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Abstract: An important aspect of multiscale modeling of materials is to link continuum concepts such as 
fields to the underlying discrete microscopic behavior in a seamless manner. With the growing importance 
of atomistic calculations to understand material behavior, reconciling continuum and discrete concepts is 
necessary to interpret molecular and quantum mechanical simulations. In this work, we provide a 
quantum mechanical framework to a distinctly continuum quantity: mechanical stress. While the concept 
of the global macroscopic stress tensor in quantum mechanics has been well established, there still exist 
open issues when it comes to a spatially varying local quantum stress tensor. We attempt to shed some 
light on this topic by establishing a general quantum mechanical operator based approach to continuity 
equations and from those, introduce a local quantum mechanical stress tensor.  Further, we elucidate the 
analogies that exist between (classical) molecular dynamics based stress definition and the quantum 
stress. Our derivations seem to suggest that the local quantum mechanical stress may not be an 
observable in quantum mechanics and therefore traces the non-uniqueness of the atomistic stress tensor 
to the gauge arbitrariness of the quantum mechanical state-function. Lastly, the virial stress theorem (of 
empirical molecular dynamics) is re-derived in a transparent manner that elucidates the analogy between 
quantum mechanical global stress. 
 
1. Introduction and Background 
  
Several processes occur in nature wherein physical phenomena occur across multiple 
length and temporal scales. An oft-used example is that of protein folding: the time 
scale for the vibration of the covalent bonds is of the order a few femto-seconds (10-15s) 
while the folding of the proteins takes place on the order of a few seconds. The 
electromechanical behavior of solids is another typical example that exhibits such a 
multiscale characteristic. At the fundamental level, the properties of the solid can be 
attributed to the electronic structure while atomic interactions and crystal structures can 
be described at the atomistic scale by using an atomic/molecular picture. Electrical and 
deformation behaviors in macroscopic samples, on the other hand, are routinely 
described using continuum theories wherein the notion of the underlying discrete atomic 
structure of matter is discounted in favor of the idea of a smeared out continuum. 
Continuum theories introduce kinematic measures like displacement fields and electrical 
measures like polarization fields as opposed to discrete atomistic quantities like atomic 
coordinates and induced dipole moments. This process of zooming out from an 
electronic to atomistic to a continuum picture is accompanied by an enormous decrease 
in the degrees of freedom which serves to considerably simplify analysis. For several 
applications of practical interest in structural and electrical engineering, the accuracy 
and predictive power of continuum theories is known to be more than sufficient. Any 
minute improvement in the accuracy gained by applying atomistic methods in such 
situations is rendered superfluous due to the enormous increase in the computational 
expenses that atomistic methods require. 
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The tremendous decrease in the degrees of freedom that continuum theories offer is 
often a result of certain simplifying assumptions based on which such continuum 
theories are constructed. When the discrete nature of matter becomes apparent, say in 
nanoscale phenomena, there is an expectation that classical continuum theories may 
fail to apply in some contexts and may need to be “informed” of the insights obtained 
through atomistic considerations. Indeed, in recent years, novel size effects are being 
routinely observed in a variety of contexts like plasticity, electromechanical response of 
nanosized dielectric thin films, quantum dots and composites amongst others.  
 
Certain scenarios may present themselves wherein a substantial part of the system 
essentially behaves like a continuum with the remaining part of the system exhibiting 
full-fledged atomistic behavior which cannot be captured by a fully continuum theory. 
Multiscale modeling techniques aim to identify the multiple natural length and time 
scales in a phenomenon and transfer information across them in a seamless fashion 
(e.g. see the following representative articles and references therein:  Miller and Tadmor 
2002; Curtin and Miller 2003; Park and Liu 2004; Liu et al. 2006; Gavini et al. 2007; 
Miller and Tadmor 2007; Kulkarni et al. 2008). This often requires reconciling the 
atomistic notions which represent the true mechanistic underpinnings behind a process 
with coarse-grained (including continuum) ideas which serve to capture the essential 
physics in a phenomenological manner. Even with the sustained interest in multiscale 
modeling techniques over the past many years, a ‘seamless’ integration has proven to 
be challenging especially when it comes to bridging temporal scales (e.g. see the 
following review article and references therein: Jun et al. 2009).  
 
In this paper our focus is the concept of “mechanical stress”. Numerous works have 
appeared that have attempted reconciliation of classical molecular dynamics stress and 
continuum definition of stress. The reader is referred to the following representative 
(non-exhaustive) list of papers and the references therein: Cormier et al. 2001; Murdoch 
(1994; 2003a,b; 2007), Zhou 2003; Zimmerman et al. 2004; Chen 2006; Silling and 
Lehoucq 2007; Webb III et al. 2008 among others. In particular, we highlight here the 
now-classic paper by Noll 2009 originally published in 1955 in German which was 
recently updated (and translated by Lehoucq and Lilienfeld-Toal). The paper provides 
interesting methodologies that were later used by Murdoch (2007) to perform coarse-
graining of discrete quantities and derive a rigorous expression for atomistic stress. In 
this paper, we go a step further and attempt to establish the definition of quantum stress 
and elucidate its relation to both the classical molecular dynamics based stress and its 
continuum counterpart.  
 
Investigations into the quantum mechanical definition of stress were well preceded by 
early fundamental work on the concept of quantum mechanical force (Ehrenfest 1927; 
Pauli 1933; Hellmann 1937; Feynman 1939; Feynman 1939) and pressure (Born et al. 
1926; Finkelstein 1928; Hylleraas 1929; Fock 1930; Slater 1933; Slater 1963; Slater 
1967). The Ehrenfest’s theorem (Ehrenfest 1927), which states that the net force on a 
particle is given by the expectation value of the negative of the gradient of the potential, 
is such an example. We will discuss the Ehrenfest’s theorem in more detail shortly. 
Pauli, Hellmann and Feynman (Pauli 1933; Hellmann 1937; Feynman 1939; Feynman 
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1939) modified the Ehrenfest’s theorem to a form appropriate for application to forces 
between molecules. The consequences of the so-called Hellmann-Feynman theorem 
are significant. Previously, forces within molecules and associated problems involving 
the estimation of lattice constants, calculations of phase transitions, elastic properties, 
phonon dispersion, stiffness of valence bonds and others were addressed invoking the 
energy formalism in an indirect manner. These usually involve calculations of energy for 
several neighboring configurations of the molecule; the force is then obtained by 
determining the slope of the plot of energy vs. position. The Hellmann-Feynman 
theorem offers a direct way to estimate the force for a given configuration, given that 
only the particular configuration of interest is known. The quantum mechanical virial 
theorem, which states that the total pressure in a many-body quantum mechanical 
system is defined by the kinetic energy and the virial of the potential (much like its 
classical counterpart) also attracted attention from authors including Born, Heisenberg, 
and Jordan, Fock and several others (Born et al. 1926; Finkelstein 1928; Hylleraas 
1929; Fock 1930; Slater 1933; Slater 1963; Slater 1967; Ross 1969). Though several 
early works of varying levels of sophistication have considered the quantum mechanical 
stress tensor (Schrödinger 1927; Pauli 1933; Feynman 1939; Feynman 1939; Martin 
and Schwinger 1959; Kugler 1967; McLellan 1974; McLellan 1984; Folland 1986), we 
mainly use the seminal work by Nielsen and Martin’s (Nielsen and Martin 1983; Nielsen 
and Martin 1985) as a starting point. 
 

The outline of our paper is as follows. In Section 2, we introduce the concept of a 
global macroscopic stress in three different settings: continuum mechanics, classical 
(empirical) molecular dynamics and finally quantum mechanics. An attempt will be 
made to relate the well-known kinetic and potential contributions to the stress in 
continuum mechanics to analogous quantities in discrete settings such as molecular 
dynamics and quantum mechanics. In Section 3, we delve into the idea of stress as a 
locally varying field theoretic quantity. While this idea is quite intuitive in continuum 
mechanics, there is still a lack of consensus about how best to represent a locally 
varying stress in a discrete setting. In this respect, we introduce Murdoch’s (Murdoch 
2007) formulation for a locally varying stress field from discrete atomistic quantities 
using the approach of weighting functions. In the same spirit, we also introduce a novel 
approach to a local spatially varying stress field in quantum mechanics by deriving the 
continuity equations for an arbitrary Hermitian operator. The concept of the virial 
pressure is closely tied with the ideas of stress which are introduced in Sections 2 and 
3. In Section 4, we outline an alternate derivation of the well-known Clausius’ virial 
theorem which brings out some interesting physical insights and makes the comparison 
with quantum global stress quite transparent. We conclude in Section 5 with a summary 
of the physical insights gained out of the previous sections along with a brief discussion 
of our perspective on some open issues that remain in the area of quantum mechanical 
description of stress. 

 
2. The Macroscopic Stress 
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Macroscopic Stress in Continuum Mechanics: We first review the expression for the 
macroscopic stress in continuum mechanics. Consider a continuum body occupying 
region Ω, the equation of motion can be written as 
 

div ρ ρ+ =σ b &&r  (1) 

Here σ is the Cauchy stress, ρ  is the mass density, b is the body force density. Here, r 
is taken to be the displacement with respect to a fixed point (assumed to be at the 
origin). The mean Cauchy stress,σ  is given by 

grad   V dV dΩ
Ω Ω

= =∫ ∫σ σ σ r V  (2) 

By employing the divergence theorem and defining, .=t σ n , it can be proved that  

( )  dV dV dV dV
dt

ρ ρ ρΩ
Ω Ω Ω ∂Ω

= ⊗ − ⊗ + ⊗ ⊗∫ ∫ ∫ ∫σ b t& & & &r r r r r r+ dA  (3) 

The trace of the first term on the RHS can be seen to be twice the kinetic energy KΩ for 
the body.  

Taking an average over “a very long time”†, and assuming that the quantity ( )dVρ
Ω

⊗∫ &r r  

macroscopic stress becomes 
remains bounded in time, one can conclude that the space and time averaged 

 +V dV dVρ ρΩ
Ω Ω ∂Ω

= ⊗ + ⊗ ⊗∫ ∫ ∫σ b t& &r r r rdA  (4) 

where the symbol denotes the temporal average.  

We note that the above derivation holds when the object is not in equilibrium. For the 
latter case, we have: 

 +V dVρΩ
Ω ∂Ω

= ⊗ ⊗∫ ∫σ b tr rdA

                                                

 (5) 

 
Macroscopic Stress in Molecular Dynamics: This section is partly based on 
Zimmerman et. al. (2004) and Murdoch (2007). The aim here is to establish a link 
between the continuum global virial stress of a macroscopic body (discussed previously 
in this section) and its molecular content. Accordingly, let us consider a set of interacting 
point masses Pi (i = 1, 2, 3, …N). The motion of Pi  in an inertial frame is governed by 

 

† Here we avoid the rigor needed to justify this statement.  
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( )i i i
d m
dt i= =p v& f  (6) 

fi are the forces on the particles while mi and vi signify masses and velocities 
respectively. Now let us define a quantity G such that 
 

 : i i
i

= ⊗∑G p r  (7) 

ri denotes the displacement‡ of the point particles from a fixed point. Taking the time 
derivative of G 
  

i i i i
i i

d m
dt

= ⊗ +∑ ∑ i
G v v f r⊗  (8) 

Taking a sufficiently long time average and assuming that the quantity G remains 
bounded in time, we have 

0i i i i
i i

m ⊗ + ⊗ =∑ ∑ iv v f r  (9) 

Now, the force fi on a particle can be written as a summation of an inter-particular force 
fi,int  (which the particle experiences due to interaction with other particles in the system), 
a body force fi,body  , and a confinement force fi,confine which serves to confine a particle 
say enclosed within a vessel. 

 
 

Figure 1: The different types of forces acting on a particle 
 
 
Pictorially the above situation has been depicted in Figure 1. 
 
Further, identification can be made between the effect of discrete confinement forces ci 
with that of an applied traction field t(r) and between the discrete body forces on a 

                                                 

‡ We use different symbols in the discrete context; compare with Equation (3) 
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particle bi on particles with that of a continuum body force density b(r) as shown in 
Figure 2. 

 
Figure 2: Identifying the discrete confinement forces with the continuum traction field and discrete body 

forces with continuum body force density 
 
Therefore we can write 

i i
i R

ds
∂

⊗ ≡ ⊗∑ ∫c r t r  (10) 

  
i i

i R

dVρ⊗ ≡ ⊗∑ ∫b r b r  (11) 

So from Equations (10-11) and (8), 
  

( ) ( )( )1 div
2 ij j i i

i i R

d m d
dt

ρ+ ⊗ − − ⊗ = + ⊗ +∑ ∑ ∫
G f r r T b r Ti iv v V  (12) 

For suggestions of macroscopic equilibrium in which G remains bounded in time, an 
average over sufficiently long times yields the following expression for the macroscopic 
stress (Murdoch, 2007): 
 

 ( )1 1
2 ij j i i i i

i i
m v v

⎛ ⎞
= ⊗ − − ⊗⎜ ⎟Ω ⎝ ⎠

∑ ∑T f r r  (13) 

Macroscopic Stress in Quantum Mechanics: The total stress of a stationary system 
can be obtained by applying a variational principle together with a scaling of the wave-
function. The derivation follows the same methodology as that given for the virial 
theorem by Fock. See also (Nielsen and Martin 1985) and our review article 
(Maranganti et al. 2007). Firstly, we consider a many-body Hamiltonian of the form 
 

2

int ext2
i

i i

H V
m

= + +∑ p V  (14) 
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where V:= Vint + Vext denotes the potential energy of the whole system: it is a function of 
the positions of all the particles. Note that both nuclei and electrons are regarded as 
particles. Vint is the intrinsic contribution consisting of inter-atomic potentials, while Vext 
incorporates the potentials associated with external influences such as body forces. We 
will only consider potentials which are not velocity dependent (i.e. potentials are only 
dependent upon coordinates of the particles). One can solve the Schrodinger equation, 
Equation (15), to obtain the many body eigenstates ψ . 
 

H Eψ ψ=  (15) 

The quantum mechanical variational principle requires that the ground state is the 
minimum of the energy E with respect to the allowed variations in  ψ  
 

E Hψ ψ=  (16) 

It should be noted that in the context of quantum mechanics, the symbol  denotes 
expectation value. To derive the stress, a homogeneous scaling is applied to the ground 
state  ψ (r), where r denotes a list of all particle coordinates. Consider a transformation 
on this coordinates of the form:   
 

i ir r riα α αβ
β

ε→ + β∑  (17) 

Here, αβε  is a symmetric strain tensor. The change in the wave function is given by: 

( ) ( ) ( )( )1/ 2 1det 1 1εψ ε ψ ε− −→ + +r r  (18) 

The above scaling of the wave function can be explained diagrammatically as shown in 
Figure 3.  

 
Figure 3: Rescaling of the wavefunction under a homogeneous "stretch" 
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The additional factor of is included so that the normalization of the wave 
function is preserved. The expectation value of H with respect to 

( ) 1/ 2det 1 ε −+
ψ   involves an integral 

over all the coordinates, r. 

( ) ( )
2

int ext2
i

i i

H V V d
mε ε ε εψ ψ ψ ψ∗ ⎡ ⎤

= + +⎢ ⎥
⎣ ⎦
∑∫
pr r r  (19) 

By substituting , we can re-write the integral in Equation (19) to be  ( )1→ +r ε r

( ) ( )( )
( )( )

( )( )
( )

2

int2

ext

1 1
2 1

                            1

i i i

d V
m dH d

V
ε εψ ψ ψ ψ∗

⎡ ⎤−
+ +⎢ ⎥

+= ⎢ ⎥
⎢ ⎥+ +⎢ ⎥⎣ ⎦

∑
∫

ε r
ε rr r

ε r

r  (20) 

On further simplification, the above integral can be re-written as 

( )
( )( ) ( )( )

( )

2

int ext

2 3 ...
2

    1 1

i i i i i

i i

p p p p
mH d

V V

αβ α β αβ αγ β γ

ε ε

ε ε ε

ψ ψ ψ ψ∗

⎡ ⎤⎛ ⎞− + +
⎢ ⎥⎜ ⎟

= ⎢ ⎥⎝ ⎠
⎢ ⎥+ + + +⎣ ⎦

∑
∫

p

r r

ε r ε r

r  (21) 

The variational principle requires that Hε εψ ψ vary from Hψ ψ only to second order 
in the strain, therefore 
  

( ) ( ) (int ext0 i i
i i

i i

p pH
r V V

m
α βε ε

β α
αβ

ψ ψ
ψ ψ

ε
∗ ⎡ ⎤∂ ⎛ ⎞

= = − ∇ +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
∑∫ r r)dr  (22) 

The term involving Vext in Equation (22) represents the stress exerted by the external 
environment upon the solid. This stress is symmetric for a system in equilibrium in the 
absence of external torques. 

i i ext
i

T r Vαβ β αψ ψ= − ∇∑  (23) 

The net torque due to external forces is given by 
i i i i

i i

r f r fα αβγ β γ αβγ γ βτ ψ ψ ψ ψ=∈ = −∈∑ ∑  (24) 

Here, αβγ∈ is the Levi-Cevita symbol defined by 

1,if (i,j,k) is an even permutation of (1,2,3)
1, if (i,j,k) is an odd permutation of (1,2,3)

0, if any index is repeated
ijk

+⎧
⎪∈ = −⎨
⎪
⎩

 (25) 

However, if the stress is symmetric, then 
 i i i i

i i

r f r fγ β β γψ ψ ψ ψ=∑ ∑  (26) 
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Now from the properties of the Levi Cevita operator, we arrive at the following 
α ατ τ= −  (27) 

Thus, from Equation (27), we can infer that the net external torque vanishes if the stress 
is symmetric. The stress intrinsic to the system is then given by 
  

( )int
i i

i i
i i

p p
T r

m
α β

αβ β α Vψ ψ
⎛ ⎞

= − − ∇⎜ ⎟
⎝ ⎠

∑  (28) 

Equation (28) is one form of the stress theorem which expresses the total macroscopic 
stress in terms of the expectation values of internal operators intrinsic to the system. It 
can be seen that the expression for the macroscopic stress in molecular dynamics 
(Equation 13) and the expression for the global virial stress in quantum mechanics, 
Equation (28), closely parallel each other. 
 
We note that Equation (28) provides the macroscopic stress even for systems subjected 
to inhomogeneous external stresses. Is this statement justified? The answer is in the 
affirmative since the macroscopic stress is arrived at by applying a uniform strain to the 
ground state of the system and extracting its response. There is no restriction on the 
strain state of the ground state of the system. It may be, for example, subject to 
inhomogeneous residual stresses. 
 
The stress theorem is applicable to general quantum mechanical systems with 
interactions which are differentiable functions of the particle coordinates. The potentials 
can be nonlocal in nature, i.e., functions of the coordinate of a given particle at more 
than one point in space. The nonlocal nature of potentials is especially relevant for the 
case of pseudopotentials which are extensively used in numerical quantum mechanical 
based computational schemes. In order to define the stress of Equation (28) in an 
unambiguous manner; we have to express the stress in terms of relative coordinates of 
the interacting particles. In case of particles acting through two-body potentials 
 

( )
( )

int
,

1
2

j i

ij i j
i j

V V
≠

= −∑ r r  (29) 

Then the stress theorem of Equation (28) becomes 
( ) ( ) ( )

( )
,

1
2

j i

i j i ji i
ij i j

i i ji i j

p p
T V

m
α β α β

αβ

≠

− −
′= − − −

−∑ ∑
r r r r

r r
r r

 (30) 

This form of the stress is symmetric (torque-free) and dependent only upon the relative 
distances between the particles. In macroscopic systems where the volume is well 
defined, the average stress density can be defined as 

/Tαβ αβσ = Ω  (31) 
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For a periodic structure, the volume can be chosen to be a unit cell and a stress density 
per unit cell volume may be defined. The quantum mechanical form of the virial theorem 
can be obtained by taking the negative of the trace of in Equation (30) 

( )
( )

2

,

13 2
2 2

j i

i
i j ij i j

i i ji

P
m

≠

′Ω = − − −∑ ∑p r r r rV

3 2 kin potP E E

 (32) 

Here, P denotes the pressure. Further, if the interactions are of the form V (r) = 1/rn, the 
virial theorem can be written in terms of the potential and kinetic energy. For the case of 
the Coulomb potential, the virial theorem takes the form  

Ω = +  (33) 

In most cases, it is advantageous to carry out calculations without introducing an explicit 
Vext. Instead, often calculations are done using, H = Tkin + Vint with the system being 
subject to constraints corresponding to Vext. In this case, the wave function satisfies a 
restricted variational principle. 
 
3. Stress as a microscopic field 
 
Thus far we have considered the average macroscopic or the global virial stress of a 
system of particles both in the molecular dynamical as well as in the quantum 
mechanical context. However, these treatments do not bring about the field nature of 
stress and force. In other words, the point - to- point spatial variation of the stress and 
force fields is (obviously) lost in the process of averaging over a macroscopic volume. If 
one however knows the spatially varying stress field, the ramifications can be important. 
Spatial variations in the planar stress can provide an insight into the forces operating in 
systems which are not in equilibrium (Nielsen and Martin 1985). Filippetti and Fiorentini 
(Filippetti and Fiorentini 1999; Filippetti and Fiorentini 2000) envision using the 
microscopic stress as what they refer to as a stress microscope to examine the 
microscopic stress’s role in explaining the physics of certain surface and interface 
phenomena. Ramer et al. 1998 applied the microscopic stress .field to study 
piezoelectric effects in perovskites. While the local force field is uniquely specified in 
terms of kinetic and potential operators (Pauli 1933), the stress field, on the other hand, 
can only be specified to an arbitrary gauge term (explained shortly) (Feynman 1939; 
Feynman 1939). Traditionally, the stress field is defined as any 2-tensor field whose 
divergence yields the force field of the system. 

( )( ) div=f r σ r  (34) 

To this stress field one can add a term of the form 
( )ijk

k

A
r

∂

∂

r
 (35) 
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where Aijk (r) is an arbitrary tensor field antisymmetric in j and k and recover the same 
force field of Equation (34). Thus, the stress field is undetermined to an arbitrary gauge 
term if one chooses to define it via Equation (34). This is the gauge-arbitrariness 
associated with the microscopic stress field. We now examine a route to arrive at a 
microscopic stress field in discrete molecular dynamics by local spatial averaging. 
 
Stress as a local spatial average: How to link continuum field values with 
microscopic behavior at any length scale? 
In an empirical molecular dynamics setting, Murdoch 2007 has outlined the following 
approach to arrive at a spatially varying stress field by means of local spatial averaging. 
Once again, consider a set of interacting point masses Pi (i = 1, 2, 3, …, N). The mass 
and momentum density fields are defined as 

( ) ( )( )

( ) ( ) ( )( )

, :

, :

w i i
i

w i i i
i

t m w t

t m t w t

ρ = −

= −

∑

∑

r r r

p r v r r
 (36) 

Here the sums are taken over all particles and ri (t)-r denotes the displacement of Pi 
from geometrical point r at time t. In accordance with the continuum notion of mass 
density, the weighting function w should be chose such as to assign greater 
contributions to point masses near to r than far there from, have physical dimension L3, 
and be continuously differentiable on the space of displacements in Euclidean space. 
To ensure that the integral of ρ w over all space yield the total mass of the body it is 
necessary and sufficient that 

( ) 1
V

w d =∫ u u  (37) 

Now holding r fixed 

( )

/ .

             

w i i i
i i

i i
i

t m w m w

m div w div

ρ∂ ∂ = ∇ = − ∇

= − = −

∑ ∑

∑

rv v

v p

. i

w

 (38) 

Whenever and wherever 0wρ ≠ ; the corresponding velocity field can be written as 
  

/w w wρ=v p  (39) 

From Expression (39), the mass balance equation can be written as 
/ 0w wt divρ∂ ∂ + =p  (40) 

Similarly a momentum balance equation can be arrived at as 
 w w wdiv wρ+ =T b a  (41) 

Here the following definitions hold (--the reader is referred to Murdoch’s work for details, 
2007): 
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  w w
−= −T T Dw (42) 

 ( ) ( )( ), : ( )w i i
i

t b t w t= −∑b r r r  (43) 

 ( ): /w w wt= ∂ ∂ + ∇a v v vw  (44) 

 w wdiv − =T f  (45) 

 ( ) ( ) ( )( ), :w ij i
i j i

t t w t
≠

= −∑∑f r f r r  (46) 

 ( ) ( )( ), :w i i i i
i

t m w t= ⊗ −∑D r v v r r  (47) 

Dw represents the kinetic contribution to the stress while w
−T represents the contribution 

due to inter-particular interaction and can be uniquely specified only up to a divergence 
free tensor. Therefore, this non-uniqueness can be exploited to arrive at many forms of 
the interaction stress tensor. Two forms, the Hardy’s stress and the Noll’s stress, are 
popular in the literature (Murdoch, 2007). 

1
2w ij

i j

−

≠
ij= ⊗∑∑T f b  (48) 

Hardy’s choice 

( ) ( )( )( )
1

0

:ij j i i j iw dλ λ= − + − −∫b r r r r r r  (49) 

Noll’s Choice 

( ) ( )( )
1

0

1: 1
2ij i j

V

w w d dα α α= − − − − + −∫ ∫b u r r u r r u u  (50) 

A Local Stress Field in Quantum Mechanics: General Formalism 
In this section, we develop a general quantum mechanical operator based approach to 
continuity equations for densities of Hermitian operators. Consider a Hermitian operator 
B corresponding to some physical observable. Then, one can define a corresponding 
spatially varying Hermitian density operator A(r) as an anti-commutator of the form 

( ) ( ){ } ( ) ( )ˆ ˆ1 ˆ,
2 2

B B
A B

δ δ
δ

− + −
= − =

R r R r
r R r  (51) 

Note that  is the position operator while r is the spatial location of interest. As an 
example the single particle mass density operator 

R̂
( )ρ r is then: 

( ) ( ){ } ( )1 ˆ ˆ,
2 i i i im mρ δ δ= − =r R r R − r  (52) 
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Consider a cluster of a finite number of nuclei and electrons. The nuclei being massive, 
we will consider them as classical particles. Thus, the mass density due to the nuclei 
becomes 
  

( ) ( ), ,n n i n i
i

mρ δ= −∑r R r  (53) 

mn,i is the mass of the ith nucleus and Rn,i corresponds to its physical position. However, 
the mass density operator corresponding to the electrons is 

( ) ( ), ,
ˆ

e e i e i
i

mρ δ= −∑r R r

)

 (54) 

Here, me,i is the mass of the electron. For an electronic wavefunction of the form 
, the expectation value of the electron mass density is ( 2; ...; NΦ r r r

( ) ( ) ( )2 2 2... ; ...; ; ...;e e N NNm d dρ ∗= Φ Φ∫r r r r r r r r Nr  (55) 

For a single particle, the expectation value becomes 
( ) ( ) 2

emρ = Φr r  (56) 

From elementary quantum mechanics, we note the interpretation of the modulus of the 
wavefunction squared as the probability density distribution for the particle. 
 
What kind of continuity equation will such density operators follow? We consider again a 
general Hermitian density operator of the form 

( ){ }1 ˆ( ) ,
2

A A δ= −r R r  (57) 

In order to find its time evolution we write the Heisenberg’s equation of motion for this 
density operator resulting in: 

( )( ) 1 ,A A H
t ih

∂
= ⎡ ⎤⎣ ⎦∂

r r  (58) 

Here H is the Hamiltonian operator. Expanding the commutator and anti-commutator we 
have 

[ ] ( ){ } ( ){ }( )( ) ˆ ˆ, , , ,
2

A i H A A H
t h

δ δ∂ ⎡ ⎤= − + −⎣ ⎦∂
r R r R r  (59) 

It is interesting to draw an analogy between Equation (59) and the generalized 
continuity equation from classical mechanics 

 i
ij i

j

dp S
dt x

∂
+ Π =
∂

 (60) 

Notice that if H and A commute, then the first term on the right hand side of Equation 
(59) vanishes. That is why we can identify this term to correspond to the source term Si 
in its classical counterpart. After some manipulation, Equation (59) can be re-written as 
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( ) ( ) ( ),
1 1ˆ ˆ, , ,
4 2

i
r i

pA A A
t m t

δ⎧ ⎫∂ ∂⎧ ⎫ δ⎧ ⎫+ ∇ − = −⎨ ⎨ ⎬⎬ ⎨ ⎬∂ ∂⎩⎩ ⎭⎩ ⎭
r R r

⎭
R r  (61) 

From Equation (61), the flux density operator corresponding to the operator A can be 
written as 

( ) ( )1 ˆ, ,
4

A i
i

pT A
m

δ⎧ ⎫⎧ ⎫= −⎨ ⎨ ⎬
⎩ ⎭⎩ ⎭

r R ⎬r  (62) 

For example, in order to find the flux density of particles, we can substitute the identity 
operator in place of A to obtain: 

( ) ( )( ) ImN
i i

hT
m

ψ ψ∗= ∇r  (63) 

Equation (62) is recognizable as the expression for the well-known particle current 
density from quantum mechanics. Now, in order to find the kinetic contribution of stress, 
we substitute the momentum operator in place of A in Equation (62) to obtain, 

( )
2 2

4
kin

ij
i j j i i j i j

hT
m r r r r r r r r

2ψ ψ ψ ψ ψ ψψ ψ
∗ ∗ ∗

∗
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂

= + − −⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

r  (64) 

To find the interaction contribution to the stress, we have to focus on the source term in 
Equation (61). Simple inspection shows that a form of stress due to Kugler 1967 
satisfies Equation (61), in the sense that its divergence yields the source term in 
Equation (61). Kugler’s stress definition however contains some objectionable features. 
Even if the interactions defined by V are short-ranged, the curl-free nature of the 
potential term renders the Kugler stress inherently long-ranged and thus nonlocal. In 
particular, the long-range character of the Kugler stress derives from the term, 
 

( ) ( )
( )

3

ˆ
1

4 ˆ
pot

iT V β
αβ απ

−
= ∇

−

r R
r

r R
 (65) 

The Kugler stress corresponding to the interaction between two particles A and B can 
be visualized as a radial flow of momentum from A to infinity, superimposed on a radial 
flow from infinity to B. This makes it possible to assign a distribution of sources at infinity 
which need not bear any relation to the actual physical sources. The issue of the long-
ranged character of the Kugler stress may be partially circumvented by computing 
stress by summing over pairs of interacting particles thereby resulting in a dipole-like 
long-range distance dependence of the form. However, this form of stress field is still 
long-ranged albeit of a somewhat weaker form than the original one. When the 
interaction is Coulombic, the Kugler’s form of stress results in severe anomalies and a 
different form of the stress tensor called the Maxwell form (Feynman 1939; Jackson 
1999) is employed. The latter is applicable for particles interacting via Coulombic forces. 
In the static limit (in the absence of magnetic effects), Maxwell’s stress field is given as: 
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( ) ( ) ( ) ( )21 1
4 2

MaxT E Eαβ α β αβδ
π

= −r r r E r  

( )
( )

3

ˆ

ˆ
i

i
i

i

E Zα

−
=

−
∑

r R
r

r R
 

(66) 

However, if the potential is a pair potential of the form V then, a Hardy stress like 
operator can be derived for the potential part of the stress as follows 

( ) ( ) ( )
1

, ,
, 0 ,

1 ˆ ˆ ˆ ˆ ˆ
ˆ2

pot
i i j i j

i j i

wT d R R
Rαβ α α

β

λδ λ ∂⎡ ⎤= − − − − −⎣ ⎦ ∂
∑∫r r R R R  (67) 

Similarly, a Noll like stress can also be derived. Both of these forms do not possess the 
long-ranged character of Kugler’s potential and are more generally applicable than the 
Maxwell stress. 
 
4. Revisiting the Virial Stress 
 
The original virial theorem due to Clausius provides a relation connecting the time-
averaged translational kinetic energy of a stationary dynamical system of particles to the 
time-average of the so-called virial of the forces acting on the particles. It can be 
extended to statistical mechanics by replacing the time-averages by ensemble 
averages. We discussed a scaling type approach to prove the virial theorem in the 
quantum mechanical case in the previous section. It is intriguing to see if a similar 
scaling approach will work for the classical/statisitical mechanical case---arguably 
making the analogy to quantum mechanical global stress more transparent.  
 
In a canonical ensemble, we have 

( , ) ln ( , )BF T V K T Z T V= −  (68) 

Here, F is the Helmholtz free energy and Z is the partition function. From 
thermodynamics we can express the pressure P as, 

T

FP
V
∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

 (69) 

Simplifying, we have 

/

/

ln ( , ) 1

B

B

B B
T T

H K T

H K T

Z T V ZP K T K T
V Z

H e d
HV
Ve d

τ

τ

−

−

∂ ∂⎛ ⎞ ⎛= =⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝
∂⎛ ⎞

⎜ ⎟ ∂∂⎝ ⎠= − = −
∂

∫
∫

V
⎞
⎟
⎠

 (70) 

Consider a set of particles with coordinates {ri} and conjugate momenta {pi} enclosed 
within a container in thermal equilibrium at temperature T. Consider the container to be 
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a cubical box of volume V with rigid walls such that the potential due to the wall is of the 
form 

( ) 0,  all  inside box
           = , any  outside box

i i

i

U ′ =

∞

r r
r

 (71) 

The pressure in statistical mechanics is written as 
  

HP
V
∂

= −
∂

 (72) 

Here, the brackets denote an ensemble average. 
In order to evaluate this quantity, we assume a form for our Hamiltonian, 

( )
2

1
1

,...,
2

N
i

N
i i

pH U
m=

= +∑ r r  (73) 

We now scale the Hamiltonian using a simple canonical transformation of the form 
1;i i iL L−′ ′= =r r p pi  (74) 

Here, L = V 1/3 . Therefore, the scaled cube is a cube of unit dimensions. 
From Equations (72-73) we have, 

[ ] 1 1

3

exp ... ...1
!

L
L N

N
L

HH d d d dH VP
V N h Z

β N
∂

−∂ ∂= − = −
∂

∫ p p r r
 (75) 

We now assess how the partition function Z scales under the canonical transformation 
given by Equation (74). 
 
The partition function Z for a system of N classical particles can be written as 

( )1 1 1 13

1 exp ... ; ... ... ...
! N N NN NZ H d d d

N h
β= −⎡ ⎤⎣ ⎦∫ p p r r p p r rd

)

 (76) 

The rescaled Hamiltonian becomes 
( 1 1/ ,... / , ,...L N NH H L L L L= p p x x  (77) 

The rescaled partition function [ ]LZ H becomes 

[ ] [ ] 1 13

1 exp ... ...
!L LN N NZ H H d d

N h
β= −∫ p p r rd d

ir

 (78) 

By substituting  in the above equation, we have 1;i i iL L−→ →p p r

[ ] [ ] [1 1
1 13

1 exp ... ...
!L NN ]NZ H H Ld Ld L d L d

N h
β − −= − =∫ p p r r Z H  (79) 

Therefore the partition function Z remains invariant under the canonical scaling. 
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Now consider 

[ ] 1 1

3

exp ... ...1
!

L
L N

N
L

HH d d d dH VP
V N h Z

β N
∂

−∂ ∂= − = −
∂

∫ p p r r
 (80) 

Further, 
2

5 2

2

2 1 .
3 2 3

2 1 .
3 2 3

i
i i

i ii

i
i i

i ii

pH L L
V m

p U
V m V

− −′∂ ′= −
∂

− ∇

∑ ∑

∑ ∑

x

x

U∇

 (81) 

So, from Equations (80-81) and the invariance of the partition function, we have 
2

3 2 .
2

i
i i

i ii

pPV U
m

= −∑ ∑x ∇

,i

 (82) 

Equation (82) is the Clausius form of the Virial theorem. If the particles are bound under 
the influence of their own internal interactions (say there is no box enclosing the 
particles), then the pressure P goes to zero. 
 
The tensor form of the virial theorem can be obtained in an analogous manner by 
scaling the Hamiltonian using transformation of the form 

1
, , ,;i i ir h r p h pα αβ β α αβ β

−′ ′= =  (83) 

Here, the tensor h is represented as a matrix consisting of the vectors which make the 
sides of the box enclosing the N-particle system. The volume of this box is given by 
det(h). 
 
A uniform strain applied to the whole box can be thought of as a rescaling of the metric 
tensor h. The macroscopic stress is then simply given as: 

[ ] 1 1

3

exp ... ...
1
!

N N

N

HH d d d d
hH

h N h Z
αβ

αβ
αβ

β
σ

′∂′−
∂∂

= − = −
′∂

∫ p p r r
 (84) 

From this, the tensor form of the virial theorem is easily recovered. 
 
5. Discussion 
 
The present paper provides a unified setting that connects continuum, empirical 
molecular dynamics and quantum mechanical stress concepts. The essential tool is 
provided by Murdoch’s formalism (2007) of arriving at a spatially varying stress field in a 
discrete setting. Analogous to molecular dynamics, Hardy stress and Noll stress like 
operators can represent the microscopic stress measures in quantum mechanics. The 
major challenge that remains is to cast our formalism in a computationally favorable 
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framework like Density Functional Theory (DFT) and observe how well the microscopic 
stress measures compare with the Maxwell’s stress that is the gauge of choice for 
Columbic systems. Our formalism is not restricted to Columbic potentials so non-
coulomb like potentials which often occur in pseudo-potentials used in DFT calculations 
can be included as well.  
 
The issue of the uniqueness of the quantum mechanical stress is still open to debate. 
The reader is referred to a recent review by us and references therein for further 
discussion (Maranganti et al. 2006). It remains to be seen if the non-uniqueness of the 
quantum mechanical stress is of any physical consequence. One viewpoint that can be 
taken is that the force is the physical quantity that is transmitted across scales and since 
all stress measures when integrated over a surface yield the same force, the choice of 
the quantum stress definition (whether Noll’s, Hardy’s or some other) is a matter of 
convenience. In fact, the form of quantum stress derived by us (which does not solely 
depend upon the charge density) does not appear to be an observable in quantum 
mechanics. An arbitrary divergence free non-Hermitian operator may be added to any 
permissible quantum mechanical stress operator which will still satisfy the continuity 
equations. Accordingly, our belief is that in the quantum mechanical context, the 
spatially varying stress is a non-observable. This strengthens the viewpoint that in 
multiscale modeling, passing information about the forces across multiple length scales 
may be more physical then stress. 
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