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Abstract

We examine rafting of two-phase microstructures under a uniaxial applied stress,
a process in which a mismatch in elastic moduli (elastic inhomogeneity) plays a
central role. For this purpose, we have used a phase field model of an elastically
inhomogeneous alloy; elastic stress and strain fields are calculated using a method
adapted from the homogenization literature. We have characterized the efficiency
of the resulting iterative algorithm based on Fourier transforms. Our simulations
of rafting in two-dimensional systems show that rafting (unidirectionally elongated
microstructures) is promoted when the precipitate phase is softer than the matrix
and when the applied stress has the same sign as the eigenstrain. They also show that
migration (for both hard and soft precipitates) and coalescence (for soft precipitates)
have significant contributions to rafting.

Key words: phase field modelling, microstructure, homogenisation, rafting, elastic
stress effects

1 Introduction

Elastic stresses arise during solid state phase transformations due to a lattice
parameter mismatch between the participating phases. In addition, there may
also be externally applied stresses. These stresses have a marked influence
on the evolution of microstructures [1-4]. While some of these stress effects
may be explained or rationalised by assuming that the phases have the same
elastic moduli, other effects arise primarily due to a mismatch in elastic moduli
(elastic inhomogeneity) of the phases. Examples of the latter include rafting
in Ni-base superalloys [5], phase inversion [6], and instabilities in thin solid
films [7]. This paper is on rafting; preliminary results for phase inversion and
thin film instabilities were presented in [8].
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The preferential coarsening of (dilatationally) misfitting precipitates in a di-
rection parallel (P-type) or perpendicular (N-type) to an applied stress is
known as rafting [5,9]: see [10] and [11] for reviews. There have been a number
of attempts in the literature to determine the type of rafting due to elastic
stresses [12-24]. Some of them — energy based approaches — examine the elastic
energy of isolated precipitates under stress [12,13,15] to deduce energetically
favourable particle shapes and orientations. Thermodynamic approaches, on
the other hand, examine the instantaneous chemical potential contours around
a single misfitting inhomogeneity [14,16] under stress. (These thermodynamic
and energy-based studies are critically reviewed by Chang and Allen [10]. The
kinetic studies of rafting are based on atomistic [21-24] or continuum mod-
els [17-20].

Thermodynamic studies (such as that of Schmidt and Gross [16]) indicate that
the type of rafting is determined by the sign of misfit strain 7, sign of applied
stress o, and inhomogeneity §, defined as the ratio of the shear modulus of
the precipitate phase (G?) to that of the matrix phase (G™). We discuss these
results in greater detail in Section 5.1.

Several recent studies have focussed on the effect of a plastic prestrain on
rafting [9,25-28]. In particular, some of these studies argue that such a plastic
prestrain is essential for rafting. On the other hand, there is at least one
experimental study [29], the results of which are not able to choose between
linear elastic and plastic theories; and, Nabarro [12] has argued that there is
significant experimental evidence for rafting due to elastic stresses alone.

Our main aim in this paper, is to show that rafting occurs even under the
assumptions of linear elastic constitutive laws, and that the thermodynamic
models do predict the type of rafting correctly. We do go beyond this narrow
objective, however, by studying multiparticle simulations to study the con-
tributions of interparticle interactions (particle coalescence and migration) to
rafting.

By definition, rafting in systems with dilatational misfit (or, eigenstrain) is
possible only in systems with a mismatch in elastic moduli. Since elastic
stresses in such inhomogeneous systems are harder to compute, there has been
only limited progress in large scale simulations of rafting. In a system with
a spatially periodic microstructure (used for modelling an effectively infinite
system) under a constant traction at the boundary, one needs to compute
both the periodic strain €* and a homogeneous strain E self-consistently. Such
a self-consistent computational technique is available in the literature on ho-
mogenization since 1995 [30] (see also [31,32]). However, these techniques do
not take into account an eigenstrain field (due to a lattice parameter mismatch
between the two phases). Since stresses in our model arise from both an eigen-
strain field and an applied stress, we have adapted the algorithm presented in



Ref. [31]. We present an outline of this algorithm in Section 3

Our phase field model with a Fourier spectral implementation is similar to that
used in Refs. [33,19], who studied systems under a prescribed homogeneous
strain E. We, on the other hand, have studied rafting in systems under a pre-
scribed applied stress (for which the homogeneous strain has to be calculated
self-consistently).

We first present, in Section 2, the diffuse interface model based on the Cahn-
Hilliard equation for microstructural evolution in elastically inhomogeneous
systems. We then outline, in Section 3, the iterative solution technique for solv-
ing the equation of mechanical equilibrium under a prescribed displacement
(constant applied strain) and prescribed traction (constant applied stress) at
the boundary; the details can be found in [34]. In Section 4, we provide a few
benchmarking results to demonstrate our method’s accuracy and efficiency. In
Section 5 we present our results on rafting in multiparticle systems. We end
the paper with a discussion and a brief summary.

2 The Cahn-Hilliard model with elastic energy

We consider a binary phase separating A-B alloy system exhibiting a misci-
bility gap. At a low temperature, an alloy of composition ¢ that finds itself
inside the miscibility gap will consist of two phases m and p with compositions
¢y, and ¢, respectively, at equilibrium.

We rescale the composition variable ¢’ to yield the scaled composition c:

d—c
c=——". (1)
c =,

With this definition, the composition ¢ of a two-phase alloy is the same as
the equilibrium volume fraction of the p-phase; in particular ¢ takes a value of
zero and unity in the matrix and precipitate phases, respectively. Further, all
the variables are rendered non-dimensional using a characteristic length L/,
energy F’, and time 7", a suitable choice for which is deferred to section 3.3.
All the equations in our formulation are presented in terms of non-dimensional
and scaled variables.

Let the composition at any point r at time ¢ be denoted by ¢(r, ). Let the mi-
crostructure of the system be completely described by the composition field.
Consider a domain 2 bounded by 0f2 of such a system; we assume the composi-
tion field to be periodic on 2. Given an initial microstructure (i.e., composition



profile), say c(r,0), its future evolution can be studied by solving the following
version of the Cahn-Hilliard equation [35]:
oc
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where c is the (scaled) composition, M is the mobility, and ¢ is time. p* and
u¢ are the chemical and elastic contributions, respectively to the chemical
potential, defined as the variational derivatives of chemical (F") and elastic
(F) free energies, respectively, with respect to the local composition:
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The chemical free energy F'" is given by the following expression:

Fm:Aw/mmg+mvamm, (5)

where, k is the gradient energy coefficient, and fy(c) is the bulk free energy
density is assumed to be given by the following ‘double well’ potential:

fole) = Apc®(1 — ¢)?, (6)

where Ay is a positive constant which sets the energy barrier between the two
equilibrium phases m and p; thus,

u = h(c) — 2V, (7)

with, h(c) = (0fy/0c).

In this paper, we assume the mobility M in Eq. 2 and the gradient energy
coefficient x in Eq. 5 to be (scalar) constants: thus, the interfacial energies
and the diffusivities to be isotropic.

The elastic contribution to the total free energy is given by [36]:

|
Ft = 2 [ ottedtan (8)
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where, O’f]l- is the elastic stress, and af]l- is the elastic strain, given by:

£t = €ij — €4 9)

e¥ is the position dependent eigenstrain field, and, &;; is the (compatible) total
strain, given by

A 5 {87“3- + 87“1‘ } . (10)

u is the the displacement field. Assuming both the m and p phases to obey
Hooke’s law (i.e., the phases are linear elastic), we have

el el

where Cj;x; is the composition dependent (and hence, position dependent)
elastic modulus tensor.

The eigenstrain is assumed to be dilatational and an explicit function of com-
position:

eyj(c) = Be)e" 6y, (12)

where, €7 is a constant that determines the strength of the eigenstrain, d;; is
the Kronecker delta, and (3(c) is a scalar function of composition.

The elastic modulus tensor is also an explicit function of composition. It is
convenient to describe Cjji; using the following expression:

Ciju(c) = Cijiy + a(c) ACiju, (13)

1

where a(c) is a scalar function of composition, and

Acijkl - ijkl - O?kl? (14)

1 ?

and CY,; and CJy, are the elastic moduli tensor of the p and m phases respec-
eff

tively, and CFj,; is an “effective” modulus.

In addition, the entire macroscopic system could be subjected to a homoge-
neous stress state o4, i.e., the domain €2 behaves as if it is a single homogeneous
block in spite of the inhomogeneities at the microscopic scale. Note that o
should be such that the applied traction on the boundaries of the domain €2 is



anti-periodic; i.e., o - n, is opposite on opposite sides of 02 with n being the
unit normal to the boundary [31,30].

To obtain the elastic energy, and hence the elastic chemical potential, we have
to solve the equation of mechanical equilibrium,

Oo¢
—2 =0 in Q. 15
67"]' m ( )

The Fast Fourier Transform (FFT) based iterative method to solve the above
set of partial differential equations is described below.

3 Solution to the equation of mechanical equilibrium

The elastic moduli and the eigenstrains are periodic on ) (since they depend
on composition field which is periodic on ); therefore, the solution to the
equilibrium equation (Eq. 15), should be such that it gives rise to a strain
field e(r) that is periodic on © (up to an additive constant). The displacement
field u(r) which gives rise to such periodic strain fields can always be written
as follows [30]:

u=E.-r+u”, (16)
where, u* is a displacement field that is periodic on 2 and E is a constant,
homogeneous strain tensor (assumed to be symmetric without loss of general-

ity, since the antisymmetric part corresponds to a rigid rotation of the cell).
It can be shown [30] that E denotes the mean strain tensor of the cell:

{ei}) = Eyj, (17)
with the following definition for the mean ({-}) of a quantity {-}:

() =1 [1an (18)

where V' is the volume of the representative domain €2.

If we denote the periodic strain by &*, the strain that we derive from the
displacement equation 16 becomes,

€ij = Eij + er (19)
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where,

1 [Ouf Ouj
* = _ v . 2
6” 2 { 67"]' + 87"1- } ( O)

Analogous to the expression 17 for the homogeneous strain, we can define the
mean stress on the domain €2 as follows:

(o)) = 5 [ otlae. (21)

The mean stress thus calculated should equal the applied stress o [30,31,37].
[As a brief aside, we note that while References [30] and [31] used the ho-
mogenisation assumption, Jin et al [37] used a variational approach to arrive
at the above conclusion, viz., that the mean stress should equal the applied
stress.] Substituting for o} from Eq. 11, we obtain

1
o = v /Cijkl(Ekl +ej — ep)d. (22)
0

Further, using the definition in Eq. 18, we can define the following mean
quantities:

St = (({Cuymu})) ™, ({o5i}) = {Cigmeia})s and ({03, }) = ({Cijmeiy})-(23)

Using Eq(s). 22 and 23, we obtain

Eyj = Syn [on + ({ol}) — {ou})]- (24)

We may restate the elasticity problem as follows: Given a periodic composition
field ¢ on (2, solve the equation of mechanical equilibrium

0

—{Ciju(Ew + €y — €p)} = 0on €, (25)
8rj

with the constraint

Ei; = Sn(oi + {op}) — {om}) (26)

and the boundary condition

e}, 1s periodic on €. (27)



Substituting for Cjj;, and € in terms of composition, and &}, in terms of the
displacement field in Eq. 25, and using the symmetry properties of the elastic
constants and strains, we obtain

0 our(r

8—7“]- {[Ofﬁcl + oz(c)AC’ijkl] <E}€l + ngi) — €T6klﬁ(6)>} (28)

=0.
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In earlier work on the role of elastic inhomogeneity [33,19], the homogeneous
strain E;; was assumed to take a constant value. For example in Ref. [33], it
is assumed to be zero, while in Ref. [19], where microstructural evolution is
studied under an applied stress, a constant strain is imposed on the system
through a constant E;; tensor. In contrast, our present formulation allows for
a prescribed overall stress (which is achieved by controlling the strain). This
approach is known as “stress-control based on strain-control” (See Appendix
D of [31]).

3.1  Computational algorithm

The equation of mechanical equilibrium, Eq. 29, can be solved numerically
using an iterative procedure [38,33,31]. We begin with the zeroeth order ap-
proximation to the solution by assuming that AC;;x; = 0. Thus, Eq. 15 reduces
to:

eff 82”&;(1') eff Tgklaﬂ(c) (30)

S = 1€ .
RLL or;0ry, ikl or;

eff

- T _ T
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The above equation can be solved in Fourier space. If we denote the Fourier
transform of a quantity (-) by {(-)}g,

{Ote = [()exp(—2mJg - x)dr, (32)

Q

where J is y/(—1). Defining G;' as Cijug;gr (Where g = 27g’), we can write
the solution (in the Fourier space) as follows:

{@)°}, = —IGaolg{B(e)}e: (33)

where the superscript on u; denotes the order of approximation.

Starting with the zeroth order approximation, it is now possible to refine the
solution. We write the nth order refined solution using the (n — 1)th order
solution as follows:

{(u)"}g = —JGul}; g, (34)
where
At =0l {B(0)}e — ACymnEny {ale)}g (35)

FACy " S ale(r)] Ale(r)]}g — A {Q[c(rﬂw} ,

or,

and, E*! is the homogeneous strain calculated from the n — 1th order ap-
proximation of solution using Eq. 24.

3.2 Elastic contribution to chemical potential

The solution procedure yields periodic displacement u* and homogeneous
strain E, and hence strain field ¢;; (through Eq. 19 and 20), e (through
Eq. 9), and 0 (through Eq. 11). Substituting for €% and o in Eq. 8, and
using the definition of u in Eq. 4, we obtain

1
Nyp = ia'(C)ACijkl(Eij +ef; —en) (B + €5 — €x) (36)
—3'(¢)e"63;Cijm (B + €5 — £3),

where the prime represents the differentiation with respect to c. Note that the
above expression is the same as that given by equation 18 in [39].



3.8 Non-dimensionalisation

All the parameters used in our simulations are non-dimensional. We carry out
the non-dimensionalisation using the characteristic length L', energy E’, and
time 7" given below (where, the prime represents the fact that these quantities
are dimensional):

K 3
U= (%
(%) o

B = A, (38)

L?(d, — ¢ )?
-t (39)

With these choices, we have Kk = 1, A, = 1, and M = 1. If I’ = 4A, and
E' = 1072 J, the choice of parameters given in Table 1, can be shown to yield
an interfacial energy of 0.1 J m~2, and a shear modulus of 300 GPa for the
matrix phase.

3.4 Simulation algorithm

We start with the Fourier transform of Eq. 2:

Nclg

o = _92({h}g + 292{0}g + {Hel}g)a (40)

where g is a vector in the reciprocal space, ¢ = |g| and h(c) = 0fy/0c (see
Eq. 7). The semi-implicit discretisation of this equation is [40]:

c(g,t + At) — (g, t)

~ = —g*{h}g — 2g%c(g, t + At) — g* {1} (41)

c(g,t) — QQAt({h}g + {Nel}g)

clg,t+At) = 1+ 2Atg? ’

(42)

where At is the time step for the numerical integration. Thus the problem of
microstructural evolution reduces to numerically solving the discretised equa-
tion(s) above.

Thus, for a given composition field at a given time, we solve the equation of
mechanical equilibrium and obtain p® (using Eq. 36), and h(c) (see Eq. 7),
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and their Fourier transforms. They are used in Eq. 42 to compute the com-
position field at ¢ + At, on which this process can be repeated to simulate
microstructural evolution.

This simulation procedure requires solving the equation of mechanical equilib-
rium at each time step. For this, we need to (a) get the zeroth order solution
(using Eq. 33), and (b) refine the zeroth order solution (using Eq. 34) to get
higher order (and more accurate) solutions, until convergence is achieved. In
this iterative method, it is possible, from the second time step onwards, to use
the displacements from the previous time step as the starting point and thus
expedite the iterative refinement. The solution is deemed to have converged if
the error in displacements is less than a given value (typically, less than 1078).
We use the L? norm in defining the error: Let u”(i,j) and u"*1(4, j) be the
displacement solutions at the grid point (7, j). Let the total number of grid
points in the x and y-directions be M and N respectively. Then, the error is

N 2

Error = | 303w (6,) = w'(i.) - (' (6,5) — w0, 0)| . (43)

i=17=1

The (discrete) Fourier transforms needed for our calculations have been carried
out using the free software FFTW (Fastest Fourier Transform in the West)
developed by Frigo and Johnson [41].

4 Results I: Numerical Method

4.1 System parameters

All the parameters used in our computation are listed in Table 1. The cubic
elastic constants are presented in terms of the average shear modulus G, the
Poisson’s ratio v, and the anisotropy parameter Ay, which are related [16] to
the circular averages of the Voigt constants C'1, Cia, and Cuy:

G =Cuy, (44)
1 612
:—f, 45
Y 201 +Cu (45)
2C
770y O (46)

11



If Az, the anisotropy parameter is equal to unity, the elastic constants are
isotropic. If it is greater (less) than unity, then the elastic constants have a
cubic anisotropy, with (10) directions ((11) directions) being the softest [42,43].
We define an inhomogeneity ratio, 9, as the ratio of the shear modulus of the
two phases p and m: 6 = C'yy /621- If 6 is equal to unity, then the system is
elastically homogeneous. If it is greater (less) than unity, then the precipitate
phase is harder (softer) than the matrix. In all our calculations, we use: v =
v = 0.3, and AY = A7%; thus elastic inhomogeneity enters our simulations
only through 4.

Our choice for the interpolation function (c) for eigenstrain (see Eq. 12) is the
same as that used by Wang et al [44]. This choice implies using the strain free
matrix as the reference state, with respect to which all strains are measured.
We use a similar function for a(c) that interpolates the elastic moduli of the
two phases (see Eq. 13). This choice implies that our effective elastic modulus
is the arithmetic mean of moduli of the two phases: CSh, = (C5y, + CFy) /2.

?

4.2 Circular and elliptic precipitates

In Fig. 1, we compare the numerical solutions for the principal stress compo-
nents (normalised by G™eT) as a function of normalised distance (r/R) from
the centre of a circular precipitate along the x-axis for an elastically isotropic
system (Az = 1) with a softer precipitate 6 = 0.5. The corresponding analyti-
cal solutions [45,46] are also shown (using dotted lines) for a direct comparison.
It is clear from Fig. 1 that the numerical and analytical solutions are in good
agreement. In addition to reproducing the curve for oy; (which is continuous
at the particle-matrix interface), the numerical results are able to capture well
the discontinuity in 099 at the interface; further, o1o, the shear stress, which
must be identically zero everywhere, is less than 107° in our numerical cal-
culations. Finally, the stress at the edge of the simulation cell is very nearly
zero, indicating that our assumption of an effectively infinite matrix is indeed
valid.

We have carried out similar comparisons of our numerical solutions for the
strain components at the centre of elastically isotropic (circular and elliptic),
soft (§ = 0.5), homogeneous (§ = 1.0), and hard (§ = 2.0) precipitates, as well
as for solutions inside a circular and an elliptic homogeneous precipitate when
the elastic constants are anisotropic (with Az = 3.0) (with the corresponding
analytical solutions given by Mura (p. 142 of [45]). In all the calculations, the
error in the principal strain components (normalized by the misfit parameter
eT) at the centre of the precipitate is 1.0% or less (for a volume fraction
of ~ 0.0075). Moreover, the shear strain components at the centre of the
precipitates are identically zero for all these cases: in our numerical calculations

12



Parameter type Parameter Value used
Cahn-Hilliard Model M 1.0
K 1.0
Ay 1.0
Elastic G™ /Ny 400.0
0.3
el 0.01 (for precipitates)
0.0 (for cavities)
oY {c3(10 — 15¢ + 6¢%)} — 3
B 3(10 — 15¢ + 6¢2)
Cfﬁz %(Cﬁm +Ch)
Simulation Az 1.0
Ay 1.0
At 1.0

Allowed error in displacements

less than 1078

Table 1

Parameters used in the simulations

also, we find that the unnormalised shear strain components are of the order

of 1075 or less.

4.3  Cavity under an externally applied stress

Stress fields around a cavity in a stressed material can also be studied by
treating the cavity as a material with very small elastic moduli (i.e., 6 < 1).
Our numerical solutions for a circular cavity in a plate under a uniaxial stress
are shown in Fig. 2; we have used 6 = 10, In this case too, we find a good
agreement between our numerical results and the analytical solution (taken
from page 91 of [47]).

13
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Fig. 1. The normalised stress components (a) o, and (b) 03, as a function of nor-
malised distance: analytical and numerical solutions along the z-axis (from the cen-
tre of a circular precipitate). The distance is normalised by R, the precipitate radius,
while the stress is normalised by the characteristic stress G™e”. The line through
the data points is drawn only as a guide to the eye. R = 25.8; L, = L, = 512;
0=0.5 Az =1.

4.4 Homogeneous strain

As a final benchmarking exercise, we plot in Fig. 3 (a) the (isotropic) ho-
mogeneous strain E normalised by ¢ as a function of volume fraction for
homogeneous as well as inhomogeneous systems (§ = 0.5 and 6 = 2.0) with
a circular precipitate in the simulation box. Since the unstressed the matrix
is the reference state for measuring strains, Khachaturyan showed that, for
an elastically homogeneous system, the ratio £y, /e’ must equal the volume
fraction of the precipitate phase (see p.206 of [48]). Fig. 3 shows that this is
indeed the case in our calculations. In the case of a hard (soft) precipitate
in a soft (hard) matrix, the homogeneous strain is greater (smaller) than the
volume fraction of the precipitate as expected. Further, as the volume fraction
of the precipitate tends to zero, the homogeneous strain also tends to zero.

14
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Fig. 2. The 011 and o099 stress components along the (a) z-axis and (b) y-axis from
the centre of a circular cavity in a square domain under an applied tensile stress
along the z-axis. R = 25.8; L, = L, = 512; 04 =1; 6 = 107%; T = 0.

This exercise also allows us to estimate the error involved in using zero dis-
placement condition (i.e., E = 0) instead of zero traction condition (o4 = 0)
appropriate for an unstressed system. In Fig. 3 (b), we plot this (normalised)
error in the elastic energy as a function of precipitate volume fraction. The
normalisation was carried out using the elastic energy of the unstressed system
(04 = 0). Even at a volume fraction of 0.2, the error could exceed 100%, and
at a volume fraction of 0.5, it could be as large as 500%.

How significant is this error in simulations of microstructural evolution? We
have compared [34] microstructural evolution under two different boundary
conditions: E = 0 and o4 = 0. Since the former overestimates the elastic
energy, we found that its microstructural evolution is equivalent to that of the
latter with a higher modulus (or, equivalently, higher eigenstrain).
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Fig. 3. The (a) normalised homogeneous strain and (b) the normalised difference
in the elastic energy as a function of the volume fraction of the precipitate. The
homogeneous strain is normalised by the strength of the eigenstrain ¢’ = 0.01,
while, the elastic energy was normalised by the elastic energy for an unconstrained
system. The lines through the data points are drawn only as a guide to the eye.

5 Results II. Rafting
5.1 Single particle rafting

Before we present our results on rafting in multiparticle systems, we first sum-
marize the salient results for single particle. Among the numerous thermody-
namic (or, energy-based) attempts in the literature to determine the type of
rafting due to elastic stresses [12-16] (see the review Chang and Allen [10],
the analysis of Schmidt and Gross [16] (hereafter, referred to as SG) is the
most general and complete. Assuming the particle shapes to conform to cubic
(four-fold) symmetry, SG predicted the direction of elongation in systems with
elastic isotropy and cubic anisotropy (in 2D as well as 3D).

The 2D results of SG are summarised schematically in the Fig. 4. The applied
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Fig. 4. Schematic rafting behaviour based on the analysis of Schmidt and Gross
(Ref. [16], Fig. 3), assuming a positive dilatational eigenstrain and an applied stress
along the x-axis on particles with four-fold symmetry.

stress is along the x-axis, and the eigenstrain is assumed to be positive. The
regions 1 and 3 correspond to hard particle under compressive stress and soft
particle under tensile stress respectively; hence, it leads to N-type rafting; in
a similar manner, regions 2 and 4 which correspond to hard particle under
tensile stress and soft particle under tensile stress respectively, leading to a
P-type rafting. While the SG results have been criticized in Ref. [49], we wish
to point out that our own simulations of evolution of a single particle [34]
confirm the SG results on the direction of elongation.

Further, in addition to regions 1 to 4 in Fig. 4, SG also report the existence of
several other regions appear towards outer extremities. Region 5, for example,
corresponds to a very compliant precipitate under compressive stress; we have
been able to confirm this region as well [34].

Regions 6 and 7, on the other hand, appear only in those systems in which the
two constituent phases have different Poisson’s ratio and/or Zener anisotropy
parameter. Since we assume ¥ = ™ and A?, = A7 in our calculations, our
simulations cannot validate this result.

5.1.1  Simulations of multiparticle rafting

The initial microstructure in these simulations is prepared by randomly placing
900 particles of radius R = 5 in the simulation box. The supersaturation in the
matrix is such that the overall alloy composition (equilibrium volume fraction)
is 0.4. The precipitates have a positive dilatational misfit (¢7 = 0.01) with
respect to the matrix phase. All the results presented here are for systems
that fall under the first four categories of Schmidt and Gross in Fig. 4.

First, we note that in all the rafting simulations, the direction of elongation

17



Fig. 5. Rafting in an anisotropic system of (a) hard particles (§ = 2) under a tensile
stress along the y-axis and (b) soft particles (6 = 0.5) under a tensile stress along
the 2-axis; microstructures after 3000 time units. Az = 3; |04 = 0.01G™; ¢y = 0.4.

observed in the microstructures is consistent with theoretical predictions [16].
However, in order to enable easier comparison, we present our results in such
a way that particle elongation is along the y-axis in all the figures; this is
achieved by choosing the stress direction appropriately.

Fig. 5 shows the typical microstructural evolution in an anisotropic system
(Az = 3) with (a) hard precipitates under tensile stress along the y-axis,
and (b) soft precipitates under tensile stress along the x-axis. Note that in
both cases the applied stress is tensile. In this figure, it is clear that hard
particles are smaller and less elongated than soft particles. In other words,
hard precipitates are better than soft ones in resisting rafting and retaining
their compact shapes.

A uniaxial applied stress produces directional (i.e., elongated and aligned)
microstructures not only in elastically anisotropic systems, but also in isotropic
ones, as can be seen in Fig. 6, which is for an isotropic system with soft
precipitates. The upper figure is for a tensile stress along x-axis, and the lower
one is for a compressive stress along y-axis. Thus, both cases, the particles
elongate along the y direction.

This figure also shows the effect of the sign of the applied stress on rafted
morphologies. While the direction of elongation is the same in both figures,
the morphologies in the two cases are different. The precipitates are smaller
and less elongated in the system under a compressive stress (b). Thus, rafting
is more pronounced when ¢4 and €7 have the same sign, than when they have
opposite signs.

In Figs. 6, and 5, the soft particles also appear to have undergone significant

coalescence, leading to particle morphologies that are wiggly and imperfectly
aligned. In Fig. 5, the elastic anisotropy (Az = 3) is such that particles would
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(a)

Fig. 6. Soft particles in an isotropic system under (a) a tensile stress along the z-axis
and (b) a compressive stress along the y-axis; microstructures after 9000 time units.
Az =1; 8§ =0.5; |04 = 0.01G™; ¢ =~ 0.35.

align along the = and y axes ((10) directions) even without an applied stress.
When a stress is applied along one of these directions, the alignment along the
rafting direction is far stronger than that along the non-rafting direction. In
Fig. 5 a, for example, particles do exhibit a strong alignment along the y-axis
(rafting direction); still some alignment along the z-axis can also be discerned.

The role of anisotropy can be seen more clearly in systems with Ay < 1,
in which the (11) directions are preferred for alignment in the absence of an
applied stress. In Fig. 7 we show the microstructures systems with Az = 1/3.
While they exhibit a strong alignment along the (11) directions (top row)
in the absence of an applied stress, the alignment of the particles does shift
towards the rafting directions when a stress is applied. For example, in Fig. 7,
the evolution of soft precipitates under an applied tensile stress along the
x-axis should lead to rafting along the y-axis (N type rafting); this figure
does show rafting along a direction intermediate between the y-axis and (11)
directions.

6 Discussion

6.1 Numerical solution of the equation of mechanical equilibrium

For linear elastic constitutive laws (as well as perfect plasticity and linear
visco-elasticity), the homogenisation problem is known to be well-posed [30].
Further, Hu and Chen [33] also show that each iteration in an iterative proce-
dure of the type described above corresponds to a given order of approximation
of the Green function expansion in the formulation of Khachaturyan et al [38].
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(f)

Fig. 7. Microstructures in (a) Soft, (b) Hard, (c) Soft-Compressive, (d) Hard-Com-
pressive, (e) Soft-Tensile, and (f) Hard-Tensile systems after 8000 time units in an
elastically anisotropic system. The applied stresses are along the xz-axis. Ay = 1/3;
§ =2 (hard); § = 0.5 (soft); || = 0.005G™; cq = 0.4.

Thus, our iterative procedure, outlined in this paper is expected to converge.
However, we wish to highlight two interesting practical observations about the

convergence of our iterative algorithm. First, an iterative procedure based on
FFT for homogenisation studies is known to converge slowly as the ‘contrast’

20



(0 < 1) widens [31]; i.e., as § approaches zero (cavities are modeled using
vanishingly small but finite ¢ values). But, as shown in Fig. 8 we get, in
practice, an (encouragingly) fast convergence even for cavities (§ < 1) using
the above methodology within 23 iterations, when cavity volume fraction is
less than 1 %; however, for a volume fraction of 30%, and § = 107°, this
number is larger (~ 99).
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Fig. 8. The effect of inhomogeneity on convergence; data from simulations of a cir-

cular cavity in a square domain under an externally applied uniaxial stress (Fig. 2).
The line through the data points is drawn only as a guide to the eye.

A second interesting result from our calculations is presented in Table 2. In
the iterative procedure for solving for mechanical equilibrium, the definition
used for C°f, the “effective moduli” (with which we calculate the zeroth order
solution, Eqn. 33) has a strong effect on convergence. In Table 2, we list the
number of iterations needed to converge to the solution in three different cases,
viz., %(C’m + CP), C™ and CP. Even though all the three expressions lead to
the same solution, using C™ or C? as the effective modulus increases the
number of iterations by one or two orders of magnitude compared to the case
when C* = 2(C™ + CP). Surprisingly, when we use the arithmetic average,
the number of iterations needed for convergence is roughly independent of
whether the precipitate is harder or softer than the matrix; at present, the
reason for this faster convergence is not clear.

6.2 Rafting in multiparticle systems

Our multiparticle simulations (Figs. 6, and 5), show that the direction of elon-
gation are in agreement with the results from thermodynamic models [16]; they
are also in agreement with the kinetic studies based on atomistic models [21-
24] and continuum models [17-20].

The morphological changes in multiparticle simulations have a significant con-
tribution from elastic interactions among particles. In particular, such inter-
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Inhomogeneity Expression for C’fjfil Number of
iterations
Hard precipitate (§ = 2.0) %(Cf’jk,l + C’i’}?kl) 4
Soft precipitate (§ = 0.5) %(Cf’jk,l + C’i’}?kl) 4
ijkl 620

Table 2
The effect of interpolation function o and the corresponding ijfgd on convergence.

actions lead to particle migration (in hard precipitates), and coalescence and
migration (in soft precipitates).

The particle coalescence and migration can be more clearly discerned using
two-particle simulations (see Fig. 9). The initial configuration has two particles
of radius R = 10 placed at a distance of about 3R in a 512x512 simulation
cell such that the line joining their centres of mass makes an angle of 45° with
the z-axis. The far-field composition is maintained at 0.1.

The microstructures (after 5000 time units) corresponding to regions 1, 2, 3,
and 4 of the schematic in Fig. 4 are shown in the Fig. 9 a, b, ¢, and d, re-
spectively In all cases the particles try to align along the z- or y-axes; this
direction is consistent with the direction of elongation predicted for single par-
ticle geometries. However, while the hard particles migrate, the soft particles
both migrate and coalesce. The migration of the hard particles is clear from
Fig. 9 (e), where the angle 6 that the line joining the centres of mass of the two
hard particles makes with the z-axis keeps shifting in the expected direction
with time.
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Fig. 9. (a) Hard particles under compressive stress (b) Hard particles under tensile
stress (c) Soft particles under compressive stress (d) Soft particles under tensile
stress. Applied stresses are along the z-axis. All the microstructures correspond to
5000 time units. Note that (a), (b), (c¢), and (d) correspond to regions (1), (2),
(3), and (4) of the schematic 4 respectively. Az = 1; § = 2 (hard); § = 0.5 (soft);
lo4| = 0.01G™; ¢g = 0.1. (e) The angle @ that the line joining the centres of mass
of two hard particles makes with the z-axis as a function of time.

7 Conclusions
(1) We present a phase field model which incorporates an iterative algorithm

for numerically solving the equation of mechanical equilibrium in an elas-
tically inhomogeneous system.
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(2)

8

We

The iterative method used for solving the equation of mechanical equi-
librium is capable of handling both prescribed traction and displacement
boundary conditions (and is the same as the stress-control-via-strain-
control approach used in the homogenisation literature).

Using our phase field model, we show that purely elastic stress driven
rafting is possible, and, that the rafting type in such systems is predicted
correctly by thermodynamic studies of Schmidt and Gross [16].

Rafting is more pronounced when precipitates are softer and the sign of
the applied stress is the same as that of the misfit.

In the case of multiparticle rafting, interparticle interactions leading to
particle migration has a significant contribution to the rafted microstruc-
ture. Further, in the case of soft precipitates, particle coalescence also
contributes to preferential coarsening.
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