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Background:
A better way to model cracks

• Problem

– Develop a general tool for modeling material and structural failure due to 
cracks.

• Motivation

– Standard mathematical theory for modeling deformation cannot handle 
cracks.

• PDE’s break down if a crack is present.

• Finite elements and similar methods inherit this problem.

• Approach

– Develop a mathematical theory in which:

• The same equations apply on or off of a crack.

• Cracks are treated like any other type of deformation.

• Cracks are self-guided: no need for supplemental equations.

– Implement the theory in a meshless Lagrangian code called EMU.
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Peridynamic theory – the basic idea

•PDEs are replaced by the following integral equation:

•Compare classical PDE:

where

u = displacement;   f = force density that  x’ exerts on x;

b = prescribed external force density; H = neighborhood of xwith 
fixed radius δ.
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Material models

• A peridynamic material model gives bond force density as a function of 
bond stretch. 

• Can include dependence on rate and history of stretch.

• Notation: 
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Microelastic materials

• A body is microelastic if f is derivable from a scalar micropotential w, i.e., 

• Interactions (“bonds”) can be thought of as elastic (possibly nonlinear) springs.

• Strain energy density at x is found by summing the energies of all springs connected to x’:
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What if you really want a stress tensor?

• Stress tensors (and strain tensors) play no role in the theory so far. 

• However, define the peridynamic stress tensor field by

where S is the unit sphere and Ω is solid angle.

• This field satisfies the classical equation of motion:
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• Damage is introduced at the bond level.

• Bond breakage occurs irreversibly according to some criterion such as exceeding 
a prescribed critical stretch.

• In practice, bond breakages tend to occur along 2D surfaces (cracks).

Material modeling:

Damage

Bond stretch

Bond force

s*
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Energy required to advance a crack
determines the bond breakage stretch

• Adding up the work needed to break all bonds 
across a crack yields the energy release rate:
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There is also a version of the J-integral that applies in this theory.
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EMU numerical method

• Integral is replaced by a finite sum.

• Resulting method is meshless and Lagrangian.
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EMU numerical method:
Relation to SPH

• Both are meshless Lagrangian methods.

• Both involve integrals.

• But the basic equations are fundamentally different:

– SPH relies on curve fitting to approximate 
derivatives that appear in the classical PDEs.

– Peridynamics does not use these PDEs, relies on 
pair interactions.( )
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• Assume a homogeneous deformation.

Bulk response with damage

Undeformed circle

Deformed

Broken bonds
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Bulk response
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Bond response

Expect instability
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A validation problem:

Center crack in a brittle panel (3D)

Bond stretch

Bond force

s0

w0

Bulk strain (µ)
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Based on s0=0.002, find G=384 J/m2. 
Full 3D calculation shows crack growth 

when σ=46.4 MPa. Use this in
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Example: dynamic fracture in steel
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Isotropic materials:
Other examples

Impact and fragmentation

Crack turning in a 3D feature

Defect

Spiral crack due to torsion

Defect

Transition to unstable crack growth

BANG!
Defect
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Polycrystals: Mesoscale model 
(courtesy F. Bobaru, University of Nebraska)

• Vary the failure stretch of interface bonds relative to that of bonds within a grain.

• Define the interface strength coefficient by

Large β favors intra(trans)-granular fracture.β =
sinterface

*

sgrain

*

β = 1 β = 4β = 0.25

•What is the effect of grain boundaries on the fracture of a polycrystal?
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Example: dynamic fracture in PMMA
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Applications: 
Fragmentation of a concrete sphere

• 15cm diameter concrete sphere against a rigid plate, 32.4 m/s.

– Mean fragment size agrees well with experimental data of Tomas.
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Example: 
Concrete sphere drop, ctd.

• Cumulative distribution function of fragment size (for 2 grid spacings):

– Also shows measured mean fragment size*

*J. Tomas et. al., Powder 
Technology 105 (1999) 39-51.
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Complex materials:
Prediction of composite material fracture

• Bonds in different directions can have different properties
• Can use this principle to model anisotropic materials and their failure.

Crack growth in a notched panel Delamination caused by impact
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Statistical distribution of critical stretches

• Vary the failure stretch of interface bonds relative to that of bonds within a grain.

• Define the interface strength coefficient by• We can introduce fluctuations in s* as a function of position and bond 
orientation according to Weibull or other distribution.
• This is one way of incorporating the statistical nature of damage evolution.
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Peridynamic states:
A more general theory

• Limitations of theory described so far:

– Poisson ratio = 1/4.

– Can’t enforce plastic incompressibility (can’t decouple deviatoric and isotropic 
response).

– Can’t reuse material models from the classical theory.

• More general approach: peridynamic states.

– Force in each bond connected to a point is determined collectively by the deformation 

of all the bonds connected to that point.

f 

Bond

f 

State
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Peridynamic deformation states
and force states

• A deformation state maps any bond ξ into its deformed image Y(ξ).

• A force state maps any bond ξ into its force density T (ξ).

• Constitutive model: relation between T and Y .
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Peridynamic states:
Volume term in strain energy

• One thing we can now do is explicitly include a volume-dependent term in the strain energy 
density… can get any Poisson ratio.
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Peridynamic states:
Using material models from classical theory

• Map a deformed state to a deformation gradient tensor.

• Use a conventional stress-strain material model.

• Map the stress tensor onto the bond forces within the state.

F 

σ σ σ σ ((((F))))

f=T ((((ξξξξ))))

Y(ξξξξ)=ξ ξ ξ ξ + ηηηη
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State-based equation of motion

• A force state at x gives the force in each bond connected to x:

• Bond-based:

• State-based:
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Elastic state-based materials

• Suppose W is a scalar valued function of a state such that

• Bodies composed of this elastic state-based material conserved energy in 
the usual sense of elasticity.
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Peridynamic state model:

Effect of Poisson ratio on crack angle

α 

Thick, notched brittle linear elastic plate is subjected to 
combined tension and shear

V

V

-V

-V

Defect
2a



SAND2007-3464C • frame 28

Peridynamic state model:

Effect of Poisson ratio on crack angle, ctd.

•Hold E constant and vary ν.
•Larger ν means smaller µ.

•Does this change the crack angle?
•Approximate analysis near initial crack tip based on Mohr’s stress circle:

•Find orientation θ of plane of max principal stress.
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Peridynamic state model:

Effect of Poisson ratio on crack angle, ctd.

•Predicted crack angles near initial crack tip are close to orientation 
of max principal stress

o1.21=θθθθ

ν= 0.1

Model result

o8.16=θθθθ

ν= 0.4

Model result
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Peridynamic states vs. FE:

Elastic-plastic solid

•Direct comparison between a finite-element code and Emu
with a conventional material model.
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Summary:
Peridynamic vs. conventional model

• Peridynamic

– Uses integral equations.

– Same equations hold on or off discontinuities.

– Nonlocal.

– Force state (or deformation state) has “infinite degrees of freedom.”

• Classical

– Uses differential equations.

– Discontinuities require special treatment (methods of LEFM, for example).

– Local.

– Stress tensor (or strain tensor) has 6 degrees of freedom.
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