 29, 63–191. 


