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Abstract

In this paper we extend the classical method of lattice dynamics to defective crystals with partial symme-
tries. We start by a nominal defect configuration and first relax it statically. Having the static equilibrium
configuration, we use a quasiharmonic lattice dynamics approach to approximate the free energy. Finally, the
defect structure at a finite temperature is obtained by minimizing the approximate Helmholtz free energy.
For higher temperatures we take the relaxed configuration at a lower temperature as the reference config-
uration. This method can be used to semi-analytically study the structure of defects at low but non-zero
temperatures, where molecular dynamics cannot be used. As an example, we obtain the finite tempera-
ture structure of two 180◦ domain walls in a 2-D lattice of interacting dipoles. We dynamically relax both
the position and polarization vectors. In particular, we show that increasing temperature the domain wall
thicknesses increase.
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1 Introduction

Although it has been recognized that defects play an important role in nanostructured materials, the fundamen-
tal understanding of how defects alter the material properties is not satisfactory. The link between defects and
the macroscopic behavior of materials remains a challenging problem. Classical mechanics of defects that studies
materials with microscale defects is based on continuum theories with phenomenological constitutive relations.
In the nanoscale, the continuum quantities such as stress and strain become ill defined. In addition, due to size
effects, to study defects in nano-structured materials, non-classical solutions of defect fields is necessary [22].
The application of continuum mechanics to small-scale problems is problematic; atomistic numerical methods
such as ab initio calculations [43; 48], Molecular Dynamics (MD) simulations [25; 21] and Monte Carlo (MC)
simulations [70; 45] can be used for nanoscale mechanical analyses. However, the application of these methods
is largely restricted by the size limit and the periodicity requirements. Current ab initio techniques are unable
of handling systems with more than a few hundred atoms. Molecular dynamics simulations can model larger
systems, however, MD is based on equations of classical mechanics and thus cannot be used for low tempera-
tures, where quantum effects are dominant. Engineering with very small structures requires the ability to solve
inverse problems and this cannot be achieved through purely numerical methods. What is ideally needed is a
systematic method of analysis of solids with defects that is capable of treating finite temperature effects.

The only analytic/semi-analytic method for solving zero-temperature defect problems in the lattice scale is
the method of lattice statics. The method of lattice statics was introduced in [41; 26]. This method has been
used for point defects [14; 16], for cracks [10; 11; 24], and also for dislocations [4; 11; 12; 40; 55; 63]. More details
and history can be found in [3; 4; 5; 14; 15; 20; 44; 49; 55; 64] and references therein. Lattice statics is based
on energy minimization and cannot be used at finite temperatures. The other restriction of most lattice statics
calculations is the harmonic approximation, which can be too crude close to defects. Recently, motivated by
applications in ferroelectrics, we developed a general theory of anharmonic lattice statics capable of semi-analytic
modeling of different defective crystals governed by different types of interatomic potentials [68; 69; 28]. At
finite temperatures, the use of quantum mechanics-based lattice dynamics is necessary. Unfortunately, lattice
dynamics has mostly been used for perfect crystals and for understanding their thermodynamic properties
[3; 8; 32; 35; 44; 51; 65]. There is not much in the literature on corrections for anharmonic effects and systematic
solution techniques for defective crystals. Some of these issues will be addressed in this paper.

In order to accurately predict the mechanical properties of nanosize devices one would need to take into
account the effect of finite temperatures. It should be mentioned that most multiscale methods so far have
been formulated for T = 0 calculations. An example is the quasi-continuum method [49; 57]. However, recently
there have been several attempts in extending this method for finite temperatures [7; 9; 36; 58]. As Forsblom,
et al. [19] mention, very little is known about the vibrational properties of defects in crystalline solids. Sanati
and Esetreicher [54] showed the importance of vibrational effects in semi-conductors and the necessity of free
energy calculations. Lattice dynamics [3; 51] has been ignored with the exception of some very recent works
[60]. As examples of finite-temperature defect solutions we can mention Taylor, et al. [59; 61] who discuss
quasiharmonic lattice dynamics for three-body interactions in bulk crystals. Taylor, et al. [62] consider a slab,
i.e., a system that is periodic only in two directions. They basically consider a supercell that is repeated in the
plane periodically. As Allan, et al. [1; 2] conclude, a combination of quasiharmonic lattice dynamics, molecular
dynamics, Monte Carlo simulations and ab initio calculations should be used in real applications. However, at
this time there is no systematic method of lattice dynamics for thermodynamic analysis of defective systems
that is also capable of capturing the anharmonic effects. We should mention that in many materials systems
lattice dynamics is a valid approximation up to two-third of the bulk melting temperature but it turns out
that harmonic approximation may not be adequate for free energy calculations of defects at high temperatures
(see [18] for discussions on Cu). Hansen, et al. [23] show that for Al surfaces above the Debye temperature
quasiharmonic lattice dynamic approximation starts to fail. Zhao, et al. [71] show that quasiharmonic lattice
dynamics accurately predicts the thermodynamic properties of silicon for temperatures up to 800 K. In this
paper, we are interested in low temperatures where MD fails while quasi-harmonic lattice dynamics is a good
approximation.

For understanding defect structures the main quantity of interest is the Helmholtz free energy. Free energy is
an important thermodynamic function that determines the relative phase stability and can be used to generate
other thermodynamic functions. In quasiharmonic lattice dynamics, for a system of n atoms, free energy is
computed by diagonalizing a 3n × 3n matrix that is obtained by quadratizing the Hamiltonian about a given
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static equilibrium configuration. Using similar ideas, for a perfect crystal with a unit cell with N atoms, one can
compute the free energy by diagonalizing a 3N × 3N matrix in the reciprocal space. In the local quasiharmonic
approximation one assumes that atoms vibrate independently and thus all is needed for calculation of free energy
is to diagonalize n 3 × 3 matrices [38] (see Rickman and LeSar [53] for a recent review of the existing methods
for free energy calculations). These will be discussed in more detail in §3.

In this paper, we propose a theoretical framework of quasi-harmonic lattice dynamics to address the me-
chanics of defects in crystalline solids at low but finite temperatures. The main ideas are summarized as follows.
We think of a defective lattice problem as a discrete deformation of a collection of atoms to a discrete current
configuration. The lattice atoms are assumed to interact through some interatomic potentials. At finite tem-
peratures, the equilibrium positions of the atoms are not the same as their static equilibrium (T = 0) positions;
the lattice atoms undergo thermal vibrations. The potential and Helmholtz free energies of the lattice are taken
as discrete functionals of the discrete deformation mapping. For finite temperature equilibrium problems, the
discrete nonlinear governing equations are linearized about a reference configuration. The finite-temperature
equilibrium configuration of the defective lattice can then be obtained semi-analytically. For finite temperature
dynamic problems, the Euler-Lagrange equations of motion of the lattice are casted into a system of ordinary
differential equations by superimposing the phonon modes. We should emphasize that our method of lattice
dynamics is not restricted to finite systems; defects in infinite lattices can be analyzed semi-analytically. The
only restriction is the use of interatomic potentials.

This paper is structured as follows. In §2 we briefly review the theory of anharmonic lattice statics presented
in [68] and [69]. We then present an overview of the basic ideas of the method of lattice dynamics for both
finite and infinite atomic systems in §3. This follows by an extension of these ideas to defective crystals with
partial symmetries. In §4 we formulate the lattice dynamics governing equations for a 2-D lattice of dipoles
with both short and long-range interactions. In §5 we study the temperature dependence of the structure of
two 180◦ domain walls in the dipole lattice. Conclusions are given in §6.

2 Anharmonic Lattice Statics

Consider a collection of atoms L with the current configuration
{
xi
}

i∈L ⊂ Rn. Assuming that there is a
discrete field of body forces {Fi}i∈L, a necessary condition for the current position {xi}i∈L to be in static
equilibrium is − ∂E

∂xi + Fi = 0, ∀ i ∈ L, where E is the total static energy and is a function of the atomic
positions. These discrete governing equations are highly nonlinear. In order to obtain semi-analytical solutions,
we first linearize the governing equations with respect to a reference configuration B0 = {xi

0}i∈L [68]. We leave
the reference configuration unspecified; at this point it would be enough to know that we usually choose the
reference configuration to be a nominal defect configuration [68; 69; 28].

Taylor expansion of the governing equations for an atom i about the reference configuration B0 = {xi
0}i∈L

reads

− ∂E
∂xi

+ Fi = − ∂E
∂xi

(B0) −
∂2E

∂xi∂xi
(B0) · (xi − xi

0) −
∑
j∈L
j ̸=i

∂2E
∂xj∂xi

(B0) · (xj − xj
0) − ... + Fi = 0. (2.1)

Ignoring terms that are quadratic and higher in {xj − xj
0}, we obtain

∂2E
∂xi∂xi

(B0) · (xi − xi
0) +

∑
j∈L
j ̸=i

∂2E
∂xj∂xi

(B0) · (xj − xj
0) = − ∂E

∂xi
(B0) + Fi ∀i ∈ L. (2.2)

Here,
{
− ∂E

∂xi (B0)
}

i∈L is the discrete field of unbalanced forces.

Defective Crystals and Symmetry Reduction. In many defective crystals one can simplify the calcu-
lations by exploiting symmetries. A defect, by definition, is anything that breaks the translation invariance
symmetry of the crystal. However, it may happen that a given defect does not affect the translation invariance
of the crystal in one or two directions. With this idea, one can classify defective crystals into three groups: (i)
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with 1-D symmetry reduction, (ii) with 2-D symmetry reduction and (iii) with no symmetry reduction. Ex-
amples of (i), (ii) and (iii) are free surfaces, dislocations, and point defects, respectively [68]. Assume that the
defective crystal L has a 1-D symmetry reduction, i.e. it can be partitioned into two-dimensional equivalence
classes as follows

L =
⊔
α∈Z

N⊔
I=1

SIα, (2.3)

where SIα is the equivalence class of all the atoms of type I and index α (see [68] and [28] for more details).
Here, we assume that L is a multilattice of N simple lattices. For a free surface, for example, each equivalence
class is a set of atoms lying on a plane parallel to the free surface. Using this partitioning for i = Iα one can
write ∑

j∈L
j ̸=i

∂2E
∂xj∂xi

(B0) · (xj − xj
0) =

∑′

β∈Z

N∑
J=1

∑
j∈SJβ

∂2E
∂xj∂xi

(B0) ·
(
xJβ − xJβ

0

)
, (2.4)

where the prime on the first sum means that the term Jβ = Iα is omitted. The linearized discrete governing
equations are then written as [68]

∑′

β∈Z

N∑
J=1

KIαJβuJβ +

−
∑′

β∈Z

N∑
J=1

KIαJβ

uIα = fIα, (2.5)

where

KIαJβ =
∑

j∈SJβ

∂2E
∂xj∂xIα

(B0), fIα = − ∂E
∂xIα

(B0) + FIα, uJβ = xJβ − xJβ
0 = xj − xj

0 ∀ j ∈ SJβ . (2.6)

The governing equations in terms of unit cell displacement vector Uα =
(
u1

α, ...,uN
α

)T can be written as∑
β∈Z

Aβ(α)Uα+β = Fα α ∈ Z, (2.7)

where Aβ(α) ∈ R3N×3N , Uα,Fα ∈ R3N . This is a linear vector-valued ordinary difference equation with
variable coefficient matrices. The unit cell force vectors and the unit cell stiffness matrices are defined as

Fα =

 F1α

...
FNα

 , Aβ(α) =


K1α1β K1α2β · · · K1αNβ

K2α1β K2α2β · · · K2αNβ

...
... · · ·

...
KNα1β KNα2β · · · KNαNβ

 α, β ∈ Z. (2.8)

Note that, in general, Aβ need not be symmetric [68]. The resulting system of difference equations can be
solved directly or using discrete Fourier transform [68].

Hessian Matrix for the Bulk Crystal. A bulk crystal is a defective crystal with a 0-D symmetry reduction.
Governing equations for atom I in the unit cell n = 0 read − ∂E

∂xI + FI = 0, I = 1, ..., N . Linearization about
B0 = {XI} yields

∂2E
∂xI∂xI

(B0) · (xI − XI) +
∑
j∈L
j ̸=I

∂2E
∂xI∂xj

(B0) · (xj − Xj) + ... = − ∂E
∂xI

(B0) + FI I = 1, ..., N. (2.9)

Note that

∑
j∈L
j ̸=I

∂2E
∂xI∂xj

(B0) · (xj − Xj) =
N∑

J=1
J ̸=I

∑
j∈LJ

∂2E
∂xI∂xj

(B0) · (xj − Xj) +
∑
j∈LI
j ̸=I

∂2E
∂xI∂xj

(B0) · (xj − Xj). (2.10)
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We also know that because of translation invariance of the potential

∂2E
∂xI∂xI

(B0) = −
∑
j∈L
j ̸=I

∂2E
∂xI∂xj

(B0). (2.11)

Therefore, the linearized governing equations can be written as

N∑
J=1
J ̸=I

KIJuJ +

(
−

N∑
J=1
J ̸=I

KIJ

)
uI = f I I = 1, ..., N, (2.12)

where

KIJ =
∑

j∈LJ

∂2E
∂xI∂xj

(B0), f I = − ∂E
∂xI

(B0) + FI , uJ = xJ − XJ = xj − Xj ∀ j ∈ LJ . (2.13)

The Hessian matrix of the bulk crystal is defined as

H =


K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

 , (2.14)

where KJI = KIJ . Stability of the bulk crystal dictates H to be positive-semidefinite with three zero eigenvalues.
In the case of a defective crystal, one can look at a sequence of sublattices containing the defect and calculate
the corresponding sequence of Hessians.

3 Method of Quasi-Harmonic Lattice Dynamics

At a finite temperature T (constant volume) thermodynamic stability is governed by Helmholtz free energy
F = E − TS. In principle, F is well-defined in the setting of statistical mechanics. Quantum-mechanically
calculated energy levels E(i) for different microscopic states can be used to obtain the partition function [33; 66]

Q =
∑

i

exp
(
−E(i)
kBT

)
, (3.1)

where kB is Boltzman’s constant. Finally F = −kBT lnQ (see the appendix). However, one should note that the
phase space is astronomically large even for a finite system. Usually, in practical problems, molecular dynamics
and Monte Carlo simulations, coupled with thermodynamic integration techniques, reduce the complexity of the
free energy calculations. For low to moderately high temperatures, quantum treatment of lattice vibrations in
the harmonic approximation provides a reliable description of thermodynamic properties [44]. In the following
we review the classical formulation of lattice dynamics first for a finite collection of atoms and then for bulk
crystals.

3.1 Finite Systems

For a finite system of N atoms suppose B =
{
Xi
}

i∈L is the static equilibrium configuration, i.e. ∂E
∂xi

∣∣
xi=Xi =

0, ∀ i ∈ L. Hamiltonian of this collection is written as

H
({

xi
}

i∈L

)
=

1
2

∑
i∈L

mi|ẋi|2 + E
({

xi
}

i∈L

)
. (3.2)

Now denoting the thermal displacements by ui = xi − Xi potential energy of the system is written as

E
({

xi
}

i∈L

)
= E

({
Xi
}

i∈L

)
+

1
2

∑
i,j∈L

uiT · ∂2E
∂xi∂xj

(B)uj + .... (3.3)
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Or
E(x) = E(X) +

1
2
uTΦu + o(|u|2), (3.4)

where Φ is the matrix of force constants. The Hamiltonian is approximated by

H(x) = E(X) +
1
2
uTΦu +

1
2
u̇TMu̇, (3.5)

where M is the diagonal mass matrix. Let us denote the matrix of eigenvectors of Φ by U , and write

H(x) = E(X) +
1
2
qTΛq +

1
2
q̇TMq̇, (3.6)

where q = UTu is the vector of normal displacements and Λ = diag(λ1, ..., λ3N ) is the diagonal matrix of
eigenvalues of Φ. This is now a set of 3N independent harmonic oscillators. Solving Schröndinger’s equation
gives the energy levels of the rth oscillator as [44]

Enr = Er(X) +
(

n +
1
2

)
~ωr n = 0, 1, ..., r = 1, ..., 3N, (3.7)

where ωr = ωr

({
Xi
}

i∈L

)
=
√

λr/mr. The free energy is then written as [3]

F
({

Xi
}

i∈L , T
)

= −kBT
3N∑
r=1

ln
∞∑

n=0

exp
(
−Enr

kBT

)

= E
({

Xi
}

i∈L

)
+

1
2

3N∑
r=1

~ωr + kBT
3N∑
r=1

ln
[
1 − exp

(
− ~ωr

kBT

)]
. (3.8)

Here it should be noted that we have considered a time-independent Hamiltonian, which can be regarded
as a first-order approximation for some problems. Assume that Hamiltonian H of a system contains a time-
dependent parameter f(t), say a time-dependent external force. If the time variation of f (t) is slow and does
not cause a large variation of H in a time interval of the same order as the natural period of the system
with constant f , then this approximation is valid [47], otherwise one should consider time-dependent harmonic
oscillator systems. This can be the case for various quantum mechanical systems [34; 39; 42]. In such situations
one should obtain the solution of Schröndinger’s equation for a time-dependent forced harmonic oscillator and
as a result, energy levels would depend on the forcing terms too. As an example, Meyer [42] investigated energy
propagation in a one-dimensional finite lattice with a time-dependent driving forces by solving the corresponding
forced Schröndinger’s equation. We also mention that the above formula for the free energy is based on the
quasiharmonic approximation. As temperature increases such an approximation may become invalid for some
materials [37] and therefore one would need to consider anharmonic effects. To include anharmonic terms in the
free energy relation, anharmonic perturbation theory can be used by choosing the quasiharmonic state as the
unperturbed state and the perturbation is due to the terms higher than second order in the Taylor expansion
of the potential energy [56]. This way, one accounts for anharmonic coupling of the vibrational modes.

As we discuss in the appendix, to obtain the optimum positions of atoms at a constant temperature T
one should minimize the free energy with respect to all the geometrical variables

{
Xi
}

i∈L [33; 62]. Thus, the
governing equations are

∂F
∂Xi

=
∂E
∂Xi

+
~
2

3N∑
r=1

∂ωr

∂Xi
+ ~

3N∑
r=1

1

exp
(

~ωr

kBT

)
− 1

∂ωr

∂Xi
= 0. (3.9)

To compute the derivatives of the eigenvalues, we use the method developed by Kantorovich [27]. Consider
the expansion of the elements of the dynamaical matrix Φ = [Φαβ ] about a configuration B:

Φαβ

({
xi
}

i∈L

)
= Φαβ

({
Xi
}

i∈L

)
+
∑
i∈L

∂Φαβ

∂Xi
(B) · (xi − Xi) + · · · α, β = 1, . . . , 3N. (3.10)
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If the eigenvectors of Φ are normalized to unity, the perturbation expansion of eigenvalues would be [27]

λr

({
xi
}

i∈L

)
= λr

({
Xi
}

i∈L

)
+
∑
i∈L

3N∑
α,β=1

U∗
αr

∂Φαβ

∂Xi
Uβr · (xi − Xi) + · · · , (3.11)

where ∗ denotes conjugate transpose and U = [Uαβ ] is the matrix of eigenvectors of Φ = [Φαβ ], which are
normalized to unity. Since higher order terms in the above expansion contain (xi −Xi)n with n ∈ N ≥ 2, all of
them vanish for calculating the first derivatives of eigenvalues at xi = Xi. Hence, we can write

∂λr

∂xi

∣∣∣
xi=Xi

=
∂λr

∂Xi
=

3N∑
α,β=1

U∗
αr

∂Φαβ

∂Xi
Uβr, (3.12)

and therefore
∂ωr

∂Xi
=

1
2mrωr

3N∑
α,β=1

U∗
αr

∂Φαβ

∂Xi
Uβr. (3.13)

For minimizing the free energy, depending on the chosen numerical method, one may need the second
derivatives of the eigenvalues as well. We can extend the above procedure and consider higher order terms to
obtain higher order derivatives. The numerical method used in this paper for minimizing the free energy will
be discussed in detail in the sequel.

3.2 Perfect Crystals

Let us reformulate the classical theory of lattice dynamics [3; 44; 8] in our notation for a perfect crystal. This
will make the formulation for defective crystals clearer. Let us assume that we are given a multi-lattice L with
N simple sublattices, i.e. L =

⊔N
I=1 LI . Let us denote the equilibrium position of i ∈ L by Xi, i.e.

∂

∂xi

∣∣∣
xi=Xi

E
(
{xj}j∈L

)
= 0 ∀i ∈ L. (3.14)

Atoms of the multi-lattice move from this equilibrium configuration due to thermal vibrations. Let us denote
the dynamic position of atom i ∈ L by xi = xi(t). We now look for a wave-like solution of the following form
for i ∈ LI

ui := xi − Xi =
1

√
mI

UI(k) ei(k·Xi−ω(k)t), (3.15)

where i =
√
−1, ω(k) is the frequency at wave number k ∈ B, B is the first Brillouin zone of the sublattices, and

UI is the polarization vector. Note that we are assuming that mI ̸= 0.1 Note also that the displacements xi(t)
are time dependent and are deviations from the average temperature-dependent configuration Xi = Xi(T ).

Hamiltonian of this system has the following form

H
(
{xi}i∈L

)
=

1
2

∑
i∈L

mi|ẋi|2 + E
(
{xi}i∈L

)
. (3.16)

Because of translation invariance of energy, it would be enough to look at the equations of motion for the unit
cell 0 ∈ Z3. These read mI ẍI = − ∂E

∂xI , I = 1, ..., N . Note that

mI ẍI = −
√

mIUI(k)ω(k)2 ei(k·XI−ω(k)t). (3.17)

The idea of harmonic lattice dynamics is to linearize the forcing term, i.e., to look at the following linearized
equations of motion.

mI ẍI = −
∑
j∈L

∂2E
∂xj∂xI

(B)uj = −
N∑

J=1

∑
j∈LJ

∂2E
∂xj∂xI

(B)uj I = 1, ..., N. (3.18)

1For shell potentials, for example, shells are massless and one obtains an effective dynamical matrix for cores as will be explained
in the sequel.
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Note that for j ∈ LJ

uj =
1

√
mJ

UJ(k) ei(k·Xj−ω(k)t). (3.19)

Therefore, equations of motion read

ω(k)2UI(k) =
N∑

J=1

DIJ(k)UJ(k), (3.20)

where

DIJ =
1

√
mImJ

∑
j∈LJ

eik·(Xj−XI) ∂2E
∂xj∂xI

(B), (3.21)

are the sub-dynamical matrices. The case I = J should be treated carefully. We know that as a result of
translation invariance of energy

∂2E
∂xI∂xI

(B) = −
∑
j∈L
j ̸=I

∂2E
∂xj∂xI

(B). (3.22)

Thus

DII =
1

mI

∑
j∈LI
j ̸=I

eik·(Xj−XI) ∂2E
∂xj∂xI

(B) − 1
mI

∑
j∈L
j ̸=I

∂2E
∂xj∂xI

(B). (3.23)

Finally, the dynamical matrix of the bulk crystal is defined as

D(k) =


D11(k) D12(k) . . . D1N (k)
D21(k) D22(k) . . . D2N (k)

...
...

. . .
...

DN1(k) DN2(k) . . . DNN (k)

 ∈ R3N×3N . (3.24)

Let us denote the 3N eigenvalues of D(k) by λi(k), i = 1, ..., 3N . It is a well-known fact that the dynamical
matrix is Hermitian and hence all its eigenvalues λi are real. The crystal is stable if and only if λi > 0 ∀ i.

Free energy of the unit cell is now written as

F
(
{Xj}j∈L, T

)
= E

(
{Xj}j∈L

)
+
∑
k

3N∑
i=1

1
2

~ωi(k) +
∑
k

3N∑
i=1

kBT ln
[
1 − exp

(
−~ωi(k)

kBT

)]
, (3.25)

where ωi =
√

λi
2 and a finite sum over k-points is used to approximate the integral over the first Brillouin zone

of the phonon density of states. The second term on the right-hand side is the zero-point energy and the last
term is the vibrational entropy. For the optimum configuration

{
Xj
}

j∈L at temperature T , we have

∂F
∂Xj

=
∂E

∂Xj
+
∑
k

3N∑
i=1

 ~
2ωi(k)

1
2

+
1

exp
(

~ωi(k)
kBT

)
− 1

 ∂ω2
i (k)

∂Xj

 = 0, j = 1, ..., N. (3.26)

Here using the same procedure as in the pervious section, one can calculate the derivatives of the eigenvalues
as follows

∂ω2
i (k)

∂Xj
=

3N∑
α,β=1

U∗
αi (k)

∂Dαβ (k)
∂Xj

Uβi (k) , (3.27)

where U (k) = [Uαβ (k)] ∈ R3N×3N is the matrix of the eigenvectors of D(k) =
[
Dαβ (k)

]
, which are normalized

to unity.
2Note that this is consistent with Eq. (3.7) as we are using mass-reduced displacements.
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3.3 Lattices with Massless Particles

Let us next consider a lattice in which some particles are assumed to be massless. The best well-known model
with this property is the so-called “shell model” [6]. Let us assume that the unit cell has N particles (ions),
each composed of a core and a (massless) shell. The lattice L is partitioned as

L = Lc
⊔

Ls =
N⊔

I=1

(
Lc

I

⊔
Ls

I

)
. (3.28)

Position vectors of core and shell of ion i are denoted by xi
c and xi

s, respectively. Given a configuration
{
xi
}

i∈L,
equations of motion for the fundamental unit cell read

mI ẍI
c = − ∂E

∂xI
c

, 0 = − ∂E
∂xI

s

, I = 1, ..., N. (3.29)

Assuming that cores and shells are at a static equilibrium configuration, equations of motion in the harmonic
approximation read

mI üI
c = −

N∑
J=1

∑
j∈Lc

J

∂2E
∂xj

c∂xI
c

· uj
c −

N∑
J=1

∑
j∈Ls

J

∂2E
∂xj

s∂xI
c

· uj
s, I = 1, ..., N, (3.30)

0 = −
N∑

J=1

∑
j∈Lc

J

∂2E
∂xj

c∂xI
s

· uj
c −

N∑
J=1

∑
j∈Ls

J

∂2E
∂xj

s∂xI
s

· uj
s, I = 1, ..., N. (3.31)

Note that for j ∈ LJ we can write

uj
c =

1
√

mJ
UJ

c (k) ei(k·Xj
c−ω(k)t), uj

s = UJ
s (k) ei(k·Xj

s−ω(k)t) k ∈ B, (3.32)

where B is the first Brillouin zone of Lc
I (or Ls

I). Thus, (3.30) and (3.31) can be simplified to read

N∑
J=1

Dcc
IJUJ

c (k) +
N∑

J=1

Dcs
IJUJ

s (k) = ω2(k)UI
c(k) I = 1, ..., N, (3.33)

N∑
J=1

Dsc
IJUJ

c (k) +
N∑

J=1

Dss
IJUJ

s (k) = 0 I = 1, ..., N, (3.34)

where

Dcc
IJ =

1
√

mImJ

∑
j∈Lc

J

∂2E
∂xj

c∂xI
c

eik·(Xj
c−XI

c), Dcs
IJ =

1
√

mI

∑
j∈Ls

J

∂2E
∂xj

s∂xI
c

eik·(Xj
s−XI

c)

Dsc
IJ =

1
√

mJ

∑
j∈Lc

J

∂2E
∂xj

c∂xI
s

eik·(Xj
c−XI

s), Dss
IJ =

∑
j∈Ls

J

∂2E
∂xj

s∂xI
s

eik·(Xj
s−XI

s). (3.35)

Eqs. (3.33) and (3.34) can be rewritten as

DccUc + DcsUs = ω2Uc and Us = −D−1
ss DscUc, (3.36)
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where

Uc =

 U1
c

...
UN

c

 , Us =

 U1
s

...
UN

s

 , (3.37)

Dcc =

 Dcc
11 . . . Dcc

1N
...

. . .
...

Dcc
N1 . . . Dcc

NN

 , Dcs =

 Dcs
11 . . . Dcs

1N
...

. . .
...

Dcs
N1 . . . Dcs

NN

 , (3.38)

Dsc =

 Dsc
11 . . . Dsc

1N
...

. . .
...

Dsc
N1 . . . Dsc

NN

 , Dss =

 Dss
11 . . . Dss

1N
...

. . .
...

Dss
N1 . . . Dss

NN

 . (3.39)

Finally, the effective dynamical problem for cores can be written as

D(k)Uc(k) = ω(k)2Uc(k), (3.40)

where
D(k) = Dcc(k) − Dcs(k)D−1

ss (k)Dsc(k), (3.41)

is the effective dynamical matrix. Note that Dcs and Dsc are not Hermitian but DcsD−1
ss Dsc is.

The diagonal submatrices of D, i.e. Dcc
II and Dss

II should be calculated considering the translation invariance
of energy, namely

Dcc
II =

1
mI

∑
j∈Lc

I
j ̸=Ic

∂2E
∂xj

c∂xI
c

eik·(Xj
c−XI

c) − 1
mI

∑
j∈L
j ̸=Ic

∂2E
∂xj∂xI

c

, (3.42)

Dss
II =

∑
j∈Ls

I
j ̸=Is

∂2E
∂xj

s∂xI
s

eik·(Xj
s−XI

s)) −
∑
j∈L
j ̸=Is

∂2E
∂xj∂xI

s

. (3.43)

Denoting the 3N eigenvalues of D(k) by λi(k) = ω2
i (k), free energy of the unit cell is expressed as

F
(
{Xj

c,X
j
s}j∈L, T

)
= E

(
{Xj

c,X
j
s}j∈L

)
+
∑
k

3N∑
i=1

{
1
2

~ωi(k) + kBT ln
[
1 − exp

(
−~ωi(k)

kBT

)]}
. (3.44)

Therefore, for the optimum configuration
{
Xj

c,X
j
s

}
j∈L at temperature T we have

∂F
∂Xj

c

=
∂E

∂Xj
c

+
∑
k

3N∑
i=1

 ~
2ωi(k)

1
2

+
1

exp
(

~ωi(k)
kBT

)
− 1

 ∂ω2
i (k)

∂Xj
c

 = 0, (3.45)

∂F
∂Xj

s

=
∂E

∂Xj
s

+
∑
k

3N∑
i=1

 ~
2ωi(k)

1
2

+
1

exp
(

~ωi(k)
kBT

)
− 1

 ∂ω2
i (k)

∂Xj
s

 = 0, (3.46)

where the derivatives of eigenvalues are given by

∂ω2
i (k)

∂Xj
c

=
3N∑

α,β=1

V ∗
αi (k)

∂Dαβ (k)
∂Xj

c

Vβi (k) ,
∂ω2

i (k)
∂Xj

s

=
3N∑

α,β=1

V ∗
αi (k)

∂Dαβ (k)
∂Xj

s

Vβi (k) , (3.47)

where V (k) = [Vαβ (k)] ∈ R3N×3N is the matrix of the eigenvectors of D(k) = [Dαβ (k)], which are normalized
to unity.
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3.4 Defective Crystals

Without loss of generality, let us consider a defective crystal with a 1-D symmetry reduction [68], i.e.

L =
N⊔

J=1

⊔
β∈Z

LJβ . (3.48)

Note that j = Jβ means that the atom j is in the βth equivalence class of the Jth sublattice. For this atom
the thermal displacement vector is assumed to have the following form

uj =
1

√
mJ

UJβ(k) ei(k·Xj−ω(k)t), k ∈ B, (3.49)

where B is the first Brillouin zone of LJ . Equations of motion in this case read

ω(k)2UIα(k) =
N∑

J=1

∑
β∈Z

DIαJβ(k)UJβ(k), (3.50)

where

DIαJβ =
1

√
mImJ

∑
j∈LJβ

eik·(Xj−XIα) ∂2E
∂xIα∂xj

(B), (3.51)

are the dynamical sub-matrices. The sub-matrices DIαIα have the following simplified form

DIαIα =
1

mI

∑
j∈LIα

eik·(Xj−XIα) ∂2E
∂xIα∂xj

(B). (3.52)

Note that
∂2E

∂xIα∂xIα
(B) = −

∑
j∈L
j ̸=Iα

∂2E
∂xIα∂xj

(B). (3.53)

Thus

DIαIα =
1

mI

∑
j∈LIα
j ̸=Iα

eik·(Xj−XIα) ∂2E
∂xIα∂xj

(B) − 1
mI

∑
j∈L
j ̸=Iα

∂2E
∂xIα∂xj

(B). (3.54)

It is seen that for a defective crystal the dynamical matrix is infinite dimensional.
As an approximation, similar to that presented in [38] as the local quasiharmonic approximation, one can

assume that given a unit cell, only a finite number of neighboring equivalence classes interact with its thermal
vibrations. One way of approximating the free energy would then be to consider vibrational effects in a finite
region around the defect and study the convergence of the results as a function of the size of the finite region. For
similar ideas see [29; 30], and [13]. Here, we consider a finite number of equivalence classes, say −C ≤ α ≤ C,
around the defect and assume the temperature-dependent bulk configuration outside this region. As another
approximation we assume that only a finite number of equivalence classes interact with a given equivalence class
in calculating the dynamical matrix, i.e. we write

Li =
m⊔

α=−m

N⊔
I=1

LIα, (3.55)

where Li is the neighboring set of atom i. Therefore, the linearized equations of motion read

ω(k)2UIα(k) =
m∑

β=−m

N∑
J=1

DIαJβ(k)UJβ(k) α = −C, ..., C. (3.56)
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Defining

Uα =

 U1α

...
UNα

 ∈ R3N , (3.57)

we can write the equations of motion as follows

ω(k)2Uα(k) =
m∑

β=−m

Aα(α+β)(k)U(α+β)(k), (3.58)

where

Aαβ =

 D1α1β . . . D1αNβ

...
. . .

...
DNα1β . . . DNαNβ

 ∈ R3N×3N . (3.59)

Now considering the finite classes around the defect, we can write the global equations of motion for the finite
system as

D(k)U(k) = ω(k)2U(k), (3.60)

where

U(k) =

 U−C

...
UC

 ∈ RM , D(k) =

 D(−C)(−C) . . . D(−C)C

...
. . .

...
DC(−C) . . . DCC

 ∈ RM×M , M = 3N × (2C + 1), (3.61)

and

Dαβ =

 Aαβ |α − β| ≤ m,

03N×3N |α − β| > m.
(3.62)

It is easy to show that Aαβ(k) = A∗
βα(k), i.e. the dynamical matrix D(k) is Hermitian, and therefore has M

real eigenvalues. Note that the defective crystal is stable if and only if ω2
i > 0 ∀ i.

Now we can write the free energy of the defective crystal as

F
(
{Xj}j∈L, T

)
= E

(
{Xj}j∈L

)
+
∑
k

M∑
i=1

{
1
2

~ωi(k) + kBT ln
[
1 − exp

(
−~ωi(k)

kBT

)]}
. (3.63)

In the optimum configuration
{
Xj
}

j∈L at a finite temperature T , we have

∂F
∂Xj

=
∂E

∂Xj
+
∑
k

M∑
i=1

 ~
2ωi(k)

1
2

+
1

exp
(

~ωi(k)
kBT

)
− 1

 ∂ω2
i (k)

∂Xj

 = 0, (3.64)

where the derivatives of the eigenvalues are calculated as follows

∂ω2
i (k)

∂Xj
=

M∑
α,β=1

U∗
αi (k)

∂Dαβ (k)
∂Xj

Uβi (k) , (3.65)

where U (k) = [Uαβ (k)] ∈ RM×M is the matrix of the eigenvectors of D(k) = [Dαβ (k)], which are normalized
to unity.
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3.5 Defect Structure at Finite Temperatures

In the static case, given a configuration B′
0 =

{
x′i

0

}
i∈L

, one can calculate the energy and hence forces exactly,

as the potential energy is calculated by some given empirical interatomic potentials. Suppose one starts with a
reference configuration and solves for the following harmonic problem:∑

j∈L

∂2E
∂xi∂xj

(B′
0) · (xj − x′j

0) = − ∂E
∂xi

(B′
0) ∀ i ∈ L. (3.66)

This reference configuration could be some nominal (unrelaxed) configuration. Then one can modify the ref-
erence configuration and by modified Newton-Raphson iterations converge to an equilibrium configuration
B0 =

{
xi

0

}
i∈L assuming that such a configuration exists [68]. In this configuration ∂E

∂xi (B0) = 0, ∀ i ∈ L.
B0 is now the starting configuration for lattice dynamics.3 For a temperature T , the defective crystal is in
thermal equilibrium if the free energy is minimized, i.e., if

∂F
∂Xi

(B) = 0, ∀ i ∈ L. (3.67)

Solving this problem one can modify the reference configuration and calculate the optimum configuration. This
iteration would give a configuration that minimizes the harmonically calculated free energy. The next step then
would be to correct for anharmonic effects in the vibrational frequencies. One way of doing this is to iteratively
calculate the vibrational unbalanced forces using higher order terms in the Taylor expansion.

There are many different optimization techniques to solve the unconstrained minimization problem (3.67).
Here we only consider two main methods that are usually more efficient, namely those that require only the
gradient and those that require the gradient and the Hessian [52]. In problems in which the Hessian is available,
the Newton method is usually the most powerful. It is based on the following quadratic approximation near the
current configuration

F
(
Bk + δ̃

k
)

= F
(
Bk
)

+ ∇F
(
Bk
)
· δ̃

k
+

1
2
(δ̃

k
)T · H

(
Bk
)
· δ̃

k
+ o

(
|δ̃

k
|2
)

, (3.68)

where δ̃
k

= Bk+1−Bk. Now if we differentiate the above formula with respect to δ̃
k
, we obtain Newton method

for determining the next configuration Bk+1 = Bk + δ̃
k

: δ̃k = −H−1
(
Bk
)
·∇F

(
Bk
)
. Here in order to converge

to a local minimum the Hessian must be positive definite.
One can use a perturbation method to obtain the second derivatives of the free energy but as the dimension

of a defective crystal increases, calculation of these higher order derivatives may become numerically inefficient
[60] and so one may prefer to use those methods that do not require the second derivatives. One such method is
the quasi-Newton method. The main idea behind this method is to start from a positive-definite approximation
to the inverse Hessian and to modify this approximation in each iteration using the gradient vector of that
step. Close to the local minimum, the approximate inverse Hessian approaches the true inverse Hessian and we
would have the quadratic convergence of Newton method [52]. There are different algorithms for generating the
approximate inverse Hessian. One of the most well known is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [52]:

Ai+1 = Ai +
δ̃

k
⊗ δ̃

k

(δ̃
k
)T · ∆

−
(
Ai · ∆

)
⊗
(
Ai · ∆

)
∆T · Ai · ∆

+
(
∆T · Ai · ∆

)
u ⊗ u, (3.69)

where Ai =
(
Hi
)−1, ∆ = ∇F i+1 − ∇F i, and

u =
δ̃

k

(δ̃
k
)T · ∆

− Ai · ∆
∆T · Ai · ∆

. (3.70)

Calculating Ai+1, one then should use Ai+1 instead of H−1 to update the current configuration for the next
configuration Bk+1 = Bk + δ̃

k
. If Ai+1 is a poor approximation, then one may need to perform a linear search

3If temperature is “large”, one can start with equilibrium configuration of a lower temperature. This is what we do in our
numerical examples as will be discussed in the sequel.
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to refine Bk+1 before starting the next iteration [52]. As Taylor, et al. [60] mention, since the dynamical
contributions to the Hessian are usually small, one can use only the static part of the free energy E to generate
the first approximation to the Hessian of the free energy. Therefore, we propose the following quasiharmonic
lattice dynamics algorithm based on the quasi-Newton method:

Input data: B0 (or BT−∆T for large T ), T

◃ Initialization

◃ H1 = Hstatic|B=B0

◃ Do until convergence is achieved

◃ Dk = D(Bk)

◃ Calculate ∇Fk

◃ Use Ak to obtain Bk+1

◃ End Do

◃ End

4 Lattice Dynamic Analysis of a Defective Lattice of Point Dipoles

In this section we consider a two-dimensional defective lattice of dipoles. Westhaus [67] derived the normal
mode frequencies for a 2-D rectangular lattice of point dipoles using the assumption that interacting dipoles
have fixed length polarization vectors that can only rotate around fixed lattice sites. In this section, we relax
these assumptions and in the next section will obtain the temperature-dependent structures of two 180◦ domain
walls.

Consider a defective lattice of dipoles in which each lattice point represents a unit cell and the corresponding
dipole is a measure of the distortion of the unit cell with respect to a high symmetry phase. Total energy of the
lattice is assumed to have the following three parts [68]

E
(
{xi,Pi}i∈L

)
= Ed

(
{xi,Pi}i∈L

)
+ Eshort

(
{xi}i∈L

)
+ Ea

(
{Pi}i∈L

)
, (4.1)

where, Ed, Eshort and Ea are the dipole energy, short-range energy, and anisotropy energy, respectively. The
dipole energy has the following form

Ed =
1
2

∑
i,j∈L
j ̸=i

{
Pi · Pj

|xi − xj |3
− 3Pi · (xi − xj) Pj · (xi − xj)

|xi − xj |5

}
+
∑
i∈L

1
2αi

Pi · Pi, (4.2)

where αi is the electric polarizability and is assumed to be a constant for each sublattice. For the sake of
simplicity, we assume that polarizability is temperature independent. The short-range energy is modeled by a
Lennard-Jones potential with the following form

Eshort =
1
2

∑
i,j∈L
j ̸=i

4ϵij

[(
aij

|xi − xj |

)12

−
(

aij

|xi − xj |

)6
]

, (4.3)

where for a multi-lattice with two sublattices aij and ϵij take values in the sets {a11, a12, a22} and {ϵ11, ϵ12, ϵ22},
respectively. The anisotropy energy quantifies the tendency of the lattice to remain in some energy wells and is
assumed to have the following form

Ea =
∑
i∈L

KA|Pi − P1|2 |Pi − P2|2. (4.4)



4 Lattice Dynamic Analysis of a Defective Lattice of Point Dipoles 15

This means that the dipoles prefer to have values in the set {P1,P2}.
Let S =

(
{Xi,Pi}i∈L

)
be the equilibrium configuration (a local minimum of the energy), i.e.

∂E
∂Xi

=
∂E
∂Pi

= 0 ∀ i ∈ L. (4.5)

It was shown in [68] how to find a static equilibrium equation starting from a reference configuration. We
assume that this configuration is given and denote it by B = {Xi, P̄i}i∈L. At a finite temperature T , ignoring
the dipole inertia, Hamiltonian of this system can be written as

H
(
{xi,Pi}i∈L

)
=

1
2

∑
i∈L

mi|ẋi|2 + E
(
{xi,Pi}i∈L

)
. (4.6)

Equations of motion read

miẍi = − ∂E
∂xi

, 0 = − ∂E
∂Pi

. (4.7)

Linearizing the equations of motion (4.7) about the equilibrium configuration, we obtain

− miẍi =
∂2E

∂xi∂xi
(B) (xi − Xi) +

∑
j∈Si

∂2E
∂xj∂xi

(B) (xj − Xj)

+
∂2E

∂Pi∂xi
(B) (Pi − P̄i) +

∑
j∈Si

∂2E
∂Pj∂xi

(B) (Pj − P̄j), (4.8)

0 =
∂2E

∂xi∂Pi
(B) (xi − Xi) +

∑
j∈Si

∂2E
∂xj∂Pi

(B) (xj − Xj)

+
∂2E

∂Pi∂Pi
(B) (Pi − P̄i) +

∑
j∈Si

∂2E
∂Pj∂Pi

(B) (Pj − P̄j), (4.9)

where Si = L \ {i}. Note that

∂2E
∂Pi∂Pi

(B) = 2KA

(
|P̄i − P1|2 + |P̄i − P2|2

)
I + 4KA

(
P̄i − P1

)
⊗
(
P̄i − P2

)
+ 4KA

(
P̄i − P2

)
⊗
(
P̄i − P1

)
+

1
αi

I, (4.10)

where I is the 2 × 2 identity matrix and ⊗ denotes tensor product.
For a defective crystal with a 1-D symmetry reduction the set L can be partitioned as follows

L =
⊔
α∈Z

N⊔
I=1

LIα. (4.11)

Let us define ui = xi − Xi, qi = Pi − P̄i. Periodicity of the lattice allows us to write for i ∈ LIα

ui =
1

√
mI

UIα(k) ei(k·Xi−ω(k)t), qi = QIα(k) ei(k·Xi−ω(k)t), k ∈ B. (4.12)

Thus, Eq. (4.8) for i = Iα can be simplified to read

ω(k)2UIα(k) =
1

mI

∂2E
∂xIα∂xIα

(B)UIα(k) +
N∑

J=1

∑
β∈Z

∑′

j∈LJβ

1
√

mImJ

∂2E
∂xj∂xIα

(B) eik·(Xj−XIα)UJβ(k)

+
1

√
mI

∂2E
∂PIα∂xIα

(B)QIα(k) +
N∑

J=1

∑
β∈Z

∑′

j∈LJβ

1
√

mI

∂2E
∂Pj∂xIα

(B) eik·(Xj−XIα)QJβ(k), (4.13)
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where a prime on summations means that the term corresponding to Jβ = Iα is excluded. Eq. (4.13) can be
rewritten as

ω(k)2UIα(k) =
N∑

J=1

∑
β∈Z

Dxx
IαJβ(k)UJβ(k) +

N∑
J=1

∑
β∈Z

Dxp
IαJβ(k)QJβ(k), (4.14)

where

Dxx
IαJβ(k) = δαβδIJ

1
mI

∂2E
∂xIα∂xIα

(B) +
∑′

j∈LJβ

1
√

mImJ

∂2E
∂xj∂xIα

(B) eik·(Xj−XIα),

Dxp
IαJβ(k) = δαβδIJ

1
√

mI

∂2E
∂PIα∂xIα

(B) +
∑′

j∈LJβ

1
√

mI

∂2E
∂Pj∂xIα

(B) eik·(Xj−XIα). (4.15)

Similarly, Eq. (4.9) can be simplified to read

1
√

mI

∂2E
∂xIα∂PIα

(B)UIα(k) +
N∑

J=1

∑
β∈Z

∑′

j∈LJβ

1
√

mJ

∂2E
∂xj∂PIα

(B) eik·(Xj−XIα)UJβ(k)

+
∂2E

∂PIα∂PIα
(B)QIα(k) +

N∑
J=1

∑
β∈Z

∑′

j∈LJβ

∂2E
∂Pj∂PIα

(B) eik·(Xj−XIα)QJβ(k) = 0. (4.16)

Or
N∑

J=1

∑
β∈Z

Dpx
IαJβ(k)UJβ(k) +

N∑
J=1

∑
β∈Z

Dpp
IαJβ(k)QJβ(k) = 0, (4.17)

where

Dpx
IαJβ(k) = δαβδIJ

1
√

mI

∂2E
∂xIα∂PIα

(B) +
∑′

j∈LJβ

1
√

mJ

∂2E
∂xj∂PIα

(B) eik·(Xj−XIα),

Dpp
IαJβ(k) = δαβδIJ

∂2E
∂PIα∂PIα

(B) +
∑′

j∈LJβ

∂2E
∂Pj∂PIα

(B) eik·(Xj−XIα). (4.18)

We know that [68]
∂2E

∂xIα∂xIα
(B) = −

∑′

j∈L

∂2E
∂xj∂xIα

(B) . (4.19)

And
∂2E

∂xIα∂PIα
(B) =

∂2E
∂PIα∂xIα

(B) = −
∑′

j∈L

∂2E
∂xj∂PIα

(B) . (4.20)

Before proceeding any further, let us first look at dynamical matrix of the bulk lattice.

Dynamical Matrix for the Bulk Lattice. In the case of the bulk lattice we have

L =
N⊔

I=1

LI . (4.21)

Periodicity of the lattice allows us to write for i ∈ LI

ui =
1

√
mI

UI(k) ei(k·Xi−ω(k)t), qi = QI(k) ei(k·Xi−ω(k)t), k ∈ B. (4.22)
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Thus, Eq. (4.7) for i = I is simplified to read

ω(k)2UI(k) =
1

mI

∂2E
∂xI∂xI

(B)UI(k) +
N∑

J=1

∑′

j∈LJ

1
√

mImJ

∂2E
∂xj∂xI

(B) eik·(Xj−XI)UJ(k)

+
1

√
mI

∂2E
∂PI∂xI

(B)QI(k) +
N∑

J=1

∑′

j∈LJ

1
√

mI

∂2E
∂Pj∂xI

(B) eik·(Xj−XI)QJ(k). (4.23)

This can be rewritten as

ω(k)2UI(k) =
N∑

J=1

Dxx
IJ (k)UJ(k) +

N∑
J=1

Dxp
IJ (k)QJ(k), (4.24)

where

Dxx
IJ(k) = δIJ

1
mI

∂2E
∂xI∂xI

(B) +
∑′

j∈LJ

1
√

mImJ

∂2E
∂xj∂xI

(B) eik·(Xj−XI),

Dxp
IJ(k) = δIJ

1
√

mI

∂2E
∂PI∂xI

(B) +
∑′

j∈LJ

1
√

mI

∂2E
∂Pj∂xI

(B) eik·(Xj−XI). (4.25)

Similarly, Eq. (4.7) is simplified to read

1
√

mI

∂2E
∂xI∂PI

(B)UI(k) +
N∑

J=1

∑′

j∈LJ

1
√

mJ

∂2E
∂xj∂PI

(B) eik·(Xj−XI)UJ(k)

+
∂2E

∂PI∂PI
(B)QI(k) +

N∑
J=1

∑′

j∈LJ

∂2E
∂Pj∂PI

(B) eik·(Xj−XI)QJ(k) = 0. (4.26)

Or
N∑

J=1

Dpx
IJ (k)UJ(k) +

N∑
J=1

Dpp
IJ(k)QJ(k) = 0, (4.27)

where

Dpx
IJ(k) = δIJ

1
√

mI

∂2E
∂xI∂PI

(B) +
∑′

j∈LJ

1
√

mJ

∂2E
∂xj∂PI

(B) eik·(Xj−XI),

Dpp
IJ(k) = δIJ

∂2E
∂PI∂PI

(B) +
∑′

j∈LJ

∂2E
∂Pj∂PI

(B) eik·(Xj−XI). (4.28)

Defining

U =

 U1

...
UN

 , Q =

 Q1

...
QN

 (4.29)

the linearized equations of motion read

Dxx(k)U(k) + Dxp(k)Q(k) = ω(k)2U(k), Dpx(k)U(k) + Dpp(k)Q(k) = 0, (4.30)

where

Dxx =

 Dxx
11 . . . Dxx

1N
...

. . .
...

Dxx
N1 . . . Dxx

NN

 , Dxp =

 Dxp
11 . . . Dxp

1N
...

. . .
...

Dxp
N1 . . . Dxp

NN

 ,

Dpx =

 Dpx
11 . . . Dpx

1N
...

. . .
...

Dpx
N1 . . . Dpx

NN

 , Dpp =

 Dpp
11 . . . Dpp

1N
...

. . .
...

Dpp
N1 . . . Dpp

NN

 . (4.31)
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Finally, the effective dynamical problem can be written as

D(k)U(k) = ω(k)2U(k), (4.32)

where
D(k) = Dxx(k) − Dxp(k)D−1

pp (k)Dpx(k), (4.33)

is the effective dynamical matrix. Note that D(k) is Hermitian. Denoting the 2N eigenvalues of D(k) by
λi(k) = ω2

i (k), i = 1, ..., 2N , free energy of the unit cell is expressed as

F
(
{Xj , P̄j}j∈L, T

)
= E

(
{Xj , P̄j}j∈L

)
+
∑
k

2N∑
i=1

{
1
2

~ωi(k) + kBT ln
[
1 − exp

(
−~ωi(k)

kBT

)]}
. (4.34)

Therefore, for the optimum configuration
{
Xj , P̄j

}
j∈L at temperature T we should have

∂F
∂Xj

=
∂E

∂Xj
+
∑
k

2N∑
i=1

 ~
2ωi(k)

1
2

+
1

exp
(

~ωi(k)
kBT

)
− 1

 ∂ω2
i (k)

∂Xj

 = 0, (4.35)

∂F
∂P̄j

=
∂E
∂P̄j

+
∑
k

2N∑
i=1

 ~
2ωi(k)

1
2

+
1

exp
(

~ωi(k)
kBT

)
− 1

 ∂ω2
i (k)

∂P̄j

 = 0, (4.36)

where the derivatives of eigenvalues are given by

∂ω2
i (k)

∂Xj
=

2N∑
α,β=1

V ∗
αi (k)

∂Dαβ (k)
∂Xj

Vβi (k) ,
∂ω2

i (k)
∂P̄j

=
2N∑

α,β=1

V ∗
αi (k)

∂Dαβ (k)
∂P̄j

Vβi (k) , (4.37)

where V (k) = [Vαβ (k)] ∈ R2N×2N is the matrix of the eigenvectors of D(k) = [Dαβ (k)], with Dαβ normalized
to unity.

Dynamical Matrix for the Defective Lattice In the case of a defective lattice we consider interactions of
order m, i.e., we write

Li =
m⊔

α=−m

N⊔
I=1

LIα, (4.38)

where Li is the neighboring set of the atom i. The equations of motion (4.14) and (4.17) become

ω(k)2UIα(k) =
N∑

J=1

m∑
β=−m

Dxx
IαJβ(k)UJβ(k) +

N∑
J=1

m∑
β=−m

Dxp
IαJβ(k)QJβ(k), (4.39)

0 =
N∑

J=1

m∑
β=−m

Dpx
IαJβ(k)UJβ(k) +

N∑
J=1

m∑
β=−m

Dpp
IαJβ(k)QJβ(k). (4.40)

Defining

Uα =

 U1α

...
UNα

 ∈ R2N , Qα =

 Q1α

...
QNα

 ∈ R2N , (4.41)

we can write the equations of motion as follows

ω(k)2Uα(k) =
m∑

β=−m

Axx
α(α+β)(k)U(α+β)(k) +

m∑
β=−m

Axp
α(α+β)(k)Q(α+β)(k), (4.42)

0 =
m∑

β=−m

Apx
α(α+β)(k)U(α+β)(k) +

m∑
β=−m

App
α(α+β)(k)Q(α+β)(k), (4.43)



4 Lattice Dynamic Analysis of a Defective Lattice of Point Dipoles 19

where

A∗⋆
αβ =

 D∗⋆
1α1β . . . D∗⋆

1αNβ
...

. . .
...

D∗⋆
Nα1β . . . D∗⋆

NαNβ

 ∈ R2N×2N ∗, ⋆ = x, p. (4.44)

Let us consider only a finite number of equivalence classes around the defect, i.e., we assume that −C ≤ α ≤ C.
Therefore, the approximating finite system has the following governing equations

Dxx(k)U(k) + Dxp(k)Q(k) = ω(k)2U(k), (4.45)
Dpx(k)U(k) + Dpp(k)Q(k) = 0, (4.46)

where

U(k) =

 U−C

...
UC

 ∈ RM , Q(k) =

 Q−C

...
QC

 ∈ RM , (4.47)

D∗⋆(k) =

 D∗⋆
(−C)(−C) . . . D∗⋆

(−C)C

...
. . .

...
D∗⋆

C(−C) . . . D∗⋆
CC

 ∈ RM×M , D∗⋆
αβ =


A∗⋆

αβ |α − β| ≤ m,

02N×2N |α − β| > m.
, (4.48)

where M = 2N × (2C + 1) and ∗, ⋆ = x, p. Now the effective dynamical problem can be written as

D(k)U(k) = ω(k)2U(k), (4.49)

where
D(k) = Dxx(k) − Dxp(k)D−1

pp (k)Dpx(k), (4.50)

is the effective dynamical matrix. Note that D(k) is Hermitian and has M real eigenvalues. The free energy of
the unit cell is expressed as

F
(
{Xj , P̄j}j∈L, T

)
= E

(
{Xj , P̄j}j∈L

)
+
∑
k

M∑
i=1

{
1
2

~ωi(k) + kBT ln
[
1 − exp

(
−~ωi(k)

kBT

)]}
. (4.51)

For the optimum structure
{
Xj , P̄j

}
j∈L at temperature T we have

∂F
∂Xj

=
∂E

∂Xj
+
∑
k

M∑
i=1

 ~
2ωi(k)

1
2

+
1

exp
(

~ωi(k)
kBT

)
− 1

 ∂ω2
i (k)

∂Xj

 = 0, (4.52)

∂F
∂P̄j

=
∂E
∂P̄j

+
∑
k

M∑
i=1

 ~
2ωi(k)

1
2

+
1

exp
(

~ωi(k)
kBT

)
− 1

 ∂ω2
i (k)

∂P̄j

 = 0, (4.53)

where the derivatives of eigenvalues are given by

∂ω2
i (k)

∂Xj
=

M∑
α,β=1

V ∗
αi (k)

∂Dαβ (k)
∂Xj

Vβi (k) ,
∂ω2

i (k)
∂P̄j

=
M∑

α,β=1

V ∗
αi (k)

∂Dαβ (k)
∂P̄j

Vβi (k) , (4.54)

where V (k) = [Vαβ (k)] ∈ RM×M is the matrix of the eigenvectors of D(k) = [Dαβ (k)], with Dαβ normalized
to unity.
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5 Temperature-Dependent Structure of 180◦ Domain Walls in a 2-D
Lattice of Dipoles

To demonstrate the capabilities of our lattice dynamics technique, here we consider a simple example of 180◦

domain walls shown in Fig. 5.1. In these 180◦ domain walls, polarization vector changes from −P0 on the
left side of the domain wall to P0 on the right side of the domain wall. We consider two types of domain
walls: Type I and Type II. In Type I (the left configuration) the domain wall is not a crystallographic line, but
it passes through some atoms in Type II (the right configuration). We are interested in the structure of the
defective lattice close to the domain wall at a finite temperature T . In these examples, each equivalent class is
a set of atoms lying on a line parallel to the domain wall, i.e., we have a defective crystal with a 1-D symmetry
reduction. The static configurations for Type I domain wall, B0, was computed in [68]. Here we consider the
static equilibrium configurations as the initial reference configurations. For index n ∈ Z in the reduced lattice
(see Fig. 5.1), the vectors of unknowns are Un,Qn ∈ R2. Because of symmetry, we only consider the right
half of the lattices and because the effective potential is highly localized [68], for calculation of the stiffness
matrices, we assume that a given unit cell interacts only with its nearest neighbor equivalence classes, i.e., we
consider interactions of order m = 1. Note that this choice of m only affects the harmonic solutions; the final
anharmonic solutions are not affected by this choice. For our numerical calculations we choose N = 280 atoms
in each equivalence class as the results are independent of N for larger N . Note that for force calculations
we consider all the atoms within a specific cut-off radius Rc. Here, we use Rc = 140a, where a is the lattice
parameter in the nominal configuration.

Figure 5.1: Reference configurations for the 180◦ domain walls in the 2-D lattice of dipoles, their symmetry reduction and their
reduced lattices. Left Panel: Type I, Right Panel: Type II.

For minimizing the free energy, first one should calculate the effective dynamical matrix according to Eq.
(4.50). The calculations of this matrix for the two configurations are similar. For example, in configuration I
due to symmetry we have U−1 = −U0. Also we consider the temperature-dependent bulk configuration as the
far-field condition, i.e., we assume Uα = UC for α ≥ C + 1. Our numerical experiments show that choosing
C = 35 would be enough to capture the structure of the atomic displacements near the defect, so we use C = 35
in what follows. For the right half of the defective lattice we have

D∗⋆ =



E∗⋆
0 D∗⋆

01 02×2 . . . 02×2 02×2 02×2

D∗⋆
10 D∗⋆

11 D∗⋆
12 . . . 02×2 02×2 02×2

02×2 D∗⋆
21 D∗⋆

22 . . . 02×2 02×2 02×2

...
...

...
. . .

...
...

...
02×2 02×2 02×2 . . . D∗⋆

(C−2)(C−2) D∗⋆
(C−2)(C−1) 02×2

02×2 02×2 02×2 . . . D∗⋆
(C−1)(C−2) D∗⋆

(C−1)(C−1) D∗⋆
(C−1)C

02×2 02×2 02×2 . . . 02×2 D∗⋆
C(C−1) F∗⋆

C


∈ RS×S , (5.1)



5 Temperature-Dependent Structure of 180◦ Domain Walls in a 2-D Lattice of Dipoles 21

where S = 2 (C + 1),

E∗⋆
0 = D∗⋆

00 − D∗⋆
0(−1) and F∗⋆

C = D∗⋆
CC + D∗⋆

C(C+1) ∗, ⋆ = x, p. (5.2)

Now one can use the above matrices to calculate the effective dynamical matrix. Note that as a consequence of
considering interaction of order m, the dynamical matrix will be sparse, i.e., only a small number of elements are
nonzero. As the dimension of the system increases, sparsity can be very helpful in the numerical computations
[52].
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Figure 5.2: Position and polarization displacements for Type I domain wall (T̄ = 5) obtained by choosing different number of
k-points (r) in the integration over the first Brillouin zone.

As was mentioned earlier, we will consider only the static part of the free energy to build the Hessian for the
initial iteration and then update the Hessian using the BFGS algorithm in each step. To calculate the gradient
of the free energy we need the third derivatives of the potential energy. These can be calculated using following
relation

∂D
∂Ξ

=
∂Dxx

∂Ξ
− ∂Dxp

∂Ξ
D−1

pp Dpx + DxpD−1
pp

∂Dpp

∂Ξ
D−1

pp Dpx − DxpD−1
pp

∂Dpx

∂Ξ
Ξ = Xi, P̄i. (5.3)

To obtain these third derivatives one can use the translation invariance relations (4.19) and (4.20) to simplify
the calculations. For example, we can write

∂3E
∂xi∂xi∂xi

(B) = −
∑′

j∈Li

∂3E
∂xj∂xi∂xi

(B) , (5.4)

where a prime means that we exclude j = i from the summation.
The dimensionalized temperature T̄ and dimensionalized mass m̄ correspond to the choice ~ = kB = 10−3.4

and work with normalized . To obtain the static equilibrium configuration and also in dynamic calculations we
use a = 1.0, P0 = 1.0, ϵ = 0.125 , KA = 2.0 and m̄ = 104. In what follows convergence tolerance for

√
∇F · ∇FT

is 10−5. Using this value for convergence tolerance, solutions converge after ten to twenty iterations. In Fig. 5.2
we plot uT

x and qy for Type I domain wall and T̄ = 5 for different number of k-points (r) in the first Brillouin
zone. Here uT

x is the diplacement of the lattice with respect to the nominal configuration at temperature T̄ .5

For numerical integrations over the first Brillouin zone we use the special points introduced in [46]. For the case
r = 1 we set k = 0, i.e., we assume that all of the atoms in a particular equivalence class vibrate with the same
phase. As can be seen in these figures, displacements converge quickly by selecting r = 7 k-points in the first
Brillouin zone, so in what follows we set r = 7.

Figs. 5.3 and 5.4 show the variations of displacements with temperature for the two domain walls. As
temperature increases we cannot use the static equilibrium configuration as the reference configuration for

4We select these values to be able to work with temperatures that are comparable with real temperature values.
5Note that as temperature increases, lattice parameters change. A temperature-dependent nominal configuration is what is

shown in Fig. 5.1 but with the bulk lattice parameters at that temperature.
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Figure 5.3: Position and polarization displacements of Type I domain wall with respect to the temperature-dependent nominal
configurations.
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Figure 5.4: Position and polarization displacements of Type II domain wall with respect to the temperature-dependent nominal
configurations.

calculating H0. Instead, we use the equilibrium configuration of a smaller temperature to obtain H0. Here,
we use steps equal to ∆T̄ = 5. In other words, for calculating the structure of a domain wall at T̄ = 30, for
example, we use the structure at T̄ = 25 as the initial configuration. We see that the lattice statics solution
and the lattice configuration at T = 0 obtained by the free energy minimization have a small difference. Such
differences are due to the zero-point motions; the lattice statics method ignores the quantum effects. It is a well
known fact that zero-point motions can have significant effects in some systems [31]. Note that polarization
near the domain wall increases with temperature. Also as it is expected, the lattice expands by increasing the
temperature.

Only a few layers around the domain wall are distorted; the rest of the lattice is displaced rigidly. As we
see in Fig. 5.5, the domain wall thickness for both configurations increases as temperature increases. In this
figure w̄T = wT /w0, where w0 is the domain wall thickness at T̄ = 0. Note also that in this temperature range
w̄T increases linearly with T̄ . This qualitatively agrees with experimental observations for PbTiO3 in the low
temperature regime [17]. Foeth, et al. [17] observed that domain wall thickness increases with temperature.
What they measured was an average domain wall thickness. Note that domain wall thickness cannot be defined
uniquely very much like boundary layer thickness in fluid mechanics. Here, domain wall thickness is by definition
the region that is affected by the domain wall, i.e. those layers that are distorted. One can use definitions like
the 99%-thickness in fluid mechanics and define the domain wall thickness as the length of the region that has
99% of the far field rigid translation displacement. What is important is that no matter what definition is
chosen, domain wall “thickness” increases by increasing temperature.

Our calculations show that by increasing the mass of the atoms both position and polarization displacements
decrease. However, variations of displacements with respect to mass is very small. For example, by increasing
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mass from m̄ = 104 to m̄ = 106 at T̄ = 10, displacements decrease by less than 0.1%.
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Figure 5.5: Variation of the 180◦ domain wall thickness with temperature.

6 Concluding Remarks

In this paper we extended the classical method of lattice dynamics to defective crystals. The motivation for
developing such a technique is to semi-analytically obtain the finite-temperature structure of defects in crystalline
solids at low temperatures. Our technique exploits partial symmetries of defects. We worked out examples of
defects in a 2-D lattice of interacting dipoles. We obtained the finite-temperature structure of two 180◦ domain
walls. We observed that using our simple model potential, increasing temperature domain walls thicken. This
is in agreement with experimental results for ferroelectric domain walls in PbTiO3. This technique can be used
for many physically important material systems. Extending the present calculations for 180◦ domain walls in
PbTiO3 will be the subject of a future work.

A The Ensemble Theories

There are different ensemble theories for calculating the thermodynamical properties of systems from the sta-
tistical mechanics point of view. In this appendix, we consider micro canonical and canonical ensemble theories
and discuss the relation between them. In particular, we will see that the free energy minimization discussed
in this paper is equivalent to finding the most probable energy at the given temperature. For more detailed
discussions see Pathria [50].

A.1 Micro Canonical Ensemble Theory

From thermodynamical considerations, it is known that by specifying the limited number of properties of a
system, one can determine all the other properties. In principle, any physical system, i.e., any macro system,
consists of many smaller subsystems. Therefore, we can consider properties of each macro system as macrostates
specified by the properties of these subsystems that are called microstates. Note that by a microstate we mean a
set of values associated to each subsystem of a system. For example, consider an isolated system with energy E
and volume V that consists of N non-interacting particles with energies ϵi, i = 1, 2, . . . , N . Now each n-topple
(ϵ1, . . . , ϵi) satisfying

N∑
i=1

ϵi = E, (A.1)

would represent a microstate of this system.
Obviously, there may exist several microstates that are associated to the same macrostate. Let Ω(E, N, V )

denote the number of microstates associated with the given macrostate (E, N, V ). We assume that for an isolated
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system, (i) all microstate compatible with the given macrostates are equally probable, and (ii) equilibrium
corresponds to the macrostate having the largest number of microstates. Let S and kB denote the entropy of a
system and Boltzmann constant, respectively. Then one can show that the above two assumptions and setting

S = kB ln(Ω), (A.2)

yields the equality of temperatures for systems that are in thermodynamical equilibrium. Note that (A.2)
provides the fundamental relation between thermodynamics and statistical mechanics. Once S is obtained, the
derivation of other thermodynamical quantities would be a straight forward task.

A.2 Canonical Ensemble Theory

In practice, we never have an isolated system and even if we have such a system, it is hard to measure the total
energy of the system. This means that it is more convenient to develop a statistical mechanics formalism that
does not use E as an independent variable. It is relatively easy to control the temperature of a system, i.e.
we can always put the system in contact with a heat bath at temperature T . Thus, it is natural to choose T
instead of E.

Let a system be in equilibrium with a heat bath at temperature T 6. In principle, the energy of the system
at any instant of time can be equal to any energy level of the system. As a matter of fact, one can show that
the probability of a system being in the energy level Pr is equal to

Pr =
gr exp(−Er/kBT )∑
i gi exp(−Ei/kBT )

=
gr exp(−Er/kBT )

Q(T, Υ)
, (A.3)

where we define the partition function of the system as

Q(T, Υ) =
∑

i

gi exp(−Ei/kBT ), (A.4)

and Υ denotes any other parameters that might govern the values of Er. Note that the summation goes over
all energy levels of the system and gi denotes the degeneracy of the state Ei, i.e. the number of different
states associated with the energy level Ei. Thus, one may write gi = Ω(Ei), where Ω comes from the previous
formulation. Assuming the total energy of the system to be an average energy of the different states, i.e.

E =
∑

r

PrEr, (A.5)

one can show that the Helmholtz free energy F can be written as

F = −kBT lnQ. (A.6)

Equation (A.6) provides the basic relation in the canonical ensemble theory. Once F is known the other
thermodynamic quantities can be easily obtained.

Note that we have chosen the average energy to be the energy of the system in this theory. One can show
the total energy that we associate to the system on micro canonical ensemble theory corresponds to the most
probable energy of the system, i.e. the energy level that maximizes Pr at a given temperature T . In practice,
i.e. in the thermodynamical limit N −→ ∞, it can be shown that these energies are equal and thus these two
smilingly different approaches are the same.

Finally, note that

Pr =
gr exp(−Er/kBT )

Q(T, Υ)
=

exp[−(Er − kBT ln gr)/kBT ]
Q(T, Υ)

=
exp(−Fr/kBT )

Q(T, Υ)
, (A.7)

where we use S = kB lnΩ, which is justified by the equivalence of the two ensemble theories. Equation (A.7)
shows that to maximize Pr at a fixed temperature, we need to minimize Fr over all admissible states r. To
summarize, we have shown that minimizing the Helmholtz free energy at a temperature T (and constant volume)
is equivalent to finding the most probable energy level, which is the total energy of the system. Note that this
minimization should be done over all variables that determine the free energy.

6We assume systems can only exchange energy.
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