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Background:
A better way to model cracks

e Problem

— Develop a general tool for modeling material and structural failure due to
cracks.

e Motivation

— Standard mathematical theory for modeling deformation cannot handle
cracks.
* PDE’s break down if a crack is present.
* Finite elements and similar methods inherit this problem.
* Approach
— Develop a mathematical theory in which:
* The same equations apply on or off of a crack.
* Cracks are treated like any other type of deformation.

* Cracks are self-guided: no need for supplemental equations.

— Implement the theory in a meshless Lagrangian code called EMU.
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| Peridynamic theory — the basic idea

* PDEs are replaced by the following integral equation: H
pii(x.)= [ f(u(x'.0)=u(x,0),x'=x)dV"~b(x.1)
H

* Compare classical PDE:

pu(x,t)y=Veo(x,t)—b(x,t)

where
u = displacement; f=force density that x’ exerts on x;

b = prescribed external force density; // = neighborhood of x with
fixed radius o.
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Material models

* A peridynamic material model gives bond force density as a function of
bond stretch.

e Can include dependence on rate and history of stretch.
. / /
¢ Notation: nN=u—u fzx—x

Bond force _f (7], f) /
g\ Loading

// Unloading
¢+l

Bond stretch
4
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Microelastic materials

* A body is microelastic if fis derivable from a scalar micropotential w, i.e.,

F.8)= g—j;m,é) p=u-u  E=xx

* Interactions (“bonds”) can be thought of as elastic (possibly nonlinear) springs.

/‘x’

X

e Strain energy density at x is found by summing the energies of all springs connected to x”:

W(x)= %j w(u'-u, x'-x)dV"'
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What if you really want a stress tensor?

* Stress tensors (and strain tensors) play no role in the theory so far.
* However, define the peridynamic stress tensor field by

o, (x) :%“.J.(y+z)?‘fl.(x+ym,x—zm)mjdzdyd§2m

S00

f(p.q)= f,(u(p)—u(q). p-9q)

where S is the unit sphere and Q is solid angle. o .7
* This field satisfies the classical equation of motion: '

pu, =0, +b,

Bond through x

=z in the direction m
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Material modeling;:

Damage

* Damage is introduced at the bond level.

* Bond breakage occurs irreversibly according to some criterion such as exceeding
a prescribed critical stretch.

* In practice, bond breakages tend to occur along 2D surfaces (cracks).

7

Bond force

N
7

s * Bond stretch
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Energy required to advance a crack
determines the bond breakage stretch

* Adding up the work needed to break all bonds
across a crack yields the energy release rate:

G = 211]5 [wydviz
0 R,

1/

w, = work to break one bond

Crack x

Wo

‘f ‘S * Bond elonéation = ‘f‘s

There is also a version of the J-integral that applies in this theory.
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EMU numerical method

* Integral is replaced by a finite sum.

pii = f(u! —ul', x, X, )AV, +b(x,,0)

ke H

* Resulting method is meshless and Lagrangian.
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EMU numerical method:
Relation to SPH

SPH * Both are meshless Lagrangian methods.
v _ J“’ KV e Both involve integrals. |
ox * But the basic equations are fundamentally different:
1) (v — SPH relies on curve fitting to approximate
== (—) +(—) derivatives that appear in the classical PDEs.
2(\ox) \ox . : :
— Peridynamics does not use these PDEs, relies on
o= 0'(8) pair interactions.
ao— ! ' '
= oK (x)av
do Emu
pii=—+b
o pii(x)= [ f () =uCo),x'—x)dV+b(x)
do/ gx
o1 '
» 4 x“/f" X

v
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Bulk response with damage

* Assume a homogeneous deformation.

I/
Bond response
=1

Undefcyd circle %

Broken bonds

T A Bulk response

Deformed /\

Expect instability
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A validation problem:
Center crack in a brittle panel (3D)

N\
Bond force

Bond stretch

7

So

Based on 5,=0.002, fin
Full 3D calculation shows crack growth

when 0=46.4 MPa. Use this in
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Example: dynamic fracture in steel

- P 4
Notches

Maraging steel plate

® Code predicts correct crack angles™.
® Crack velocity ~ 900 m/s.

*J. F. Kalthoff & S. Winkler, in Impact Loading and Dynamic Behavior of Materials, C. Y. Chiem, ed. (1988)
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Transition to unstable crack growth et Defect

Crack turning in a 3D feature

Defect
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Polycrystals: Mesoscale model

(courtesy F. Bobaru, University of Nebraska)

*What is the effect of grain boundaries on the fracture of a polycrystal?

B =0.25

*

IB — @ Large [ favors intra(trans)-granular fracture.

A)

grain
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Example: dynamic fracture in PMMA

e Plate is stretched vertically.
® Code predicts stable-unstable transition.

Crack growth direction —»

Experiment*

*J. Fineberg & M. Marder, Physics Reports 313 (1999) 1-108
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* 15cm diameter concrete sphere against a rigid plate, 32.4 m/s.
— Mean fragment size agrees well with experimental data of Tomas.
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Example:

Concrete sphere drop, ctd.

e Cumulative distribution function of fragment size (for 2 grid spacings):

— Also shows measured mean fragment size*

*]. Tomas et. al., Powder

CDF

Technology 105 (1999) 39-51.
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* Bonds in different directions can have different properties
* Can use this principle to model anisotropic materials and their failure.

Delamination caused by impact

Crack growth in a notched panel
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Statistical distribution of critical stretches

* We can introduce fluctuations in s* as a function of position and bond
orientation according to Weibull or other distribution.
* This is one way of incorporating the statistical nature of damage evolution.

It P(s* 1

v
N
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Peridynamic states:
A more general theory

* Limitations of theory described so far:
— Poisson ratio = 1/4.

— Can’t enforce plastic incompressibility (can’t decouple deviatoric and isotropic
response).

— Can’t reuse material models from the classical theory.
* More general approach: peridynamic states.

— Force in each bond connected to a point is determined collectively by the deformation
of all the bonds connected to that point.

Bond
State
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Peridynamic deformation states
and force states

e A deformation state maps any bond & into its deformed image ¥(&).

e A force state maps any bond & into its force density T ().

e Constitutive model: relation between T and Y .

%,\%n%

) Force state
Deformation state
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Peridynamic states:
Volume term in strain energy

* One thing we can now do is explicitly include a volume-dependent term in the strain energy
density... can get any Poisson ratio.

Dilatation: 3= I Y(f)f_ ‘f‘d V

Strain energy density: W (x) = I w(n,&E)dV +w (1)

or:  W(x)=[Wm.&B)dV

N

Undeformed state Deformed state @ Sandia
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Peridynamic states:
Using material models from classical theory

* Map a deformed state to a deformation gradient tensor.
* Use a conventional stress-strain material model.
* Map the stress tensor onto the bond forces within the state.

Y(O=5+ 17
N

=

r ¢

fT(@% A WU 4 ya(ﬂ
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State-based equation of motion

e A force state at x gives the force in each bond connected tox: f =T (f )
e Bond-based:

Dii(x,1) = j f(u'—u, x'-x)dV'+b(x,t)
R
e State-based:

pii(x,t) = % JATLx. A1(x'—) — Tx' 1) (x = x)}dV "+ b(x. 1)

T[x,t] T[x',t]

Force states at x and x’ combine
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Elastic state-based materials

* Suppose Wis a scalar valued function of a state such that

L(Y)=W,(Y) forallY

/[

* Bodies composed of this elastic state-based material conserved energy in
the usual sense of elasticity.

Frechet derivative (like a gradient)

(%_[Wdejb-udV
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Peridynamic state model:
Effect of Poisson ratio on crack angle

Thick, notched brittle linear elastic plate is subjected to
combined tension and shear

T 2a
Defect
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Peridynamic state model:
Effect of Poisson ratio on crack angle, ctd.

*Hold E constant and vary v.
eLarger v means smaller .

*Does this change the crack angle?

* Approximate analysis near initial crack tip based on Mohr’s stress circle:
eFind orientation 8 of plane of max principal stress.

Shear stress
A

o, =0 o, =EVt/a o,=UVt/a
u=E/2(1+v)
20 =tan"'(20,,/ 0,,) =tan” (1/(1+V))

_________ (0,0),)
//7\ y=0.1=6=21.1

20 > V:O-4:>6:16.80
\ </ / Normal stress
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Peridynamic state model:
Effect of Poisson ratio on crack angle, ctd.

*Predicted crack angles near initial crack tip are close to orientation
of max principal stress

=211

v=04 v=10.1
Model result Model result
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Peridynamic states vs. FE:

Elastic-plastic solid

* Direct comparison between a finite-element code and Emu
with a conventional material model.

300.0
250.0 /’
200.0
o
% —L=1.27X10-1 m (FEM)
& 150.0
Q
2 / ------ L=1.27X10-1 m (Peridynamics)
7]
100.0 /
50.0
Figure 3. 3600 node discrete peridynamic lattice /
0.0
0.00 0.02 0.04 0.06 0.08 0.10
Time (ms)

Figure 7. Stress in the bar at L=127 mm using both Peridynamics and FEM

Sandia
SAND2007-3464C + frame 30 National _
Laboratories



Summary:
Peridynamic vs. conventional model

* Peridynamic
— Uses integral equations.
— Same equations hold on or off discontinuities.
— Nonlocal.
— Force state (or deformation state) has “infinite degrees of freedom.”
e Classical
— Uses differential equations.
— Discontinuities require special treatment (methods of LEFM, for example).
— Local.
— Stress tensor (or strain tensor) has 6 degrees of freedom.
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