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Abstract

The problem of the infinite plate with a central hole loaded by an e-
quilibrium system of forces is generalized and its formulation of Special
Saint-Venant’s Principle is established. It is essential to develop mathe-
matical theories of Special Saint-Venant’s Principle one by one if Elasticity
has to be constructed to be rational, logical, rigorous and secure mechan-
ics.
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1 Introduction

Saint-Venant’s Principle is essential and fundamental in Elasticity (See Ref.[1]
and Ref.[2]). Boussinesq and Love announce statements of Saint-Venant’s Principe
(See Ref.[3] and Ref.[4]), but Mises and Sternberg argue, by citing counterexam-
ples, that the statements are not clear, suggesting that Saint-Venant’s Principle
should be proved or given a mathematical formulation (See Ref.[5] and Ref.[6]).
Truesdell asserts that if Saint-Venant’s Principle of equipollent loads is true, it
must be a mathematical consequence of the general equations of Linear Elastic-
ity (See Ref.[7]).

There is no doubt that mathematical proof of Saint-Venant’s Principle has
become an academic attraction for contributors and much effort has been made
for exploring its mysterious implications or deciphering its puzzle. Zanaboni
“proved” a theorem trying to concern Saint-Venant’s Principle in terms of work
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and energy (See Refs.[8],[9],[10]). However, Zhao argues that Zanaboni’s the-
orem is false (See Ref.[11]). The work published by Toupin cites more coun-
terexamples to explain that Love’s statement is false, and then establishes a
formulation of energy decay, which is considered as “a precise mathematical
formulation and proof” of Saint-Venant’s Principle for the elastic cylinder (See
Refs.[12], [13]). Furthermore, Toupin’s work seems to set up an example fol-
lowed by a large number of papers to establish Toupin-type energy decay for-
mulae for branches of continuum mechanics. Since 1965 the concept of en-
ergy decay suggested by Toupin has been widely accepted by authors, and
various techniques have been developed to construct inequalities of Toupin-
type decay of energy which are spread widely in continuum mechanics. Espe-
cially, the theorem given by Berdichevskii is considered as a generalization of
Toupin’s theorem (See Ref.[14]). Horgan and Knowles reviewed the develop-
ment (See Refs.[15],[16],[17]). However, Zhao points out that Toupin’s theo-
ry is not a strict mathematical proof, and Toupin’s Theorem is not an exact
mathematical formulation, of Saint-Venant’s Principle. Interestingly and sig-
nificantly, Saint-Venant’s Principle stated by Love is disproved mathematically
from Toupin’s Theorem, so Toupin’s Theorem is mathematically inconsistent
with Saint-Venant’s Principle (See Ref.[11]).

Zhao disproves mathematically the “general” Saint-Venant’s Principle stated
by Boussinesq and Love and points out that Special Saint-Venant’s Principle or
Modified Saint-Venant’s Principle can be proved or formulated though Saint-
Venant’s Principle in its general form stated by Boussinesq or Love is not true
(See Ref.[11]).

Saint-Venant’s Principle is applied without proof here and there in the lit-
erature of Elasticity. It is essential to supplement the literature with math-
ematical proof or formulation of Special Saint-Venant’s Principle or Modified
Saint-Venant’s Principle of elastic problems one by one unless Elasticity is not
to be constructed to be rational, logical, rigorous and secure mechanics.

We discuss the problem of the infinite plate with a central hole loaded by
an equilibrium system of forces, and prove its Special Saint-Venant’s Principle
in this paper.

2 Love’s Statement of Saint-Venant’s Principle
and Its Provability

Love’s Statement : “According to this principle, the strains that are produced
in a body by the application, to a small part of its surface, of a system of forces
statically equivalent to zero force and zero couple, are of negligible magnitude
at distances which are large compared with the linear dimensions of the part.”
(See Ref.[4])

Zhao disproves mathematically the “general” Saint-Venant’s Principle stat-
ed by Love, but argues by mathematical analysis that Saint-Venant’s decay of
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strains (then stresses) described by Love’s statement can be proved true by spe-
cial formulating or adding supplementary conditions to the problems discussed
(See Ref.[11]).

3 Saint-Venant’s Principle of the Problem of the
Effect of the Circular Hole in the Plate Dis-
cussed by Timoshenko and Goodier

The problem is discussed by Timoshenko and Goodier by using Saint-Venanat’s
Principle without proof (See Ref.[18]). Now we establish its formulation of
Saint-Venanat’s Principle.

Before cutting the hole, the stress distribution on the circle in the plate
submitted to a uniform tension of magnitude S in the x direction is

(σr)r=a = S cos2 θ = 1/2 S(1 + cos 2θ), (1)

(τrθ)r=a = −1/2 S sin 2θ. (2)

Cutting and constructing the hole means applying an equilibrium system of
forces, which is

r = a : σr = −S cos2 θ = −1/2 S(1 + cos 2θ), (3)

τrθ = 1/2 S sin 2θ, (4)

to the circle to balance the stresses expressed by Eq.(1) and Eq.(2) so that the
hole becomes free from load.

On the circle r = b, the stresses should tend to zero, that is,

r = b : lim
b→∞

σr = 0, lim
b→∞

τrθ = 0. (5)

Let the stress function

ϕ(r, θ) = φ0(r) + φ2(r) cos 2θ. (6)

Putting Eq.(6) into

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
)(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
) ϕ(r, θ) = 0, (7)

we find the solution

φ0(r) = A0lnr +B0r
2lnr + C0r

2 +D0, (8)
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φ2(r) = A2r
2 +B2r

4 + C2
1

r2
+D2. (9)

Then

σr =
1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2
=

A0

r2
+B0(1+2lnr)+2C0−(2A2+

6C2

r4
+
4D2

r2
) cos 2θ, (10)

σθ =
∂2ϕ

∂r2
= −A0

r2
+B0(3 + 2lnr) + 2C0 + (2A2 + 12B2r

2 +
6C2

r4
) cos 2θ, (11)

τrθ = − ∂

∂r
(
1

r

∂ϕ

∂θ
) = (2A2 + 6B2r

2 − 6C2

r4
− 2D2

r2
) sin 2θ. (12)

Considering Eq.(5),

B0 = C0 = A2 = B2 = 0, (13)

then

σr =
A0

r2
− (

6C2

r4
+

4D2

r2
) cos 2θ, (14)

σθ = −A0

r2
+

6C2

r4
cos 2θ, (15)

τrθ = −(
6C2

r4
+

2D2

r2
) sin 2θ. (16)

From Eq.(3), (4), (14) and (16), at r = a,

A0

a2
− (

6C2

a4
+

4D2

a2
) cos 2θ = −1/2 S(1 + cos 2θ) (17)

−(
6C2

a4
+

2D2

a2
) sin 2θ = 1/2 S sin 2θ (18)

Solving Eq.(17) and (18), we have

A0 = −1

2
Sa2, C2 = −1

4
Sa4, D2 =

1

2
Sa2 (19)

Putting Eq.(19) into Eq.(14), (15) and (16), we have the final solution:

σr = −1

2
S
a2

r2
+ S(

3

2

a4

r4
− 2

a2

r2
) cos 2θ, (20)

σθ =
1

2
S
a2

r2
− 3

2
S
a4

r4
cos 2θ, (21)

τrθ = S(
3

2

a4

r4
− a2

r2
) sin 2θ. (22)

Equations (20), (21) and (22) indicate decay of stresses with r , and are the
formulation of Saint-Venant’s Principle of the problem of the small hole in the
plate discussed by Timoshenko and Goodier.
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4 Saint-Venant’s Principle of Generalized “ Hole
in Plate ” Problem

4.1 Generalized “ Hole in Plate ” Problem

Suppose an infinite plate with a small hole at its center loaded by an equilibrium
system of forces, otherwise the plate would be free. Let the stress function be
formulated as

ϕ(r, θ) =

∞∑
n=0

[fn(r) sin(nθ) + gn(r) cos(nθ)]. (23)

It is obvious that the stress function of Eq.(6) in the previous section is a
special case of Eq.(23).

4.2 Stress Function of Generalized “ Hole in Plate ” Prob-
lem

Putting Eq.(23) into Eq.(7) and considering Eq.(5), we have

ϕ(r, θ) = C0lnr +
1

r
(A1 sin θ + C1 cos θ) + rlnr(B1 sin θ +D1 cos θ)

+

∞∑
n=2

{ 1

rn
[An sin(nθ) + Cn cos(nθ)] +

1

rn−2
[Bn sin(nθ)

+ Dn cos(nθ)]} (24)

4.3 Stresses of Generalized “Hole in Plate” Problem

From Eq.(24) we find that

σr =
C0

r2
− 2

r3
(A1 sin θ + C1 cos θ) +

1

r
(B1 sin θ +D1 cos θ)

+
∞∑

n=2

{−n(n+ 1)

rn+2
[An sin(nθ) + Cn cos(nθ)]

− (n− 1)(n+ 2)

rn
[Bn sin(nθ) +Dn cos(nθ)]}, (25)

σθ = −C0

r2
+

2

r3
(A1 sin θ + C1 cos θ) +

1

r
(B1 sin θ +D1 cos θ)

+
∞∑

n=2

{n(n+ 1)

rn+2
[An sin(nθ) + Cn cos(nθ)]

+
(n− 2)(n− 1)

rn
[Bn sin(nθ) +Dn cos(nθ)]}, (26)
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τrθ =
2

r3
(A1 cos θ − C1 sin θ) +

1

r
(−B1 cos θ +D1sinθ)

+
∞∑

n=2

{n(n+ 1)

rn+2
[An cos(nθ)− Cn sin(nθ)]

+
n(n− 1)

rn
[Bn cos(nθ)−Dn sin(nθ)]}. (27)

Equations (25) and (27) satisfy Eq.(5).

4.4 Saint-Venant’s Principle of Generalized “Hole in Plate”
Problem

From Eq. (25) and (27), the equilibrium system of forces on the hole (r = a) is

σr =
C0

a2
− 2

a3
(A1 sin θ + C1 cos θ) +

1

a
(B1 sin θ +D1 cos θ)

+

∞∑
n=2

{−n(n+ 1)

an+2
[An sin(nθ) + Cn cos(nθ)]

− (n− 1)(n+ 2)

an
[Bn sin(nθ) +Dn cos(nθ)]}, (28)

τrθ =
2

a3
(A1 cos θ − C1 sin θ) +

1

a
(−B1 cos θ +D1sinθ)

+
∞∑

n=2

{n(n+ 1)

an+2
[An cos(nθ)− Cn sin(nθ)]

+
n(n− 1)

an
[Bn cos(nθ)−Dn sin(nθ)]}. (29)

From Eq. (25), (26) and (27) we have

lim
r→∞

σr = 0,

lim
r→∞

σθ = 0

and lim
r→∞

τrθ = 0. (30)

We prove Saint-Venant’s Principle of Generalized “Hole in Plate” Problem
by the end equations in terms of Eqs.(30). Equations (25), (26) and (27) are
the formulation of Saint-Venant’s decay of effect of the equilibrium system of
forces loaded on the small hole. Equations (5), (28) and (29) are the conditions
for Saint-Venant’s Principle to be valid for the Problem.
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5 Conclusion

Special Saint-Venant’s Principle of the effect of the equilibrium system of forces
loaded on the small central hole in the infinite plate is proved in this paper.
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