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Abstract: Strain gradient elasticity is widely used as a suitable alternative to size-independent 
classical continuum elasticity to, at least partially, capture elastic size-effects at the nanoscale. In 
this work, borrowing methods from statistical mechanics, we present mathematical derivations 
that relate the strain-gradient material constants to atomic displacement correlations in a 
molecular dynamics computational ensemble. Using the developed relations and numerical 
atomistic calculations, the strain gradient constants are explicitly determined for some 
representative semiconductor, metallic, amorphous and polymeric materials. This method has the 
distinct advantage that amorphous materials can be tackled in a straightforward manner. For 
crystalline materials we also employ and compare results from both empirical and ab-initio based 
lattice dynamics. Apart from carrying out a systematic tabulation of the relevant material 
parameters for various materials, we also discuss certain subtleties of strain gradient elasticity, 
including: the paradox associated with the sign of the strain-gradient constants, physical reasons 
for low or high characteristic lengths scales associated with the strain-gradient constants, and 
finally the relevance (or the lack thereof) of strain-gradient elasticity for nanotechnologies. 
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1. Introduction  
        Based upon a set of well-defined axioms, classical rational continuum 
mechanics is explicitly designed to be size-independent (Truesdell and Noll, 
1992)---a fact that is well evident in boundary value problems ranging from strain 
state of a nanoscale quantum dot to effective elastic properties of composites.  
Novel effects like size-dependency and scaling of mechanical phenomena, which 
have attracted considerable attention in recent times under various contexts e.g. 
thin films, quantum dots, plasticity, nanowires, nanotubes and composites 
amongst others, cannot be readily explained by classical continuum mechanics. 
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There is an expectation thus that classical elasticity may cease to be valid at 
nanometer length scales. Several physical reasons may be ascribed to the 
projected breakdown of continuum elasticity:  
 
(i) Increasing importance of surface energy: At the nanoscale, the appreciable 
surface to volume ratio necessitates accounting for surface/interfacial energies 
and/or surface elastic effects. Within a field theoretic framework, remedies exist 
to accommodate these effects e.g. Gurtin and Murdoch (1975,1978), Cammarata 
and Sieradzki (1994), Li and Dunn (1998), Steigmann and Ogden (1999), Miller 
and Shenoy (2000), Kukta et al. (2002), Sharma et al. (2003), Sharma and Ganti 
(2004), Duan et al. (2005), He et al. (2004), and Mi and Kouris (2006).  
 
(ii) Discrete nature of matter: The assumption of a smeared-out elastic 
continuum, central to classical continuum mechanics, is no longer valid at the 
nanoscale where the discrete atomistic nature of matter becomes apparent. 
Classical continuum elasticity fails to adequately capture several phenomena at 
the level of a few lattice spacings. Further, the fluctuations in the interatomic 
forces and their long range character may induce nonlocal behavior that is in 
contradiction to the postulated local character of classical elasticity. Researchers 
often see enriched continuum theories like non-local elasticity as a means to 
approximately model the true non-local behavior of the material. Pioneering work 
in this direction can be traced to Toupin (1962), Koiter (1964), Mindlin (1964, 65) 
and Krumhansl and Kroner (1968). Some other representative contributions are: 
Eringen and Edelen (1972), Kunin (1982, 1984), Klienert (1989), Reid and 
Gooding (1992), Ru and Aifantis (1993), Aifantis (1999), Lam et al. (2003), Zhang 
and Sharma (2005a, b), and Park and Gao (2006).  
 
(iii) Presence of defects and microstructure: The correlations of the elastic 
fields of defects such as dislocations and inhomogeneities may lead to a coarse-
grained elastic response that is size-dependent and nonlocal in character. For 
further discussion in this context the reader is referred to Kroner (1970), Gutkin 
and Aifantis (1999), Gutkin (2000), Forest et al. (2000), Drugan (2000), 
Frantziskonis and Aifantis (2002), Bouyge et al. (2002), Fatemi et al. (2002), 
Groma et al. (2003), and Onck (2003). 
 
(iv) Internal strain: For certain types of materials, increasing prominence of 
internal motions within a non-primitive lattice result in additional degrees of 
freedom above and beyond the classical displacement degrees of freedom which 
cannot be accounted for by classical elasticity theory (say, for example, in liquid 
crystals, polymers, and granular materials). In such cases, if a field theory is 
desired, recourse must be made to the so-called director field theories such as 
the micromorphic theory or its more popular subsets: the Cosserat theory and 
micropolar elasticity. For additional details, the interested reader is referred to a 
review by Eringen (1999) and other works due to Green and Rivlin (1964), Cheng 
and He (1995, 1997), Sharma and Dasgupta (2002) and Chen et al. (2003, 
2004).  
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(v) Quantum confinement: It has been recently shown (in the context of 
semiconductor quantum dots) that quantum confinement may induce a strain 
field even in complete absence of an external stress. Such an effect, which 
scales with the square of the wave-function, is inversely proportional to the 
volume of the nanostructure (Zhang et al., 2006) and is of importance only in the 
size-range below 2 nm.  
 
      An obvious route to investigate elastic phenomena at nanometric length 
scales incorporating the physical effects (i)-(v) listed above would be via discrete 
atomistic simulations. However field theoretic methods in the same vein of 
classical continuum elasticity, albeit ones that capture the afore-mentioned size-
effects (if any), are desirable as well since they are often computationally more 
tractable, and for simpler problems, lead to physically illuminating analytical 
solutions. Strain gradient elasticity, which is one type of a nonlocal theory of 
elasticity, is often invoked to phenomenologically capture the size-effects within 
the purview of the physical effects noted in (ii) and (iii). Although extensive 
literature has now appeared on nonlocal elasticity theories, relatively little work1 
(Divincenzo 1985; Opie and Grindlay 1972; Shibutani et al. 1998; Hao and Maris 
2000, 2001; Lam et al. 2003; Mcfarland and Colton 2005) has gone into 
ascertaining the material parameters that dictate the “strength” of the 
aforementioned nonlocal effects. The magnitude of the strain-gradient constants 
has an important bearing on whether there exists a need for strain-gradient 
elasticity or whether classical continuum elasticity is a sufficiently good 
approximation while investigating nanoscale elastic phenomena.  
 
In this work, we: 

i. introduce a novel molecular dynamics (MD) based method to determine 
strain gradient constants. Borrowing methods from statistical mechanics, 
we derive equations that relate the dynamic strain-gradient material 
constants to the displacement correlations in a molecular dynamics 
computational ensemble. 

ii. tabulate the strain gradient elasticity parameters for various representative 
material systems such as metals (Cu, Al), single (Si, Ge, C) and multi-
component semiconductors (GaAs, GaP, CdSe), amorphous silica, and a 
polymeric system (polythene).   

iii. discuss certain subtleties of strain gradient elasticity including: the 
paradox associated with the sign of the dynamic strain-gradient constants, 
technicalities associated with atomistic calculations of the aforementioned 
material parameters, the physical reasons for low or high length-scales 
associated with the dynamic strain-gradient constants, the special case of 
non-centrosymmetric crystals and finally the relevance (or the lack 
thereof) of strain-gradient elasticity for nanotechnologies. 

 

                                                 
1 Also see Chen et al. (2003, 2004) for work more focused on micromorphic theories.  
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The outline of our paper is as follows. Section 2 consists of a brief 
introduction to strain-gradient elasticity followed by a discussion on the strain-
gradient material constants. In Section 3, we describe how the phenomenological 
strain-gradient elasticity theory can be linked to microscopic lattice dynamics; in 
particular we discuss how both empirical and ab-initio lattice dynamics may be 
employed to extract strain gradient elasticity constants. In Section 4, we present 
a new MD based technique to determine the strain-gradient elasticity constants 
by means of calculating the atomic displacement correlations in an NVT 
(Constant number of particles N, constant volume V and constant temperature T) 
ensemble. In Section 5 we discuss (and try to resolve) apparent inconsistencies 
in the sign of the strain-gradient constants which arise when strain-gradient 
theory is required to be thermodynamically stable while simultaneously exhibiting 
physically acceptable phonon dispersion characteristics. The numerical values of 
the strain gradient constants are presented in Section 6 for various 
representative materials while, in light of the numerical results, Section 7 includes 
a general discussion on the relevance of strain-gradient elasticity 
nanotechnologies. Also in Section 7, we try to argue the physical reasons that 
may be responsible for the observed magnitudes of the strain-gradient constants 
of the investigated material systems.  
 
 
2. Governing Equations of Strain Gradient Elasticity and Material Constants 
Within the assumption of a linearized theory of a homogeneous elastic media 
incorporating terms involving first and second gradients of the displacement 
gradient, one can write a phenomenological expression for the Lagrangian 
density ‘L’ for a solid (Mindlin, 1964; Divincenzo, 1985) in the following manner: 

1 2
i i ijkl ij kl ijklm i,j k,lm ijklmn i,jk l,mn ijklmn ij k,lmn

1 1L = ρu u - C e e - D u u - F u u - F e u - ...
2 2

 (1) 

Here, ρ is the mass density of the solid, u is the displacement field; the dot on 
top of iu denotes differentiation with respect to time and the comma denotes 
differentiation with respect to the spatial variables in the reference configuration. 
e is the symmetric strain tensor defined as: 

( )1
2

T= ∇ +∇e u u  (2) 

Both indical and direct notation will be used as convenient. The first term on the 
right hand side of Equation (1) is the kinetic energy and the remaining terms 
constitute the potential energy. The potential energy density of Eq. (1) is invariant 
under the Euclidean group SO(3) T(3)  i.e. the semi-direct product of the rigid 
rotation group SO(3)  and the rigid translation group T(3) . Invariance under rigid 
translations ensures that the internal energy density can only depend upon the 
first and higher order derivatives of the displacement, ∇⊗∇⊗ u... and not on the 
displacement u  itself. Invariance restrictions under rigid rotations only permit the 
symmetric part of the displacement gradient i.e. the strain defined by Eq. (2) to 
contribute to the internal energy density expression. However, starting from the 
second derivative, all higher derivatives of the displacement vector i.e. 
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∇⊗∇⊗ u...  transform properly underSO(3) T(3) . The first term in the 

expression for potential energy ij klε εijkl
1 C
2

 in Eq. (1) describes the long-

wavelength elastic excitations of the solid – the lowest order description of 
sound. The coefficients ijklC are the conventional elastic constants of the solid. At 
larger length scales (assuming small deformations and rotations), the term 
involving ijklC  dominates the potential energy and the higher order gradient terms 
involving the coefficients D, F1 and F2 provide negligible contributions. However, 
in the presence of large strain gradients the contributions due to these higher-
order terms may prove to be significant and is in fact the raison d’ etre for this 
theory.   
 
To derive the equation of motion from the Lagrangian in Eq. (1) we rewrite it as:  

1 2
i i ijkl i,j k,l ijklm i,j k,lm ijklmn i,jk l,mn ijklmn i,j k,lmn

1 1L = ρu u - C u u - D u u - F u u - F u u - ...
2 2

 (3) 

The symmetry of the strain tensor with respect to its two indices is reflected in the 
material constant tensors C and F2 in Eq. (3) which are symmetric with respect to 
the indices i and j.  The subsequent variational analysis follows exactly from 
Divincenzo (1985). For the variations in the action ‘A’ to be stationary we must 
have, 

⎡ ⎤
⎣ ⎦∫δA= δ Ldxdt = 0  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪⎣ ⎦ ⎣ ⎦
⎨ ⎬

⎡ ⎤ ⎡ ⎤⎪ ⎪
⎣ ⎦ ⎣ ⎦⎩ ⎭

∂

∂
∫ ∫

α α ijkl i k,l k i,j ijklm j i k,lm k i,j,j ,l ,j ,lm

1 2
ijklmn i lmn k,lmn k i,j ijklmn i k,mn k i,jl,j ,lmn ,jl ,mn

1

2δA=
ρδu u - C δu u + δu u - D δu u + δu u

dx dt
-F δu u + δu u - F δu u + δu u

 (4a-b) 

Now integrating Eq. (4b) by parts one obtains the elastic equations of motion as 

i ijkl k,lj ijklm k,lmj ijklmn k,lmnjρu = c u + d u + f u  (5) 
  The material constants c, d and f are referred to as the “dynamic elastic 
constants” and can be expressed in terms of the static elastic constants C, D, F1 
and F2 as 

( )2 1
ijklmn ijlkmn

ijkl (i,k) (j,l) ijkl

ijklm (i,k) (j,l,m) ijklm

ijklmn (i,k) (j,l,m,n)

sym sym

asym sym

sym sym -

c = C
d = D

f = F F

 (6a-c) 

The symbols ‘sym’ and ‘asym’ respectively denote symmetrization and anti-
symmetrization with respect to the indices in the subscripts. While the 
symmetrization (antisymmetrization) with respect to indices i and k follows from 
the integration by parts referred to above, the symmetrization with respect to the 
remaining indices is borne out by commutation property of the derivative 
operation. While Eq. (6a) can be completely inverted (Lax, 1974) (i.e. it is 
possible to uniquely recover the entire classical elastic constant tensor ijklC from 
the dynamic elastic constant tensor ijklc ), Eqs. (6b) and (6c) are non-invertible i.e. 
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one cannot completely recover the static elastic constants D, F1 and F2 from the 
dynamic elastic constants d and f respectively. 
 

It is of interest to note that the fifth-order tensor d in Eq. (5) has attracted 
some attention in the literature as it describes a phenomenon observed in some 
solids called “acoustic activity” (Mindlin, 1964;Portigal and Burnstein, 1968; Every 
2005). This so-called “acoustic-activity” is analogous to the well-known 
phenomenon of optical-activity which describes the effect of spatial dispersion on 
the propagation of electromagnetic light waves. Optical activity can be attributed 
to first-order dispersive contributions to the dielectric constant tensor which 
typically, is a function of the frequency alone and does not depend upon the 
wave-vector. This dispersive effect in-turn can be explained by invoking a non-
local dependence of the electric displacement vector D on the electric field vector 
E. The spatial-dispersive contributions to the dielectric constant ε  can be 
included in a phenomenological fashion by expanding ε   as a power series in the 
wave-vector k as follows:   

( ) ( ) ( ) ( ) ...ε ε= + + +,ij ij ijl l ijlm l mω ω ig ω k h ω k kk  (7) 

Optical activity is a consequence of the term ( )ijl lig ω k , and the tensor g is 
referred to as the gyrotropic tensor. The dynamic elastic tensor d in our 
description is analogous to the gyroscopic tensor g in that it provides a first order 
wave-vector dependence to the dynamic elastic constant tensor c (Divincenzo, 
1985).  
  
If one assumes a plane-wave solution of the form ( )0

i iu = u exp i ωt + k.r  for Eq. 
(5)2  then 

( )2 0 0
i ijkl j l ijklm j l m ijklmn j l m n kρω u = c k k + id k k k - f k k k k u  (8) 

Eq. (8) can be re-written in the following form:  
2 0 0

i ik kρω u = R ( )uk  (9) 
R (k) is the dynamical matrix derived in a purely elastic continuum framework. 
The eigenvalue problem posed by Eq. (8) can be solved to express the 
frequency ω  in terms of the wave-vector k which leads to the phonon dispersion 
relations. Eq. (9) provides three such dispersion relations which represent the 
acoustic phonon modes or sound waves traveling through the solid.  
          
The classical elastic limit of Eq. (8) can be obtained by setting the coefficients of 
tensors d and f to zero to obtain: 

( )2 0 0
i ijkl j l kρω u = c k k u  (10) 

which leads to a  linear ω  vs. k relationship. While this relationship certainly 
holds true for almost all materials at values of the k in the vicinity of zero, 
dispersive effects start to kick in at higher k-vectors wherein the phonon 

                                                 
2 This can be done since a perfect crystal is transitionally invariant. 
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dispersion relations start deviating from the linear relationship reflected by Eq. 
(10). In particular, for most crystals when the phonon frequencies are of the order 
of 1 THz, the ω  vs. k phonon curves start dipping downwards (see Fig.1)  
an effect that obviously cannot be accounted for by the classical continuum 
elasticity model in Eq. (10). On the other hand, the phonon dispersion relations of 
Eq. (8) obtained from the extended strain gradient elasticity theory can capture 
these non-linear effects at high k-vectors provided that the signs of the 
components of the dynamic strain-gradient constants d and f are such that they 
model the correct dispersive behavior of phonons.  

 
Figure 1: The longitudinal acoustic (LA) and transverse acoustic (TA) phonon dispersion curves 
of Silicon along [100] direction generated by ab-initio calculations are shown.  
 A group-theoretical analysis to determine the number of independent 
components of tensors c, d and f for crystals possessing point-group symmetry 
43m (corresponding to a cubic Zinc-Blende type crystal like GaAs) has already 
been carried out by Divincenzo (1985). The classical dynamical elastic constant 
‘c’ has three independent components and1111 1212 1122c ,c   c ; the fifth-order tensor d 
has only one independent component d12223 while the sixth-order tensor f 
happens to have six independent components 

and111111 122122 112222 122133 112233 211222f ,f ,f ,f ,f   f  . The remaining elements of these tensors 
can be generated by   suitable permutations of the tensor indices. It should be 
noted that for centrosymmetric diamond-like crystals like Si or f.c.c type crystals 
like Cu, the odd-order tensor d vanishes.   
 
From Eqs. (8) and (9), the dynamical matrix R (k) can now be written in terms of 
the independent components of tensors c, d and f.  
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( ) ( )
( )

( )
                                                                  

+ +

+

2 2 2 4 4 4
ii 1111 i 1212 j k 111111 i 122122 j k

2 2 2 2 2 2
122133 j k 211222 i j i k

2 2
ij 1122 i j 12223 i k j k 112222 i

R = c k + c k k + f k + f k k

+ 6f k k 6f k k k k

R = 2c k k + 3id k k - k k + 4f k k

+

( ) ( )3 3 2
j i j 112233 i j k+ k k +12f k k k

 (11a-b) 

It should be noted that since the matrix ijklm k l mid k k k has zero-diagonal elements, it 
will only contribute to the phonon dispersions in second-order perturbation 

theory. A typical contribution is of the form ( )

2

ρ ω ω−
ijklm j l m

2 2
i k

d k k k
k 2 whose order k4 is of the 

same order as the contribution due to f. This perturbative result is not expected 
to hold along the high symmetry axes [100] and [111] since the eigenvalues of 
the dynamical matrix are degenerate along these axes. However, as it turns out 
for cubic crystals of the GaAs type, the numerator 

2

ijklm j l md k k k  also vanishes so 
the above conclusion regarding the contribution of the d-tensor to the phonon 
dispersions still holds.  
 
3. Linking Strain Gradient Elasticity to Lattice Dynamics: Empirical and ab 
initio 
 
          In contrast with the continuum approach, from the microscopic lattice 
dynamical viewpoint, the dynamical matrix R(k)  for a crystalline solid with more 
than one atom in its unit cell is defined by (Maradudin et al., 1971) 

( ) ( )⎡ ⎤⎣ ⎦∑αβ αpβq βq αp
ik ik

pα β

ρR = K exp i . -
M M

k k X X  (12) 

Here ρ is the density of the material; αM and βM  are the masses of the α -th and 
the β -th atom respectively. αpβq

ikK  is the so-called atomic force constant matrix . 
To a first approximation the coefficient αpβq

ikK  can be regarded as the negative of 
the force exerted in the ith direction on the α -th atom in the p-th unit cell, when 
the β -th atom situated in the q-th unit cell is displaced in the jth direction by a unit 
distance, all the other atoms being kept at their equilibrium position.  
 
Analogous to Eq. (9), the equations of motion can be written as  

( )2 α αβ β
i ik kρω u ( )= R ( )u ( )k k k k  (13) 

    Now let us examine the link between the phenomenological strain-gradient 
elasticity theory and the microscopic lattice-dynamical approach. In a discrete 
lattice-dynamical setting, the dynamical matrix (Eq. 12) for a simple Bravais-
lattice (1 atom per unit cell) becomes 

( ) ( )⎡ ⎤⎣ ⎦∑ mn n m
ik ik

n0

1R = K exp i . -
Ω

k k X X  (14) 

Here 0Ω is the volume of the unit cell.  
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The corresponding equations of motion become  
( ) ( ) ( ) ( )2 0 0

i ik kρω u = R uk k k k  (15) 
 The long-wavelength limit (k→0) of Eq. (15) can be obtained by expanding R(k)  
in powers of k until the first non-vanishing term to obtain Eq. (16).   

′2 0 0
i ijkl j l kρω u = c k k u  (16) 

The constants ′ijklc are given as (pp. 347, Lax, 1974) 

( ) ( )′ ∑ mn n m n m
ijkl ik a b

n0

1c = - K - -
2Ω

X X X X  (17) 

The constants ′ijklc  possess the same symmetry as the dynamic elastic constants 

ijklc  of Eq. (8) and therefore correspond to a similar tensor.  This is the reason 
why, classical continuum elasticity theory is sometimes referred to as a long-
wavelength approximation of lattice-dynamical theory. Similarly, one can carry 
out the expansion of Eq. (15) into higher powers of k and identify microscopic 
material constants which resemble the dynamic elastic constants d and f of Eq. 
(8). Indeed, simple expressions for the strain-gradient elasticity constants have 
been derived for FCC cubic crystals interacting via a Lennard-Jones potential by 
Opie and Grindlay (1972).  
 
  However, the identification between the discrete and continuum 
approaches is not so readily apparent when the crystal lattice ceases to be a 
Bravais lattice. Eq. (8) derived from a purely continuum framework consists of 3 
equations of motion. On the other hand, Eq. (12) derived from a lattice-dynamical 
point of view consists of 3N equations of motion, N being the number of atoms 
per unit cell. Three solutions to this eigenvalue problem posed by Eq. (12) 
correspond to acoustic phonons while the remaining 3(N-1) modes are the 
optical phonon modes. For the case of a simple Bravais lattice (like f.c.c metals 
Cu and Al) where N=1, Eq. (12) (which reduces to Eq. 15) too yields three 
equations of motion which correspond to acoustic phonon modes (---optical 
modes are absent) and the dynamic elastic constants of Eq. (7) can be trivially 
read off from a power series expansion of the dynamical matrix of Eq. (15) in 
terms of k. However, as Divincenzo (1985) points out, for N>1, the identification 
is not so straightforward since the acoustic and optical contributions are coupled 
to each other in the dynamical matrix.  He (Divincenzo, 1985) has outlined an 
analytic procedure based on Lax (1974) to isolate the acoustic and optical 
contributions to the dynamical matrix at any k-vector for cubic crystals with unit 
cells containing 2 atoms (N=2). This class of crystal includes single component 
semiconductors/insulators like Si, Ge, Diamond etc. , III-V semiconductors like 
GaAs, GaP, InAs etc. and II-VI semiconductors/insulators like CdSe, ZnS, ZnO 
etc. We briefly discuss Divincenzo’s procedure in the following paragraphs. 
 
        At k= (0,0,0) (the Gamma-point), the 6×6 dynamical matrix R(k)  can be 
block-diagonalized by applying a unitary transformation U (which consists of the 
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k=0 eigenvectors). The transformed matrix RU now is a diagonal matrix 
consisting of the eigenvalues of R (k).  

( ) ( ) ⎡ ⎤
⎢ ⎥
⎣ ⎦

a
U T 3×3 3×3

o
3×3 3×3

D 0
R = U R U =

0 D
k 0 k 0= =  (18) 

Matrices aD and oD  are the acoustic and optic contributions to the dynamical 
matrix respectively. The 3×3 matrix aD is identified with the dynamical matrix 
obtained from classical continuum elasticity in Eq. (8). For ≠k 0 , if the same 
unitary transformation is applied to the dynamical matrix then the resulting 
transformed matrix is not completely uncoupled and the acousto-optical 
couplings remain of a small order in k,  

( ) ( ) ( ) ( )
( ) ( )

⎡ ⎤
⎢ ⎥
⎣ ⎦

a
3×3 3×3U T

o
3×3 3×3 3×3

D + O I O I
R = U R U =

O I D + O I
k k

k k
k k

 (19) 

It should be pointed out that the above statement assumes that the dynamical 
matrix that results out of the lattice-dynamical model being employed is analytic 
in the vicinity of k=0. This is not the case for polar crystals where the Coulombic 
contributions to the dynamical matrix have a macroscopic field term of the 
form 2

α βk k /k . However, for non-polar and slightly polar crystals the effect of the 
non-analyticity may be taken to be small and the expression in Eq. (19) is 
correct. Thus one should be able to find an additional small orthogonal 
transformation of the form exp(iδH)  (where δH  is a small Hermitian matrix) 
which completely decouples the acoustic and optical subspaces as follows,  

( ) ⎡ ⎤
⎢ ⎥
⎣ ⎦

a
U 3×3 3×3

o
3×3 3×3

D 0
exp(-iδH)R exp(iδH) =

0 D
k  (20) 

A perturbative-theoretic approach has been employed by Divincenzo (1985) to 
determineδH . The transformed dynamical matrix is divided into three parts: 

( ) ( ) ( )U
0R = H +Y + Xk k k .  

( )

( ) ( )
( ) ( )

( ) ( )
( )

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

a
U 3×3 3×3

0 o
3×3 3×3

U
aa 3×3 U

U
3×3 oo

U
3×3 ao

U
oa 3×3

E I 0
H = R =

0 E I

R 0
Y = - R =

0 R

0 R
X =

R 0

k = 0

k
k k 0

k

k
k

k

 (21) 

Hδ can be solved for iteratively by expanding the exponential of Eq. (20) and is 
found out to be (Divincenzo, 1985) 

⎡ ⎤⎣ ⎦
HH HδH = -iX + i Y,X - ... (22) 

For a matrix of the form
⎡ ⎤
⎢ ⎥
⎣ ⎦

12
3×3 3×3
21
3×3 3×3

0 A
A=

A 0
, HA is defined as  
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

12
3×3

3×3 a o
H

21
3×3

3×3o a

A0
E - EA =

A 0
E - E

 (23) 

The acousto-optical coupling terms can be made smaller and smaller by 
approximating δH  better by including additional terms which are represented by 
the dots in Eq. (22).    
 
            The form of δH from Eq. (22) can be substituted in Eq. (20) to obtain an 
expression for the uncoupled matrix of Eq. (20).  

( )
( )

( )
∞⎡ ⎤

=⎢ ⎥
⎣ ⎦

∑
aa

j3×3
oo

j3×3

D 0
K

0 D
k

k =0
 (24) 

Where the K(j)’s are given by  
( ) ( ) ( )

( )

( )

⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎨ ⎬⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦⎩ ⎭⎣ ⎦

0 1 2 H
0

H3 H

HH H4 H (2) H (2) H H

1K = H ,K =Y,K = X ,X
2

1K = X, Y,X ,
2
1K = X Y,X ,Y K ,X K ,X X
2

2 1, + - ,
3 12

 (25) 

   The ( )jK ’s in Eq. (25) correspond to successively higher powers of the wave-
vector k, though the correspondence is not one-to-one. The contribution of terms 
in Eq. (24) starting from K5 onwards is of the order of k5 and up. Therefore we 
need not consider them for our purpose since the strain-gradient constants d and 
f are associated with a k3 and a k4 term respectively.  
 
Following DiVincenzo’s (1985) procedure, one can readily extract the elastic 
constants from an appropriately chosen lattice-dynamical model. Over the years, 
several empirical lattice-dynamical models have been developed such as the 
rigid-ion model, deformable ion model, polarizable bond charges model, rigid 
valence shell model etc. For a detailed description of each model the reader is 
referred to following literature: Lax (1974), Maradudin et al. (1971), Kunc and 
Nielsen (1979a, b). Using any of these models, we can compute the dynamical 
matrix ( )UR k for any value of k. Eqs. (24) and (25) can then be used to evaluate 
the dynamical matrix: these expressions are correct up to order k4. To extract the 
elastic constants, we simply fit to the expressions for certain elastic dynamical 
matrix elements of Eqs. (11a, b) along high-symmetry directions in k. The fitting 
described above is sufficient to over-determine the dynamic elastic constants and 
therefore consistency checks need to be carried out to ensure the accuracy of 
the determined elastic constants.   
   
     For empirical lattice-dynamical models, Divincenzo’s procedure outlined 
above can be performed analytically. The matrix given by Eq. (24) can be 
obtained in terms of k, and the coefficients of k4 can be isolated and identified 
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with various dynamical elastic constants according to Eqs. (11). On the other 
hand, when one employs an ab-initio approach, it is impossible to calculate the 
dynamical matrix analytically and hence the coefficients of the k3 and k4 (the d 
and the f tensors respectively) in the dynamical matrix cannot be isolated and 
compared with those of Eqs. (11a-b). However, a numerical fitting procedure of 
the phonon dispersion relations along high-symmetry directions can be employed 
to find out the requisite dynamic elastic constants.  Given the state of the art of 
theoretical condensed-matter physics and of computational materials science, 
phonon dispersions of simple materials are routinely calculated using ab-initio 
quantum mechanical techniques which only require the chemical composition of 
the material in question as input. One of the most popular ab-initio techniques is 
the Density-Functional Theory (DFT) (Hohenberg and Kohn, 1964; Kohn and 
Sham, 1965); a further development is the density-functional perturbation theory 
(Zein, 1984, Baroni et al. 1987a). The phonon dispersions obtained from these 
techniques compare very well with observed experimental neutron-diffraction 
data and indeed when experimental data is hard to come by, data generated 
from ab-initio techniques is very often used to investigate the properties of 
materials. Several resources on ab-initio techniques, their implementation and 
subsequent applications to materials abound in the literature, most notable of 
them being Giannozzi et al. (1991), Baroni et al. (2001) and Bamzai and Deb 
(1995). In this work, we have used the Quantum ESPRESSO package which 
implements Density Functional Perturbation Theory (Baroni et al. 2001) to 
calculate the ab-initio phonon dispersion relations.  
 
        For calculating the phonon dispersion curves over the entire Brillouin zone 
using codes available in the Quantum-Espresso package, the dynamical 
matrices are first calculated for a specified grid of k-vectors e.g. a Chadi-Cohen 
grid consisting of 10 k-points or say a (4×4×4) k-point grid. With the dynamical 
matrices over a suitable grid of k-points in hand, an inverse Fourier transform 
can be carried out to obtain the real-space force constants (See Eq. 29). Since 
typically phonon frequencies are continuous functions of the wave-vector k, 
these force constants can be then used to calculate the phonon frequencies over 
the entire Brillouin zone. It has to be mentioned that the density of the k-vector 
grid that one starts out with should be chosen according to the material system 
one is investigating. From the form of the Fourier transform of Eq. (29), it can be 
seen that the denser the grid of the k-vectors, the larger the vector R for which 
the inter-atomic force constants are calculated. While for non-polar systems like 
say Si, the inter-atomic force constants are relatively short-range thereby 
requiring a moderate number of calculations at different k (say 10 k-points) for 
computing the phonon dispersions reasonably accurately, polar systems like 
GaAs possess long-range interactions and therefore a denser k-point grid (say 
one consisting of 60 k-points) can ensure that the inter-atomic force constants 
obtained span the range of the inter-atomic interactions and hence accurate 
phonon spectra are obtained. Material specific technicalities involved in 
calculating the ab-initio phonon dispersions have been mentioned in more detail 
in Section 6.      
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We now discuss the extraction of strain-gradient elasticity constants from 
phonon-dispersions generated from ab-initio calculations. Consider the acoustic 
3×3 dynamical matrix (derived from our extended elasticity theory) of Eq. (11) 
along the high-symmetry direction k=(1 0 0) for a centrosymmetric material. 
Substituting the form of the wave-vector into Eq. (11), the 3×3 dynamical matrix 
R takes the following form  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 4
1111 111111

2 4
1212 1221223×3

2 4
1212 122122

c k + f k 0 0
R = 0 c k + f k 0

0 0 c k + f k
 (26) 

Thus we can see that along the direction k=(1 0 0), the acoustic 3×3 dynamical 
matrix predicted by continuum elasticity (Eq. 11) is completely diagonalized. 
Now, using ab-initio techniques one can generate the eigenfrequencies of the 
complete dynamical matrix along the direction k=(1 0 0) for several k-vectors 
starting from k=(0 0 0) to say λ (1 0 0). For a crystal containing 2 atoms per unit 
cell, this diagonalized matrix will be a 6×6 square matrix of the form  

( )

( )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

aa
3×33×3

oo
3×3 3×3

D k 0

0 D k
 (27) 

In the above expression, the acoustic part of the dynamical matrix (generated 
from ab-intio calculations) ( )aa

3×3
D k and the optical part of the dynamical matrix 

( )oo
3×3

D k are 3×3 diagonal matrices themselves.  The acoustic part of the 

dynamical matrix ( )aa
3×3

D k along k=(1 0 0) is constrained by lattice-dynamical 

considerations to assume the form  

( )
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

aa

3×3

l 0 0
D k = 0 m 0

0 0 m
 (28) 

Now, the acoustic dynamical matrices given by Eq. (26) (from continuum 
method) and Eq. (28) (from ab-initio calculations) can be compared with each 
other at different k-vectors and a numerical fitting can be carried out to determine 
the components 1111c , 111111f , 1212c and 122122f . It must however be realized that the fit 
should be carried out starting from k-vectors in the vicinity of zero to k-vectors 
where the dispersive effects just start to kick in since we are only interested to 
capture the first-order correction to the linear ω  vs. k relationship. Fitting at k-
vectors which correspond to regions where frequencies are very high and 
dispersive effects are large will result in spurious estimates for the dynamic 
elastic constants. In this work, a non-linear least-square minimizing technique 
has been employed and the components of the k-vectors (k1, k2, k3) which have 
been employed for the fitting are such that ik < 0.05 .    
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      Now along, k= (1 1 0), the 3×3 dynamical matrix predicted by continuum 
elasticity of Eqs. (11a-b) has the following form  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3×3

a(k) b(k) 0
R = b(k) a(k) 0

0 0 c(k)
 (29) 

The functions a, b and c are given by 
( ) ( )

( )

2 4
1111 1212 111111 122122 211222

2 4
1122 112222

2 4
1212 122122 122133

a(k) = c + c k + f + f + 6f k

b(k)= 2c k + 8f k
c(k) = 2c k + 2f + 6f k

 (30) 

The dynamical matrix of Eq. (29) can be diagonalized to give  
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

diag

a(k)+ b(k) 0 0
R = 0 a(k) - b(k) 0

0 0 c(k)
 (31) 

      Once again, the above diagonal 3×3 matrix diagR can be compared with the 
diagonalized acoustic part of the dynamical matrix ( )aa

3×3
D k obtained by ab-initio 

methods and numerical fitting for different k-vectors can be done to determine 
the coefficients of 2k and  4k . A similar procedure can be worked out for wave-
vectors along the direction k= (1 1 1). For non-centrosymmetric materials, the 
procedure remains the same as that for centrosymmetric crystals except that we 
now must include the contribution of the tensor d to the phonon dispersion 
relations.  
 
In Fig. (2), we show a comparison between the phonon dispersion curves for 
copper along [100] direction obtained by ab-initio methods to those predicted by 
strain-gradient elasticity and classical continuum elasticity. The material 
parameters, including the classical elastic constants and strain-gradient dynamic 
elastic constants, have been obtained by using the fitting procedure described 
previously in this section and have been reported in Section 6. Clearly, the 
phonon dispersion predicted by strain-gradient elasticity matches pretty well to 
that obtained by ab-initio calculation over the first half of the Brillouin zone (even 
though the fitting of the constants has been carried out only for ki < 0.05 ).  
 
The situation is different for GaAs whose phonon dispersion curves are shown in 
Fig. (3). The strain-gradient elasticity model can capture the dispersion predicted 
by ab-initio calculations only until reduced k-vector= (0.2, 0, 0) which falls roughly 
around the 1 Thz frequency regime. The failure of the strain-gradient model at 
higher k-vectors for GaAs is more marked than that observed for Cu because of 
the higher value of dynamic strain gradient constants of GaAs as compared to 
Cu.  
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Figure 2: Shows the comparison of phonon dispersion curves predicted by strain-gradient 
elasticity and classical elasticity to those obtained by ab-initio calculations for the transverse and 
longitudinal acoustic modes along [100] direction for copper.  
 
 

 
Figure 3: Shows the comparison of phonon dispersion curves predicted by strain-gradient 
elasticity and classical elasticity to those obtained by ab-initio calculations for the transverse and 
longitudinal acoustic modes along [100] direction for Gallium Arsenide. 
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4. Displacement Correlations Based Molecular Dynamics Method for Strain 
Gradient Elasticity Parameters 
         In a classical paper by Parrinello and Rahman (1982), it was shown that the 
fluctuations in elastic strain in a (σ,H,N) ensemble (constant stress σ, constant 
enthalpy H and constant number of particles N) are a direct measure of the 
elastic compliances of a general anisotropic medium. Several works based on 
this approach have appeared since then (Ray, 1983; Ray et al., 1986; Lutsko, 
1988; Cagin and Ray, 1988; Gusev et al. 1996; Zhou and Joos, 2002). Ray 
(1983) provided a systematic derivation of Parrinello and Rahman’s technique in 
a Hamiltonian setting, Lutsko (1988) outlined the technique to investigate crystal 
properties using local stress fluctuations, Cagin and Ray (1988) used Parrinello 
and Rahman’s techniques to evaluate out nonlinear third-order elastic constants. 
On a related note, Landau and Lifshitz (1984) and later Pratt (1987) outlined a 
simple technique to determine the elastic constants from atomic displacement 
correlations. More recently, Meyers et al. (2005) have proposed a methodology 
based on Pratt’s technique (Pratt, 1987) to determine the classical elastic 
constants of homogeneous solids from the atomic displacement correlation 
function in an NVT (constant number of particles N, constant volume V and 
constant temperature T) molecular dynamics ensemble using the long-
wavelength approximation. In our work, we extend this technique to be applicable 
in regime of relatively high-energy wavevectors so that the strain-gradient 
elasticity constants can be subsequently extracted from the atomic displacement 
correlation functions. This method proves advantageous over methods involving 
strain-strain fluctuations (or stress-stress fluctuations) in that it involves atomic 
displacements which are easily determined during the course of a simulation as 
opposed to local strain and stress measures.    
 
         Consider an elastic solid consisting of ‘N’ atoms contained in a simulation 
cell of fixed volume ‘V’ that is held at a constant temperature ‘T’. According to the 
extended continuum strain gradient elasticity theory, in an elastically 
homogeneous, stress-free isothermal system, the difference in free energy F∆  
between two states with the same N is given by   

∫ ∫

∫ ∫

ijkl
i, j k,l ijklm i,j k,lm

V V

1 2
ijklmn i,jk l,mn ijklmn i,j k,lmn

V V

C
∆F = u ( )u ( )d + D u ( )u ( )d

2

                       + F u ( )u ( )d + F u ( )u ( )d

r r r r r r

r r r r r r
  (32) 

This difference in free energy can be written in a more useful form by introducing 
the discrete Fourier transform pair: 

( )
( )

∑

∑

α α

α=1toN

α α

1f( ) = f exp -i . ,
N

f = f( )exp i .

k k r

k k r
k

  (33) 
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where αr is the position vector of atom α and denotes a thermal average. 
Next, we discretize the integral given by Eq. (32)  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
α α α α

ijkl i, j k,l ijklm i,j k,lm

1 α α 2 α αα=1toN ijklmn i,jk l,mn ijklmn i,j k,lmn

C u u + D u uV∆F =
N            + F u u + F u u

r r r r

r r r r
 (34) 

and using the Fourier transform defined above we have: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

⎛ ⎞
⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
∑ ∑∑ ijkl i, j k,l ijklm i,j k,lm α

1 2
α=1toN ijlkmn i,jl k,mn ijklmn i,j k,lmn

C u u + D u uV∆F = exp i + .
N  + F u u + F u uk h

h k h k
k h r

h k h k
 (35) 

The summation in Eq. (35) can be further simplified as  
( )( ) ( ) ( )∑ 1 2

ijkl j l ijklm j l m ijlkmn ijklmn j l m n i k
k

∆F =V C k k + iD k k k + F - F k k k k u u -k k  (36) 

From the symmetries obtained by permuting the k’s in Eq. (36) and also by the 
fact that the above expression contains a factor of the form ( ) ( )i ku u -k k , Eq. (36) 
can be rewritten as  

( ) ( ) ( )∑ ijkl j l ijklm j l m ijklmn j l m n i k
k

∆F =V c k k + id k k k - f k k k k u u -k k  (37) 

Where the constants c, d and f possess the exact same symmetries as those in 
Eqs. (6a-c). Thus even by employing MD NVT ensemble method we can only 
extract the dynamic elastic constants as in the lattice-dynamics based method.  
 
 Now, since the probability of a thermal fluctuation is given by [ ]Bp α exp -∆F/k T , 
one obtains from Gaussian integration: 

( ) ( ) ( )-1B
i k ijkl j l ijklm j l m ijklmn j l m n

k Tu u - = c k k + id k k k - f k k k k
V

k k  (38) 

If we employ a cubic simulation box with an edge of length L, Eq. (38) can be 
written as  

( ) ( ) ( )-1B
i k ijkl j l ijklm j l m ijklmn j l m n3

k Tu u - = c k k + id k k k - f k k k k
L

k k  (39) 

For a cubic simulation box with periodic boundary conditions, the allowed wave 
vectors are of the form ( ) ( )2π/L n,p,q .  
       
To obtain the requisite dynamic elastic constants from Eq. (39), an NVT 
molecular dynamics simulation is carried out at low temperatures for atoms 
enclosed in a cubic simulation box. The displacements of all the atoms are 
obtained at each time-step. These displacements in real space can be 
transformed into Fourier space using Eq. (33) and the correlations given by the 
left hand-side of Eq. (39) can be calculated for wave-vectors along high-
symmetry directions. To achieve nearly independent data samples, the 
displacement correlations can be tabulated at every 40 time-steps. The thermal 
average of the displacement correlations can be obtained for different k-vectors 
and can be fitted to the right-hand side of Eq. (39) to obtain the dynamic elastic 
constants c, d and f. It should be noted that since the fitting of the dynamic 
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elastic constants needs to be carried out in the long-wavelength limit (in the 
vicinity of k=0), and since the smallest allowed wave-vector is2π/L , the length of 
the simulation box needs to be large enough i.e. we must have a large number of 
atoms in the periodic simulation cell3.  
    
 As will be elaborated further in Section 6, In this work the MD simulations for Cu, 
Al, Ni, Si and SiO2 have been carried out using the General Lattice Utility 
Program (GULP) (Gale 1997; Gale and Rohl 2003). An embedded atom potential 
(Cleri and Rosato 1993) was adopted for the metals Cu, Al and Ni, the Tersoff 
potential (Tersoff, 1988) was used to carry out molecular dynamics of the 
semiconductor Si and the Vashishta potential (Vashishta et al., 1990) was used 
to simulate SiO2. Molecular dynamics simulations of the polymers were carried 
out using the Discover module of Materials Studio® 3.0 using the CVFF force-
field. Empirical molecular dynamics simulations for the multi-component 
semiconductors GaAs and GaP were avoided since reliable inter-atomic 
potentials are unavailable (and thus only ab-initio based lattice dynamics was 
used for these material systems). All the simulations were carried out at a 
temperature of 50 K. While the convergence of the elastic constants using this 
method was found to be slower compared to some other works available in the 
literature (Ray et al. 1985, 1986) (typical runs consisted of 1×106 time-steps each 
time-step being 1 femto-second) this method was nevertheless employed since it 
is quite simple to extend Meyer et al.’s technique (originally due to Pratt, 1987 
and Landau and Lifshitz, 1984) to include the effects of strain-gradients. 
Including the effects of strain-gradients is not straight-forward in other fluctuation-
based techniques to calculate elastic constants: for example the Parrinello and 
Rahman (1985) technique uses a (σ,H,N) ensemble wherein a constant external 
stress is applied and the fluctuations in the strain (which is the conjugate variable 
to stress) are in turn related to the classical elastic constants. Trying a similar 
approach to determine the strain-gradient elasticity constants would require 
application of an external “couple-stress” (which is the conjugate variable to 
strain-gradient): how one can achieve this in a computational ensemble is 
currently unclear.  
      
In the following section we somewhat digress from this work’s central theme of 
determining the magnitude of the strain-gradient constants to discuss the issue of 
the sign of the dynamic strain-gradient elasticity constants required to make 
strain-gradient theory thermodynamically stable while requiring to correctly 
predict observed dispersion of phonon curves.  
     
5. The “sign’ paradox  
Though strain-gradient elasticity theories have enjoyed increased attention in 
recent years, some confusion still exists over the sign of the strain-gradient 
constants required for uniqueness and that required to explain the dispersive 

                                                 
3 A large periodic simulation box is also necessary to eliminate the effect of finite simulation box 
size. In-fact the size of the system being simulated must at least be an order of magnitude larger 
than the correlation lengths which are typically 2-3 lattice spacings. 
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character of phonons when a straightforward extension of a simple strain-
gradient elasticity model is made to dynamics.  
 
     Consider a simple one-dimensional strain-gradient elasticity model (Yang and 
Guo, 2005) where the elastic energy density U takes the form  

( ) ( )⎡ ⎤′ ′ ′′ ′′⎣ ⎦
2 21U = a u + 2bu u + c u

2
 (40) 

For thermodynamic stability, U is required to be positive definite which implies 
the following constraints  

and 2a > 0,c > 0  ac > b  (41) 

The equation of motion from Eq. (35) can be determined variationally as being 

′′ ′′′′ρu = au - cu  (42) 

To obtain the dispersion relation one may substitute a plane wave equation with 
frequency ω  and wave-vector k for the displacement u as ( )0

i iu = u exp i ωt + k.r . 
After carrying out this substitution, the dispersion relation becomes  

2 2 4ρω = ak + ck  (43) 

Invoking the restrictions on the material constants of Eq. (45), one can see from 
Eq. (43) that the dispersion curves will curve upwards with increasing k, which is 
in direct conflict with most experimentally observed phonon dispersion curves 
which tend to dip downwards with increasing k thereby rendering the coefficient 
of the k4 term in the dispersion relation to be negative. Notice that in the 
aforementioned model, the static strain-gradient constant of Eq. (40) is equal to 
the dispersive elastic constant of Eq. (43).  
         
     Several other works have discussed this issue most notable of them being 
Askes et al. (2002), Metrikine and Askes (2002a, b), Chang et al. (2003a,b), 
Borino and Polizzitto (2003). More recently Askes and Aifantis (2006) have 
suggested inclusion of a higher-order inertial term to the equations of motion 
derived from strain-gradient elasticity so that the theory is both 
thermodynamically stable and is also able to explain the observed dispersive 
phenomena.  
 
      Part of the confusion probably arises due to the extreme simplicity of the 
strain-gradient models that are typically used. In the simple model used by Yang 
and Guo (2005), the 4k dispersive contribution to the phonon-dispersion relation 
arises only due to the strain-gradient strain-gradient coupling terms (in Eq. 40). 
Since, this coupling is biquadriatic in nature; the coupling constant c is restricted 
by thermodynamic considerations to assume positive values. On the other hand, 
in our model (where all admissible couplings are included), the dispersive elastic 
constant f is a linear combination of the static elastic constants F1 and F2  
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( )2 1
ijklmn ijlkmnijklmn (i,k) (j,l,m,n)sym sym -f = F F  (44) 

So even though, the tensor F1 (which couples strain-gradients to strain-gradients) 
is required to be positive definite, there is no such restriction on the tensor F2 

(which couples strains to second-strain gradients) and the tensor f can be such 
that the continuum model given by the Lagrangian of Eq. (1) can remain 
thermodynamically stable and also be able to model the observed dispersive 
effects.  
 
6. Numerical Results for Various Materials  
In this section we present the values of the dynamic strain-gradient constants 
obtained for various materials by employing the techniques discussed in Sections 
3 and 4. For the f.c.c metals Cu and Al we have employed both ab initio lattice 
dynamics and our fluctuations based empirical MD simulation method. For Si we 
have employed all the three methods i.e. ab initio and empirical lattice dynamics 
and empirical MD. For C (diamond) and GaAs we have used ab initio and 
empirical lattice dynamics to estimate the dispersive constants while for Ge and 
GaP we have used only empirical lattice dynamics (due to the lack of availability 
of faithful atomistic potentials). Lastly, for the non-crystalline systems 
investigated viz. amorphous silica and polythene only our fluctuations based MD 
method is applicable. 
 
Copper: Ab initio phonon dispersions of Cu were calculated within density-
functional perturbation theory in the generalized gradient approximation (GGA). 
An ultrasoft pseudopotential generated by Favot and Dal Carso (1999) using an 
approach outlined by Kresse and Hafner (1994) was employed. The core radii (in 
atomic units a.u.) of the pseudopotential employed was 3d (1.7,2.2) 4p (2.8) 
local-4s (2.8) (Refer to Favot and Dal Carso, 1999). A kinetic energy cut-off of 30 
Rydbergs (Ry) was chosen and the augmentation charges were expanded to 300 
Ry as suggested by Favot and Dal Carso (1999). For the BZ integration 60 k 
points were used and the integration up to the Fermi surface was done with the 
Methfessel-Paxton technique implemented in Quantum-Espresso with a 
smearing parameterσ = 0.05 Ry . The dynamical matrices were generated on an 
8×8×8 q-point mesh, and Fourier interpolation implemented in Quantum-
Espresso was used to obtain the complete phonon dispersion curves.  
                    
The NVT molecular dynamics for Cu were carried out employing the Cleri-Rosato 
EAM potential using GULP. A periodic simulation cell containing 4000 atoms was 
employed along with Nose’-Hoover dynamics to maintain a constant temperature 
of 50 K. After equlibriation, the displacement correlations were tabulated every 
40 time-steps (each time-step being 1 fs): the simulation was allowed to run for 
1ns (1 million time-steps). The results obtained for the dynamic strain-gradient 
constants for Cu have been listed in Table 1 below.  
              
Table 1: Non-dispersive and dispersive elastic constants of Copper obtained from ab 
initio lattice dynamics and empirical molecular dynamics using the EAM potential.    
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    .  Ab initio Lattice 
Dynamics 

Molecular 
Dynamics 

Experiment 

c1111  (dyn/cm2) (×1012) 1.62 1.75 1.66 
c 1212 (×1012) 0.76 0.81 0.76 
c 1122 (×1012) 1.18 1.23 1.19 

f111111 (dyn) (×10-4) 0.41 0.60  
f 122122 (×10-4) 0.19 0.22  
f 211222 (×10-4) 0.27 0.29  
f 112222 (×10-4) 0.33 0.34  
f 122133 (×10-4) 0.07 -0.03  
f 112233 (×10-4) 0.06 0.02  

 
Using the ab initio results obtained in Table 1, the non-local length scales for Cu 
along the longitudinal and transverse directions become 0.5 Ǻ each.  
 
Aluminum: Ab initio phonon dispersions of Al were calculated in the GGA using 
a norm-conserving pseudopotential generated by Favot and Dal Carso (1999) 
following the Rappe, Rabe, Kaxiras and Joannopoulos scheme. The core radii of 
the pseudopotential used was 3s (2.7) 3p (2.7) local-3d (2.7). A kinetic energy 
cut-off of 20 Ry was chosen as suggested by Favot and Dal Carso (1999). For 
the BZ integration 60 k points were used the smearing technique employed was 
similar to that of Cu. The dynamical matrices were again generated on an 8×8×8 
q-point mesh, and Fourier interpolation was carried out to obtain the complete 
phonon dispersion curves.  
 
The NVT molecular dynamics for Al were carried out in a manner similar to that 
of Cu using the Cleri-Rosato EAM potential employing GULP. The results 
obtained for the dynamic strain-gradient constants for Al have been listed in 
Table 2 below. 
 
Table 2: Non-dispersive and dispersive elastic constants of Aluminum obtained from ab 
initio lattice dynamics and empirical molecular dynamics using the EAM potential. 
 

 Ab initio Lattice 
Dynamics 

Molecular 
Dynamics 

Experiment 

c1111  (dyn/cm2) (×1012) 1.10 0.945 1.09 
c1212 (×1012) 0.30 0.37 0.30 
c1122 (×1012) 0.64 0.74 0.64 

f111111 (dyn) (×10-4) 0.87 0.60  
f122122 (×10-4) 0.45 0.13  
f211222 (×10-4) -0.17 0.22  
f112222 (×10-4) -0.04 0.27  
f122133 (×10-4) 0.53 -0.02  
f112233 (×10-4) 0.08 0.04  
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Using the ab initio results obtained, the non-local length scales along the 
longitudinal and transverse directions 0.9 Ǻ and 1.22 Ǻ respectively. 
 
Silicon: Ab initio phonon dispersions of Si were calculated in the GGA using a 
norm-conserving pseudopotential generated by Favot et al. following the Rappe, 
Rabe, Kaxiras and Joannopoulos scheme. The core radii of the pseudopotential 
used was 3s (2.5) 3p (2.5) local-3d (2.5). A kinetic energy cut-off of 24 Ry was 
chosen as suggested by Favot and Dal Carso (1999). For the BZ integration 60 k 
points were used. The dynamical matrices were generated on a 8×8×8 q-point 
mesh, and Fourier interpolation was carried out to obtain the complete phonon 
dispersion curves.  
             
For the empirical lattice dynamics, Shell Model parameters for Si provided by 
Price, Rowe and Nicklow (1971) were used (Also see Kunc and Nielsen, 1979a, 
b).  The NVT molecular dynamics for Si were carried out employing the Tersoff 
potential using GULP. A periodic simulation cell containing 4096 atoms was 
employed along with Nose’-Hoover dynamics to maintain a constant temperature 
of 50 K. After equlibriation, the displacement correlations were tabulated every 
40 tme-steps (each time-step being 1 fs): the simulation was allowed to run for 
1ns (1 million time-steps). The results obtained for the dynamic strain-gradient 
constants for Si have been listed in Table 3 below.                        
    
Table 3: Non-dispersive and dispersive elastic constants of Silicon obtained from ab 
initio lattice dynamics, empirical Shell Model lattice dynamics, and empirical molecular 
dynamics using the Tersoff potential. The experimental data for the dispersive elastic 
constant f111111 is from Hao and Maris (2000, 2001).  
 

 Ab initio Lattice 
Dynamics 

Lattice Dynamics 
:Shell Model 

Molecular 
Dynamics 

Experiment 

c1111  (dyn/cm2) (×1012) 1.68 1.66 1.45 1.66 
c1212 (×1012) 0.81 0.80 0.70 0.796 
c1122 (×1012) 0.63 0.64 0.77 0.64 

f111111 (dyn) (×10-4) 2.9 0.39 0.37 0.36 
f122122 (×10-4) 4.1 2.7 0.27  
f211222 (×10-4) 0.84 0.48 0.34  
f112222 (×10-4) 0.67 0.06 0.32  
f122133 (×10-4) -0.42 0.48 -0.19  
f112233 (×10-4) -0.66 -0.24 -0.10  

 
Using the ab initio results obtained, the non-local length scales along the 
longitudinal and transverse directions 1.3 Ǻ and 2.25 Ǻ respectively. 
 
Germanium: The empirical lattice dynamics of Germanium were carried out 
using the Shell Model parameters provided by Price, Rowe and Nicklow (1971). 
The results obtained for the dynamic strain-gradient constants for Ge have been 
listed in Table 4 below.                          



 23

    
Table 4: Non-dispersive and dispersive elastic constants of Germanium obtained from 
empirical Shell Model lattice dynamics. The experimental data for the dispersive elastic 
constant f111111 is from Hao and Maris (2001).  
 

 Lattice Dynamics 
:Shell Model 

Experiment 

c1111  (dyn/cm2) (×1012) 1.31 1.26 
c1212 (×1012) 0.68 0.677 
c1122 (×1012) 0.49 0.44 

f111111 (dyn) (×10-4) 0.08 0.58 
f122122 (×10-4) 2.52  
f211222 (×10-4) 0.03  
f112222 (×10-4) 0.01  
f122133 (×10-4) 0.63  
f112233 (×10-4) -0.29  

 
Using the empirical lattice dynamics results obtained, the non-local length scales 
along the longitudinal and transverse directions 0.25 Ǻ and 1.92 Ǻ respectively. 
 
Diamond (C): Ab-initio phonon dispersions of Diamond were calculated in the 
GGA using an ultrasoft pseudopotential generated by Favot et al. using an 
approach outlined by Kresse and Hafner (1994). The core radii of the 
pseudopotential used was 2s (1.2, 1.6) 2p (1.3, 1.7) local-3d (1.7). A kinetic 
energy cut-off of 28 Ry was chosen and the augmentation charges were 
expanded to 220 Ry as suggested by Favot and Dal Carso (1999). For the BZ 
integration 28 k points were used. The dynamical matrices were generated on a 
8×8×8 q-point mesh, and Fourier interpolation was carried out to obtain the 
complete phonon dispersion curves. For the empirical lattice dynamics, Shell 
Model parameters for diamond provided by Price, Rowe and Nicklow (1971) 
were used. The results obtained for the dynamic strain-gradient constants have 
been listed in Table 5 below.                        
          
Table 5: Non-dispersive and dispersive elastic constants of Diamond obtained from ab-
initio and empirical Shell Model lattice dynamics.  
 

 ab-initio Lattice 
Dynamics 

Lattice Dynamics 
:Shell Model 

Experiment 

C1111  (dyn/cm2) (×1012) 10.72 10.78 10.79 
C1212 (×1012) 5.70 5.77 5.78 
C1122 (×1012) 1.23 1.25 1.24 

f111111 (dyn) (×10-4) 2.39 2.52  
f122122 (×10-4) 1.60 2.60  
f211222 (×10-4) 1.87 1.65  
f112222 (×10-4) 1.21 0.12  
f122133 (×10-4) -0.17 0.76  
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f112233 (×10-4) -0.82 -0.15  
 
Using the ab initio results obtained, the non-local length scales along the 
longitudinal and transverse directions 0.47 Ǻ and 0.53 Ǻ respectively. 
 
Gallium Arsenide: Ab-initio phonon dispersions of GaAs were calculated in the 
Local Density Approximation (LDA) using a norm-conserving pseudopotential 
generated by Giannozzi et al. (1991) following a scheme proposed by von Barth 
and Car. A kinetic energy cut-off of 25 Ry was chosen as and 60 k points were 
used for the BZ integration. An Equilibrium lattice parameter of 10.605 a.u. as 
suggested by Giannozzi et al. was chosen. The dynamical matrices were 
generated on an 8×8×8 q-point mesh, and Fourier interpolation was carried out 
to obtain the complete phonon dispersion curves.             
 
Parameters for the lattice dynamical models have been taken from Kunc et al. 
(1975 a,b) were used (Also see Kunc and Nielsen 1975a,b).The results obtained 
for the dynamic strain-gradient constants for GaAs have been listed in Table 6 
below.   
 
Table 6: Non-dispersive and dispersive elastic constants of Gallium Arsenide obtained 
from ab-initio and empirical Shell Model and Dipole Model lattice dynamics. The 
experimental data for the dispersive elastic constant f111111 is from Hao and Maris 
(2001). 

 ab-initio Lattice 
Dynamics 

Lattice Dynamics 
:Shell Model 

Lattice Dynamics 
: Dipole Model 

Experiment 

c1111  (dyn/cm2) (×1012) 1.17 1.20 1.19 1.18 
c1212 (×1012) 0.56 0.57 0.57 0.56 
c1122 (×1012) 0.59 0.60 0.60 0.59 

d12223 (dyn/cm) (×103) -1.3 -1.8 -4.1  
f111111 (dyn) (×10-4) 0.40 0.26 0.40 0.36 

f122122 (×10-4) 1.08 2.04 1.05  
f211222 (×10-4) 0.22 0.24 0.25  
f112222 (×10-4) 0.24 0.16 0.03  
f122133 (×10-4) 0.94 0.48 0.45  
f112233 (×10-4) 0.02 -0.19 -0.08  

 
Using the ab initio results obtained, the non-local length scales along the 
longitudinal and transverse directions 0.49 Ǻ and 1.4 Ǻ respectively. 
 
Gallium Phosphide: Parameters for the lattice dynamical shell model for GaP 
have been taken from Kunc et al. (1975 a,b).The results obtained for the dynamic 
strain-gradient constants have been listed in Table 8 below.   
 
Table 8: Non-dispersive and dispersive elastic constants of Gallium Phosphide 
obtained from empirical Shell Model lattice dynamics.  
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 Lattice Dynamics 
: Shell Model 

Experiment 

c1111  (dyn/cm2) (×1012) 1.46 1.405 
c1212 (×1012) 0.623 0.62 
c1122 (×1012) 0.707 0.703 

d12223 (dyn/cm) (×103) -1.3  
f111111 (dyn) (×10-4) 0.90  

f122122 (×10-4) 1.07  
f211222 (×10-4) 0.39  
f112222 (×10-4) 0.35  
f122133 (×10-4) 0.37  
f112233 (×10-4) 0.03  

 
Using the empirical lattice dynamics results obtained, the non-local length scales 
along the longitudinal and transverse directions 0.8 Ǻ and 1.3 Ǻ respectively. 
 
Silica: NVT molecular dynamics on a system of amorphous silica (density 2.2 
g/cc) consisting of 5184 atoms in a cubic simulation cell (each side measuring 
4.28 nm) was performed under periodic boundary conditions. A potential 
developed by Vashishta et al. (1990) was used to perform the MD. Nose’-Hoover 
dynamics were employed to maintain a constant temperature of 50 K. After 
equilibration, the displacement correlations were tabulated every 40 time-steps 
(each time-step being 1 fs): the simulation was allowed to run for 1.5ns to allow 
the elastic constants to converge.  
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Figure 4: System of amorphous Silica consisting of 5184 atoms confined inside a cubic 
simulation box used to perform NVT molecular dynamics is shown above. Red balls represent 
oxygen atoms while grey balls represent silicon atoms. 
 
The obtained elastic constants are reported in Table 9. 
 
Table 9: Isotropic non-dispersive and dispersive elastic constants of Silica obtained 
from NVT molecular dynamics 
 

 Molecular 
Dynamics 

c1111  (dyn/cm2) (×1012) 1.20 
c1212 (×1012) 0.54 

f111111 (dyn) (×10-3) 0.21 
f122122 (×10-3) 4.37 

 
The corresponding length scales for the longitudinal and transverse directions 
are 1.32 and 9 angstroms respectively.  
 
Polythene: NVT molecular dynamics on a polythene system (density of 0.75 
g/cc) consisting of 38000 atoms in a cubic simulation cell (with each side 
measuring 7.35 nm) was performed under periodic boundary conditions. The 
CVFF (Consistent Valence Force Field) potential was employed and Nose’-
Hoover dynamics were employed to maintain a constant temperature of 50 K. 
After equilibration, the displacement correlations were tabulated every 40 time-
steps (each time-step being 1 fs): the simulation was allowed to run for 1.5ns to 
allow for the elastic constants to converge.  
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Figure 5: Shown is a polythene system consisting of 4808 atoms. The pink backbone consists of 
carbon atoms while the hydrogen atoms are rendered in white.   
 
We report the isotropic constants in Table 10. 
 
Table 10: Isotropic non-dispersive and dispersive elastic constants of Polythene 
obtained from NVT molecular dynamics 
  

 Molecular 
Dynamics 

c1111  (dyn/cm2) (×1010) 0.70 
c1212 (×1010) 0.31 

f111111 (dyn) (×10-3) 0.24 
f122122 (×10-3) 0.45 

 
The corresponding length scales for the longitudinal and transverse directions 
are 1.85 and 3.81 nm respectively.  
 
7. Discussion and Relevance for Nanotechnologies 
In light of the results obtained for the dynamic strain gradient constants and 
associated length scales for the materials investigated in the previous section, 
there seems to be a strong indication that strain-gradient elasticity may be of 
practical importance only for materials possessing a non-homogeneous 
microstructure like amorphous silica and polymers. In other words, we believe 



 28

that nonlocal, and in particular strain gradient elasticity, is largely irrelevant for 
most materials systems except at impossibly small sizes4. As evident, polymers 
and amorphous materials appear to be the exceptions. Covalent semiconductors 
like Si however possess higher non-local length scales compared to metals 
which may be attributed to the short-ranged nature of inter-atomic forces in 
metal. 
 
The high non-locality in amorphous solids possessing an underlying 
inhomogenous microstructure possibly stems from a group of strongly bonded 
atoms behaving as a unit. Under such circumstances, parts of the material 
system may undergo considerable non-affine deformation and high moment 
stresses may result. Since crystalline materials are highly ordered, they very 
possibly undergo negligible non-affine deformations as a consequence of which 
the strain-gradient effects are unimportant for such systems. Consequently, for 
such amorphous systems, taking strain-gradient effects into account while 
investigating nanoscale elastic phenomena may impart significant size-
dependent corrections to the results obtained from classical continuum elasticity. 
These observations agree well with existing literature at hand (Ding et al. 2001, 
Espinosa et al. 2003, Lam et al. 2003, Mcfarland and Colton 2005, Leonforte et 
al. 2005, 2006). Indeed experimental evidence suggests that materials like epoxy 
resins have length scale of 10 µm (Lam et al. 2003). Liquid crystal elastomers 
have also been investigated under the context of Frank elasticity and 
experimental evidence suggests that their length scales may lie in the 10 nm 
regime (Warner, 2003). Even for polypropylene Mcfarland and Colton (2005) 
have reported a length scale of 10 µm. Our molecular dynamics simulations for 
polythene however predict a much lower length scale of ~ 4 nm for polythene.    
We are unable to explain this discrepancy and suspect either presence of a 
higher-length microstructure or simply because of material difference. The latter 
assertion is strengthened by the fact that careful experiments on size-effects on 
polystyrene by Stafford et. al. (2004)----through two different methods: thin film 
wrinkling and nano-indentation---did not reveal any size effects down to 150 nm. 
A recent work by Nikolov et. al. (2006) estimated (based on a simple but elegant 
micromechanical model) that rubbers should have nonlocal length scale in the 
neighborhood of 4.5 nm. The reasons for the high length scales obtained by Lam 
et. al. (2003) for epoxy and by Mcfarland and Colton (2005) for polypropylene, 
are somewhat uncertain and require further investigation. 

                                                 
4 Although in some cases, even though the length scale is small, nonlocal effects may be of 
interest. For example, in quantum dots, see the work of Zhang and Sharma (2005) although that 
work used a rather large length scale for GaAs which is refuted by the present work. 
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Figure 5: Bending rigidity of a beam with a rectangular cross section obtained from a couple-
stress model (normalized with respect to the bending rigidity of the beam using the classical 
Bernoulli-Euler model) versus the breadth of the beam. The height of the beam is the same as 
the breadth while the length of the beam is 10 times the breadth.  
 
To gauge the magnitude of corrections that strain-gradient effects may impart to 
results obtained by classical continuum elasticity we analyze the bending of a 
beam based on a simple model recently proposed by Park and Gao (2006). A 
plot of the bending rigidity (normalized with respect to the bending-rigidity 
obtained using the classical Bernoulli-Euler model) versus the beam-dimensions 
provides an illustrative example (Figure 5). The plot depicts results for polythene 
and silica using the length scale constants obtained in the previous section. As 
expected from Park and Gao’s (2006) model, there is marked stiffening of the 
beam with decrease in size. For polythene, in particular, the bending-rigidity is 
double that of the classical bending-rigidity at beam dimensions of 5 nm. For 
silica the effect is smaller with the bending-stiffness being 10% higher than 
corresponding classical value at dimensions comparable to 5 nm. 
 
We conclude this section with a simple word of caution. Although our results 
appear to indicate that strain gradient elasticity is irrelevant for most crystalline 
metals and ceramics, we wish to point out that under certain circumstances, 
strain gradient elasticity is quite useful even in materials exhibiting small nonlocal 
characteristic length scales e.g. in analysis of defects. In this regard see the 
recent work of Zhang et. al. (2006) who have shown the utility of using nonlocal 
elasticity for the analysis of defects in graphene.  Finally, as already alluded to in 
Section 1, materials with a microstructure such as foams or composites may be 
fruitfully modeled using strain gradient elasticity. Our results are only applicable 
to pure materials that do not contain any “artificial” structural features. Our newly 
introduced displacement fluctuations correlations based molecular dynamics 
method to evaluate strain gradient elasticity constants is expected to be a 
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powerful tool to explore the nonlocal size effects in various other materials and 
systems not tackled in the present work e.g. composites, different classes of 
polymers and amorphous materials and defective solids. 
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