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Abstract

The quasi-continuum method has provided many insights intothe behavior of lattice defects
in the past decade. However, recent numerical analysis suggests that the approximations in-
troduced in various formulations of the quasi-continuum method lead to inconsistencies—
namely, appearance of ghost forces or residual forces, non-conservative nature of approx-
imate forces, etc.—which affect the numerical accuracy andstability of the method. In
this work, we identify the source of these errors to be the incompatibility of using quadra-
ture rules, which is a local notion, on a non-local representation of energy. We eliminate
these errors by first reformulating the extended interatomic interactions into a local varia-
tional problem that describes the energy of a system via potential fields. We subsequently
introduce the quasi-continuum reduction of these potential fields using an adaptive finite-
element discretization of the formulation. We demonstratethat the present formulation re-
solves the inconsistencies present in previous formulations of the quasi-continuum method,
and show using numerical examples the remarkable improvement in the accuracy of solu-
tions. Further, this field theoretic formulation of quasi-continuum method makes mathemat-
ical analysis of the method more amenable using functional analysis and homogenization
theories.

Key words: Quasicontinuum method, Atomistic Models, Error analysis,Multiscale
modeling

1 Introduction

Deformation and failure processes in crystalline solids are strongly governed by the prop-
erties of various defects present in them—examples includethe role of vacancies in
creep, spalling and radiation damage, dislocations in metal plasticity, twin boundaries
in phase-transformations, and interfaces in reactive metals. The main challenge in an
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accurate description of defect behavior is the wide range ofinteracting length-scales
that determine the properties of defects. The core of a defect is determined by com-
plex atomistic/quantum-mechanical interactions on an Angstrom length-scale, which in
turn produces long-ranged elastic fields over many micrometers. The Quasi-continuum
method is a numerical coarse-graining technique that attempts to bridge these various
length-scales to accurately describe defect behavior in solids. We refer to the follow-
ing articles and references therein for a comprehensive overview of the quasi-continuum
method and its applications:Tadmor et al.(1996a,b); Miller et al. (1998a,b); Phillips et al.
(1999); Ortiz & Phillips (1999); Tadmor et al.(1999); Shenoy et al.(2000); Knap & Ortiz
(2001); Miller & Tadmor (2002); Knap & Ortiz (2003); Curtin & Miller (2003); Gavini et al.
(2007); Eidel & Stukowski(2009).

The quasi-continuum (QC) method was originally developed in the context of lattice stat-
ics at zero temperature using empirical interatomic potentials (Tadmor et al., 1996a,b),
where the key idea was the systematic and adaptive coarse-graining from a fully resolved
atomistic description near a defect-core to a continuum description away from the core.
This was achieved through kinematic constraints on the degrees of freedom—positions
of atoms, thus reducing the variational problem of computing the ground-state proper-
ties to a constrained variational problem with far fewer degrees of freedom. Although the
imposed kinematic constraints significantly reduce the number of variables, the computa-
tional complexity of evaluating the generalized forces corresponding to the coarse-grained
variables—positions of representative atoms—still scales with the total number of atoms
in the system making computations on large systems intractable.

Various approximations have been suggested to further reduce the complexity of force
computations and make it commensurate with the number of coarse-grained variables
(Tadmor et al., 1996a,b; Shenoy et al., 1999; Knap & Ortiz, 2001; Miller & Tadmor, 2002;
Eidel & Stukowski, 2009). These include the mixed atomistic and continuum formu-
lations, or introduction of cluster summation rules on lattice sums. Valuable as these
approximations are, they suffer from notable drawbacks. Insome cases, the computed
forces are non-conservative which may lead to energy conservation problems as stud-
ied in Shimokawa et al.(2004). In other cases, where the computed forces are conser-
vative, spurious forces appear as a result of the approximations introduced and can un-
dermine the accuracy of the solution. Many strategies have been suggested to correct
the errors incurred in these approximations (cf. e.g.Shimokawa et al.(2004); E et al.
(2006)), but these require a special treatment at the interfaces separating the heteroge-
neous models used in different regions of the materials system, and subsequently in-
troduce a seam in the formulation. Recently, many efforts have focussed on a system-
atic numerical analysis to investigate the accuracy, consistency and stability of the var-
ious approximations in the quasi-continuum method, and we refer to E et al. (2006);
Dobson & Luskin(2009); Dobson et al.(2009); Ming & Yang (2009); Luskin & Ortner
(2009); Dobson et al.(2010a,b) and reference therein for a detailed discussion on this
topic.

In the present work, we seek to construct a seamless quasi-continuum formulation which
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is solely based on a single theory, is variational, and provides systematic convergence
of the approximations introduced. The notion of cluster summation rules introduced in
Knap & Ortiz (2001); Eidel & Stukowski(2009) is attractive from the standpoint of be-
ing a seamless formulation based on a single theory. However, the formulations based
on this approximation are either not variational, or are notconsistent as they fail the
patch test. Moreover, these formulations can result in large errors and may not guaran-
tee a systematic convergence of approximations. This was first noted in a recent analysis
by Luskin & Ortner(2009). We further demonstrate this through the error estimates we
compute in section 3. We identify the primary cause of these shortcomings to be the use
of quadrature rules (cluster summation rules), which is a local notion of numerical ap-
proximation, on a non-local representation of energy describing the extended interatomic
interactions. Further, this non-local representation of energy is also the cause for spu-
rious ghost forces observed in the formulation proposed inTadmor et al. (1996b), and
subsequently discussed inShenoy et al.(1999).

In this work, we first reformulate the non-local interatomicpotentials into a local form
by constructing the partial differential equation whose Green’s function corresponds to
the kernel of the non-local interaction. Most interatomic potentials are based on either
an exponential kernel of the forme−α|r−r

′
|, or kernels of the form 1

|r−r′|m
wherem is

a positive integer. We note thate−α|r−r
′
| is the Green’s function of a 4th order partial

differential equation, and show that kernels of the form1
|r−r′|m

can be approximated with
Green’s functions of Helmholtz equations without significant loss of accuracy. Thus, the
extended interactions for a large class of interatomic potentials can now be described by
a local variational problem involving potential fields, andthis forms the basis for the field
approach to the quasi-continuum method. In particular, as will be demonstrated in this
article, the computation of energy as well as the physical forces on atoms reduce to local
evaluations involving potential fields.

FollowingGavini et al.(2007), the quasi-continuum reduction is performed on the poten-
tial fields which are governed by a local variational problem. The potential fields are first
decomposed into predictor fields and corrector fields. The predictor fields are constructed
from local periodic calculations using the Cauchy-Born rule. The corrector fields, which
are represented on a coarse-grained triangulation, are then computed from the variational
principle. In a related work (Gavini & Liu, 2010), we show that the corrector fields do
not exhibit oscillations on the length-scale of the atomic lattice which justifies the com-
putation of corrector fields on coarse-grained triangulations. Owing to the local nature of
the formulation, we proceed to introduce quadrature rules that reduce all computations to
have a complexity commensurate with the number of coarse-grained variables. We show
that the quadrature rules introduced on this local variational problem satisfy the necessary
consistency conditions for systematic convergence of approximations, which is one of the
central results of this work.

To demonstrate the accuracy of the proposed field formulation of QC method we have
numerically implemented the formulation using Morse potential. We compare the nu-
merical results from the proposed formulation with other seamless QC formulations em-
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ploying node-based cluster rules (Knap & Ortiz, 2001; Eidel & Stukowski, 2009) using a
nanoindentation test problem in one dimension. We find that errors arising from quadra-
ture approximations are almost negligible in the field formulation, and the approximation
errors are predominantly coarse-graining errors associated with the kinematic constraints
on positions of atoms which can not be surpassed in any QC formulation. These results
are in sharp contrast to the approximation errors incurred when cluster summation rules
are introduced on a non-local representation of the energy.In such a case, the quadrature
errors are orders of magnitude larger than coarse-grainingerrors, and numerical results
suggest a lack of systematic convergence with increasing number of representative atoms.
These numerical results support our observations from error estimates in section 3, and
highlight the strict control and systematic convergence afforded by the field approach to
QC method. We further note that the field approach makes mathematical analysis of QC
formulation more amenable, where established techniques from functional analysis and
homogenization theories can be employed. A related work (Gavini & Liu, 2010) presents
such an analysis.

The remainder of this article is organized as follows. Section 2 provides an overview of
the QC method and briefly discusses the merits and demerits ofdifferent QC formula-
tions. In particular, it highlights the issues involved in using quadrature rules on non-
local representations of energy and motivates the main ideas developed in this work. Sec-
tion 3 presents error estimates on forces and energy upon using cluster summation rules,
and demonstrates the lack of consistency in these numericalapproximations. Section 4
presents the reformulation of the extended interatomic interactions into local variational
field theories, and section 5 presents the quasi-continuum reduction of these field theo-
ries and an analysis of the approximations therein. Numerical examples are presented in
section 6, and we conclude in section 7 with an outlook.

2 Overview

We consider the reference configuration of a single crystallite, where the positions of the
N0 atoms present in the crystallite are given by a subset of a simple Bravais lattice in ad
dimensional space denoted byL. Let l = {l1, . . . , ld} ∈ Z

d denote the lattice coordinates
representing an individual atom. The coordinates of atoms in the reference configuration
are thus given by

Xl =
d
∑

i=1

liai, l ∈ L, (1)

whereai for i = 1, . . . , d denote the basis vectors of the Bravais lattice. We denote byq =
{xl, l ∈ L} a vector that collects the positions of atoms in the deformedconfiguration.
The energy of a material system in atomistic calculations isgiven by

Π(q) = E(q) + V (q) , (2)
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whereΠ denotes the total potential energy of the system,E denotes the internal energy
of the system, andV denotes the potential energy corresponding to body forces acting on
the material system. The problem of computing ground-stateproperties, which include
the ground-state energy and the deformed configuration, cannow be expressed as the
following variational problem:

min
q∈X

Π(q), (3)

whereX denotes the vector space of admissible trial functions corresponding to imposed
boundary conditions. We note that the above minimization problem may not have a unique
minimizer owing to the non-convex nature of the potential energy function. However, in
most numerical simulations the crystallite is loaded incrementally in a quasi-static manner
allowing the system to relax to a nearby stable configuration.

The internal energy of the system in atomistic calculationsis often described by empiri-
cal interatomic potentials, the most common being the embedded atom method (cf. e. g.
Daw & Baskes(1984)), and has a representation given by

E(q) =
∑

k∈L

εk(q), (4a)

εk(q) =
∑

j∈L, j 6=k

K(|xk − xj|) + f(ρ(k)) with (4b)

ρ(k) =
∑

j∈L, j 6=k

ρ(|xk − xj|). (4c)

In the above expression,εk(q) denotes the internal energy of atomk, K denotes a central
potential governing the interatomic interactions,f denotes the embedding energy function
andρ(k) denotes the electron density at atomk in the environment of surrounding atoms.
The ground-state properties corresponding to the variational problem in equation (3) are
computed by equilibrating the forces on atoms given by

fk(q) = −
∂Π(q)

∂xk

k ∈ L. (5)

Due to the non-convex nature of the energy functional, theremay exist many solutions
which satisfyfk = 0 for k ∈ L, and the ground-state properties correspond to the solu-
tion with minimum energy. In practice, the huge computational cost associated with an
all-atom calculation limits the size of accessible material systems. However, the nature of
deformation fields in most systems of interest, especially those involving defects, is such
that these fields are rapidly varying only near the core of a defect, and become smooth
away from the core where the response is effectively elastic. This nature of deforma-
tion fields is the basis for the quasi-continuum method, which is an adaptive numerical
coarse-graining technique retaining full resolution where necessary and coarse-graining
elsewhere.

A key idea behind quasi-continuum method is to replace the minimization problem in
equation (3) with a constrained minimization problem in a suitably chosen sub-space. We
consider a subset ofrepresentative atomsdenoted byLh and construct a finite-element tri-
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angulationTh of these representative atoms in the reference configuration, which in gen-
eral is unstructured. Further, kinematic constraints are introduced on positions of atoms
in the deformed state through shape-functions of the finite-element triangulation given by

xhk =
∑

J∈Lh

Φh(Xk|XJ)x
h
J k ∈ L, (6)

whereΦh(Xk|XJ) denotes the value of the shape-function associated with a represen-
tative atomJ evaluated at the position of atomk in the reference configuration. Let
qh = {xhk, k ∈ L} be a vector containing positions of atoms in the deformed config-
uration under the kinematic constraint imposed through equation (6). The energy of the
system is now a function of positions of only the representative atoms, and the minimiza-
tion problem in equation (3) reduces to a constrained minimization problem given by

min
qh∈Xh

Π(qh), (7)

whereXh denotes the subspace ofX spanned by the shape-functions of the finite-element
triangulation. A judicious choice of the subspaceXh corresponds to providing full atom-
istic resolution in regions of rapidly varying deformationfields, for example at the defect-
core, and using fewer representative nodes in regions of smooth deformations. Many nu-
merical tests (cf. e. g.Tadmor et al.(1996a); Knap & Ortiz (2001)) have shown that the
ground-state properties of a system can be represented by the constrained minimization
problem in equation (7), which has far fewer degrees of freedom than equation (3).

The force on a representative atom atJ ∈ Lh is given by

fhJ (q
h) =−

dΠ(qh)

dxhJ
= −

∑

k∈L

∂Π(qh)

∂xhk

∂xhk
∂xhJ

=
∑

k∈L

fk(q
h)Φh(Xk|XJ), (8)

which is a weighted sum of forces on atoms that lie in the compact support of the shape-
function associated with representative atomJ. Thus, although the kinematic constraints
introduced in the quasi-continuum method significantly reduce the degrees of freedom,
forces on all atoms in the system are required to compute forces on representative atoms.
A full atomistic force calculation is prohibitively expensive on large systems and fur-
ther approximations are necessary to reduce the computational complexity of these force
calculations. We note that the kinematic constraints introduced through the selection of
representative atoms is common to all versions of the quasi-continuum method devel-
oped so far (cf. e. g.Tadmor et al. (1996a); Shenoy et al.(1999); Knap & Ortiz (2001);
Miller & Tadmor (2002); Eidel & Stukowski(2009)). The various versions of the method
differ in the next approximation which is introduced to reduce the computational com-
plexity of the force calculation. Here we briefly discuss andcomment on the merits
and demerits of commonly used formulations proposed inTadmor et al. (1996a) and
Knap & Ortiz (2001), and a recent formulation proposed inEidel & Stukowski(2009).
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In the first formulation of quasi-continuum method, proposed in Tadmor et al.(1996a),
the domain of analysis was divided into two regions—the non-local region where the en-
ergy is described by empirical interatomic potentials withextended interactions, and the
local region where the energy is described by invoking the Cauchy-Born rule. The force
computations are expensive only in the non-local region which is small compared to the
local region, thus reducing the computational complexity of the calculation. However,
the heterogeneous and disparate models used in different regions of the domain result in
spurious forces on the interface between the local and the non-local region, and are often
referred to asghost forcesin the literature.Shenoy et al.(1999) proposed to remove the
effect of these ghost forces by adding a dead load which is thenegative of these ghost
forces. But the drawback of this approach is that these dead loads are non-conservative
and may lead to energy conservation problems (Shimokawa et al., 2004) in molecular
dynamics simulations.Shimokawa et al.(2004); E et al.(2006) suggest a remedy to this
problem by introducing a buffer region or using local reconstructions between the local
and the non-local region, but in the process introduce undesirable seams in the formula-
tion.

A seamless approach to reduce the computational complexityof the force calculations was
proposed inKnap & Ortiz(2001). In the spirit of quadrature rules, the force computations
are approximated bycluster summation rulesthat represent a weighted sampling of forces
on atoms located in clusters centered at representative atoms. Although this formulation
is free of ghost forces, the approximate forces are non-conservative (Eidel & Stukowski,
2009) which is not desirable as mentioned before.Eidel & Stukowski (2009) suggest
introducing cluster summation rules only on the energy, andcomputing the forces on
representative atoms as tangents of this approximate energy. However, this leads to the
appearance of non-zero residual forces for a perfect crystal under affine deformations.
These residual forces can become uncontrollably large for an arbitrary coarse-graining
of representative nodes as will be demonstrated in section 3.2, and in turn can produce a
spurious displacement field upon relaxation. It is suggested in Eidel & Stukowski(2009)
that these residual forces can be eliminated by introducingdead loads on similar lines as
proposed inShenoy et al.(1999). The difference between ghost forces inTadmor et al.
(1996a) and the residual forces inEidel & Stukowski(2009) is that the former are non-
conservative while the latter are conservative. We note that the calculation of residual
forces inEidel & Stukowski(2009) requires evaluation of exact forces periodically, which
is prohibitively expensive. Furthermore, we demonstrate in this article through numerical
examples that the self-consistent iterations may not always converge (cf. section 6.1).

The introduction of cluster summation rules inKnap & Ortiz(2001) andEidel & Stukowski
(2009) in the spirit of quadrature rules is based on systematic numerical approximation,
in contrast to the formulation proposed inTadmor et al.(1996a) and its subsequent im-
provements (Shenoy et al., 1999; Shimokawa et al., 2004; E et al., 2006) where different
regions of the model are described by heterogeneous theories. However, numerical exam-
ples in a bench mark test conducted recently (Miller & Tadmor, 2009) show that errors in
the node-based cluster formulations (Knap & Ortiz, 2001; Eidel & Stukowski, 2009) are
considerably larger than other formulations. A recent analysis byLuskin & Ortner(2009)
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based on nearest-neighbor interactions in one dimension (1D) provides an explanation for
these observations, where they demonstrate using error analysis that node-based cluster
rules can have large errors. In section 3, we estimate the errors in forces and energy using
extended interactions and arrive at a similar conclusion. We further show that element-
based cluster rules (Gunzburger & Zhang, 2009)—where the quadrature rules are intro-
duced inside the element—exhibit better approximation properties for both forces and
energy, and reduce to the Cauchy-Born rule for large elements in the leading order.

The next observation we present is the primary cause of the above mentioned incon-
sistencies in various versions of quasi-continuum method.We note that it is desirable
to introduce cluster (quadrature) rules on the energy and compute forces as tangents of
this approximate energy—this guarantees conservative forces. Further, any cluster rule
introduced should satisfy the following necessary consistency conditions for systematic
convergence (cf. e. g.Strang & Fix(1973); E et al.(2006)):
C1. The energy is summed exactly for affine deformations of perfect lattice.
C2. The computed forces—tangents of the energy—are zero foraffine deformations of
perfect lattice.
The consistency condition C2 is often referred to aspatch testin numerical analysis of
approximation theories. We remark that if the energy has a local representation, then the
patch test is passed trivially. However, if the energy has a non-local representation then
the patch test is never passed by a cluster rule of any order.

We consider the following example to illustrate this key point. As shown in figure 1,
consider an infinite mono-atomic chain of atoms with uniformspacing between the atoms
(affine deformation in 1D), and letΩ denote the domain of analysis which consists of
N0 atoms. First, we consider an artificiallocal representationfor the energy given by a
lattice functionε, whereε(i) = g(xi) denotes the energy of atomi ∈ L which is located
at positionxi. A system of non-interacting atoms moving in a mean potential field (g(x))
created by the atoms themselves has such a local representation for energy. Such a mean
field representation is motivated from density functional theory (cf. e. g.Finnis (2003)),
where it is used to account for the interaction between electrons. Using cluster summation
rules the lattice sum describing the energy can be approximated as

E =
∑

i∈L

ε(i) ≈
m
∑

k=1

nk
∑

i∈Ck

ε(i) = Ẽ , (9)

whereẼ denotes the approximate energy,Ck denotes the collection of atoms in thekth

cluster with a weightnk, andm denotes the number of clusters. Similar to numerical
approximation of integrals, the cluster weights and position of these clusters can be chosen
such that the approximation is exact for polynomial latticefunctions of orderp—a pth

order accurate cluster rule. Now we consider the directional derivative of the energy for
infinitesimal deformationsψǫ : Ω → Ω, with ψ0 = id and dψǫ

dǫ
|ǫ=0 = Γ denoting the

generator of these infinitesimal deformations. The generalized force is given by

f =
dE

dǫ

∣

∣

∣

∣

ǫ=0
=
∑

i∈L

d

dǫ

{

g(ψǫ(xi))
}∣

∣

∣

∣

ǫ=0
=
∑

i∈L

g′(xi)Γ(xi) , (10)
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and the approximate generalized force, which is the directional derivative ofẼ, is given
by

f̃ =
dẼ

dǫ

∣

∣

∣

∣

ǫ=0
=

m
∑

k=1

nk
∑

i∈Ck

d

dǫ

{

g(ψǫ(xi))
}∣

∣

∣

∣

ǫ=0
=

m
∑

k=1

nk
∑

i∈Ck

g′(xi)Γ(xi). (11)

From translational invariance of the mono-atomic chain, wenote thatε(i) = C, a con-
stant, fori ∈ L. Thus, a zeroth order cluster rule is sufficient to ensure that the energy
is summed exactly (C1). Also, from symmetry,g′(xi) = 0 for i ∈ L and the cluster rule
immediately passes the patch test (C2).

 Ω, N0 atoms

C1 C2 Cm

Fig. 1. Schematic of a 1D mono-atomic chain subjected to affine deformation. The circles in color
are atomic-sites which belong to clusters.

Next, we will consider anon-localrepresentation of the energy and demonstrate that a
cluster rule of any order will not pass the patch test. Consider a non-local representation
of energy given by

E =
∑

i∈L

ε(i), where (12a)

ε(i) =
∑

j∈L
j 6=i

K(|xi − xj |) (12b)

andK denotes the kernel representing extended interatomic interactions. The approximate
energy is still given by equation (9), where a zeroth order quadrature rule is sufficient to
ensure the consistency condition on energy (C1). The approximate generalized force for
this non-local representation of energy is given by

f̃ =
m
∑

k=1

nk
∑

i∈Ck

fiΓ(xi) +
∑

j∈L

Γ(xj)
{ m
∑

k=1

nk
∑

i∈Ck
i 6=j

K
′
(|xi − xj|)

xj − xi

|xj − xi|

}

, (13)

wherefi =
∑

j∈L
j 6=i

K
′
(|xi − xj |)

xi−xj
|xj−xi|

. From symmetry, we note that the first term in the

above expression vanishes asfi = 0 for i ∈ L. However, for arbitraryΓ, the second term
will not vanish for a cluster rule of any order, unless these clusters overlap to cover the
complete domain (also cf.Eidel & Stukowski(2009); Luskin & Ortner(2009) for discus-
sion on this point). Error estimates derived in sections 3.2and 3.3 to follow reinforce this
key point. We note that this failure of patch test is not a deficiency of the cluster rules, but
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the result of an inconsistency in adopting a local concept ofquadrature rules on a non-
local representation of energy. We resolve this key issue byreformulating the extended
interatomic interactions into a local variational form by solving for potential fields corre-
sponding to these interactions (section 4) and subsequently introduce the quasi-continuum
reduction of these fields (section 5).

3 Error Estimates

We begin by establishing error estimates for node-based cluster summation rules used
in Knap & Ortiz (2001) andEidel & Stukowski(2009). Latter in this section we demon-
strate that element-based cluster summation rules (Gunzburger & Zhang, 2009)—clusters
present in the interior of finite-elements—are more accurate in comparison to node-based
cluster rules. More importantly, we show through these error estimates that neither ap-
proximations are both conservative and consistent for an arbitrary coarse-graining of rep-
resentative atoms, and thus a systematic convergence of these approximations can not be
guaranteed.

We note that cluster summation rules are designed to be accurate in the fully resolved
region of a triangulation of representative nodes and approximations are concentrated in
the coarse-grained region of the triangulation where the clusters do not overlap. Further,
as the focus is to understand the nature of these errors, we restrict our analysis to 1D
where the estimates can be obtained in a form that will demonstrate the main attributes
of these errors. To this end, we consider an infinite mono-atomic chain of atoms with
differing deformation gradients,F1 andF2, in the two semi-infinite half-chains (figure 2).
We consider three representative nodes as shown in figure 2 and we are interested in the
force on representative atom denoted asA, and the energy of atoms lying between repre-
sentative atoms denoted asB andC. The representative nodes are chosen such that there
areN atoms in elementBA andNy atoms in elementAC, wherey > 1 denotes the rate
of coarse-graining. The present construction is a simplified representation of the coarse-
grained region in a quasi-continuum formulation, the difference being that deformations
are in general different in elements lying to the left of B andright of C. To estimate the
errors we further assume the following:

A1. The energy of the system is givenE =
∑

i∈L

∑

j∈L
j 6=i

K(|xi − xj |), where the kernel

K(|xi − xj |) denotes a central potential representing extended interatomic interactions.
Beyond a threshold distancerth, measured in units of undeformed interatomic spacinga,
the central potential has a decay given byK(|xi − xj |) =

1
|xi−xj |p

, wherep is the decay
exponent such thatp > 2.

A2. The difference in deformation gradients in elementsBA andAC is small—F1 ≈ F2.
For convenience, we denote the interatomic spacing inAC (and to the right ofC) as
a1 = F1a, and the interatomic spacing inBA (and to the left ofB) asa2 = F2a. Thus
a1 ≈ a2.
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k=Nyk=-N

a1a2

k=0

C

Ny

N

B A

Fig. 2. Schematic of a coarse-grained region in 1D mono-atomic chain: circles denote atoms;
circles in red denote representative atoms. Interatomic spacings in the semi-infinite half-chains to
the right and left ofA area1 anda2 respectively.

ro

C

ro

1

B A

Fig. 3. Schematic of node-based cluster rules in 1D mono-atomic chain: circles in blue denote
the atoms belonging to a cluster; shaded triangles represent the shape-functions of representative
atoms restricted to the region BC.

A3. We considerN >> r0, wherer0, measured in units of undeformed interatomic spac-
ing, is the radius of all clusters introduced in cluster summation rules. Further, we will
assumer0 >> 1 unless specified otherwise.

3.1 Node-based cluster rules for lattice sums

We first compute the errors in node-based cluster summationsproposed inKnap & Ortiz
(2001) where cluster rules are employed on lattice sums of both forces and energy inde-
pendently. In node-based cluster formulations, clusters are centered at the representative
nodes as shown in figure 3. We begin by estimating approximation errors in force com-
putations arising from the use of cluster summation rules, and subsequently estimate ap-
proximation errors in energy computation. The approximateforce on any representative
atomK ∈ Lh is given by

f̃hK = −2
∑

J∈Lh

nJ
∑

k∈CJ

g(k)Φh(Xk|XK) , (14a)

g(k) =
∑

j∈L
j 6=k

K
′
(|xk − xj |)

xk − xj

|xk − xj|
. (14b)
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whereLh ⊂ L is a collection of representative atoms in the chain,CJ denotes the set of
atoms located in the cluster centered at representative atom J with a cluster weight ofnJ .
Cluster weights are computed such that shape-functions of the finite-element triangulation
of representative atoms are summed exactly (Knap & Ortiz, 2001). Φh(Xk|XK) denotes
the value of the shape-function associated with representative atomK evaluated at atom
k. We further note thatK

′
(|xk − xj|) decays as 1

|xk−xj |p+1 (up to a constant factor) from
assumption A1.

We first estimateg(k) before computing an estimate for the approximate force in equation
(14). To this end we note the following bounds of thep-serieswhich appear repeatedly in
the estimates to follow:

S(k; p) =
∞
∑

t=k+1

1

tp
≥
∫ ∞

k+1

dy

yp
=

1

(p− 1)(k + 1)p−1
k > 1 , (15a)

S(k; p) =
∞
∑

t=k+1

1

tp
≤
∫ ∞

k

dy

yp
=

1

(p− 1)kp−1
k > 1. (15b)

The lower bound and the upper bound will approach each other for largek. In the com-
putation of error estimates below, fork > rth2 (a threshold distance) we will approximate
the p-series with their upper bound

S(k; p) =
1

(p− 1)kp−1
+O(

1

kp
). (16)

We definer′ = max{rth, rth2} and assumer0 >> r′ for simplicity. We now proceed to
estimate the forceg(k) on atomk. Fork ≥ r′, using symmetry and assumption A1

g(k) =
∞
∑

t=k+1

{

1

(ta1)p+1
−

1

(ka1 + (t− k)a2)p+1

}

=
∞
∑

t=k+1

1

tp+1

{

1

a
p+1
1

−
1

((a1 − a2)
k
t
+ a2)p+1

}

=
∞
∑

t=k+1

1

tp+1

(

1

a
p+1
1

−
1

a
p+1
2

{

1 + (p+ 1)
a2 − a1

a2

k

t
+O((

a2 − a1

a2
)2)
})

=
(p+ 1)(a2 − a1)

a
p+2
2

{

S(k; p+ 1)− kS(k; p+ 2)
}

+O

(

1

a
p+1
2

(
a2 − a1

a2
)2
)

(a2 − a1)

a2
<< 1 from A2

≈
α

kp
where α =

a2 − a1

pa
p+2
2

from equation (16). (17)

Similarly we obtain fork ≤ −r′,

g(k) ≈
α

|k|p
. (18)

12
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Now we estimate the approximate force on the representativeatomK = 0 using cluster
summation rules. Using equations (14), (17)-(18) we get

−
f̃h0
2

=n0

r′
∑

k=0

g(k)
(

1−
k

Ny

)

+ n0

r′
∑

k=1

g(−k)
(

1−
k

N

)

+ αn0

r0
∑

k=r′+1

1− k
Ny

kp

+αn0

r0
∑

k=r′+1

1− k
N

kp
+ αn−N

N
∑

k=N−r0

1− k
N

kp
+ αnNy

Ny
∑

k=Ny−r0

1− k
Ny

kp

=n0

r′
∑

k=−r′
g(k) +

2αn0

p− 1

( 1

(r′ + 1)p−1
−

1

r
p−1
0

)

+O(
αn0

N
) (for N >> r0 >> 1 by A3) .

(19)

Using the same approach, the exact force (without cluster summation rules) on the repre-
sentative atomK = 0 is computed to be

−fh0
2

=
r′
∑

k=−r′
g(k) +

2α

(p− 1)(r′ + 1)p−1
+O(

α

N
). (20)

Thus an estimate for the error in the force calculation usingnode-based cluster rules is
given by

fh0 − f̃h0 ≈ 2(n0 − 1)
{ r′
∑

k=−r′
g(k) +

2α

(p− 1)(r′ + 1)p−1

}

−
4αn0

(p− 1)rp−1
0

. (21)

We now discuss some attributes of the error estimate in equation (21). Firstly, we note that
the error will vanish ifF1 = F2, as in this caseα = 0 andg(k) = 0 ∀k. But if F1 6= F2,
then the absolute error in the force scales linearly with theelement size and results in a
relative error in the displacements that is O(1). This follows from the fact thatn0 scales
asN(1+y)

4r0
forN >> r0 >> 1. This observation was first made inLuskin & Ortner(2009)

using nearest neighbor interatomic interactions. The reason for this uncontrolled error
is that forces on atoms drop rapidly away from the element boundary. But the cluster
weights are computed such that shape-functions are summed exactly, which is a suitable
quadrature rule if the forces are distributed evenly, but results in highly inaccurate forces
otherwise.

We now turn to the computation of error estimates when node-based cluster summation
rules are employed on lattice sums appearing in the evaluation of the energy of a system.
We first compute the exact energy of atoms in elementsBA andAC. We denote by
ε1 andε2 the energy per atom in an infinite chain with interatomic spacings a1 anda2
respectively. The exact energy is then given by

13
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E =
Ny
∑

k=0

ε(k) +
N
∑

k=1

ε(−k)

=
Ny
∑

k=0

∆ε(k) +
N
∑

k=1

∆ε(−k) +Nyε1 +Nε2, (22)

whereε(k) is the energy of atomk in the environment of its neighbors, and∆ε(k) =
ε(k) − ε1 for k ≥ 0,∆ε(−k) = ε(−k) − ε2 for k > 0. We now compute∆ε(k) and
∆ε(−k) for k > r′. Following on similar lines as our estimate in equations (17)-(18),

∆ε(k) =
∞
∑

t=k+1

1

(ka1 + (t− k)a2)p
−

1

(ta1)p
=

∞
∑

t=k+1

1

tp

{ 1

(a2 +
k
t
(a1 − a2))p

−
1

a
p
1

}

≈
a1 − a2

(p− 1)ap+1
2

1

kp−1
, (23)

∆ε(−k)≈
a2 − a1

(p− 1)ap+1
2

1

kp−1
≈ −∆ε(k). (24)

The energy of atoms in elementsBA andAC can now be estimated using equations
(23)-(24) as

E = (Ny)ε1 +Nε2 +
r′
∑

k=−r′
∆ε(k) +

N
∑

k=r′+1

∆ε(−k) +
Ny
∑

k=r′+1

∆ε(k)

≈ (Ny)ε1 +Nε2 +
r′
∑

k=−r′
∆ε(k) +

Ny
∑

k=N+1

∆ε(k) (from equation (24))

≈ (Ny)ε1 +Nε2 +
r′
∑

k=−r′
∆ε(k) + β

( 1

(N + 1)p−2
−

1

(Ny)p−2

)

(from equation (16))

= (Ny)ε1 +Nε2 +
r′
∑

k=−r′
∆ε(k) +O

( β

Np−2

)

. (25)

whereβ = a1−a2
(p−1)(p−2)ap+1

2

. We now proceed to estimate the energy computed using node-

based cluster summation rules. The expression for energy ofthe system upon using cluster
summation rules for the lattice sums is given by

Ẽ =
∑

J∈Lh

nJ
∑

k∈CJ

ε(k), (26)

whereε(k) =
∑

j∈L
j 6=k

K(|xk − xj |). In the present analysis of 1D mono-atomic chain with

three representative atoms, this reduces to

14
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Ẽ = (n−N + n0)ε2r0 + (nNy + n0)ε1r0 + n0

r0
∑

k=−r0

∆ε(k)

+n−N

N
∑

k=N−r0

∆ε(−k) + nNy

Ny
∑

k=Ny−r0

∆ε(k)

= (n−N + n0)ε2r0 + (nNy + n0)ε1r0 + n0

(

−r′−1
∑

k=−r0

∆ε(k) +
r′
∑

k=−r′
∆ε(k) +

r0
∑

k=r′+1

∆ε(k)
)

+O(
βn0

Np−2
)

≈ (n−N + n0)ε2r0 + (nNy + n0)ε1r0 + n0

r′
∑

k=−r′
∆ε(k) (as∆ε(k) = −∆ε(−k) for k > r′).

(27)

We note that forN >> r0 >> 1, the expressions for cluster weights, computed by
enforcing that shape-functions are summed exactly, reduceto

n−N ≈
N

2r0
, n0 ≈

N(1 + y)

4r0
, nNy ≈

Ny

2r0
. (28)

Using equations (25)-(28), we estimate the approximation error in the energy evaluation
using node-based cluster rules to be

Ẽ − E ≈
N(y − 1)

4
(ε2 − ε1) + (n0 − 1)

r′
∑

k=−r′
∆ε(k). (29)

The relative error in the energy computation is given by

|Ẽ − E|

E
≈

∣

∣

∣

∣

(y − 1)

4(y + 1)ε1
(ε2 − ε1) +

1

4r0ε1

r′
∑

k=−r′
∆ε(k)

∣

∣

∣

∣

. (30)

From the above estimates it is evident that the error in energy evaluation upon using
node-based cluster summation rules vanishes whenF1 = F2, as in this caseε1 = ε2 and
∆ε(k) = 0 for k ∈ L. However, ifF1 6= F2, the absolute error in energy scales linearly
with the element size, similar to the approximation error inforce evaluation given by
equation (21). The relative error, from equation (30), isO(F1 − F2) and is first order
accurate. We remark that the errors in energy while using node-based cluster rules are
larger than the corresponding errors incurred by using element-based cluster rules that
are analyzed subsequently in section 3.3.

3.2 Node-based cluster rules on energy

The non-conservative nature of approximate forces in the formulation proposed inKnap & Ortiz
(2001) is a result of employing cluster summation rules directly on forces as opposed to
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computing the forces as tangents of an approximate energy. To resolve this deficiency in
the formulation,Eidel & Stukowski(2009) have proposed to introduce cluster summation
rules only on the energy of a system (equation (26)) and compute the forces as tangents
of this approximate energy. The approximation error in the energy has been computed in
section 3.1 and is given by equation (29). We now estimate theapproximation error in the
force computation for this formulation. Using the notationintroduced in section 3.1, the
approximate force on a representative atomK is given by

f̃hK =
∑

J∈Lh

nJ
∑

k∈CJ

(

∑

j∈L
j 6=k

fkjΦ
h(Xj|XK)− Φh(Xk|XK)

∑

j∈L
j 6=k

fkj
)

, (31a)

fkj = K
′
(|xk − xj |)

xk − xj

|xk − xj |
. (31b)

We will restrict our analysis to the special case ofF1 = F2, which, as will be demon-
strated, produces the leading order error for this formulation. We note that the second
term in the above expression vanishes as

∑

j∈L
j 6=k

fkj = 0 for affine deformations. The

non-zero contribution to the approximate force, which is also the approximation error
as the exact force is zero, comes from the first term in the expression. We denoteg(k) =
∑

j∈L
j 6=k

fkjΦ
h(Xj |X0) and estimateg(k) for {−r0, . . . , r0}. We remark that the value of

g(k) for k ∈ {−N, . . . − N + r0}
⋃

{Ny − r0, . . . , Ny} is small compared to the value
of g(k) for k ∈ {−r0, . . . , r0}, and can be neglected as it will only result in a relative
error ofO( 1

N
) as seen in section 3.1. For the central potential we are considering in this

analysis (K(|xi − xj |)), the expression forg(k), k ∈ {−r0, . . . , r0}, is given by

g(k) =
Ny
∑

j=k+1

K
′
(a1|j − k|)

Ny − j

Ny
−
{ k−1
∑

j=0

K
′
(a1|j − k|)

Ny − j

Ny
+

N
∑

j=1

K
′
(a1|j + k|)

N − j

N

}

k > 0,

g(−k) = −
N
∑

j=k+1

K
′
(a1|j − k|)

N − j

N
+
{ k−1
∑

j=0

K
′
(a1|j − k|)

N − j

N
+

Ny
∑

j=1

K
′
(a1|j + k|)

Ny − j

Ny

}

k > 0,

g(0) =
Ny
∑

j=1

K
′
(a1j)

Ny − j

Ny
−

N
∑

j=1

K
′
(a1j)

N − j

N
.

(32)

For brevity, we further defines(k) = g(k)+g(−k) for k = 0, 1, . . . r0. Upon rearranging,
we obtain

s(k) =
Ny
∑

j=N

(

K
′
(a1|j − k|+K

′
(a1|j + k|)

)(

1−
j

Ny

)

+
( 1

N
−

1

Ny

)

z(k) , where

z(k) =
N
∑

j=k+1

K
′
(a1|j − k|)j −

k−1
∑

j=0

K
′
(a1|j − k|)j +

N
∑

j=1

K
′
(a1|j + k|)j for k = 1 . . . r0

z(0) = 2
N
∑

j=1

K
′
(a1j)j.

(33)
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NotingN >> r0, and using the decay for central potential in assumption A1 along with
the properties of p-series (equation 16), the first term ins(k) is O( 1

Np ) which is higher

order compared to the second term and we drop it for simplicity. Thus,s(k) ≈
(

1
N

−
1
Ny

)

z(k). Finally, the approximation error in the computation of force on representative
atomK = 0 can now be expressed as

f̃h0 − fh0 = f̃h0 ≈ n0

( 1

N
−

1

Ny

){

1
2
z(0) +

r0
∑

k=1

z(k)
}

=
(1 + y)

4r0

(

1−
1

y

){

1
2
z(0) +

r0
∑

k=1

z(k)
}

. (34)

We remark thatz(k) is O(1) for k = 0, 1 . . . r0, with the exception ofz(0) ≈ 0 near
ground-state, and from equation (34) it is evident thatf̃h0 6= 0 for y 6= 1. Thus, the patch
test fails for any coarse-graining, and the formulation is only consistent with uniform
meshes which are never used in the quasi-continuum method. Further, with increasingy
the force increases and can become uncontrollably large forrapid rates of coarse-graining.
Implications of this inconsistent formulation for variouskinds of meshes were analyzed
in Luskin & Ortner(2009) using nearest neighbor harmonic interactions, where, in some
cases of graded or non-smooth meshes, large relative errorsindependent of mesh size
were observed. Due to the failure of patch test, a systematicconvergence of the scheme is
not guaranteed which is also confirmed from numerical simulations in section 6.

3.3 Element-based cluster rules

As opposed to introducing clusters at nodes of the triangulation, we consider clusters
that are introduced in the interior of elements, preferablyat the Gauss points, following
quadrature rules in numerical approximation schemes. Figure 4 illustrates this scenario
where one cluster is introduced inside each element. We define k1(i) = Ny

2
− i, and

k2(i) =
N
2
− i, which for i = −r0 . . . r0 denote the positions of the atoms in the clusters

located in the two elements. We assume without loss of generality that N
2

and Ny
2

are
integers. Using the notation introduced in section 3.1, theapproximate energy is given by

Ẽ =n1

r0
∑

i=−r0

ε(k1(i)) + n2

r0
∑

i=−r0

ε(−k2(i))

=n1(2r0 + 1)ε1 + n2(2r0 + 1)ε2 + n1

r0
∑

i=−r0

∆ε(k1(i)) + n2

r0
∑

i=−r0

∆ε(−k2(i)).(35)

In the above expression,n1 andn2 are weights of the clusters located inside elements
AC andBA respectively, and are computed such that piecewise constant functions are
summed exactly—a zeroth order quadrature rule. Thus, we obtainn1 = Ny

2r0+1
andn2 =
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N
2r0+1

. In fact, since the clusters are centered at mid-points of the elements, which are the
Gauss quadrature points, the cluster rule is first order accurate. Using a similar analysis as
adopted in section 3.1, we note that

∑r0
i=−r0 ∆ε(k1(i)) = O( 1

(Ny)p−1 ) and
∑r0
i=−r0 ∆ε(−k2(i)) =

O( 1
(N)p−1 ), which are higher order terms. Thus,Ẽ ≈ Nε2 + Nyε1. Using equation (25),

the approximation error in energy using an element-based cluster rule is estimated as

Ẽ − E ≈ −
r′
∑

k=−r′
∆ε(k). (36)

The corresponding relative error in the energy is given by

|Ẽ −E|

E
≈

∣

∣

∣

∣

1

N(1 + y)ǫ1

r′
∑

k=−r′
∆ε(k)

∣

∣

∣

∣

. (37)

Comparing equations (36) and (37) with equations (29) and (30), it is evident that the
approximation errors in energy in using element-based cluster rules are smaller compared
to the errors incurred by using node-based cluster rules. Wenow compute the error in
forces, which are computed as tangents of the approximate energy. Element-based cluster
rules too fail the patch test as will be demonstrated from theestimate below. Considering
the caseF1 = F2 and following on similar lines as in section 3.2, the approximation error
in the force on representative atomK = 0 is estimated as

f̃h0 =
r0
∑

i=−r0

1

2r0 + 1

(

z(k1(i))− z(k2(i)) +N
Ny
∑

j=1

K
′
(a1|j + k2(i)|)−Ny

N
∑

j=1

K
′
(a1|j + k1(i)|)

)

,

z(k1(i)) =
k1(i)−1
∑

j=0

K
′
(a1|j − k1(i)|)j −

Ny
∑

j=k1(i)+1

K
′
(a1|j − k1(i)|)j + y

N
∑

j=1

K
′
(a1|j + k1(i)|)j ,

z(k2(i)) =
k2(i)−1
∑

j=0

K
′
(a1|j − k2(i)|)j −

N
∑

j=k2(i)+1

K
′
(a1|j − k2(i)|)j +

1

y

Ny
∑

j=1

K
′
(a1|j + k2(i)|)j.

(38)

We remark thatf̃h0 6= 0 for y 6= 1, and f̃h0 = O( y−1
Np−1 ). We refer to the appendix for

further details on this estimate. Thus, for any general coarse-graining, the element-based
cluster rules also fail the patch test. However, we note thatthis error is smaller than the
error in node-based cluster rules (cf. equation (34)) as it scales inversely with the element
size for large elements. We note that this inverse scaling ofthe error with element size is
only true forN >> r0 >> 1, which is not valid in the transition region—between fully
coarse-grained (large) elements to atomic scale (small) elements—whereN > 2r0, but
N ∼ 2r0, and this case needs to be further investigated.

The primary cause for the failure of patch test, which is a necessary condition for the
convergence of numerical approximations, is that cluster rules which are introduced in
the spirit of numerical quadratures are not compatible withnon-local representations of
energies. This aspect has also been highlighted in section 2. The notion of numerical
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k=½Nyk=-½N k=0

C
ro

Ny

N

B A

Fig. 4. Schematic demonstrating element-based cluster rules: circles in red denote representative
atoms while circles in blue denote atoms lying within clusters; clusters are located at the center of
elements.

quadratures has been developed for local functions, and itsuse on non-local representa-
tions of energies appears incompatible—at least in the sense of satisfying the patch test.
We rectify this problem by first reformulating the extended interactions in interatomic
potentials into a local form, and subsequently introduce the quasi-continuum reduction.

4 Local reformulation of interatomic potentials

The energy of a single-component material system describedby interatomic potentials,
using the notation introduced in section 2, is given by

E(q) =
∑

i∈L

εi(q), (39)

εi(q) =
∑

j∈L, j 6=i

K(|xi − xj|), (40)

whereεi(q) denotes the energy of atomi in the environment of its neighbors, andK
denotes the kernel representing extended interatomic interactions. The widely used inter-
atomic potentials include Lennard Jones potential, Morse potential, and embedded atom
method (EAM) potentials (cf. e. g.,Lennard-Jones(1924); Morse(1929); Daw & Baskes
(1984); Johnson(1988); Sutton & Chen(1990)). The kernels used in these interatomic
potentials are mostly either theexponential kernel(e−α|xi−xj|), or kernels of the form

1
|xi−xj|m

, wherem is a positive integer, which we refer to in this article byLennard-Jones
kernels. We present the local reformulations of these kernels, which convert the extended
interactions often represented in a non-local form into a local variational problem. We first
consider the case of exponential kernels, and then discuss our approach for Lennard-Jones
kernels.
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4.1 Exponential kernels

We consider the Morse potential which uses an exponential kernel to demonstrate our
ideas. The energy of a single component material system in this case has the following
form

EM(q) =
∑

i∈L

εMi (q),

εMi (q) =
Ve

2

∑

j∈L, j 6=i

{

(1− e−α(|xi−xj|−xe))2 − 1
}

=
Ve

2

∑

j∈L, j 6=i

{

− 2Ce−α|xi−xj| + C2e−2α|xi−xj|
}

C = eαxe, (41)

whereα, xe andVe are material constants. In order to construct a local reformulation of
this non-local representation, we represent the atoms by regularized dirac distributions
denoted byδ(y− xi) for i ∈ L. Further, we defineb(y;q) =

∑

i∈L δ(y−xi). The energy
of the system can now be represented as

EM(q) =−VeC

∫

Ω0

∫

Ω0

b(y;q)e−α|y−y′|b(y′;q)dydy′

+
VeC

2

2

∫

Ω0

∫

Ω0

b(y;q)e−2α|y−y′|b(y′;q)dydy′. (42)

In the above expression,Ω0 ⊂ R
3 is a simply connected bounded open set that contains

the compact support ofb (the region whereb is non-zero). We note that the right-hand
sides of equation (41) and equation (42) differ by the self-energy of the atoms which is
an inconsequential constant that does not change the ground-state solution. This self en-
ergy is explicitly computed and subtracted in numerical computations. We further remark
that the atoms, which are dirac distributions in a field formulation, are approximated in
equation (42) by regularized dirac distributions to avoid infinite self energies if the Ker-
nel corresponding to the non-local interatomic interactions is singular. This introduces an
approximation in the energy of the system, which, however, can be made arbitrarily close
to the exact energy by considering the regularization to be arbitrarily close to the dirac
distribution.

We defineφ1(y;q) =
∫

e−α|y−y′|b(y′;q)dy′ and take the Fourier transform of this equa-
tion to get

(α2 + |k|2)2

8πα
φ̂1(k) = b̂(k) , (43)

where 8πα
(α2+|k|2)2

is the Fourier transform ofe−α|y|. Taking the inverse Fourier transform
of equation (43) we arrive at

1

8πα

{

∇4 − 2α2∇2 + α4
}

φ1(y;q) = b(y;q). (44)
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In effect we have constructed the partial differential equation whose Green’s function is
the exponential kernel. Rewriting equation (44) in a variational form we arrive at

I1(q) = inf
ϕ1∈H2

0 (R
3)

1

8πα

{1

2

∫

Ω
(∇2ϕ1)

2dy+α2
∫

Ω
|∇ϕ1|

2dy+
α4

2

∫

Ω
ϕ2
1dy−8πα

∫

Ω
b(q)ϕ1dy

}

.

(45)
In practice, the function space in this variational problemis chosen to beH2

0 (Ω), where
Ω ⊂ R

3 denotes the compact support ofϕ1 and other potentials we subsequently com-
pute. For a sufficiently fast decay of these potentials away from the positions of atoms
in the crystallite, this is a reasonable approximation whenL ⊂⊂ Ω and we will work
under this approximation in the remainder of the formulation. We also remark that the
variation problem in equation (45) is well-posed and a minimizer exists which is unique.
This follows from the convexity, lower semi-continuity, and coercivity of the energy func-
tional (cf. Dacorogna(1989)). Therefore, in the subsequent expressions we will replace
inf with min. The solution of the partial differential in equation (44) is now given by
φ1 = arg min I1.

The variational problem in equation (45) requires the trialfunctions to be inH2
0 (Ω), and

commonly used basis functions in numerical schemes likeC0 finite-elements are not con-
tained in this function space. To this end, we consider the equivalent mixed variational
formulation given by

I1(q) = min
ϕ1∈H1

0 (Ω)
max

̺1∈H1
0 (Ω)

1

8πα

{

α2
∫

Ω
|∇ϕ1|

2dy +
α4

2

∫

Ω
ϕ2
1dy− 8πα

∫

Ω
b(q)ϕ1dy

−
∫

Ω
∇ϕ1.∇̺1dy−

1

2

∫

Ω
̺21dy

}

.

(46)

The corresponding Euler-Lagrange equations are

∇2ρ1(y;q)− 2α2∇2φ1(y;q) + α4φ1(y;q)− 8παb(y;q) = 0 , (47a)
∇2φ1(y;q)− ρ1(y;q) = 0. (47b)

which is a system of partial differential equations equivalent to the partial differential
equation in equation (44). In the above equationφ1 and ρ1 denote the minimizer and
maximizer of the mixed variational formulation in equation(46) respectively. We note
that the order of minimization and maximization can be interchanged in equation (46),
which follows from the existence of saddle-point for the convex-concave functional (cf.
e. g.Boyd & Vandenberghe(2004)).

Following on similar lines we defineφ2(y;q) =
∫

e−2α|y−y′|b(y′;q)dy′, and the corre-
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sponding mixed variational problem forφ2 is given by

I2(q) = min
ϕ2∈H1

0 (Ω)
max

̺2∈H1
0 (Ω)

1

16πα

{

4α2
∫

Ω
|∇ϕ2|

2dy + 8α4
∫

Ω
ϕ2
2dy− 16πα

∫

Ω
b(q)ϕ2dy

−
∫

Ω
∇ϕ2.∇̺2dy−

1

2

∫

Ω
̺22dy

}

,

(48)

whereφ2 is the minimizer of the above mixed variational problem. Using the Euler-
Lagrange equations corresponding to the mixed variationalproblems in equations (46)
and (48), we note that

I1(q) = −
1

2

∫

Ω
b(y;q)φ1(y;q)dy, I2(q) = −

1

2

∫

Ω
b(y;q)φ2(y;q)dy. (49)

Using equations (42) and (49), we can rewrite the energy of the system as

EM(q) = 2CVeI1(q)− C2VeI2(q). (50)

Using equations (45)-(50) we arrive at the following saddle-point problem:

EM(q) = min
ϕ1∈H1

0 (Ω)

̺2∈H1
0 (Ω)

max
ϕ2∈H1

0 (Ω)

̺1∈H1
0 (Ω)

∫

Ω
L(ϕ1, ̺1, ϕ2, ̺2;q)dy ,

L(ϕ1, ̺1, ϕ2, ̺2;q) =
2CVe
8πα

{

α2|∇ϕ1|
2 +

α4

2
ϕ2
1 − 8παb(q)ϕ1 −∇ϕ1.∇̺1 −

1

2
̺21

}

−
C2Ve

16πα

{

4α2|∇ϕ2|
2 + 8α4ϕ2

2 − 16παb(q)ϕ2 −∇ϕ2.∇̺2 −
1

2
̺22

}

.

(51)

The saddle-point problem in equation (51) is a local reformulation of the extended inter-
actions with exponential kernels. The problem of computingground-state properties of a
system is then given by the variational problem

EM
0 = min

q∈X
EM(q), (52)

or equivalently the saddle-point problem on the LagrangianL(ϕ1, ̺1, ϕ2, ̺2;q)

EM
0 = min

q∈X
min

ϕ1∈H1
0 (Ω)

̺2∈H1
0 (Ω)

max
ϕ2∈H1

0 (Ω)

̺1∈H1
0 (Ω)

∫

Ω
L(ϕ1, ̺1, ϕ2, ̺2;q)dy. (53)

The saddle-point problem in the above equation describes a crystallite inR3 with finite
number of atoms. Though we restrict our discussion of the formulation to a finite crys-
tallite, the formulation itself and other remarks we made and will make subsequently
are in general true for other systems like a periodic system,semi-infinite lattice, etc. For
instance, a periodic system is realized by appropriately changing the function space in
the formulation toH1

per(Q), whereQ denotes the supercell, orH1(Q) if the supercell is
chosen such that∂Q contains only planes of symmetry of the lattice.
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We now consider the computation of forces on atoms, which corresponds to the outer
minimization onq. Consider the infinitesimal perturbation of atom positionsgiven by
a family of mappingsψǫ : R

3N0 → R
3N0 with ǫ << 1 as the parameter. We denote

by ψi
ǫ : R3 → R

3 the infinitesimal perturbation of atomi such thatψi
0 = id (identity

mapping) andd
dǫ
(ψi

ǫ)j
∣

∣

∣

ǫ=0
= Γi

j for i ∈ L, j = 1, 2, 3. Γi is often referred to as the
generator of the infinitesimal mappings, and the directional derivative corresponding to
this generator is given by

d

dǫ
EM (ψǫ(q))

∣

∣

∣

ǫ=0
=

d

dǫ

(

− 2CVe

∫

Ω
b(ψǫ(q))φ1dy + C2Ve

∫

Ω
b(ψǫ(q))φ2dy

)∣

∣

∣

ǫ=0

= 2CVe
∑

k∈L

∫

Ω

∂δ(y − ψk
ǫ (xk))

∂yj

d(ψk
ǫ )j
dǫ

φ1(y)dy
∣

∣

∣

ǫ=0

− C2Ve
∑

k∈L

∫

Ω

∂δ(y − ψk
ǫ (xk))

∂yj

d(ψk
ǫ )j
dǫ

φ2(y)dy
∣

∣

∣

ǫ=0

(

∇rδ(r− r
′) = −∇r′δ(r− r

′)
)

= − 2CVe
∑

k∈L

∫

Ω
δ(y − xk)Γ

k
j

∂φ1(y)

∂yj
dy + C2Ve

∑

k∈L

∫

Ω
δ(y − xk)Γ

k
j

∂φ2(y)

∂yj
dy

= −
∑

k∈L

(

2CVe
∂φ1

∂yj
(xk)− C2Ve

∂φ2

∂yj
(xk)

)

Γk
j .

(54)

The first equality in the above equation follows from the Euler Lagrange equations in
ϕ1, ϕ2, ̺1, ̺2, or alternatively we refer to the Hellmann-Feynman theoremin a similar
context (cf. chapter 3 inFinnis(2003)). We remark that the last equality in equation (54) is
only approximately true asδ(y−xk) represents a regularized dirac distribution. As noted
before, by considering the regularization to be arbitrarily close to the dirac distribution,
the error in this approximation can be made arbitrarily small. The force on an atomk ∈ L

is given byfk(q) = −∂EM (q)
∂xk

, and using equation (54) we obtain

fk = 2CVe∇φ1(xk)− C2Ve∇φ2(xk). (55)

We note that the expression for force on any atom given by equation (55) islocal.

In arriving at equation (54) we computed the directional derivative by perturbing the po-
sitions of atoms. An equivalent approach, instead, is to consider a rearrangement of the
domainΩ, which corresponds to taking inner variations of the energyfunctional in equa-
tion (51). Letψǫ : Ω → Ω

′
be infinitesimal deformations corresponding to the generator

Γ(y), given byΓ = dψǫ

dǫ

∣

∣

∣

ǫ=0
, such thatψ0 = id. We constrain the generator such thatΓ

is a constant in the compact support of eachδ(y − xi) for i ∈ L in order to ensure that
the shape and strength of the regularized dirac distributions centered around the atomic
positions remain unchanged. Lety denote a point inΩ whose image inΩ

′
is y

′
= ψǫ(y).

We first consider the energy functionalI1, which for infinitesimal rearrangements of the
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domain results in a family of energy functionals given by

I1(ψǫ) =
1

8πα

{

α2
∫

Ω′
|∇y′φ1ǫ(y

′)|2dy′ +
α4

2

∫

Ω′
φ2
1ǫ(y

′)dy′ − 8πα
∫

Ω′
b(ψ−1

ǫ (y′);q)φ1ǫ(y
′)dy′

−
∫

Ω′
∇y′φ1ǫ(y

′).∇y′ρ1ǫ(y
′)dy′ −

∫

Ω′

1

2
ρ21ǫ(y

′)dy′
}

.

(56)

whereφ1ǫ andρ1ǫ are minimizers and maximizers ofI1(ψǫ). Transforming the integrals
back ontoΩ, we obtain

I1(ψǫ) =
1

8πα

{

α2
∫

Ω

∂yj

∂y′i

∂φ1ǫ(ψǫ(y))

∂yj

∂φ1ǫ(ψǫ(y))

∂yk

∂yk

∂y′i
det(

∂y′l
∂ym

)dy

+
α4

2

∫

Ω
φ2
1ǫ(ψǫ(y)) det(

∂y′l
∂ym

)dy− 8πα
∫

Ω
b(y;q)φ1ǫ(ψǫ(y)) det(

∂y′l
∂ym

)dy

−
∫

Ω

∂yj

∂y′i

∂φ1ǫ(ψǫ(y))

∂yj

∂ρ1ǫ(ψǫ(y))

∂yk

∂yk

∂y′i
det(

∂y′l
∂ym

)dy −
1

2

∫

Ω
ρ21ǫ(ψǫ(y)) det(

∂y′l
∂ym

)dy
}

.

(57)

We note that in taking the variation ofI1(ψǫ), the terms arising from variations ofφ1ǫ

andρ1ǫ vanish asφ1 (= φ10) andρ1 (= ρ10) satisfy the Euler-Lagrange equations ofI1
(= I1(ψ0)). The non-trivial contributions to variation ofI1(ψǫ) come from variations of

det(
∂y′

l

∂ym
) and ∂yk

∂y′
i
. We first note the following identities which will be used subsequently:

d

dǫ

{

∂yi

∂y′j

}

∣

∣

∣

∣

ǫ=0
=−

∂yi

∂y′k

(

d

dǫ

{

∂ψǫk
∂yl

}

)

∂yl

∂y′j

∣

∣

∣

∣

ǫ=0

=−
∂Γi
∂yj

(

Note:
∂yi

∂y′j

∣

∣

∣

∣

ǫ=0
= δij

)

,

(58)

d

dǫ

{

det
( ∂y′l
∂ym

)

}

∣

∣

∣

∣

ǫ=0
=det

( ∂y′l
∂ym

)∂yj

∂y′i

(

d

dǫ

{

∂ψǫi
∂yj

}

)∣

∣

∣

∣

ǫ=0

=
∂Γj
∂yj

.

(59)

Using the above identities, the Gâteaux derivative of the energy functionalI1 is given by

dI1(ψǫ)

dǫ

∣

∣

∣

∣

ǫ=0
=
∫

Ω
W1

∂Γi
∂yi

dy −
α

4π

∫

Ω

∂φ1

∂yi

∂φ1

∂yj

∂Γi
∂yj

dy

+
1

8πα

∫

Ω

(∂φ1

∂yi

∂ρ1

∂yj
+
∂ρ1

∂yi

∂φ1

∂yj

)∂Γi
∂yj

dy , where (60)

W1=
1

8πα

{

α2|∇φ1|
2 +

α4

2
φ2
1 −∇ϕ1.∇ρ1 −

1

2
ρ21

}

.
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In the above calculation, we have useddivΓ = 0 in the compact support ofb (asΓ is
a constant in support of eachδ(y − xi) for i ∈ L) to drop the term

∫

Ω bφ1divΓdy. On
similar lines we compute the Gâteaux derivative of the energy functionalI2 to be

dI2(ψǫ)

dǫ

∣

∣

∣

∣

ǫ=0
=
∫

Ω
W2

∂Γi
∂yi

dy −
α

2π

∫

Ω

∂φ2

∂yi

∂φ2

∂yj

∂Γi
∂yj

dy

+
1

16πα

∫

Ω

(∂φ2

∂yi

∂ρ2

∂yj
+
∂ρ2

∂yi

∂φ2

∂yj

)∂Γi
∂yj

dy , where (61)

W2=
1

16πα

{

4α2|∇φ2|
2 + 8α4φ2

2 −∇ϕ2.∇ρ2 −
1

2
ρ22

}

.

From equations (60) and (61), the generalized force corresponding toEM is given by

dE(ψǫ)

dǫ

∣

∣

∣

∣

ǫ=0
=
∫

Ω
Eij

∂Γi
∂yj

dy , where

Eij = (W1 +W2)δij −
α

2π

(

CVe
∂φ1

∂yi

∂φ1

∂yj
− C2Ve

∂φ2

∂yi

∂φ2

∂yj

)

+
1

16πα

{

4CVe

(

∂φ1

∂yi

∂ρ1

∂yj
+
∂ρ1

∂yi

∂φ1

∂yj

)

− C2Ve

(

∂φ2

∂yi

∂ρ2

∂yj
+
∂ρ2

∂yi

∂φ2

∂yj

)

}

.

(62)

The above expression for generalized forces correspondingto the outer minimization
problem in equation (53), which islocal, is the Eshelby representation of configurational
forces. In this article we refer to this form as the Eshelby form of generalized forces. We
note that equations (54) and (62) are equivalent whenψǫ : Ω → Ω, which can be veri-
fied by integrating by parts the expression in equation (62),and using the Euler-Lagrange
equations for potentials. However, whenψǫ : Ω → Ω′, then the Eshelby form alone
gives the correct generalized force which also accounts forthe change in the domain. In
the quasi-continuum reduction to follow in section 5 the elastic effects in coarse-grained
regions of the triangulation arise from the change in the shape and size of unit cells repre-
senting the Cauchy-Born deformation. These elastic effects are naturally captured by the
Eshelby form, and therein lies its need and usefulness.

4.2 Lennard-Jones kernels

We now proceed to the local reformulation of kernels of the form 1
|xi−xj|m

wherem is
a positive integer. Lennard-Jones interatomic potential (Lennard-Jones, 1924) is an ex-
ample of a widely used potential that uses kernels of this form, alongside some EAM
potentials (cf. e. g.Sutton & Chen(1990)). We seek to construct the partial differential
equation whose Green’s function is the kernel1

|y−y′|m
. We note that the Green’s func-

tion of Laplace operator in three-dimensions is1
|y−y′|

. But constructing a linear differ-

ential operator whose Green’s function is1
|y−y′|m

for any genericm is beyond reach, at
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Fig. 5. (a) A fit for kernel 1
r6

with an approximate kernel of the form

ae−αr + b e
−(βr)

r
+ ce

−(γr)

r
+ de

−(λr)

r
; (b) Absolute error in the approximation. Cusps in

the error plot are points where the error changes sign.

least to the best of our knowledge. Thus we seek to find a good approximation for these
kernels which can in turn be reformulated in a local form. We require this approxima-
tion to be accurate in the domain of influence of the potential—typically in the range
0.85a < |y − y′| < Ca, C ∈ Z, wherea is the nearest neighbor interatomic spacing
of an undeformed lattice. The lower limit of this range guarantees that the energetics are
accurate even up to15% compressive strains and the value of the upper-limitC is chosen
based on the decay of the potential. We consider an approximation of the form

1

|y − y′|m
≈

M0
∑

j=1

Aj
e−αj |y−y′|

4π|y− y′|
+

M1
∑

k=1

Bke
−βk|y−y′| , (63)

whereAj , αj for j = 1 . . .M0 andBk, βk for k = 1 . . .M1 are constants that are fitted
to best approximate the kernel. We note that potentials associated with kernels of the

form e−α|y−y′|

4π|y−y′|
are often referred to as Yukawa potentials (cf. e. g.Ashcroft & Mermin

(1976)). To test the accuracy of this approximation we consider two test cases withm = 6
andm = 12 that correspond to the Lennard-Jones interatomic potential. Figures 5, 6
demonstrate the accuracy of this approximation, where by just using four terms in the
power series we obtain a good approximation to the desired kernels. Table 1 provides the
coefficients corresponding to these approximations, wherethe relativeℓ2 error of these
approximations, calculated using discrete points in[0.85a, 10a] with a uniform spacing of
0.01a, is less than0.01 in both cases.

Following the ideas developed in section 4.1, we replace theatoms by regularized dirac
distributions and the interatomic interaction energy corresponding to a 1

|xi−xj|m
kernel is

then given by
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Table 1
Table of coefficients for an approximate fitting of1

r6
and 1

r12
kernels with a kernel of the form

ae−αr + b e
−(βr)

r
+ ce

−(γr)

r
+ de

−(λr)

r
.

coefficients of fit for kernel1
r6

coefficients of fit for kernel 1
r12

a 0.002484 α 0.8252 a 1.349 ∗ 107 α 18.1135

b 14.11 β 3.4262 b 225.2 β 7.2092

c 547.5 γ 7.0597 c 2.6 ∗ 104 γ 10.608

d 0.3833 λ 1.6154 d 0.4877 λ 3.8377

E(q) =
∫

Ω

∫

Ω
b(y;q)

1

|y− y′|m
b(y′;q)dydy′

≈
M0
∑

j=1

Aj

∫

Ω

∫

Ω
b(y;q)

e−αj |y−y′|

4π|y− y′|
b(y′;q)dydy′ +

M1
∑

k=1

Bk

∫

Ω

∫

Ω
b(y;q)e−βk|y−y′|b(y′;q)dydy′.

(64)

To keep the expressions simple, we will represent the secondseries of exponential kernels
in equation (64) byEexp(q) whose local reformulation is already established in section

4.1. We denote byφj(y;q) the convolution
∫

e
−αj |y−y′|

4π|y−y′|
b(y′;q)dy′, j = 1, . . . ,M0. Taking

the Fourier transform of the above expression we obtain

(|k|2 + α2
j )φ̂j(k) = b̂(k) j = 1, . . . ,M0. (65)

Taking the inverse Fourier transform we obtain the Helmholtz equation

(−∇2 + α2
j )φj(y;q) = b(y;q) j = 1, . . . ,M0. (66)

The energy in equation (64) can now be reformulated into a local form using the varia-
tional form of equation (66), and is given by
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E(q) =
M0
∑

j=1

2AjIj(q) + Eexp(q) , where

Ij(q) = − min
ϕj∈H1

0 (Ω)

{

1

2

∫

Ω
|∇ϕj|

2dy +
α2
j

2

∫

Ω
ϕ2
jdy−

∫

Ω
b(q)ϕjdy

}

j = 1, . . . ,M0.

(67)

Furtherφj = arg min Ij . Following on similar lines as in section 4.1 the Eshelby form
of the generalized force for infinitesimal deformations corresponding to the generatorΓ
is given by

dE(ψǫ)

dǫ

∣

∣

∣

∣

ǫ=0
=

M0
∑

j=1

2Aj
dIj(ψǫ)

dǫ

∣

∣

∣

∣

ǫ=0
+
dEexp(ψǫ)

dǫ

∣

∣

∣

∣

ǫ=0
, where

dIj(ψǫ)

dǫ

∣

∣

∣

∣

ǫ=0
=−

∫

Ω

{

1

2
|∇φj|

2 +
α2
jφ

2
j

2

}

∂Γi
∂yi

dy +
∫

Ω

∂φj

∂yi

∂φj

∂yk

∂Γi
∂yk

dy j = 1, . . . ,M0.

(68)

Hence the energy as well as force expressions are now expressed in a local form which
are amenable to quasi-continuum reduction, and is discussed in the next section.

5 Quasi-continuum reduction

The energetics of a material system, following the local reformulation of extended inter-
actions discussed in section 4, is described by various fields, namely, the displacement
field of atomic positions and potential fields that appear in the variational formulation (cf.
equation (53)). The nature of the displacement field is such that it varies rapidly near the
core of a defect but becomes smooth away from the core where the response is elastic. Po-
tential fields on the other hand exhibit oscillations on the length-scale of the lattice param-
eter. This follows from oscillations in the forcing term,b(q), on the lattice length-scale.
In regions away from the defect-core, where the displacement field is smoothly varying,
the fine-scale oscillations in potential fields exhibit a well characterized structure. In these
regions potential fields are determined to leading order by aperiodic calculation using the
Cauchy-Born deformation. This follows from a formal resultin Blanc et al.(2002), where
this property has been shown for a class of non-linear functionals. We exploit this structure
in potential fields to achieve the quasi-continuum reduction of the local field formulation
proposed in section 4. The key ideas behind this quasi-continuum reduction have first been
proposed in the context of orbital-free density functionaltheory inGavini et al.(2007).
Here, we revisit these ideas in the context of empirical interatomic potentials with the
focus on demonstrating the method being a systematic numerical coarse-graining scheme
devoid of the inconsistencies in previous QC formulations.

The quasi-continuum reduction of field formulation is realized by coarse-graining the
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various fields that appear in the formulation using three unstructured finite-element trian-
gulations withlinear shape-functions:
(i) a triangulationTh1 of selected representative atoms in the usual manner of QC, which
is labeled asatomic mesh;
(ii) a triangulationTh3 , subatomic close to lattice defects and increasingly coarser away
from the defects, which is labeled aspotential-mesh.
(iii) an uniformly subatomic triangulationTh2 to capture the fine-scale oscillations in po-
tential fields, which is labeled asfine-mesh.

We further denoteLh1 as the set containing the representative atoms, which correspond to
the nodes of triangulationTh1 . A schematic of the hierarchy of meshes in one dimension is
shown in figure 7. For convenience, these triangulations arerestricted in such a way that
Th3 is a sub-grid ofTh1 andTh2 is a sub-grid ofTh3 . The corresponding finite-element
approximation spaces are denoted byXh1 ,Xh2 andXh3. To demonstrate the main ideas
behind quasi-continuum reduction, we consider the energy of a system described by expo-
nential kernels. We recall from section 4.1 that the local reformulation of such an energy
is given by

EM
0 = min

q∈X
min
ϕ1∈Y
̺2∈Y

max
ϕ2∈Y
̺1∈Y

∫

Ω
L(ϕ1, ̺1, ϕ2, ̺2;q)dy. (69)

whereL denotes the Lagrangian given in equation (51). In the above expressionY denotes
a suitable function space which isH1

0 (Ω) for non-periodic problems on domainΩ, or
H1
Per(Q) for periodic problems on a supercellQ. We decompose the potentials as

ϕ1 = ϕ10 + ϕ1c , ϕ2 = ϕ20 + ϕ2c ,

̺1 = ̺10 + ̺1c , ̺2 = ̺20 + ̺2c ,
(70)

where(ϕ10, ϕ20, ̺10, ̺20) denote the predictors for the potential fields and(ϕ1c, ϕ2c, ̺1c, ̺2c)
denote the corresponding correctors. The predictors for the potential fields are computed
by performing a periodic calculation on a unit cell in every element ofTh1 and mapped on
toTh2 . The resulting fields are in general not continuous across the boundaries of elements
of Th1 and we use aL2 → H1 map to obtain conforming fields. One way to obtain such a
map is to average the fields across the boundaries of elementsof Th1 (cf. e. g.Gavini et al.
(2007)). In regions away from the defect-core, where the deformation field is slowly vary-
ing, the nature of the corrector fields is such that they do notexhibit fine-scale oscillations
on the length-scale of the lattice parameter. This is justified in the sequel to this article
(Gavini & Liu (2010)) using formal multi-scale analysis, where a more general case of
non-linear functionals is treated. Thus, corrector fields can now be accurately represented
on a coarse-grained triangulation, likeTh3, which has subatomic resolution in regions of
rapid variation of the deformation field and is coarse-grained elsewhere.

The unknowns in the formulation comprising of the coarse-grained displacement field and
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Th3 element

Th2 element

Th1 element

(a)Th1
mesh

(b)Th3
mesh

(c)Th2
mesh

Fig. 7. Schematic sketch of meshes: (a) Shows the atomic-mesh, which has atomistic resolution
in regions of interest and is coarse-grained elsewhere. Thecircles in red denote representative
atoms. (b) Shows the potential-mesh, used to represent the corrections to the predictor of potential
fields. The stars in black represent the nodes of this mesh. Itis subatomic in regions of interest
and coarse-grains to become superatomic. (c) Shows the fine-mesh which resolves the predictor
for the potential fields. The nodes of this mesh are small circles in blue. UnlikeTh1 andTh3 which
are coarse-grained,Th2 is a uniform subatomic mesh everywhere.

correctors for potential fields are computed from the constrained saddle-point problem:

EhM

0 = min
qh∈Xh1

min
ϕh
1 c

∈Xh3

̺h2 c
∈Xh3

max
ϕh
2 c

∈Xh3

̺h1 c
∈Xh3

∫

Ω
L(ϕh10 + ϕh1 c, ̺

h
10 + ̺h1 c, ϕ

h
20 + ϕh2c, ̺

h
20 + ̺h2 c;q

h)dy.

(71)
Since the predictors for the potential fields are represented on a uniformly subatomic mesh
Th2 , the computation of the energy still has a complexity commensurate with the size
of Th2 . In regions of slowly varying deformations, which corresponds to coarse-grained
regions ofTh1 andTh3 , the predictor fields are accurate representations of potential fields
and the corrector fields are very small compared to the predictors. We exploit this fact to
introduce quadrature rules on integrals that reduce all thecomputations to the complexity
of the coarse-grained meshTh3 . The precise form of the integration rule for an elemente

in the triangulationTh3 is
∫

e
f(y)dy ≈ |e|〈f〉De

, (72)

where|e| is the volume of elemente,De is the unit cell of an atom if such cell is contained
in e or e otherwise, and〈f〉De

is the average off overDe. Using (72), integration over
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the entire domain can be written as,
∫

Ω
f(y)dy =

∑

e∈Th3

∫

e
f(y)dy ≈

∑

e∈Th3

|e|〈f〉De
, (73)

reducing all computations to have a complexity commensurate with the size ofTh3 . We
note that this quadrature rule is exact for elements ofTh3 which are smaller than the unit
cell, which we are labeledsubatomicelements. The approximation is only introduced in
elements that are larger than a unit cell, labeled assuperatomicelements. The nature of
coarse-graining in triangulations is such that these superatomic elements lie in regions of
smooth deformations where the corrector fields are very small compared to the predictor
fields. Thus, the integrand of equation (72) is a rapidly oscillating function with a small
correction on the scale of the element. Hence, equation (72), for regions away from the
core of a defect, denotes a zero order quadrature rule for rapidly oscillating functions.

Following the introduction of quadrature rules, predictorfields no longer need to be rep-
resented on a uniformly subatomic mesh everywhere in the domain, which is memory in-
tensive. In the superatomic elements ofTh3 , where the quadrature approximation is used,
it suffices to represent predictor fields on an auxiliary unitcell. This is demonstrated in
figure 8, whereTh2 now represents a triangulation of disjoint simply connected domains
formed from unit cells in each element ofTh3 . In the subatomic elements ofTh3, Th2 rep-
resents a uniform triangulation of the underlying domain. In the superatomic elements of
Th3 , Th2 represents a uniform triangulation of the unit cell contained in theTh3 element.
Further, the triangulations are constructed such that for affine deformations of a perfect
lattice the following are satisfied:

M1: Each simply connected domain representing the predictor fields has an energy den-
sity equal to that of a unit cell. This restriction ensures that the energy of the system is
computed exactly for a perfect lattice undergoing affine deformations.

M2: The integration rule is exact for all superatomic elements ofTh3 lying in the compact
support of any shape-function ofTh1 that also contains one or more subatomic elements
of Th3.

We remark that it is always possible to choose triangulations that satisfy these restrictions
in one- two- and three-dimensions. M1 can be satisfied by a careful choice of the bound-
aries between subatomic and superatomic elements. In one-dimension, it is sufficient to
choose this boundary at the atomic position or at the mid-point between two atoms. In
higher dimensions, it is sufficient to choose these boundaries to be planes of symmetry
of the lattice. To satisfy M2, it is sufficient to choose the superatomic elements ofTh3,
lying in the compact support of any shape-function ofTh1 that also contains one or more
subatomic elements ofTh3 , to have element boundaries that are planes of symmetry of the
lattice. In one-dimension, it suffices to choose a triangulation such that these superatomic
elements have half-integer number of atoms as shown in figure9.

We now turn our attention to investigate if the quasi-continuum reduction of field for-
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auxillary unit cell

superatomic element

(a)Th1
mesh

(b)Th3
mesh and underlyingTh2

mesh

Th1 element

Th2 node

Th3 node

atomrep-atom

Th2 comprised of disjoint domains

Fig. 8. Schematic showing reduction in computational complexity upon introduction of quadrature
rules. (a) Atomic-mesh: circles denote atomic sites; circles in red denote representative atoms
(rep-atoms). (b) Potential-mesh and fine-mesh: small circles in blue denoteTh2 nodes; stars denote
Th3 nodes. The disjoint clusters representing theTh2 mesh is enclosed in a light green box.

sub atomic element super atomic element

Th1 element

Th1 mesh

Th3 mesh

Fig. 9. A triangulation showing a superatomic element and a subatomic element in theTh3 mesh.
The quadrature rule is exact in such a region.

mulations proposed here satisfies the consistency conditions laid out in section 2 (C1
and C2) which are necessary for systematic convergence of numerical approximations.
To this end, we consider a perfect crystal undergoing an affine deformation given byF,
and denote our domain of analysis by a super cellQ containingN0 atoms. Further, we
denote a unit cell in the lattice byU . The suitable function space for the corrector fields
is H1

per(Q), which represents periodic boundary conditions on corrector fields. Further,
we investigate the problem in the limith2 → 0, where approximation errors in predictor
fields are not considered, as we are interested in approximation errors corresponding to
the coarse-grained fields. We note that the saddle-point problem given by equation (71)
returns a trivial solution for the corrector fields. The energy is thus given by
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EhM

0 = min
ϕh
1 c

∈Xh3

̺h2 c
∈Xh3

max
ϕh
2 c

∈Xh3

̺h1 c
∈Xh3

∫

Q
L(ϕ10 + ϕh1 c, ̺10 + ̺h1 c, ϕ20 + ϕh2 c, ̺20 + ̺h2 c;F)dy

=
∫

Q
L(ϕ10, ̺10, ϕ20, ̺20;F)dy =

∑

e∈Th3

|e|〈L〉De

=N0

∫

U
L(ϕ10, ̺10, ϕ20, ̺20;F)dy, (74)

where the last equality follows from the restriction M1 thateach simply connected domain
has an energy density equal to that of a unit cell. Equation (74) demonstrates that the
quadrature rule used satisfies the consistency condition C1.

We now investigate whether the proposed quasi-continuum reduction of field formula-
tions passes the patch test. The force on any representativenode is given by replacing the
generator in equation (62) by the shape-function associated with the representative node:

(fh1K )i = −
∫

Q
Eij

∂Φh1K
∂yj

dy i = 1, 2, 3, K ∈ Lh1, (75)

where(fh1K )i denotes the force in theith direction on a representative nodeK in the trian-
gulationTh1; Φ

h1
K denotes the shape-function associated with the representative nodeK.

We remark that the shape-functions should be adjusted such that they are a constant in
the support of eachδ(y − xi) for i ∈ L to preserve the shape and strength of the regular-
ized dirac distribution. However, in a practical implementation of the method, the dirac
distributions are often represented as point loads on the nodes of the triangulation, and
the discreteness of the mesh provides the regularization. In such a case, as the measure of
b is zero, the required condition on the shape-functions is trivially satisfied. We consider
the following three cases to analyze the force expression: (i) the compact support ofΦh1K
contains only subatomic elements ofTh3 ; (ii) the compact support ofΦh1K contains only
superatomic elements ofTh3 ; (iii) the compact support ofΦh1K contains both subatomic
and superatomic elements ofTh3.

Case (i): The force is given by

(fh1K )i=−
∫

Q
Eij

∂Φh1K
∂yj

dy =
∑

e∈Th3

∫

e
Eij,jΦ

h1
K dy

=
∑

j∈L

(2CVe∇φ1(xj)− C2Ve∇φ2(xj))iΦ
h1
K (xj) = 0. (76)

The last equality follows from∇φ1(xj) = 0, ∇φ2(xj) = 0, j ∈ L, for a lattice with
affine deformation.

Case (ii): The force is given by
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− (fh1K )i =
∑

e∈Th3

∫

e
Eij

∂Φh1K
∂yj

=
∑

e∈Th3

|e|
〈

Eij
∂Φh1K
∂yj

〉

U
(77)

=
∑

e∈Th3

|e|
〈

Eij
〉

U

〈∂Φh1K
∂yj

〉

U
(78)

=
〈

Eij
〉

U

∑

e∈Th3

|e|
〈∂Φh1K
∂yj

〉

U
=
〈

Eij
〉

U

∫

Q

∂Φh1K
∂yj

= 0.

(79)

We note that
〈

Eij
∂Φ

h1
K

∂yj

〉

U
=
〈

Eij
〉

U

〈

∂Φ
h1
K

∂yj

〉

U
as∂Φ

h1
K

∂yj
is a constant in every elemente since

Φh1K is a linear shape-function, and
∫

Q

∂Φ
h1
K

∂yj
= 0 asΦh1K has a compact support inQ.

Case (iii): Noting that the quadrature rule is exact for superatomic elements in this case
from restriction M2, the integrals over unit cells can be replaced by integrals over the
superatomic elements. This case then reduces to Case (i) from which it follows that
(fh1K )i = 0.

Thus, the quasi-continuum reduction of field formulations proposed here satisfies the con-
sistency conditions necessary for systematic convergenceof approximations.

6 Numerical Examples

We considernanoindentationon a semi-infinite chain of atoms in a 1D setting as a test
case to present the numerical accuracy and salient featuresof the proposed field formu-
lation, and compare with the node-based formulations proposed inKnap & Ortiz (2001)
andEidel & Stukowski(2009). Though the nanoindentation problem in 1D does not re-
veal the critical phenomenon of dislocation nucleation which is observed in higher di-
mensions, we choose the problem in 1D as this allows us to consider a large enough
system for which a full atomistic solution can be obtained inorder to conduct a sys-
tematic study of approximation errors. To this end, we consider a chain consisting of
4110 atoms where one end of the chain is a free end, and the other end is fixed. The
chain is extended beyond the fixed end to include atoms with fixed atomic positions that
provide the environment of a semi-infinite chain. We use the Morse potential given by

K(|xi − xj |) =
(

1− e−α(|xi−xj |−xe)
)2

− 1 to describe the interatomic interactions. We
choose the constants in the interatomic potential to beα = 0.5 andxe = 2.8965, where
units of all constants are in atomic units. We choose a cut-off radius of 50 atomic units for
this potential, which ensures that relative errors from truncating the interatomic interac-
tions are lower than the coarse-graining and quadrature errors that are investigated subse-
quently. The ground-state interatomic spacing of an infinite chain corresponding to these
constants isa0 = 1. We remark that our choice of constants is only a convenient choice for
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numerical implementation and does not represent any particular physical system. In order
to simulate the nanoindentation of the semi-infinite chain,we load the free end using an
indenter which applies an external force on the atoms. Following Knap & Ortiz (2001),
we consider the external force from the indenter to be given byAH(R−r)(R−r)3, where
‘R’ is the radius of the indenter, ‘r’ is the distance betweenthe center of the indenter and
the atomic site and H(r) is the heavy-side function. In our simulations we chooseR = 5
andA = 0.5.

6.1 Node-based formulations

In order to compute the approximation errors, we first compute the ground-state energy
and displacement field in the chain of atoms undergoing nanoindentation without intro-
ducing any approximations. The displacement field of an all-atom calculation is shown
in figure 10, whereX denotes the reference configuration andx denotes the deformed
configuration. We note that the deformation in the chain is rapidly varying close to the
indentor and at the fixed end, but is uniform in most parts of the chain which is char-
acteristic of an elastic response. We now proceed to introduce the approximations in the
quasi-continuum method and compute the corresponding errors. We first consider the
node-based formulation inKnap & Ortiz (2001), and subsequently consider the formula-
tion in Eidel & Stukowski(2009).
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0
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3

4

5
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4100 4110

X

x
−
X

Fig. 10. Displacement field obtained from an all-atom simulation of a chain of atoms loaded by an
indenter.

In the formulation proposed inKnap & Ortiz (2001), node-based cluster rules are intro-
duced independently on forces and energy. We consider a sequence of triangulations of
representative atoms (rep-atoms) to study the approximation properties of this formu-
lation. We denote the set of triangulations byκ

h, indexed by the number of rep-atoms,
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Fig. 11. Coarse grained mesh with 95 rep-atoms in a chain consisting of 4110 nominal number of
atoms.

and are given byκh = {35, 39, 47, 63, 95, 159, 251, 379, 463, 642, 1069, 3029, 3063}. The
sequence of triangulations are chosen such that finer triangulations form sub-grids of
coarse triangulations, denoting a systematic refinement ofthe space of solutions. Fig-
ure 11 shows a triangulation with 95 rep-atoms. The triangulations are deliberately chosen
to have rapid coarse-graining at the fixed end to study the robustness of various formula-
tions of the quasi-continuum method. The convergence of quasi-continuum formulations
are measured using relative errors in computed positions ofatoms (displacement field)
given by ||q−qh||2

||q||2
,
||q−qh||∞

||q||∞
, and relative error in the energy given by|E−Eh|

|E|
. Figure 12

shows the approximation errors for different number of rep-atoms and cluster radii. We
note that these approximation errors can be decomposed intoan error corresponding to
coarse-graining (denoted bycoarse-graining error), and another part corresponding to
the approximations introduced through cluster summation rules (denoted byquadrature
error). In the results shown in figure 12, the simulations performed without introducing
cluster summation rules represent the coarse-graining error. Figure 13 demonstrates this
decomposition and highlights the characteristics of the approximation errors. In our dis-
cussion, we will focus on the quadrature error as it is this error which determines the
effectiveness of various formulations in the quasi-continuum method.

The nature of the approximation errors is such that three characteristic regions can be
identified (cf. figure 13), at least for small cluster radii. In region I, corresponding to
small number of rep-atoms, the approximation errors show a rapid drop with increas-
ing number of rep-atoms. However, these errors plateau veryquickly, and in region II
no significant reduction of the error is observed upon further increase in the number of
representative atoms. This region corresponds to a constant quadrature error. When the
number of representative atoms become large enough that theclusters start overlapping,
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Fig. 12. Relative approximation errors in displacement field and total energy for formulation pro-
posed inKnap & Ortiz (2001).
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the quadrature errors vanish, which is expected—this denoted by region III. The stagna-
tion of approximation errors in region II suggest that the node-based cluster summation
rules are not providing a systematic convergence of the approximation error. These nu-
merical results support our conclusions from the error estimates in section 3.1 that node-
based cluster rules can result in large approximation errors for triangulations with rapid
coarse-graining. We further note that, although the quadrature errors in displacement field
systematically reduce with increasing cluster radii, the quadrature errors in the energy do
not improve significantly. To explain this, we recall the error estimate for energy in equa-
tion (29) in section 3.1. The first term in this error estimateis independent of the cluster
radius and will not reduce with increasing cluster radius.
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Fig. 13. Relative approximation error created due to kinematic constraints (coarse-graining errors)
and cluster rules (quadrature errors).

We now proceed to study the approximation errors in the node-based formulation sug-
gested inEidel & Stukowski(2009), where node-based cluster summation rules are in-
troduced on energy and the forces are computed as tangents ofthis approximate energy.
As discussed in sections 2-3, this formulation fails the patch test and results in residual
forces even for a perfect periodic system. These residual forces can become arbitrarily
large with increasing coarse-graining and size of elements, and can seriously undermine
the accuracy of the ground-state solution. It is suggested in Eidel & Stukowski(2009)
that the effect of residual forces can be nullified by computing these residual forces for an
initial configuration and subtracting them out as a dead load.

In our simulations we find, for rapid coarse-graining rates,the force iterations do not
converge even after subtracting the dead loads as these deadloads are orders of mag-
nitude larger than the physical forces. Most of the triangulations that have been used
to study the approximation errors in the formulation proposed in Knap & Ortiz (2001)
have rapid coarse-graining at the fixed end, and the force iterations for the formula-
tion suggested inEidel & Stukowski (2009) do not converge for these triangulations.
Thus, we chose a different set of triangulations given byκ

h = {74, 81, 95, 123, 179, 271,
399, 483, 662, 1089, 1743, 2059, 3083}, where gradual coarse-graining is introduced on
the fixed end. Figure 14 shows the approximation errors in displacement field and en-
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ergy for the node-based formulation inEidel & Stukowski(2009). As seen from the re-
sults, these errors are much larger than those corresponding to node-based formulation
in Knap & Ortiz (2001), and unlike the previous case these errors do not reduce with in-
creasing cluster radii. We note that these numerical results are in qualitative agreement
with the error estimates in section 3 that suggest larger approximation errors in force
computations using the formulation proposed inEidel & Stukowski(2009) in compar-
ison to the formulation proposed inKnap & Ortiz (2001)—the approximation errors in
forces areO(a1 − a2) (equation 21) in node-based formulation inKnap & Ortiz (2001),
whereas they areO(1) (equation 34) in node-based formulation inEidel & Stukowski
(2009). These larger errors in forces appear to result in larger approximation errors in the
displacement field.

We further note that the spurious residual forces that arisein the formulation proposed in
Eidel & Stukowski(2009) change with deformation in the chain. Therefore, for a com-
plete nullification of these residual forces, the dead loadshave to be computed in a self-
consistent manner and updated. We now investigate if the self-consistent iteration con-
verges. We conduct two sets of numerical tests: (i) with the cluster radius fixed at 10
and consider different number of rep-atoms given by{74, 271, 662}; (ii) with the number
of rep-atoms fixed at483 and consider different cluster radiir = {5, 10, 15}. Figure 15
shows the results of this study, where theℓ2 norm of the difference in the dead loads in
iterationsi andi− 1 of the self-consistent loop is presented. The self-consistent iteration
does not necessarily converge, especially for small numberof rep-atoms or small clus-
ter radii. Numerical tests suggest that introducing linearmixing for the self-consistent
iteration does not cure this deficiency.

To summarize, the numerical results suggest that the approximation errors do not system-
atically converge in the node-based QC formulations. The quadrature errors are found
to be orders of magnitude larger than the coarse-graining errors even for moderately
large number of rep-atoms. Moreover, in the node-based QC formulation suggested in
Eidel & Stukowski(2009), the self-consistent iteration which removes the effect of the
residual forces may not always converge. We now proceed to study the approximation
errors in the quasi-continuum reduction of the field formulation proposed in this article.

6.2 Field Formulation

We numerically implemented the variational formulation inequation (53) for the nanoin-
dentation problem in 1D. Using the same notation as in section 4.1, the potential created
by a given configuration of atoms, represented byb(y;q), is of the form

φ(y;q)=
∫

K(|y − y′|)b(y′;q)dy′ , (80)

K(|y − y′|)=
(

1− e−α(|y−y
′|−xe)

)2
− 1. (81)
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Fig. 14. Relative approximation errors in displacement field and total energy for formulation pro-
posed inEidel & Stukowski(2009).

40



Iyer & Gavini

1 2 3 4 5 6 7 8 9 10
10

−8

10
−6

10
−4

10
−2

10
0

10
2

 

 

r
cluster

=10,R=662

r
cluster

=10, R=271

r
cluster

=10, R=74

iterations

||
∆
κ
||
2

(a) Self consistent iteration results for a fixed cluster radius and different number
of rep-atoms.

1 2 3 4 5 6 7 8 9 10
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

 

 

r
cluster

=5, R=483

r
cluster

=10, R=483

r
cluster

=15, R=483

iterations

||
∆
κ
||
2

(b) Self consistent iteration results for a fixed number of rep-atoms and different
cluster radii.

Fig. 15. Convergence study of the self-consistent iteration for residual force correction. Hereκ(i)
is the dead-load at theith iteration of the self consistent loop and||∆κ(i)||2 = ||κ(i)−κ(i−1)||2
is theℓ2 norm of change in dead-load against self-consistent iteration number.

Let φ1(y;q) =
∫

e−α|y−y
′|b(y′;q)dy′, andφ2(y;q) =

∫

e−2α|y−y′|b(y′;q)dy′. The desired
potential can now be represented asφ(y) = −2eαxeφ1(y) + e2αxeφ2(y). Evaluation of the
potentialsφ1, φ2 requires an evaluation of convolution integrals with non-local kernels.
Following the ideas presented in section 4, and noting that the Fourier Transform ofe−α|y|

in one dimension is 2α
k2+α2 , these potentials can be reformulated into a local form using

the following differential equations:
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−
d2φ1(y;q)

dy2
+ α2φ1(y;q)= 2αb(y;q) , (82)

−
d2φ2(y;q)

dy2
+ 4α2φ2(y;q)= 4αb(y;q). (83)

The problem of computing the ground-state solution can now be represented as the fol-
lowing saddle-point problem:

E0 = min
q∈RM

min
ϕ1∈X

max
ϕ2∈X

L(ϕ1, ϕ2,q) , (84)

whereX denotes the appropriate function space corresponding to the boundary condi-
tions, M denotes the number of rep-atoms, and

L(ϕ1, ϕ2;q) =
2eαxe

α

(

1

2

∫

|∇ϕ1|
2dy +

α2

2

∫

ϕ2
1dy − 2α

∫

ϕ1(y)b(y;q)dy

)

−
e2αxe

2α

(

1

2

∫

|∇ϕ2|
2dy + 2α2

∫

ϕ2
2(y)dy − 4α

∫

ϕ2(y)b(y;q)dy
)

.

(85)

We have numerically implemented the quasi-continuum reduction of the above saddle-
point problem following the ideas developed in section 5. Asin section 5, we denote the
triangulation of the representative atoms asTh1 (atomic-mesh), the triangulation resolving
the corrector fields asTh3 (potential-mesh), and the triangulation resolving the predictor
fields asTh2 (fine-mesh). We chose the triangulations such that discretization errors in
the computation of forces, which requires a numerical evaluation of gradients of potential
fields, are below10−10. We used a nested iterative scheme for solving the saddle-point
problem in equation (84), where for every displacement fieldgiven byqh the potential
fields are computed by solving themin−max problem on(φh1 , φ

h
2). We used a sparse-

representation iterative solver for solution of(φh1 , φ
h
2), which is a linear problem, and a

Levenberg-Marquardt iterative algorithm (cf. e. g.Moré (1977)) for solution of the non-
linear problem corresponding to the minimization with respect to positions of atoms.

In order to determine the approximation errors in the proposed field formulation we have
conducted three different studies. The first study considers coarse-graining of only the dis-
placement field via selection of representative atoms. The potential fields are computed on
the fine-mesh, i.e.Th3 = Th2 , and the coarse-graining of corrector potential fields is sup-
pressed. This study shows the approximation errors arisingsolely from coarse-graining
of the displacement field. In the second study, along with coarse-graining of the displace-
ment field, corrector fields are also represented using a coarse-grained triangulation. In
other words, we considerTh3 also to be a coarse-grained triangulation with subatomic
resolution close to regions of interest and coarse-grainedelsewhere. The approximation
errors in this study arise from the coarse-graining of the displacement field as well as
corrector fields. In the first two studies we do not introduce the quadrature rules proposed
in equation (72). The third and final study introduces the quadrature rules as an additional
approximation which then reduces all computations to the complexity commensurate with
the coarse-grained triangulationsTh1 andTh3 . The approximation errors in the third study
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include the coarse-graining errors from displacement and corrector fields, and the quadra-
ture errors.

We have conducted the aforementioned three studies for the set of triangulations given
byκh = {35, 39, 47, 63, 95, 159, 251, 379, 463, 642, 1069, 3029, 3063}—similar to the set
used in the study of approximation errors in the formulationproposed inKnap & Ortiz
(2001). Figure 16 shows the approximation errors in displacementfield and energy for the
three studies with increasing number of rep-atoms. The datapoints from the first study,
denoted by ‘∗’, show the displacement coarse-graining errors which are similar to the dis-
placement coarse-graining errors for the node-based formulation inKnap & Ortiz (2001)
(cf. figure 12). The data points from the second study are denoted by ‘2’, and those from
the third study are denoted by ‘◦’. From figure 16, it is evident that the approximation
errors corresponding to the coarse-graining of corrector fields and quadrature rules are
negligible in comparison to the coarse-graining errors in the displacement field. These
results are in sharp contrast to the errors incurred in usingnode-based cluster rules where
the quadrature errors are orders of magnitude larger than the coarse-graining errors. We
argue that this remarkable improvement in the accuracy of the solution can be attributed to
two key features of the quasi-continuum reduction of field theories. Firstly, the quadrature
rules proposed in the quasi-continuum reduction of field formulations are element-based
quadratures. As demonstrated in section 3, element-based cluster (quadrature) rules are
more accurate in comparison to node-based cluster rules. Secondly, and more importantly,
the notion of quadrature approximation is a local notion which is compatible with field
formulations, and as demonstrated in section 5 satisfies theconsistency conditions neces-
sary for systematic convergence of approximations.

We finally comment on the computational costs associated with the field formulation. As
expected, the field formulation has larger memory requirements in comparison to conven-
tional QC formulations as the potential fields have to be resolved on a finite-element mesh
at the sub-atomic scale. The memory requirements for the proposed field formulation are
O(Nh1) for storing the displacements of the representative atoms,whereNh1 denotes the
number of nodes inTh1 ; O(Nh3) for storing the corrector fields, whereNh3 denotes the
number of nodes inTh3 ; andO(Nh1 ∗ NU) for storing the predictor fields, whereNU is
the number of nodes in the triangulation of a unit cell. The computational complexity of
the force calculation isO(Ne-super

h3
+ Nh1) once the potential fields are computed for a

given configuration of atoms, whereNe-super
h3

denotes the number of superatomic elements
in Th3 . We note that computing potential fields is mostly an overhead cost as it is the ini-
tial computation of these fields which is time consuming, andthe subsequent evaluations
are updates which require very few iterations. In comparison, the memory requirements
of conventional QC formulations areO(Nh1), and the computational complexity of force
evaluations isO(Nh1 ∗ Nrc ∗ Nrcutoff ) whereNrc denotes the number of atoms inside
the cluster radius andNrcutoff denotes the number of atoms inside the chosen cut-off ra-
dius for the interatomic interactions. For a representative calculation with 95 rep-atoms,
the data arrays representing the predictor fields and corrector fields had 18786 entries and
21582 entries respectively, in addition to the displacements of the 95 rep-atoms. The mem-
ory requirement for this calculation was about 0.5 MB as opposed to negligible memory
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Fig. 16. Relative approximation errors in displacement field and energy for the proposed field
formulation of quasi-continuum method.qh represents coarse-grained displacement field while
φh represents coarse-grained potential field.
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requirements for conventional formulations. For a comparison of the computational time,
we consider a 95 rep-atom conventional QC formulation with node-based cluster rules
on forces with a cluster radius of 20. For this test case, the field formulation consumed
four times more wall clock time than the conventional QC formulation with node-base
cluster rules. We note that there is significant room for optimization of the field formula-
tion, and by using multi-grid methods the computational complexity of the potential field
calculations can be further reduced, which is a topic for future investigation.

7 Conclusions

We have presented a solution to some of the long standing issues in the quasi-continuum
method. The approximations involved in various versions ofthe QC method are known
to result in undesirable features, which include a loss of variational structure leading to
non-conservative forces, appearance of spurious forces ona perfect periodic lattice, pos-
sible lack of stability in the numerical approximations, etc. These in turn can undermine
the numerical accuracy and systematic convergence of the QCmethod. In the present
work, we identified the primary cause of these shortcomings to be the use of a non-local
representation of energy to describe the extended interatomic interactions in materials.
We have demonstrated that cluster summation rules introduced on a non-local representa-
tion of energy result in a lack of consistency—approximation errors do not systematically
reduce with increasing refinement of the solution space. Cluster summation rules which
are introduced in the spirit of numerical quadratures are derived from a local notion of
numerical approximation, and result in inconsistent schemes when used on non-local rep-
resentations of energy.

In the present work, we resolved these outstanding issues byreformulating the extended
interatomic interactions into a local variational probleminvolving potential fields. We
have demonstrated this approach for commonly used interatomic potentials, and sub-
sequently introduced the quasi-continuum reduction of these potential fields following
the ideas first suggested inGavini et al.(2007) in the context of electronic structure cal-
culations. The key ideas behind the quasi-continuum reduction of field theories are: (i)
decomposition of potential fields into predictor fields and corrector fields; (ii) an effi-
cient representation of these fields using nested finite-element triangulations—predictor
fields are resolved on an auxiliary unit cell, whereas corrector fields are represented on a
coarse-grained triangulation; (iii) introduction of quadrature rules which reduce all com-
putations to the complexity commensurate with the number ofcoarse-grained variables
in the system. We have demonstrated that the quasi-continuum reduction of a field for-
mulation satisfies the necessary conditions for a consistent numerical approximation, and
hence is likely to provide a systematic convergence of the approximation errors. Further,
we have shown using numerical examples the remarkable improvement in the accuracy
of the solution afforded by the suggested field approach to the QC method. Numerical
results from this study suggest that the approximation errors in a field approach are solely
from the coarse-graining of displacement fields which can not be surpassed by any QC
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formulation. In comparison, other seamless QC formulations based on non-local repre-
sentations of energy incur orders of magnitude larger numerical errors from quadrature
approximations, and also suffer from a lack of systematic convergence.

The suggested field theoretic approach to the quasi-continuum method has the follow-
ing properties. A single field theory is used to describe the physics in all regions of the
model. The formulation is seamless and does not rely on any patching conditions. The for-
mulation has a variational structure and thus the computed forces are conservative. The
approximations introduced are consistent, and hence provide a systematic convergence
to the exact solution. Moreover, the present work provides ageneral framework for the
quasi-continuum reduction of any field theory, where quasi-continuum reduction is solely
a numerical coarse-graining technique.

It may appear that the computation of potential fields, whichrequires resolving these
fields on a length-scale finer than interatomic distance, cansignificantly increase the
computational cost. We note that the computation of these potential fields is mostly an
overhead cost as it is the initial computation of these fieldswhich is time consuming, and
the subsequent evaluations are updates which require very few iterations. On the other
hand, the field formulation provides a significant advantageas the computation of forces
and energy is a local computation involving the potential fields, unlike force and energy
computations in conventional QC formulations. In our simulations, the field formulation
was about four times more expensive in computational time than conventional node-based
formulations. However, there is significant room for optimization in our preliminary im-
plementation of the field formulation. For instance, the useof multi-grid approaches can
significantly reduce the computational complexity of potential field calculations.

In the present work we have restricted our attention to a single component material sys-
tem. Extending the present ideas to multi-component systems requires careful considera-
tion as the PDE’s describing potential fields can have different forms in different regions
of the model, and presents itself as a direction for future investigations. Further, a numer-
ical analysis of the proposed method which includes developing a priori error estimates,
investigating the stability and accuracy of the formulation, developing effective precondi-
tioned iterative solvers are potential directions for future investigations.
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A Error Estimates

For completeness we provide the details of the estimate in equation (38) that corresponds
to the error in the computation of forces using element-based cluster summations. Fol-
lowing the notation introduced in section 3.2 and 3.3 we denote g(k) =

∑

j∈LK
′
(xk −

xj |)
xk−xj
|xk−xj |

Φh(Xj|X0), k1(i) =
Ny
2
− i andk2(i) = N

2
− i which for i = −r0 . . . r0 denote

the positions of the atoms in the clusters located in the two elements shown in figure 4.
The expressions forg(k1(i)) andg(−k2(i)) for i ∈ {−r0, . . . , r0} are given by

g(k1(i)) =

Ny
∑

j=k1(i)+1

K
′
(a1|k1(i)− j|)

Ny − j

Ny
−
{

k1(i)−1
∑

j=0

K
′
(a1|k1(i)− j|)

Ny − j

Ny

+

N
∑

j=1

K
′
(a1|k1(i) + j|)

N − j

N

}

i = −r0 . . . r0 ,

g(−k2(i)) =−
N
∑

j=k2(i)+1

K
′
(a1|k2(i) − j|)

N − j

N
+
{

k2(i)−1
∑

j=0

K
′
(a1|k2(i)− j|)

N − j

N

+

Ny
∑

j=1

K
′
(a1|k2(i) + j|)

Ny − j

Ny

}

i = −r0 . . . r0.

(A.1)

The approximate force on representative nodeK = 0 is given by

f̃0 =
r0
∑

i=−r0

(

Ny

2r0 + 1
g(k1(i)) +

N

2r0 + 1
g(−k2(i))

)

. (A.2)

From symmetry we note that

r0
∑

i=−r0

( Ny
∑

j=k1(i)+1

K
′
(a1|k1(i)− j|)−

k1(i)−1
∑

j=0

K
′
(a1|k1(i)− j|)

)

= 0.

r0
∑

i=−r0

( k2(i)−1
∑

j=0

K
′
(a1|k2(i)− j|)−

N
∑

j=k2(i)+1

K
′
(a1|k2(i)− j|)

)

= 0.

(A.3)

Using equation (A.3) in equation (A.1) and rearranging, theapproximate force is given
by
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f̃0=
r0
∑

i=−r0

1

2r0 + 1

(

z(k1(i))− z(k2(i)) +N
Ny
∑

j=1

K
′
(a1|j + k2(i)|)−Ny

N
∑

j=1

K
′
(a1|j + k1(i)|)

)

,

z(k1(i)) =
k1(i)−1
∑

j=0

K
′
(a1|j − k1(i)|)j −

Ny
∑

j=k1(i)+1

K
′
(a1|j − k1(i)|)j + y

N
∑

j=1

K
′
(a1|j + k1(i)|)j ,

z(k2(i)) =
k2(i)−1
∑

j=0

K
′
(a1|j − k2(i)|)j −

N
∑

j=k2(i)+1

K
′
(a1|j − k2(i)|)j +

1

y

Ny
∑

j=1

K
′
(a1|j + k2(i)|)j.

(A.4)

which is equation (38). To simplify this expression we make aseries of approximations.
First we choose clusters containing only one atom, which corresponds tor0 = 0. Further
for simplicity we will drop the terms ofO( 1

(3N)p
) in comparison to terms ofO( 1

Np ). Lastly,

we assumey = 1 + ǫ with ǫ > 0 and ǫ << 1. Using the decay assumption onK in
assumption A1 (section 3) and properties of p-series noted in section 3.1, we arrive at the
following estimates

N
Ny
∑

j=1

K
′
(a|j + k2(i)|)−Ny

N
∑

j=1

K
′
(a|j + k1(i)|) ≈

2(p− 1)ǫ

pa
p+1
1 (N

2
)p−1

,

y
N
∑

j=1

K
′
(a1|j + k1(i)|)j −

1

y

Ny
∑

j=1

K
′
(a1|j + k2(i)|)j ≈

(3− p)ǫ

p(p− 1)ap+1
1 (N

2
)p−1

,

k1(i)−1
∑

j=0

K
′
(a1|j − k1(i)|)j −

k2(i)−1
∑

j=0

K
′
(a1|j − k2(i)|)j

+
N
∑

j=k2(i)+1

K
′
(a1|j − k2(i)|)j −

Ny
∑

j=k1(i)+1

K
′
(a1|j − k1(i)|)j ≈

4ǫ

a
p+1
1 (N

2
)p−1

.

(A.5)

Using the estimates in (A.5), we note thatf̃0 isO( y−1
Np−1 ).
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