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Abstract

The quasi-continuum method has provided many insightdl®ehavior of lattice defects
in the past decade. However, recent numerical analysiestgthat the approximations in-
troduced in various formulations of the quasi-continuunthuod lead to inconsistencies—
namely, appearance of ghost forces or residual forcescanservative nature of approx-
imate forces, etc.—which affect the numerical accuracy stathility of the method. In
this work, we identify the source of these errors to be thenmgatibility of using quadra-
ture rules, which is a local notion, on a non-local repres@m of energy. We eliminate
these errors by first reformulating the extended interatanteractions into a local varia-
tional problem that describes the energy of a system vianfiatdields. We subsequently
introduce the quasi-continuum reduction of these potefiilals using an adaptive finite-
element discretization of the formulation. We demonstth#t the present formulation re-
solves the inconsistencies present in previous formulatas the quasi-continuum method,
and show using numerical examples the remarkable impraveiméhe accuracy of solu-
tions. Further, this field theoretic formulation of quasntinuum method makes mathemat-
ical analysis of the method more amenable using functionalyais and homogenization
theories.

Key words: Quasicontinuum method, Atomistic Models, Error analyslisjtiscale
modeling

1 Introduction

Deformation and failure processes in crystalline soligsstrongly governed by the prop-
erties of various defects present in them—examples incthderole of vacancies in
creep, spalling and radiation damage, dislocations in Inpdgasticity, twin boundaries
in phase-transformations, and interfaces in reactive Imetde main challenge in an
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accurate description of defect behavior is the wide rangetefracting length-scales
that determine the properties of defects. The core of a tleedetermined by com-
plex atomistic/quantum-mechanical interactions on anstogn length-scale, which in
turn produces long-ranged elastic fields over many micrersefThe Quasi-continuum
method is a numerical coarse-graining technique that atieto bridge these various
length-scales to accurately describe defect behavior lidssdNVe refer to the follow-

ing articles and references therein for a comprehensivevigve of the quasi-continuum

method and its applications: ( b); ( b);

(1999; (1999; (1999; (2000);

(2001); (2009); (2009; (2009;

(2007; (2009.

The quasi-continuum (QC) method was originally developatié context of lattice stat-
ics at zero temperature using empirical interatomic paaéng , b),

where the key idea was the systematic and adaptive coaagargy from a fully resolved
atomistic description near a defect-core to a continuuncrgggon away from the core.
This was achieved through kinematic constraints on theed=sgof freedom—positions
of atoms, thus reducing the variational problem of computime ground-state proper-
ties to a constrained variational problem with far fewerréeg of freedom. Although the
imposed kinematic constraints significantly reduce thelmemof variables, the computa-
tional complexity of evaluating the generalized forcesesponding to the coarse-grained
variables—positions of representative atoms—still scalgh the total number of atoms
in the system making computations on large systems intvicta

Various approximations have been suggested to furtherceesthe complexity of force
computations and make it commensurate with the number akeagrained variables
( : 3b; J1999 , 2007, ,2002
] ). These include the mixed atomistic and continuum formu-
lations, or introduction of cluster summation rules onit¢attsums. Valuable as these
approximations are, they suffer from notable drawbacksdme cases, the computed
forces are non-conservative which may lead to energy ceasen problems as stud-
ied in ( ). In other cases, where the computed forces are conser-
vative, spurious forces appear as a result of the approxnsintroduced and can un-
dermine the accuracy of the solution. Many strategies haen Isuggested to correct
the errors incurred in these approximations (cf. &Qg. ( );
( )), but these require a special treatment at the interfagparating the heteroge-
neous models used in different regions of the materialsesysand subsequently in-
troduce a seam in the formulation. Recently, many efforieHfacussed on a system-
atic numerical analysis to investigate the accuracy, stescy and stability of the var-

ious approximations in the quasi-continuum method, and &fer rto ( );
(2009; (2009; (2009;

( ); ( ib) and reference therein for a detailed discussion on this

topic.

In the present work, we seek to construct a seamless quasiraom formulation which
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is solely based on a single theory, is variational, and jpiewisystematic convergence
of the approximations introduced. The notion of cluster swation rules introduced in

( ); ( ) is attractive from the standpoint of be-
ing a seamless formulation based on a single theory. Howtwerformulations based
on this approximation are either not variational, or are ecansistent as they fail the
patch test. Moreover, these formulations can result inelagors and may not guaran-
tee a systematic convergence of approximations. This wasfited in a recent analysis
by ( ). We further demonstrate this through the error estimates w
compute in section 3. We identify the primary cause of thésetsomings to be the use
of quadrature rules (cluster summation rules), which iscallmotion of numerical ap-
proximation, on a non-local representation of energy dlescy the extended interatomic
interactions. Further, this non-local representationr#rgy is also the cause for spu-
rious ghost forces observed in the formulation proposed:in ( ), and
subsequently discussed:i ( ).

In this work, we first reformulate the non-local interatorpimtentials into a local form
by constructing the partial differential equation whose&r's function corresponds to
the kernel of the non-local interaction. Most interatomatgntials are based on either

an exponential kernel of the forer**—* |, or kernels of the forn]r_lT‘m wherem is

a positive integer. We note that®*—'1 is the Green’s function of a 4th order partial
differential equation, and show that kernels of the form;—= can be approximated with

Green’s functions of Helmholtz equations without significkbss of accuracy. Thus, the
extended interactions for a large class of interatomicg@ks can now be described by
a local variational problem involving potential fields, ahés forms the basis for the field

approach to the quasi-continuum method. In particular, illse demonstrated in this

article, the computation of energy as well as the physiaae® on atoms reduce to local
evaluations involving potential fields.

Following ( ), the quasi-continuum reduction is performed on the poten-
tial fields which are governed by a local variational probldine potential fields are first
decomposed into predictor fields and corrector fields. Thdiptor fields are constructed
from local periodic calculations using the Cauchy-Borrerulhe corrector fields, which
are represented on a coarse-grained triangulation, anectimputed from the variational
principle. In a related work : ), we show that the corrector fields do
not exhibit oscillations on the length-scale of the atoraiti¢e which justifies the com-
putation of corrector fields on coarse-grained triangafeti Owing to the local nature of
the formulation, we proceed to introduce quadrature rdilasreduce all computations to
have a complexity commensurate with the number of coaraiegn variables. We show
that the quadrature rules introduced on this local vamatiproblem satisfy the necessary
consistency conditions for systematic convergence ofagprations, which is one of the
central results of this work.

To demonstrate the accuracy of the proposed field formulaifo QC method we have
numerically implemented the formulation using Morse ptsnWe compare the nu-
merical results from the proposed formulation with othearskess QC formulations em-
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ploying node-based cluster rules : ; J ) using a
nanoindentation test problem in one dimension. We find tirat® arising from quadra-
ture approximations are almost negligible in the field folation, and the approximation
errors are predominantly coarse-graining errors assatigith the kinematic constraints
on positions of atoms which can not be surpassed in any QQuiation. These results
are in sharp contrast to the approximation errors incurrednicluster summation rules
are introduced on a non-local representation of the enrguch a case, the quadrature
errors are orders of magnitude larger than coarse-gragrirgys, and numerical results
suggest a lack of systematic convergence with increasintbeuof representative atoms.
These numerical results support our observations front estimates in section 3, and
highlight the strict control and systematic convergenderdéd by the field approach to
QC method. We further note that the field approach makes mmatti@al analysis of QC
formulation more amenable, where established techniqoes functional analysis and
homogenization theories can be employed. A related woek/| , ) presents
such an analysis.

The remainder of this article is organized as follows. Secf provides an overview of
the QC method and briefly discusses the merits and demerddfefent QC formula-
tions. In particular, it highlights the issues involved ising quadrature rules on non-
local representations of energy and motivates the mairside@eloped in this work. Sec-
tion 3 presents error estimates on forces and energy upog akister summation rules,
and demonstrates the lack of consistency in these numeappabximations. Section 4
presents the reformulation of the extended interatomarautions into local variational
field theories, and section 5 presents the quasi-continaiuction of these field theo-
ries and an analysis of the approximations therein. Nurakeixamples are presented in
section 6, and we conclude in section 7 with an outlook.

2 Oveview

We consider the reference configuration of a single crysgaivhere the positions of the
N, atoms present in the crystallite are given by a subset of plsiBravais lattice in &
dimensional space denoted ByLetl = {/!, ... %} € Z? denote the lattice coordinates
representing an individual atom. The coordinates of atantke reference configuration
are thus given by

d
X, =Y lla;, 1eL, (1)
=1

wherea; fori = 1, ..., d denote the basis vectors of the Bravais lattice. We denotg-by
{x1, 1 € L} a vector that collects the positions of atoms in the deforewdiguration.
The energy of a material system in atomistic calculatiorgvien by

II(q) = E(q) + V(a), (2)
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wherell denotes the total potential energy of the systéngenotes the internal energy
of the system, antl’ denotes the potential energy corresponding to body forciasgon
the material system. The problem of computing ground-giedeerties, which include
the ground-state energy and the deformed configurationnoanbe expressed as the
following variational problem:

min T1(q), (3)

qeX
whereX denotes the vector space of admissible trial functionsesponding to imposed
boundary conditions. We note that the above minimizatiabj@m may not have a unique
minimizer owing to the non-convex nature of the potentiargy function. However, in
most numerical simulations the crystallite is loaded inweatally in a quasi-static manner
allowing the system to relax to a nearby stable configuration

The internal energy of the system in atomistic calculatisnsften described by empiri-
cal interatomic potentials, the most common being the eh@@tom method (cf. e. g.
( )), and has a representation given by

E(q) =) ek(q), (4a)
kel

ex(@) = Y. K(xk—x])+ f(p(k))  with (4b)
JEL, j#k

pk)= > p(lxk —xj). (4c)
JEL, j#k

In the above expression,(q) denotes the internal energy of at&yK denotes a central
potential governing the interatomic interactiofislenotes the embedding energy function
andp(k) denotes the electron density at atknm the environment of surrounding atoms.
The ground-state properties corresponding to the vanatiproblem in equation (3) are
computed by equilibrating the forces on atoms given by

fi(q) = ﬁg}i‘{l) kel (5)

Due to the non-convex nature of the energy functional, tiheag exist many solutions
which satisfyf, = 0 for k € £, and the ground-state properties correspond to the solu-
tion with minimum energy. In practice, the huge computaiarost associated with an
all-atom calculation limits the size of accessible matesyatems. However, the nature of
deformation fields in most systems of interest, especibthgé involving defects, is such
that these fields are rapidly varying only near the core offadgand become smooth
away from the core where the response is effectively elastics nature of deforma-
tion fields is the basis for the quasi-continuum method, Widcan adaptive numerical
coarse-graining technique retaining full resolution veheecessary and coarse-graining
elsewhere.

A key idea behind quasi-continuum method is to replace th@mization problem in
equation (3) with a constrained minimization problem in éizdlly chosen sub-space. We
consider a subset aépresentative atondenoted by, and construct a finite-element tri-
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angulation’;, of these representative atoms in the reference configaratioich in gen-
eral is unstructured. Further, kinematic constraints mt@duced on positions of atoms
in the deformed state through shape-functions of the feelé@ent triangulation given by

xp =Y "Xy Xj5)x; kecL, (6)
JeLy,

where ®"(X, | Xy) denotes the value of the shape-function associated witprasen-
tative atomJ evaluated at the position of atokin the reference configuration. Let
q" = {x}, k € L} be a vector containing positions of atoms in the deformedigon
uration under the kinematic constraint imposed throughaggn (6). The energy of the
system is now a function of positions of only the repres@rgattoms, and the minimiza-
tion problem in equation (3) reduces to a constrained miration problem given by

min T1(q"), )

qreXx,
whereX; denotes the subspaceX¥fspanned by the shape-functions of the finite-element
triangulation. A judicious choice of the subspafg corresponds to providing full atom-
istic resolution in regions of rapidly varying deformatifields, for example at the defect-
core, and using fewer representative nodes in regions odgnueformations. Many nu-
merical tests (cf. e. gl ( ); ( )) have shown that the
ground-state properties of a system can be representec lpptistrained minimization
problem in equation (7), which has far fewer degrees of foeethan equation (3).

The force on a representative atomJat £, is given by

dIl(q") oll(q") oxy
g = — _ OXy
3(@) dxh g% oxh - oxh
=" fi(q") " (Xk|Xy), (8)
kel

which is a weighted sum of forces on atoms that lie in the cangapport of the shape-
function associated with representative atbnThus, although the kinematic constraints
introduced in the quasi-continuum method significantlyuathe degrees of freedom,
forces on all atoms in the system are required to computes$aro representative atoms.
A full atomistic force calculation is prohibitively expers on large systems and fur-
ther approximations are necessary to reduce the compugihtiomplexity of these force
calculations. We note that the kinematic constraints duoed through the selection of
representative atoms is common to all versions of the qu@sinuum method devel-
oped so far (cf. e. g: ( ); ( ); ( );

( ); ( )). The various versions of the method
differ in the next approximation which is introduced to redithe computational com-
plexity of the force calculation. Here we briefly discuss ammimment on the merits
and demerits of commonly used formulations proposedan ( ) and

( ), and a recent formulation proposedtin ( ).
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In the first formulation of quasi-continuum method, propbse ( ),
the domain of analysis was divided into two regions—the lomad region where the en-
ergy is described by empirical interatomic potentials veixttended interactions, and the
local region where the energy is described by invoking thecBg-Born rule. The force
computations are expensive only in the non-local regiorctvie small compared to the
local region, thus reducing the computational complexitghe calculation. However,
the heterogeneous and disparate models used in diffeiginheeof the domain result in
spurious forces on the interface between the local and thdawal region, and are often
referred to aghost forcesn the literature. ( ) proposed to remove the
effect of these ghost forces by adding a dead load which isi¢igative of these ghost
forces. But the drawback of this approach is that these dmdslare non-conservative
and may lead to energy conservation problemsii 1 ) in molecular
dynamics simulations: ( ); ( ) suggest a remedy to this
problem by introducing a buffer region or using local red¢amgions between the local
and the non-local region, but in the process introduce uratde seams in the formula-
tion.

A seamless approach to reduce the computational comptehtite force calculations was
proposed iri ( ). In the spirit of quadrature rules, the force computations
are approximated bgluster summation rulegbat represent a weighted sampling of forces
on atoms located in clusters centered at representativesadlthough this formulation

is free of ghost forces, the approximate forces are nonezgasve ( ]

) which is not desirable as mentioned beforec ( ) suggest
introducing cluster summation rules only on the energy, emhputing the forces on
representative atoms as tangents of this approximate \eridogvever, this leads to the
appearance of non-zero residual forces for a perfect dryatier affine deformations.
These residual forces can become uncontrollably largeraarhitrary coarse-graining
of representative nodes as will be demonstrated in sectiyrad in turn can produce a
spurious displacement field upon relaxation. It is suggksté ( )
that these residual forces can be eliminated by introdudésgl loads on similar lines as
proposed in ( ). The difference between ghost forceslim
( ) and the residual forces in ( ) is that the former are non-
conservative while the latter are conservative. We note ttiea calculation of residual
forcesin ( ) requires evaluation of exact forces periodically, which
is prohibitively expensive. Furthermore, we demonstnatdis article through numerical
examples that the self-consistent iterations may not adwayverge (cf. section 6.1).

The introduction of cluster summation rulesdn ( ) and

( ) in the spirit of quadrature rules is based on systematicanioal approximation,
in contrast to the formulation proposed in ( ) and its subsequent im-
provements<$ J L , ) where different
regions of the model are descrlbed by heterogeneous teebiogvever, numerical exam-
ples in a bench mark test conducted receritiy/{ : ) show that errors in
the node-based cluster formulatiorisif ) ; ] ) are
considerably larger than other formulations. A recentysislby ( )
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based on nearest-neighbor interactions in one dimensi@pibvides an explanation for

these observations, where they demonstrate using errtysanthat node-based cluster
rules can have large errors. In section 3, we estimate tbesdrr forces and energy using
extended interactions and arrive at a similar conclusioa.fimther show that element-

based cluster rule<( ! )—where the quadrature rules are intro-
duced inside the element—exhibit better approximatiorperes for both forces and

energy, and reduce to the Cauchy-Born rule for large elesrierihe leading order.

The next observation we present is the primary cause of tbeeatmentioned incon-
sistencies in various versions of quasi-continuum methel.note that it is desirable
to introduce cluster (quadrature) rules on the energy antpote forces as tangents of
this approximate energy—this guarantees conservatiweso-urther, any cluster rule
introduced should satisfy the following necessary coaaist conditions for systematic
convergence (cf. e. ¢ ( ); ( )):

C1. The energy is summed exactly for affine deformations depelattice.

C2. The computed forces—tangents of the energy—are zeraffioe deformations of
perfect lattice.

The consistency condition C2 is often referred tgatch testin numerical analysis of
approximation theories. We remark that if the energy hasal lieepresentation, then the
patch test is passed trivially. However, if the energy hasmlocal representation then
the patch test is never passed by a cluster rule of any order.

We consider the following example to illustrate this keymioiAs shown in figure 1,
consider an infinite mono-atomic chain of atoms with unif@macing between the atoms
(affine deformation in 1D), and lé2 denote the domain of analysis which consists of
N, atoms. First, we consider an artificlalcal representatiorior the energy given by a
lattice functione, wheres(i) = g(z;) denotes the energy of atoie £ which is located

at positionz;. A system of non-interacting atoms moving in a mean potefigla (g(z))
created by the atoms themselves has such a local represeritatenergy. Such a mean
field representation is motivated from density functiomeldry (cf. e. g ( ),
where it is used to account for the interaction betweenast Using cluster summation
rules the lattice sum describing the energy can be apprasores

m

E=Yc(i)~Y m Y eli)=F, 9)

€L k= 1€Cy,

where E denotes the approximate energy, denotes the collection of atoms in thé
cluster with a weight:;,, andm denotes the number of clusters. Similar to numerical
approximation of integrals, the cluster weights and positif these clusters can be chosen
such that the approximation is exact for polynomial latfigections of ordep—a p'"
order accurate cluster rule. Now we consider the directideavative of the energy for
infinitesimal deformations), : Q — Q, with ¢y = id and %<|._, = I denoting the

de
generator of these infinitesimal deformations. The gersamlforce is given by

= | = Ziedowte)

f

> g (@) (), (10)

=0 e
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and the approximate generalized force, which is the diveatiderivative of, is given
by

Z N Z g 'TZ z (11)

e=0 = 1€Cy

= el S T o)
= n — ;

/ de =0 ,; kiezcjkde 9(ve(
From translational invariance of the mono-atomic chain,nete thats(i) = C, a con-
stant, fori € L. Thus, a zeroth order cluster rule is sufficient to ensuretti@aenergy
is summed exactly (C1). Also, from symmetgfx;) = 0 for i € £ and the cluster rule
immediately passes the patch test (C2).

Q, N, atoms
----- OCO000 00000 O@®@® OO0« 0O00O®® ®0O0 O OO eseee
@ @ Cir

Fig. 1. Schematic of a 1D mono-atomic chain subjected toeaffaformation. The circles in color
are atomic-sites which belong to clusters.

Next, we will consider anon-localrepresentation of the energy and demonstrate that a
cluster rule of any order will not pass the patch test. Carsadnon-local representation
of energy given by

E =Y (i), where (12a)
i€l

=D K(|zi — ) (12b)
JjeL
J#i

andK denotes the kernel representing extended interatomiaitttens. The approximate
energy is still given by equation (9), where a zeroth ordexdyature rule is sufficient to
ensure the consistency condition on energy (C1). The appei& generalized force for
this non-local representation of energy is given by

P ink Z £, (x;) + ZF(@ {an Z K (|z; — x;]) ﬁ}, (13)

k=1  i€Cy jeL = i€Ch, |2, i

i#j
wheref; = Z]eg K (|z; — |)|il‘zf‘ From symmetry, we note that the first term in the

above expressmn vanishesfas- 0 for i € £. However, for arbitraryl’, the second term
will not vanish for a cluster rule of any order, unless thelsisters overlap to cover the
complete domain (also ci. ( ) ( ) for discus-

sion on this point). Error estimates derived in sectionsaB@ 3.3 to follow reinforce this
key point. We note that this failure of patch test is not a deficy of the cluster rules, but
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the result of an inconsistency in adopting a local concemjuafdrature rules on a non-
local representation of energy. We resolve this key issueefiyymulating the extended
interatomic interactions into a local variational form lmhang for potential fields corre-
sponding to these interactions (section 4) and subseguetrdduce the quasi-continuum
reduction of these fields (section 5).

3 Error Estimates

We begin by establishing error estimates for node-basextetlsummation rules used
in ( ) and ( ). Latter in this section we demon-
strate that element-based cluster summation riiesi{ ! )—clusters
present in the interior of finite-elements—are more aceuratomparison to node-based
cluster rules. More importantly, we show through theseregstimates that neither ap-
proximations are both conservative and consistent for litrary coarse-graining of rep-
resentative atoms, and thus a systematic convergencesaf epgproximations can not be
guaranteed.

We note that cluster summation rules are designed to be atecimr the fully resolved
region of a triangulation of representative nodes and aqymations are concentrated in
the coarse-grained region of the triangulation where thstets do not overlap. Further,
as the focus is to understand the nature of these errors, strecteour analysis to 1D
where the estimates can be obtained in a form that will detratesthe main attributes
of these errors. To this end, we consider an infinite monmetehain of atoms with
differing deformation gradientd;; and F5, in the two semi-infinite half-chains (figure 2).
We consider three representative nodes as shown in figurd @@mre interested in the
force on representative atom denoteddasind the energy of atoms lying between repre-
sentative atoms denoted BsandC'. The representative nodes are chosen such that there
are N atoms in elemenBA and Ny atoms in elementiC', wherey > 1 denotes the rate
of coarse-graining. The present construction is a simglifgpresentation of the coarse-
grained region in a quasi-continuum formulation, the défece being that deformations
are in general different in elements lying to the left of B aight of C. To estimate the
errors we further assume the following:

Al. The energy of the system is givéh = ;. > jer K(|z; — z4|), where the kernel
J#i

K(]z; — x;]) denotes a central potential representing extended intafatinteractions.
Beyond a threshold distaneg,, measured in units of undeformed interatomic spaaing
the central potential has a decay givenibijz; — z;|) = m wherep is the decay
exponent such that > 2.

A2. The difference in deformation gradients in elemédts and AC is small—F ~ F.
For convenience, we denote the interatomic spacingdh(and to the right ofC’) as
a; = Fia, and the interatomic spacing iBA (and to the left ofB) asa, = Fha. Thus
a; ~ as.

10
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Ny

B A C
--o‘o---oe;eooo---o.on-ooc};@oooo---oQo.
2 1

k=-N k=0 k=Ny

Fig. 2. Schematic of a coarse-grained region in 1D mono-iatamain: circles denote atoms;
circles in red denote representative atoms. Interatongcisgs in the semi-infinite half-chains to
the right and left ofA area; andas respectively.

Fig. 3. Schematic of node-based cluster rules in 1D monaHatchain: circles in blue denote
the atoms belonging to a cluster; shaded triangles représeshape-functions of representative
atoms restricted to the region BC.

A3. We considerV >> rq, wherer,, measured in units of undeformed interatomic spac-
ing, is the radius of all clusters introduced in cluster swation rules. Further, we will
assume, >> 1 unless specified otherwise.

3.1 Node-based cluster rules for lattice sums

We first compute the errors in node-based cluster summatiaposed iri

( ) where cluster rules are employed on lattice sums of botte®and energy inde-
pendently. In node-based cluster formulations, clustersantered at the representative
nodes as shown in figure 3. We begin by estimating approximatirors in force com-
putations arising from the use of cluster summation ruled,subsequently estimate ap-
proximation errors in energy computation. The approxinfatee on any representative
atomK € Ly is given by

fr==25 n; Y g(k)®"(Xi|Xk), (14a)
JeLy, keCy
— T — Ty
g(k) = S K (Jag — a5]) ——-L.
j; Ty —
Jj#k

(14b)

11
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whereL, C L is a collection of representative atoms in the chéindenotes the set of
atoms located in the cluster centered at representative. Atwith a cluster weight of ;.
Cluster weights are computed such that shape-functiomedirtite-element triangulation
of representative atoms are summed exactly( : ). ®"(X|X k) denotes
the value of the shape-function associated with represemt@om K evaluated at atom
k. We further note thak (|z;, — z;|) decays aw (up to a constant factor) from
assumption Al.

We first estimate (k) before computing an estimate for the approximate force irmgqgn
(14). To this end we note the following bounds of fhreerieswhich appear repeatedly in
the estimates to follow:

1 o dy 1
- - k>1 15
L /,m w1kt 1t - (152)
1 o dy 1

- A T 15b
R /k y o (p— k! g (150)

Z
=k+
Z
=k+

The lower bound and the upper bound will approach each otidafgek. In the com-
putation of error estimates below, fbr> r,,» (a threshold distance) we will approximate
the p-series with their upper bound

1 1

kip) = ——-— —). 16
Ship) = oy + O (16)
We definer’ = max{r,, 2} and assume, >> r’ for simplicity. We now proceed to

estimate the force(k) on atomk. Fork >/, using symmetry and assumption Al

g(k;) = Z {(tCLl)p—l—l o (kch + (t — k)az)p+1}

t=k+1

B i 1 { 1 1 }
T T (- ag)E o ag)rt

t=k+1
> 1 1 1 a9 — aq k a2 — a19
- - 1+ (p+1 Lo })
S <a;1>+1 s { (p+1) a1 (( . )%)

_ 1>£‘+’§ - al){S(k;p+ D)= kS(kip+2)} + 0| ()

ay ay a2

(@2 — 1) <<1 fromA2

a2
~ % where o = % from equation (16) (17)
2
Similarly we obtain fork < —r/,
«

12
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Now we estimate the approximate force on the representatora X' = 0 using cluster
summation rules. Using equations (14), (17)-(18) we get

];(;L " k r’ k ro 1 — Niy
_7:n0,§g(k)(1_N—y)+n0,§g(_k)(1_ﬁ)+O‘n0k§+l -
no1ok Noopok Ny ] _ Niy
e, ;1 o k:%zm o O k:g—ro =
=nyg k_z_jr ol Qan(l) ((T/ +11)p_1 B Tol ) + 0(0‘]7\;0) (for N >> ro >> 1 by A3).

(19)

Using the same approach, the exact force (without clustansation rules) on the repre-
sentative atonk” = 0 is computed to be

—fo C 200 a
k=—r" (p—1)(r" 4+ 1)p-1 +0(5)- (20)

N
Thus an estimate for the error in the force calculation usiode-based cluster rules is
given by

2a 4amnyg
i = i~ 20 =) {k; glk —1)(r + 1)p—1} R (@)

We now discuss some attributes of the error estimate in sou@l). Firstly, we note that
the error will vanish ifF; = F,, as in this case = 0 andg(k) = 0 Vk. But if F} # Fy,
then the absolute error in the force scales linearly witheleenent size and results in a
relative error in the displacements that is O(1). This feBdrom the fact that,, scales
as™*%) for N >> r, >> 1. This observation was first madelin (2009
usmg ‘nearest neighbor interatomic interactions. Theoredsr this uncontrolled error
is that forces on atoms drop rapidly away from the elemenntaty. But the cluster
weights are computed such that shape-functions are sunwaetye which is a suitable
guadrature rule if the forces are distributed evenly, bstilts in highly inaccurate forces
otherwise.

We now turn to the computation of error estimates when naded cluster summation
rules are employed on lattice sums appearing in the evaluafithe energy of a system.
We first compute the exact energy of atoms in eleméits and AC'. We denote by
g1 ande, the energy per atom in an infinite chain with interatomic spg€a; anda,
respectively. The exact energy is then given by

13
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Ny N
E=Y e(k)+ > e(-k)
k=0 k=1
Ny N
=" Ae(k) + Y Ae(—k) + Nye; + Ney, (22)
k=0 k=1

wheree(k) is the energy of atont in the environment of its neighbors, and (k) =
e(k) — ey for k > 0,Ae(—k) = e(—k) — ey for £ > 0. We now computele(k) and
Ae(—k) for k > r'. Following on similar lines as our estimate in equationg<1B),

e 1 1 > 1 1 1
Ag k — — = — -
( ) t:Xk-%—l (k:al + (t — l{:)ag)p (tal)l’ t:Xk—%-l tp{ (a2 + %(Cll — ag))p Cl,llj}
-~ a]; — asg 1
T (p—DagT

a9 — a1 1
Ae(—k)~ D ~ —Ae(k). (24)

The energy of atoms in elemenisA and AC' can now be estimated using equations
(23)-(24) as

!

r N Ny
E=(Ny)e1+ Nea+ Y. Ac(k)+ > Ae(—k)+ > Ac(k)
k=—r' k=r'4+1 k=r'4+1

!

r Ny
~(Ny)er + Nea+ > Ae(k)+ Y. As(k) (from equation (24)

k=—r! k=N+1
~(Ny)e1 + Neg + k:i_:rl Ae(k) + 5((N +11)p_2 - (Nyl)p_z) (from equation (16)
= (Ny)ey + Ney + k; Ac(k)+0( Nf—Q)' (25)
wheres = W We now proceed to estimate the energy computed using node-

based cluster summation rules. The expression for enetype afystem upon using cluster
summation rules for the lattice sums is given by

E=Y n, ¥ k), (26)

JELy, keCy

wheree (k) = Y jer K(|x, — x4|). In the present analysis of 1D mono-atomic chain with
Gk

three representative atoms, this reduces to

14
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E=(n_n +ng)earo + (nny + no)e1ro + no Z Ae(k)

k=—nrg

+n_N i Ag(—]{f) +nNy %y: Ag(k‘)

k=N-rg k=Ny—ro

—r'—1 r’ ro
= (n_n + ng)earo + (nny + no)erro + no( S Ae(k)+ > Ac(k)+ > Ae(k )) + O( ﬁno =)
k=—ro k=—r' k=r'+1

~ (n_N + n0)€2T0 + (nNy + no)El’f’Q + ng Z Ag(k‘) (aSAE(k’) = —Ag(—k’) for k > T/).
k=—r!

(27)

We note that forN >> rq >> 1, the expressions for cluster weights, computed by
enforcing that shape-functions are summed exactly, rettuce
N N(1+y) Ny
NN — ~——7 N —. 28
n-n » T irg NNy o (28)
Using equations (25)-(28), we estimate the approximatroor én the energy evaluation
using node-based cluster rules to be

E-FE= M(€2—€1>+(n0—1) TZI Ae(k). (29)

4 k=—r'

The relative error in the energy computation is given by

E-E| | (y=1) 1
E 4y + De (2 =€)+ 4roe k:z_: Ag(k)" (30)

From the above estimates it is evident that the error in gnevgluation upon using
node-based cluster summation rules vanishes when F,, as in this case; = ¢, and
Ae(k) = 0 for k € L. However, if | # Fy, the absolute error in energy scales linearly
with the element size, similar to the approximation errofdrce evaluation given by
equation (21). The relative error, from equation (30)0igF; — F5,) and is first order
accurate. We remark that the errors in energy while using+i@sed cluster rules are
larger than the corresponding errors incurred by using ehgrhased cluster rules that
are analyzed subsequently in section 3.3.

3.2 Node-based cluster rules on energy

The non-conservative nature of approximate forces in tiraditation proposed it
( ) is a result of employing cluster summation rules directhyforces as opposed to

15
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computing the forces as tangents of an approximate eneogyesblve this deficiency in
the formulation) ( ) have proposed to introduce cluster summation
rules only on the energy of a system (equation (26)) and ctenpe forces as tangents
of this approximate energy. The approximation error in thergy has been computed in
section 3.1 and is given by equation (29). We now estimateapipeoximation error in the
force computation for this formulation. Using the notatiatroduced in section 3.1, the
approximate force on a representative atens given by

fie= 30 ns 30 (0@ (XX k) — 9" (XelX) Yoty) . (3la)

JeLy keCy jeL JEL
J#k J#k
T — Ty

fyj = K (|ox — 25]) (31b)

|2k — 4]
We will restrict our analysis to the special caselof = F3, which, as will be demon-
strated, produces the leading order error for this fornmtatWe note that the second
term in the above expression vanlshesgay%[; f,; = 0 for affine deformations. The

non-zero contribution to the approximate force which soathe approximation error

as the exact force is zero, comes from the first term in theemspon. We denotg(k) =

Siec fr;®"(X;| X,) and estimatey(k) for {—ro,...,r}. We remark that the value of
j#k

g(;{:) fork € {—N,... = N +ro} U{Ny —ro,..., Ny} is small compared to the value
of g(k) for k € {—r¢,...,r0}, and can be neglected as it will only result in a relative
error of O(+;) as seen in section 3.1. For the central potential we are derisg in this
analysis K(|z; — z;])), the expression fog(k), k € {—ro, ..., 70}, IS given by

. Ny—j &K o oy N—J
;Kalu—m {; (asli = k)=, + SR b + k)= | k>0
J +1 j=0 Jj=
oL Ny—j
o)== ¥ Rlarlj— k) {zKa1|y—k|>—+ZK Wi+ k=22t ko,
= — N Ny
j +1 = j=1
— Ny—j X,
ZK/CLU y . Kal]

N

J=1

(32)

For brevity, we further defing(k) = g(k)+g(—k) for k = 0,1, ...r,. Upon rearranging,
we obtain

Ny o _ j 1 1

s(k) =Y (K(ar]j — k| + K(alj + k) (1 — L) + (= — —)z(k), where
]z;v( ! ! )( N) (N Ny)
- N
Z K (a]j — k|)j Z (ar]j — k)7 Z (ar]j +k|)j fork=1...r
i= k+1 i=0 =

ZK aj)j

(33)

16
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Noting N >> r, and using the decay for central potential in assumptionlamgawith

the properties of p-series (equation 16), the first term(in is O(x) which is higher
order compared to the second term and we drop it for simpli€ius,s(k) ~ (% —
Niy)z(k). Finally, the approximation error in the computation ofderon representative
atomK = 0 can now be expressed as

fo - foNno( —NL){%z(O)—Fiz(l{:)}
9 L) +Z ) (34)

4ry Y

We remark that(k) is O(1) for k = 0,1...ry, with the exception of(0) ~ 0 near
ground-state, and from equation (34) it is evident tfgatyé 0 for y # 1. Thus, the patch
test fails for any coarse-graining, and the formulation méyaconsistent with uniform
meshes which are never used in the quasi-continuum methiothelf, with increasing
the force increases and can become uncontrollably largebat rates of coarse-graining.
Implications of this inconsistent formulation for variokimds of meshes were analyzed
in ( ) using nearest neighbor harmonic interactions, wheregnmes
cases of graded or non-smooth meshes, large relative enadependent of mesh size
were observed. Due to the failure of patch test, a systeroaieergence of the scheme is
not guaranteed which is also confirmed from numerical sitiara in section 6.

3.3 Element-based cluster rules

As opposed to introducing clusters at nodes of the trianigmawe consider clusters
that are introduced in the interior of elements, preferatlthe Gauss points, following
guadrature rules in numerical approximation schemes.r&idullustrates this scenario
where one cluster is introduced inside each element. Weealkfin) = % — 4, and
ks(i) = & — 4, which fori = —rq ... 7y denote the positions of the atoms in the clusters
located in the two elements. We assume without loss of gbtyetiaat % and % are

integers. Using the notation introduced in section 3.1aty@oximate energy is given by

70

=Ny Z +n2 Z E(—k‘g(l))

i=—7g i=—7g

0 70
:n1(2’l“0 + 1)51 + 77@(27“0 + 1)52 + T Z Ag(k‘l(l)) + N9 Z AE(—]{EQ(Z)I?)S)
i=—Trg i=—7g
In the above expression; andn, are weights of the clusters located inside elements

AC and BA respectively, and are computed such that piecewise cdrfsutmtions are
summed exactly—a zeroth order quadrature rule. Thus, warobt = andn, =

2r +1

17
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o +1 In fact, since the clusters are centered at mid-pointseoétements, which are the
Gauss guadrature points, the cluster rule is first orderratR:LUsmg a similar analysis as
adopted in section 3.1, we note that’ | Ac(k(i)) = O((N 5= r)andy"ie . Ae(—ko(i) =

O((N)%), which are higher order terms. Thus,~ Ne, + Nye,. Using equation (25),
the approximation error in energy using an element-basesdarirule is estimated as

~— Z A (k). (36)

k=—r/

The corresponding relative error in the energy is given by

|E— F N‘
E NN(1+yelk

Z Ac(k ‘ 37)

=—r/

Comparing equations (36) and (37) with equations (29) af, (8is evident that the
approximation errors in energy in using element-basedalusles are smaller compared
to the errors incurred by using node-based cluster rulesndVe compute the error in
forces, which are computed as tangents of the approximatgerElement-based cluster
rules too fail the patch test as will be demonstrated fromestamate below. Considering
the case} = F;, and following on similar lines as in section 3.2, the appneiion error
in the force on representative atdih= 0 is estimated as

2

N o 1 »
f=> o +1(z(k1(z))—z(/€2( —l—NZK (a1]j + ko(3) Z (a1]j + ki ( )|))
i=—rQ 0 7j=1 7j=1
ki(i)-1 Ny

Ab@)= > Klali-k@)i- > Koli—h@)i+vY Kl + k),
j=0 i=k1(i)+1 i=1
ka(i)—1 N Ny

()= Y. Kl — k)i~ Y Kl k@Dt Y K]+ k)
Jj=0 J=ka(i)+1 j=1

(38)

We remark thatf* # 0 for y # 1, and f} = O(<£L). We refer to the appendix for
further details on this estlmate Thus, for any generalsmgraining, the element-based
cluster rules also fail the patch test. However, we notetthiaterror is smaller than the
error in node-based cluster rules (cf. equation (34)) asaies inversely with the element
size for large elements. We note that this inverse scalinbeérror with element size is
only true forN >> ry >> 1, which is not valid in the transition region—between fully
coarse-grained (large) elements to atomic scale (smalhehts—whereV > 2r, but
N ~ 2r, and this case needs to be further investigated.

The primary cause for the failure of patch test, which is aeseary condition for the
convergence of numerical approximations, is that clusiksrwhich are introduced in
the spirit of numerical quadratures are not compatible wih-local representations of
energies. This aspect has also been highlighted in sectidim& notion of numerical
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Ny
rO
B A — C
- 0@O0: -0 @@ 0 0---0O@ OO0 0 ©@® O O O:--0O@O-
k=-72N k=0 =V2Ny
N

Fig. 4. Schematic demonstrating element-based clustes:raircles in red denote representative
atoms while circles in blue denote atoms lying within clostelusters are located at the center of
elements.

guadratures has been developed for local functions, ang&®on non-local representa-
tions of energies appears incompatible—at least in theeseihsatisfying the patch test.
We rectify this problem by first reformulating the extendatkractions in interatomic
potentials into a local form, and subsequently introdueegiliasi-continuum reduction.

4 Local reformulation of interatomic potentials

The energy of a single-component material system deschiadteratomic potentials,
using the notation introduced in section 2, is given by

E(q)=)_&i(q), (39)
iel

ei(@)= Y, K(xi—x), (40)
JEL, j#i

wheree;(q) denotes the energy of atoirin the environment of its neighbors, ahd
denotes the kernel representing extended interatomi@ittens. The widely used inter-
atomic potentials include Lennard Jones potential, Modergial, and embedded atom
method (EAM) potentials (cf. e. g. ( ); ( );

( ); ( ); ( )). The kernels used in these interatomic
potentials are mostly either trexponential kerne(e=*—xil), or kernels of the form
m wherem is a positive integer, which we refer to in this article lbgnnard-Jones
kernels We present the local reformulations of these kernels, vbanvert the extended
interactions often represented in a non-local form intacalleariational problem. We first
consider the case of exponential kernels, and then discusgpproach for Lennard-Jones
kernels.
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4.1 Exponential kernels

We consider the Morse potential which uses an exponentraiekéo demonstrate our
ideas. The energy of a single component material systemdrcise has the following
form

EM(q)=>"¢"(q),

iel
V; —o(|Xj—Xj|—T
=7 3 {(-emem) -y
JEL, j#1
_ E Z { . QCe—a\xi—xj\ 4 026—2a|xi—xj|} C = ea:vf;’ (41)
2 JEL, j#1

wherea, r. andV, are material constants. In order to construct a local refitetion of
this non-local representation, we represent the atoms dyyaezed dirac distributions
denoted by (y — x;) for i € L. Further, we definé(y; q) = > i, 0(y — x;). The energy
of the system can now be represented as

EM(q) =-V.C / / b(y; a)e P YIb(y'; q)dydy’
Qo JQo

V.C?

M

/ / b(y;a)e > b(y'; q)dydy’. (42)
Qo JQo

In the above expressiofy, C R? is a simply connected bounded open set that contains
the compact support df (the region wheré is non-zero). We note that the right-hand
sides of equation (41) and equation (42) differ by the se#rgy of the atoms which is
an inconsequential constant that does not change the gstatedsolution. This self en-
ergy is explicitly computed and subtracted in numerical patations. We further remark
that the atoms, which are dirac distributions in a field folattion, are approximated in
equation (42) by regularized dirac distributions to avaifinite self energies if the Ker-
nel corresponding to the non-local interatomic interawics singular. This introduces an
approximation in the energy of the system, which, howe\aar,lwe made arbitrarily close
to the exact energy by considering the regularization torbdararily close to the dirac
distribution.

We defineg, (y; q) = [ e *¥¥lb(y’; q)dy’ and take the Fourier transform of this equa-
tion to get

a? + k|?)? - R
O P60 = bk, (@3
Where(aﬁ”ﬁ is the Fourier transform of /Y|, Taking the inverse Fourier transform
of equation (43) we arrive at
1
V! 207V 4t} (yia) = bly:a). (44)
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In effect we have constructed the partial differential @mgurawhose Green’s function is
the exponential kernel. Rewriting equation (44) in a véoizdl form we arrive at

1 1 ot
I :'f——/22d 2/ 2d —/2d— /b dyb.
1(a) . 8m{2 (Vo) dyta” | [V Tdy+—- | pidy—8ma | b(a)er v}
(45)

In practice, the function space in this variational probismhosen to bé7Z(2), where

Q c R? denotes the compact supportef and other potentials we subsequently com-
pute. For a sufficiently fast decay of these potentials awam fthe positions of atoms
in the crystallite, this is a reasonable approximation whea C 2 and we will work
under this approximation in the remainder of the formulatid/e also remark that the
variation problem in equation (45) is well-posed and a miménexists which is unique.
This follows from the convexity, lower semi-continuity,ciooercivity of the energy func-
tional (cf. ( )). Therefore, in the subsequent expressions we will replac
inf with min. The solution of the partial differential in equation (44)now given by
o1 =argnun I.

The variational problem in equation (45) requires the fiiaktions to be i3 (2), and
commonly used basis functions in numerical schemeglfkéinite-elements are not con-
tained in this function space. To this end, we consider thevatgent mixed variational
formulation given by

L(q) ) 1
= min max ——
1q 1EHL(Q) o1€HE () 8T

4
{042/ [Vr|*dy + a—/ prdy — 8m/ b(a)prdy
Q 2 Ja Q

1 2
—/QV%-VQldy— 5/9@1613’}-

(46)

The corresponding Euler-Lagrange equations are
Vioi(y;a) —20°V20i(y;q) + a'i(y;q) — 8rab(y;q) =0, (47a)
VZ¢i(y;a) — pi(y;a) = 0. (47b)

which is a system of partial differential equations equewalto the partial differential
equation in equation (44). In the above equatignand p; denote the minimizer and
maximizer of the mixed variational formulation in equati@t6) respectively. We note
that the order of minimization and maximization can be icli@nged in equation (46),
which follows from the existence of saddle-point for the waxxconcave functional (cf.

e.g. 2009)).

Following on similar lines we defing,(y; q) = [e 2*¥¥lb(y’;q)dy’, and the corre-
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sponding mixed variational problem fes is given by
_ : 1 2 2 4 29
I)(@) = min  max {4@ /Q|Vg02| dy + 8« /Qapzdy 167Ta/Qb(q)g02dy

P2 HL(Q) 02€HL () 16T
1 2
—/QV<p2.Vg2dy— i/QQQdy}a

(48)

where ¢, is the minimizer of the above mixed variational problem. ndsthe Euler-
Lagrange equations corresponding to the mixed variatiprablems in equations (46)
and (48), we note that

1

Li(q) = b(y;a)¢1(y; a)dy, Ir(q) =

2 Ja (v;a)da(y;a)dy.  (49)

"2 40"
Using equations (42) and (49), we can rewrite the energyeo$yistem as
EM(q) = 20V.L(q) — C*V.Ix(q). (50)

Using equations (45)-(50) we arrive at the following sadabnt problem:

EM(q) = min max/L,77;d7
(q) §01€H5(Q) ¢2€H5(Q) 0 (@1 01, Y2, 02 q) Yy

02€HE(Q) 01€HL(Q)

2CV, at 1
L(%, 01, Y2, 02; Q) = S {042|V<P1|2 + 780% - 87Wb(‘1)801 — V1.V — 5@%}
CQV@ 2 2 4 2 1 2
~ Tora {404 |Val|” + 8a”p; — 16mab(q)ps — Vips. Vg — §g2}.

(51)

The saddle-point problem in equation (51) is a local refdaton of the extended inter-
actions with exponential kernels. The problem of compugrmund-state properties of a
system is then given by the variational problem

M _ : M
By’ = min £ (a), (52)

or equivalently the saddle-point problem on the Lagrandiam , o1, 2, 02; q)

EM — min  min max /L , 01, P2, 02:q)dy. 53

02€H(Q) o1€HS ()

The saddle-point problem in the above equation describegssatiite in R? with finite
number of atoms. Though we restrict our discussion of thenédation to a finite crys-
tallite, the formulation itself and other remarks we madd anll make subsequently
are in general true for other systems like a periodic syssemmi-infinite lattice, etc. For
instance, a periodic system is realized by appropriateinghng the function space in
the formulation toH!, (@), where@ denotes the supercell, 8f'(Q) if the supercell is

per

chosen such thdtQ) contains only planes of symmetry of the lattice.
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We now consider the computation of forces on atoms, whichesponds to the outer
minimization onq. Consider the infinitesimal perturbation of atom positigingen by

a family of mappings). : R*" — R3M with ¢ << 1 as the parameter. We denote
by ¢ : R® — R? the infinitesimal perturbation of atoinsuch that)} = id (identity
mapping) and< (y}); ’_0 I fori e £,j = 1,2,3. " is often referred to as the
generator of the infinitesimal mappings, and the directioeaivative corresponding to
this generator is given by

d

- a(—zcve / b<we(q>)¢1dy+02v; / b)) éndy )|

keﬁ

_o, Z/ 853’ 7/) Xk) (¢E)j¢2(y)dy

B (@)

(Ved(r —1') = =Vé(r — 1))

kel
_ K ¢1( 2 ﬂ
— 2CVZ/5 K d+CVZ/5 » dy
kel kel
S (201/% —c, %( k))rﬁ.‘.
kel Yi

(54)

The first equality in the above equation follows from the Ewagrange equations in
©1, pa, 01, 02, Or alternatively we refer to the Hellmann-Feynman theonera similar
context (cf. chapter 3 iA ( )). We remark that the last equality in equation (54) is
only approximately true a¥y — xy) represents a regularized dirac distribution. As noted
before, by considering the regularization to be arbityacibse to the dirac distribution,
the error in this approximation can be made arbitrarily $nféle force on an atork € £

is given byfy.(q) = aEa @ and using equation (54) we obtain

fi. = 2CV, V1 (xx) — C*V,Va(xy). (55)
We note that the expression for force on any atom given bytemquéb5) islocal.

In arriving at equation (54) we computed the directionahdgive by perturbing the po-
sitions of atoms. An equivalent approach, instead, is tesiclem a rearrangement of the
domain(2, which corresponds to taking inner variations of the enéugygtional in equa-
tion (51). Lety, : © — Q' be infinitesimal deformations corresponding to the geoerat
['(y), given byl" = % o’ such that), = id. We constrain the generator such that
is a constant in the corﬁ_pact support of eath — x;) for i € £ in order to ensure that
the shape and strength of the regularized dirac distribateentered around the atomic
positions remain unchanged. Lygtdenote a point if2 whose image i) isy’ = 1. (y).
We first consider the energy function@l which for infinitesimal rearrangements of the
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domain results in a family of energy functionals given by

L (¢ Vyd1e(y')|*dy’ + O (y")dy' —8ma | b(yp  (y'); @)dre(y')dy
87?04{ / 2/ /Q
—/ Vyd1e(y')-Vypie(y')dy' —/ 2/)16 )dy}
(56)

where¢,. andp;. are minimizers and maximizers éf(1.). Transforming the integrals
back onto(2, we obtain

1y Oy 001 (Ve(y) Ob1c(Ve(y)) Oyr
hwe) —{a 8—@2 8% oy, Oy
/¢ ayl

St
N
Jy; 8¢1e(¢e( ) 8p16(¢e( ) Oyr, oy, 1 ) oy,
o dy, 9y, Oy Oy e t<8ym)dy 2 /Qp“we(y» detiay;b)dy}-
57

dy,
OYm

det(-=)dy

)iy — Sra [ by @) (y) derl 52 ay

We note that in taking the variation df (<. ), the terms arising from variations of.
andp;. vanish asp; (= ¢10) andp; (= p1o) satisfy the Euler-Lagrange equations/ef
(= I1(¢)). The non-trivial contributions to variation df () come from variations of

det (5= ayl L) andj ayk . We first note the following identities which will be used selquently:

i{ayi} _&ﬁ'(i{&%k})%
de | 9y; ) le=o Oy, \de | Oy, oy

e=0
Nt T
dy; Wjle=o )7
d dy, B Ay, ayj( O, )
7 {d t(aym)} —o =det (aym) oy’ Jy; =0 (59)
or';

oy,

Using the above identities, the Gateaux derivative of tre¥ggnfunctionall; is given by

dll 01 0¢, OT;
W
/ 1 Yi 8y2 ay] 8y]
1 Iy 8p1 Op1 Oy OT;
8ra oy, Dy dy; )y, h 60
8T /Q (8% By, + s 8%)8% Y, where (60)
1 ot 1
Wl = %{a2|v¢1|2 + 7¢% - V<p1V,01 — §p%}
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In the above calculation, we have uséadl’ = 0 in the compact support df (asl" is
a constant in support of eadlly — x;) for i € L) to drop the termf,, b divI'dy. On
similar lines we compute the Gateaux derivative of the gntrgctional/; to be

dI2 [9)5 8<b2 or;
W
/ "9 Yi 9 Jy; 8% dy;
1 O¢s 3P2 s Do\ T,
167 Ay, 20 ) 308 h 61
167 /Q (8% By; + 9, 8yj)3yj Y, where (61)
1 1
W= 167 {4042\V¢ * +8a’dh — V2.V s — 503}
From equations (60) and (61), the generalized force cooredipg to£ is given by
dE( @bg
/ Ew (9 where
061061 3y, 9o a¢2)
J ( 1+ 2) J (C &yl 8% — C*V, 8% 8%

_|_

1 91 0p1  Op %) <3¢2 dp2 | Opa %)
16T {40‘/6(8@/2— y; + y; Oy; Ve y; Oy; + dy; 0y, ) |~
(62)

The above expression for generalized forces corresportdiriige outer minimization
problem in equation (53), which Iscal, is the Eshelby representation of configurational
forces. In this article we refer to this form as the Eshelbyfof generalized forces. We
note that equations (54) and (62) are equivalent when 2 — , which can be veri-
fied by integrating by parts the expression in equation @29,using the Euler-Lagrange
equations for potentials. However, when : @ — /, then the Eshelby form alone
gives the correct generalized force which also accountthfochange in the domain. In
the quasi-continuum reduction to follow in section 5 thesBtaeffects in coarse-grained
regions of the triangulation arise from the change in thgslzad size of unit cells repre-
senting the Cauchy-Born deformation. These elastic effaat naturally captured by the
Eshelby form, and therein lies its need and usefulness.

4.2 Lennard-Jones kernels

We now proceed to the local reformulation of kernels of thlelsnfc?)q_lW wherem is

a positive integer. Lennard-Jones interatomic potentiah ( ; ) is an ex-
ample of a widely used potential that uses kernels of thimfalongside some EAM
potentials (cf. e. gs ( )). We seek to construct the partial differential
equation whose Green’s function is the kernelw We note that the Green’s func-
tion of Laplace operator in three-dimensionﬁ—y@y— But constructing a linear differ-

ential operator whose Green’s function@s_ly,—w for any generiaon is beyond reach, at
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the error plot are points where the error changes sign.

least to the best of our knowledge. Thus we seek to find a gopebgimnation for these
kernels which can in turn be reformulated in a local form. \&guire this approxima-
tion to be accurate in the domain of influence of the potenrttgpically in the range
0.85a < |y —y'| < Ca, C € Z, wherea is the nearest neighbor interatomic spacing
of an undeformed lattice. The lower limit of this range gudieas that the energetics are
accurate even up tth% compressive strains and the value of the upper-lirhis chosen
based on the decay of the potential. We consider an apprtrimaf the form

Mo p—ajly=y'l M

~ Z + Z Bre~ Brly— yl (63)

ly — Y|m Tarly —y|

whereA;, a; for j = 1... My and By, (B for k = 1... M, are constants that are fitted
to best approximate the kernel. We note that potentialscagsad with kernels of the

form % are often referred to as Yukawa potentials (cf. eAgf

( )). To test the accuracy of this approximation we considertegt cases with, = 6
andm = 12 that correspond to the Lennard-Jones interatomic potefigures 5, 6
demonstrate the accuracy of this approximation, where biyyaing four terms in the
power series we obtain a good approximation to the desingtele Table 1 provides the
coefficients corresponding to these approximations, whereelative/? error of these
approximations, calculated using discrete point{®i®5a, 10a] with a uniform spacing of
0.01a, is less thari).01 in both cases.

Following the ideas developed in section 4.1, we replacetbms by regularized dirac
distributions and the interatomic interaction energy egponding to "1‘X_IT|n kernel is
i)

then given by
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Table 1
Table of coefficients for an approximate fitting @f and 1> kernels with a kernel of the form

—or 1 ge—(BD) e—(v7) o— (A7)
ae +b — + +d —.

coefficients of fit for kernets coefficients of fit for kernel+
a 0.002484 « 0.8252 a 1.349 % 107 « 18.1135
b 14.11 15} 3.4262 b 225.2 15} 7.2092
c 547.5 v 7.0597 c 2.6 % 10* v 10.608
d 0.3833 A 1.6154 d 0.4877 A 3.8377
/ / (y; q ,|mb(y’; q)dydy’

MOA e Y dydy’ + 3 B b Belv=ylp(y': q)dyd

~ /. / . —Bily— /. ’

Z // yq4ﬂ|y S (y,q)yyﬂLkX::1 k:/Q/Q (y;q)e (y'; q)dydy
(64)

To keep the expressions simple, we will represent the sesemgs of exponential kernels
in equation (64) byE“*?(q) whose local reformulation is already established in sactio

4.1. We denote by;(y; q) the convolution/ Wb(y qQ)dy’,j=1,..., M. Taking
the Fourier transform of the above expression we obtain

(K* +af)o;(k) = b(k)  j=1,..., M, (65)
Taking the inverse Fourier transform we obtain the Helntheduation
(V2 +a))¢i(y;q) =b(y;q)  j=1,..., M. (66)

The energy in equation (64) can now be reformulated into al fmem using the varia-
tional form of equation (66), and is given by
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My

a) =Y _2A;1;(q) + E“P(q), where

;(q) =— min { / V|2 dy + L /gp?dy / wjdy} j=1,..., M,.

p;€H(Q

(67)

Furtherg; = argmin I;. Following on similar lines as in section 4.1 the Eshelbyrfor
of the generalized force for infinitesimal deformationsresponding to the generatbr
is given by

dE( Mo ) dE“P(¢e)
Z 2A . + e |’ where
dI 2, AR dd; 0¢p; OT; ,
= d gy j=1,..., M,
/{ Vol + =5 ay:"Y " JaBy oy oy, Y ST ot

(68)

Hence the energy as well as force expressions are now eggrasa local form which
are amenable to quasi-continuum reduction, and is disdusgbe next section.

5 Quasi-continuum reduction

The energetics of a material system, following the locabmefulation of extended inter-
actions discussed in section 4, is described by varioussfigldmely, the displacement
field of atomic positions and potential fields that appeahewariational formulation (cf.
equation (53)). The nature of the displacement field is shahit varies rapidly near the
core of a defect but becomes smooth away from the core wheres$ponse is elastic. Po-
tential fields on the other hand exhibit oscillations on #rgth-scale of the lattice param-
eter. This follows from oscillations in the forcing teriig), on the lattice length-scale.
In regions away from the defect-core, where the displaceffiredd is smoothly varying,
the fine-scale oscillations in potential fields exhibit aheblracterized structure. In these
regions potential fields are determined to leading ordergrendic calculation using the
Cauchy-Born deformation. This follows from a formal resualt ( ), where
this property has been shown for a class of non-linear fanats. We exploit this structure
in potential fields to achieve the quasi-continuum redunctibthe local field formulation
proposed in section 4. The key ideas behind this quasi+oamtn reduction have first been
proposed in the context of orbital-free density functiotiedory in ( ).
Here, we revisit these ideas in the context of empiricalrattamic potentials with the
focus on demonstrating the method being a systematic noahenarse-graining scheme
devoid of the inconsistencies in previous QC formulations.

The quasi-continuum reduction of field formulation is readl by coarse-graining the
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various fields that appear in the formulation using thregruntured finite-element trian-
gulations withlinear shape-functions:

(i) a triangulationT}, of selected representative atoms in the usual manner of @chw
is labeled asttomic mesh

(i) a triangulationT},,, subatomic close to lattice defects and increasingly evaway
from the defects, which is labeled pstential-mesh

(iii) an uniformly subatomic triangulatiofy,, to capture the fine-scale oscillations in po-
tential fields, which is labeled dme-mesh

We further denot&;,, as the set containing the representative atoms, whichsponel to

the nodes of triangulatidfy,, . A schematic of the hierarchy of meshes in one dimension is
shown in figure 7. For convenience, these triangulationsesteicted in such a way that
T}, is a sub-grid ofl},, and7}, is a sub-grid ofl};,,. The corresponding finite-element
approximation spaces are denoted®¥ , X"2 and X":. To demonstrate the main ideas
behind quasi-continuum reduction, we consider the endrgggstem described by expo-
nential kernels. We recall from section 4.1 that the locidmaulation of such an energy

is given by

Eo' = min min max /Q L1, 01, 2, 025 q)dy (69)
02€Y p1€Y

whereL denotes the Lagrangian given in equation (51). In the abqgwesssiort” denotes

a suitable function space which i} (2) for non-periodic problems on domain, or

H}.,(Q) for periodic problems on a supercéll We decompose the potentials as

Y1 = P10 T Pic; P2 = P20 + P2.,

(70)
01 = 019 T 01 02 = 029 T 02

where(p1,, 20, 010, 020) denote the predictors for the potential fields &nd., -, 01, 02..)
denote the corresponding correctors. The predictors toptiential fields are computed
by performing a periodic calculation on a unit cell in evelsmeent of7},, and mapped on
to7},,. The resulting fields are in general not continuous acrasbdlindaries of elements
of T,,, and we use &? — H' map to obtain conforming fields. One way to obtain such a
map is to average the fields across the boundaries of elewfefits(cf. e. g.

( )). In regions away from the defect-core, where the defoiondield is slowly vary-
ing, the nature of the corrector fields is such that they derbibit fine-scale oscillations
on the length-scale of the lattice parameter. This is jestiin the sequel to this article
( ( )) using formal multi-scale analysis, where a more genexak ®f
non-linear functionals is treated. Thus, corrector fields wow be accurately represented
on a coarse-grained triangulation, likg,, which has subatomic resolution in regions of
rapid variation of the deformation field and is coarse-ggdirlsewhere.

The unknowns in the formulation comprising of the coarsairgrd displacement field and
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Fig. 7. Schematic sketch of meshes: (a) Shows the atomib;mésch has atomistic resolution
in regions of interest and is coarse-grained elsewhere.cirbkes in red denote representative
atoms. (b) Shows the potential-mesh, used to represenpthextions to the predictor of potential
fields. The stars in black represent the nodes of this mesh slibatomic in regions of interest
and coarse-grains to become superatomic. (c) Shows thenfésd-which resolves the predictor
for the potential fields. The nodes of this mesh are smallesinn blue. Unlikel},, andT},, which
are coarse-grainedy,, is a uniform subatomic mesh everywhere.

correctors for potential fields are computed from the cams&d saddle-point problem:

B = i win [ LA+ el dho + dho o + el ol + ebaay.
QchX’LB Q{Lcexha

(71)
Since the predictors for the potential fields are represkmme uniformly subatomic mesh
Th,, the computation of the energy still has a complexity comsneste with the size
of 7},,. In regions of slowly varying deformations, which corresge to coarse-grained
regions of7}, and7},, the predictor fields are accurate representations of patéelds
and the corrector fields are very small compared to the pidicWe exploit this fact to
introduce quadrature rules on integrals that reduce attdngputations to the complexity
of the coarse-grained megh,. The precise form of the integration rule for an element

in the triangulatiori},, is
| £y ~ lel (). (72)

wherele| is the volume of element D. is the unit cell of an atom if such cell is contained
in e or e otherwise, and f)p, is the average of over D.. Using (72), integration over
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the entire domain can be written as,

|ty =3 [ix)dy~ 3 lelif)o, (73)

eeThg ¢ eeThB

reducing all computations to have a complexity commensusdth the size off},,. We
note that this quadrature rule is exact for elementg,gfwhich are smaller than the unit
cell, which we are labelesubatomielements. The approximation is only introduced in
elements that are larger than a unit cell, labelediggeratomielements. The nature of
coarse-graining in triangulations is such that these stiperic elements lie in regions of
smooth deformations where the corrector fields are verylsioaipared to the predictor
fields. Thus, the integrand of equation (72) is a rapidly ltsaag function with a small
correction on the scale of the element. Hence, equation {G2jegions away from the
core of a defect, denotes a zero order quadrature rule fatlyagscillating functions.

Following the introduction of quadrature rules, predidields no longer need to be rep-
resented on a uniformly subatomic mesh everywhere in theadgmwhich is memory in-
tensive. In the superatomic elements/pf, where the quadrature approximation is used,
it suffices to represent predictor fields on an auxiliary @eit. This is demonstrated in
figure 8, wherél},, now represents a triangulation of disjoint simply connéatemains
formed from unit cells in each elementdf,. In the subatomic elements f,, 7}, rep-
resents a uniform triangulation of the underlying domairthle superatomic elements of
Th,, T, represents a uniform triangulation of the unit cell corgdlin the7},, element.
Further, the triangulations are constructed such thatfforeadeformations of a perfect
lattice the following are satisfied:

M1: Each simply connected domain representing the prediietiols has an energy den-
sity equal to that of a unit cell. This restriction ensurest ttine energy of the system is
computed exactly for a perfect lattice undergoing affinedeations.

M2: The integration rule is exact for all superatomic eletea@i’},, lying in the compact
support of any shape-function @j,, that also contains one or more subatomic elements
of Th:;-

We remark that it is always possible to choose triangulattbat satisfy these restrictions
in one- two- and three-dimensions. M1 can be satisfied byefuashoice of the bound-
aries between subatomic and superatomic elements. Inioression, it is sufficient to
choose this boundary at the atomic position or at the midigmetween two atoms. In
higher dimensions, it is sufficient to choose these bourddd be planes of symmetry
of the lattice. To satisfy M2, it is sufficient to choose theperatomic elements df;,,,
lying in the compact support of any shape-functior pf that also contains one or more
subatomic elements @f,,, to have element boundaries that are planes of symmetrgof th
lattice. In one-dimension, it suffices to choose a triangesuch that these superatomic
elements have half-integer number of atoms as shown in fRyure

We now turn our attention to investigate if the quasi-camtim reduction of field for-

31



lyer & Gavini

Ty, element

rep-atom atom

OO\OOO\DO{OOOOOOOOOOOOO OQO0OOO o e e o
(a) Ty, mesh

auxillary unit cell
superatomic element

/Thinode
0o@oPo@oBo O ©o® @ ©o0® ® ©o® @

a e

T, comprised of disjoint domains

(b)T, mesh and underlyin@},, mesh
T, node

Fig. 8. Schematic showing reduction in computational caxipf upon introduction of quadrature
rules. (a) Atomic-mesh: circles denote atomic sites; egdh red denote representative atoms
(rep-atoms). (b) Potential-mesh and fine-mesh: smallesdricl blue denot&},, nodes; stars denote
Ty, nodes. The disjoint clusters representingthe mesh is enclosed in a light green box.
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Fig. 9. A triangulation showing a superatomic element anadb@®mic element in th&,, mesh.
The quadrature rule is exact in such a region.

mulations proposed here satisfies the consistency conslitaid out in section 2 (C1
and C2) which are necessary for systematic convergenceroémecal approximations.
To this end, we consider a perfect crystal undergoing aneaffaformation given by,
and denote our domain of analysis by a super @etlontaining/Vy atoms. Further, we
denote a unit cell in the lattice by. The suitable function space for the corrector fields
is H,,,.(Q), which represents periodic boundary conditions on coorefi¢lds. Further,
we investigate the problem in the lintit — 0, where approximation errors in predictor
fields are not considered, as we are interested in appraximetrors corresponding to
the coarse-grained fields. We note that the saddle-poitigmogiven by equation (71)
returns a trivial solution for the corrector fields. The @yeis thus given by
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—/ 9010701078020792071? dy = Z ‘ |

EET}L3

:NO/UL(%(), 0105 P20 on%F)dya (74)

where the last equality follows from the restriction M1 teath simply connected domain
has an energy density equal to that of a unit cell. Equatid) §émonstrates that the
guadrature rule used satisfies the consistency condition C1

We now investigate whether the proposed quasi-continuwacten of field formula-
tions passes the patch test. The force on any represematieeis given by replacing the
generator in equation (62) by the shape-function assabtwith the representative node:

)y 0D .
(), = /E” 5, 0 =123 Kel, (75)

where(fi!); denotes the force in th#" direction on a representative noBein the trian-
gulationT},,; ®3 denotes the shape-function associated with the representadeK.

We remark that the shape-functions should be adjusted sathhey are a constant in
the support of each(y — x;) for i € L to preserve the shape and strength of the regular-
ized dirac distribution. However, in a practical implemadian of the method, the dirac
distributions are often represented as point loads on tdeshof the triangulation, and
the discreteness of the mesh provides the regularizaticsudh a case, as the measure of
b is zero, the required condition on the shape-functionsvmtly satisfied. We consider
the following three cases to analyze the force expressiptiig compact support 0]5’{5
contains only subatomic elementsf,; (i) the compact support obj! contains only
superatomic elements @, ; (iii) the compact support ob contains both subatomic
and superatomic elements’hf, .

Case (i) The force is given by

h1 _ h1
(e / EU 8 eeTh, /EW(I) dy
=Y (2CV.V i (x3) — C*V.V(x3));i Pk (x5) = 0. (76)
jeL

The last equality follows fronV ¢, (x;) = 0, V¢a(x;) = 0, j € L, for a lattice with
affine deformation.

Case (ii} The force is given by
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h1 h1
;/f e§\|<w§> (77)
h1
- 3 wllea) (e h, o
d oD oD
=(ma)y X R, = (o), [, G =0
(79)

a<I>h1 aq>h1 aq>h1
We note tha(EU s >U - <E”> < ayK > as“; is a constant in every elemensince
J

}
d1 is a linear shape-function, arfg < =0 as<I>h1 has a compact support (.

Case (iiiy Noting that the quadrature rule is exact for superatongmeits in this case
from restriction M2, the integrals over unit cells can belaepd by integrals over the
superatomic elements. This case then reduces to Case rti)\vituch it follows that
(f&'): = 0.

Thus, the quasi-continuum reduction of field formulatiorggmsed here satisfies the con-
sistency conditions necessary for systematic convergafraeproximations.

6 Numerical Examples

We considemnanoindentatioron a semi-infinite chain of atoms in a 1D setting as a test
case to present the numerical accuracy and salient feaitithe proposed field formu-
lation, and compare with the node-based formulations megan ( )

and ( ). Though the nanoindentation problem in 1D does not re-
veal the critical phenomenon of dislocation nucleationclihis observed in higher di-
mensions, we choose the problem in 1D as this allows us toidema large enough
system for which a full atomistic solution can be obtainedider to conduct a sys-
tematic study of approximation errors. To this end, we adersa chain consisting of
4110 atoms where one end of the chain is a free end, and the ertdes fixed. The
chain is extended beyond the fixed end to include atoms widld fatomic positions that
provide the environment of a semi-infinite chain. We use therdd potential given by

K(jz; — x5]) = (1 — e‘a(‘xi‘xf|‘xe))2 — 1 to describe the interatomic interactions. We
choose the constants in the interatomic potential ta.be 0.5 andz, = 2.8965, where
units of all constants are in atomic units. We choose a dutadfus of 50 atomic units for
this potential, which ensures that relative errors fronm¢ating the interatomic interac-
tions are lower than the coarse-graining and quadratuoesdirat are investigated subse-
guently. The ground-state interatomic spacing of an irdfinfitain corresponding to these
constantsis, = 1. We remark that our choice of constants is only a conventaite for

34



lyer & Gavini

numerical implementation and does not represent any p&atiphysical system. In order
to simulate the nanoindentation of the semi-infinite chai@ Joad the free end using an
indenter which applies an external force on the atoms. wlig ( ),
we consider the external force from the indenter to be giyeAH (R —r)(R—r)3, where
‘R’ is the radius of the indenter, ‘r’ is the distance betwélea center of the indenter and
the atomic site and H(r) is the heavy-side function. In oongations we choos& = 5
andA = 0.5.

6.1 Node-based formulations

In order to compute the approximation errors, we first complé ground-state energy
and displacement field in the chain of atoms undergoing malesitation without intro-
ducing any approximations. The displacement field of ara@in calculation is shown
in figure 10, whereX denotes the reference configuration andenotes the deformed
configuration. We note that the deformation in the chain Bdig varying close to the
indentor and at the fixed end, but is uniform in most parts ef¢hain which is char-
acteristic of an elastic response. We now proceed to int@duwe approximations in the
guasi-continuum method and compute the correspondingsede first consider the
node-based formulation in ( ), and subsequently consider the formula-
tionin ( ).

\ :

4110

L L L
500 1000 1500 2000 2500 3000 3500 4000
X

o F

Fig. 10. Displacement field obtained from an all-atom sirtiokaof a chain of atoms loaded by an
indenter.

In the formulation proposed if ( ), node-based cluster rules are intro-
duced independently on forces and energy. We consider a&segwf triangulations of
representative atoms (rep-atoms) to study the approxamatioperties of this formu-
lation. We denote the set of triangulations %Y, indexed by the number of rep-atoms,
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Fig. 11. Coarse grained mesh with 95 rep-atoms in a chainstomgsof 4110 nominal number of
atoms.

and are given by" = {35, 39,47,63,95, 159, 251, 379, 463, 642, 1069, 3029, 3063}. The
sequence of triangulations are chosen such that finer triatigns form sub-grids of
coarse triangulations, denoting a systematic refinemetitetpace of solutions. Fig-
ure 11 shows a triangulation with 95 rep-atoms. The triaatguhs are deliberately chosen
to have rapid coarse-graining at the fixed end to study thestoless of various formula-
tions of the quasi-continuum method. The convergence dfiegantinuum formulations
are measured using relative errors in computed positiorsgarhs (displacement field)

given by qulj;ﬁ};m’ ”m‘ﬁi‘“, and relative error in the energy given lb@(EL” Figure 12
shows the approximation errors for different number of asgpms and cluster radii. We
note that these approximation errors can be decomposedarnéoror corresponding to
coarse-graining (denoted lmparse-graining erro), and another part corresponding to
the approximations introduced through cluster summatibesr(denoted byguadrature
error). In the results shown in figure 12, the simulations perfatmwihout introducing
cluster summation rules represent the coarse-grainimg. éigure 13 demonstrates this
decomposition and highlights the characteristics of th@@amation errors. In our dis-
cussion, we will focus on the quadrature error as it is thisrewhich determines the

effectiveness of various formulations in the quasi-caniim method.

The nature of the approximation errors is such that threeackexistic regions can be
identified (cf. figure 13), at least for small cluster radi. fegion I, corresponding to
small number of rep-atoms, the approximation errors shoapédrdrop with increas-
ing number of rep-atoms. However, these errors plateau geigkly, and in region Il

no significant reduction of the error is observed upon furtherease in the number of
representative atoms. This region corresponds to a cdreptiarature error. When the
number of representative atoms become large enough thalusters start overlapping,
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(c) Relative error in total energy evaluation.

Fig. 12. Relative approximation errors in displacementlfaid total energy for formulation pro-
posed in ( ).
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the quadrature errors vanish, which is expected—this @enoy region Ill. The stagna-
tion of approximation errors in region Il suggest that theledased cluster summation
rules are not providing a systematic convergence of thecappation error. These nu-
merical results support our conclusions from the erronestes in section 3.1 that node-
based cluster rules can result in large approximation €fiartriangulations with rapid
coarse-graining. We further note that, although the quad¥arrors in displacement field
systematically reduce with increasing cluster radii, thadyature errors in the energy do
not improve significantly. To explain this, we recall thecgrestimate for energy in equa-
tion (29) in section 3.1. The first term in this error estimatandependent of the cluster
radius and will not reduce with increasing cluster radius.

0
10
* No cluster rules

Region | 3

oo o Teluster =1

10 °F b

Region Il
L] . . . Ld . L]
N _4 *
I
— * ! Error from Cluster
* * % y fules Region Il
*
A *
~ I
10 '+ I * B
|
Error from
kinematic *
approximations |
I

-8 | v |
10 10 10*
rep-atoms

10

Fig. 13. Relative approximation error created due to kin@manstraints (coarse-graining errors)
and cluster rules (quadrature errors).

We now proceed to study the approximation errors in the rmaded formulation sug-
gested in ( ), where node-based cluster summation rules are in-
troduced on energy and the forces are computed as tangethis approximate energy.
As discussed in sections 2-3, this formulation fails theclpaést and results in residual
forces even for a perfect periodic system. These residueé$ocan become arbitrarily
large with increasing coarse-graining and size of elemamis can seriously undermine
the accuracy of the ground-state solution. It is suggesteda ( )

that the effect of residual forces can be nullified by commythese residual forces for an
initial configuration and subtracting them out as a dead.load

In our simulations we find, for rapid coarse-graining ratée, force iterations do not
converge even after subtracting the dead loads as theselatslare orders of mag-
nitude larger than the physical forces. Most of the triaagahs that have been used
to study the approximation errors in the formulation pragzbs ( )
have rapid coarse-graining at the fixed end, and the forcatibv@s for the formula-
tion suggested iri ( ) do not converge for these triangulations.
Thus, we chose a different set of triangulations givenddy= {74, 81, 95,123, 179, 271,
399, 483,662, 1089, 1743, 2059, 3083}, where gradual coarse-graining is introduced on
the fixed end. Figure 14 shows the approximation errors iplatement field and en-
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ergy for the node-based formulation fin ( ). As seen from the re-
sults, these errors are much larger than those corresppialimode-based formulation
in ( ), and unlike the previous case these errors do not redubenwit
creasing cluster radii. We note that these numerical resu#t in qualitative agreement
with the error estimates in section 3 that suggest largeroxppation errors in force

computations using the formulation proposed-in ( ) in compar-
ison to the formulation proposed i ( )—the approximation errors in
forces areD(a; — ay) (equation 21) in node-based formulationkin ( ),

whereas they ar@(1) (equation 34) in node-based formulation fin
( ). These larger errors in forces appear to result in largeragimation errors in the
displacement field.

We further note that the spurious residual forces that amifiee formulation proposed in

( ) change with deformation in the chain. Therefore, for a com-
plete nullification of these residual forces, the dead Idel& to be computed in a self-
consistent manner and updated. We now investigate if tHeceesistent iteration con-
verges. We conduct two sets of numerical tests: (i) with tluster radius fixed at 10
and consider different number of rep-atoms giver BY, 271, 662}; (ii) with the number
of rep-atoms fixed at83 and consider different cluster radii= {5, 10, 15}. Figure 15
shows the results of this study, where HHenorm of the difference in the dead loads in
iterationsi andi — 1 of the self-consistent loop is presented. The self-comisisteration
does not necessarily converge, especially for small nhurobegp-atoms or small clus-
ter radii. Numerical tests suggest that introducing lineaxing for the self-consistent
iteration does not cure this deficiency.

To summarize, the numerical results suggest that the ajppation errors do not system-
atically converge in the node-based QC formulations. Thedcature errors are found
to be orders of magnitude larger than the coarse-grainimgyseven for moderately
large number of rep-atoms. Moreover, in the node-based @@ulation suggested in
( ), the self-consistent iteration which removes the effédhe
residual forces may not always converge. We now proceedutty ghe approximation
errors in the quasi-continuum reduction of the field forntiolaproposed in this article.

6.2 Field Formulation

We numerically implemented the variational formulatioreguation (53) for the nanoin-
dentation problem in 1D. Using the same notation as in seetib, the potential created
by a given configuration of atoms, represented@y q), is of the form

olyia) = [ Ky —y/ Dbl )y, (80)
K(ly—y/l) = (1 eolvl=a)* . (81)
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Fig. 14. Relative approximation errors in displacementlfaaid total energy for formulation pro-
posed in ( ).
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Fig. 15. Convergence study of the self-consistent itemeftio residual force correction. Herg)
is the dead-load at th&" iteration of the self consistent loop afidh(i)||2 = || (i) — k(i — 1)||2
is the/? norm of change in dead-load against self-consistent iteraiumber.

Let g1 (y;q) = [ e VIb(y';q)dy’, andgs(y; q) = [ e > Ib(y'; q)dy’. The desired
potential can now be representedi@g) = —2e°% ¢, (y) + 2> ¢y (y). Evaluation of the
potentials¢;, ¢, requires an evaluation of convolution integrals with nooal kernels.
Following the ideas presented in section 4, and noting teaFourier Transform af—1¥!

in one dimension i%, these potentials can be reformulated into a local formgusin
the following differential equations:
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— %jj(ﬂ +a’d1(y:q) = 2ab(y; q) , (82)
_%yy;q) +4a%¢s(y; q) = 4ab(y; q).- (83)

The problem of computing the ground-state solution can newelpresented as the fol-
lowing saddle-point problem:

0 qne’l]llyu 4,01&1} £€§ (@1, Y2, q) ; ( )

where X' denotes the appropriate function space correspondingetbdabindary condi-
tions, M denotes the number of rep-atoms, and

L 2e0 (1 ) o’ [, _
L(e1,02;q) = ” <§/|V<p1| dy + Ef%dy—m/sm(y)b(y, q)dy>

(85)

20e

™ <%/\sz\2dy+2a2/<ﬂ§(y)dy—4a/<p2(y)b(y;q)dy)-

(&

We have numerically implemented the quasi-continuum rediiof the above saddle-
point problem following the ideas developed in section 5imsection 5, we denote the
triangulation of the representative atomd as(atomic-mesh), the triangulation resolving
the corrector fields a$;,, (potential-mesh), and the triangulation resolving thelfmter
fields as7},, (fine-mesh). We chose the triangulations such that dizetsn errors in
the computation of forces, which requires a numerical exada of gradients of potential
fields, are belowl0~'°. We used a nested iterative scheme for solving the saddite-po
problem in equation (84), where for every displacement figlén by q” the potential
fields are computed by solving thein — max problem on(¢”, ¢). We used a sparse-
representation iterative solver for solution (@f}, %), which is a linear problem, and a
Levenberg-Marquardt iterative algorithm (cf. e.\gore ( )) for solution of the non-
linear problem corresponding to the minimization with msgo positions of atoms.

In order to determine the approximation errors in the prepgd&ld formulation we have
conducted three different studies. The first study considearse-graining of only the dis-
placement field via selection of representative atoms. Bitenpial fields are computed on
the fine-mesh, i.€l},, = T},,, and the coarse-graining of corrector potential fields 5 su
pressed. This study shows the approximation errors arsig)y from coarse-graining
of the displacement field. In the second study, along witlisegraining of the displace-
ment field, corrector fields are also represented using aseagained triangulation. In
other words, we considéf},, also to be a coarse-grained triangulation with subatomic
resolution close to regions of interest and coarse-gragh@eivhere. The approximation
errors in this study arise from the coarse-graining of trepldicement field as well as
corrector fields. In the first two studies we do not introduseduadrature rules proposed
in equation (72). The third and final study introduces thedgaiare rules as an additional
approximation which then reduces all computations to timegiexity commensurate with
the coarse-grained triangulatiofis and7},,. The approximation errors in the third study
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include the coarse-graining errors from displacement angkctor fields, and the quadra-
ture errors.

We have conducted the aforementioned three studies forethef $riangulations given
by »" = {35, 39,47,63,95,159,251, 379, 463, 642, 1069, 3029, 3063 }—similar to the set
used in the study of approximation errors in the formulapooposed in

( ). Figure 16 shows the approximation errors in displacerfieldtand energy for the
three studies with increasing number of rep-atoms. The plaitets from the first study,
denoted by*’, show the displacement coarse-graining errors whichiangeas to the dis-
placement coarse-graining errors for the node-based fation in ( )
(cf. figure 12). The data points from the second study aretéernwy T1’, and those from
the third study are denoted by’ From figure 16, it is evident that the approximation
errors corresponding to the coarse-graining of correceédddiand quadrature rules are
negligible in comparison to the coarse-graining errorshim displacement field. These
results are in sharp contrast to the errors incurred in usiaig-based cluster rules where
the quadrature errors are orders of magnitude larger treandarse-graining errors. We
argue that this remarkable improvementin the accuracyesdfution can be attributed to
two key features of the quasi-continuum reduction of fielbtires. Firstly, the quadrature
rules proposed in the quasi-continuum reduction of fieldnidations are element-based
guadratures. As demonstrated in section 3, element-bdssteic(quadrature) rules are
more accurate in comparison to node-based cluster rulesn8ky, and more importantly,
the notion of quadrature approximation is a local notionaliis compatible with field
formulations, and as demonstrated in section 5 satisfiesaifigistency conditions neces-
sary for systematic convergence of approximations.

We finally comment on the computational costs associatedtvé field formulation. As
expected, the field formulation has larger memory requirgsi@ comparison to conven-
tional QC formulations as the potential fields have to belwesbon a finite-element mesh
at the sub-atomic scale. The memory requirements for theoged field formulation are
O(Ny, ) for storing the displacements of the representative atarmsreNV,, denotes the
number of nodes ifT},,; O(V,,) for storing the corrector fields, wherg,, denotes the
number of nodes ifT},,; andO(N,, = Ny ) for storing the predictor fields, wher€;, is

the number of nodes in the triangulation of a unit cell. Thepatational complexity of
the force calculation i®)(Ny >+ N, ) once the potential fields are computed for a
given configuration of atoms, when&,*"**'denotes the number of superatomic elements
in T,,,. We note that computing potential fields is mostly an ovedresst as it is the ini-
tial computation of these fields which is time consuming, tredsubsequent evaluations
are updates which require very few iterations. In compatioe memory requirements
of conventional QC formulations are(V,,, ), and the computational complexity of force
evaluations iSO(Ny, * Ny, * N, .,) Where N, denotes the number of atoms inside
the cluster radius and,_, ., denotes the number of atoms inside the chosen cut-off ra-
dius for the interatomic interactions. For a represengat@culation with 95 rep-atoms,
the data arrays representing the predictor fields and dorrields had 18786 entries and
21582 entries respectively, in addition to the displacdamsefthe 95 rep-atoms. The mem-
ory requirement for this calculation was about 0.5 MB as @gplado negligible memory
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Fig. 16. Relative approximation errors in displacemendfiahd energy for the proposed field
formulation of quasi-continuum method” represents coarse-grained displacement field while
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requirements for conventional formulations. For a congmariof the computational time,
we consider a 95 rep-atom conventional QC formulation witheibased cluster rules
on forces with a cluster radius of 20. For this test case, #id formulation consumed
four times more wall clock time than the conventional QC falation with node-base
cluster rules. We note that there is significant room forraation of the field formula-
tion, and by using multi-grid methods the computational ptaxity of the potential field
calculations can be further reduced, which is a topic fauriinvestigation.

7 Conclusions

We have presented a solution to some of the long standingdsauhe quasi-continuum
method. The approximations involved in various versionthefQC method are known
to result in undesirable features, which include a loss oftianal structure leading to
non-conservative forces, appearance of spurious forcespanfect periodic lattice, pos-
sible lack of stability in the numerical approximations;.eEhese in turn can undermine
the numerical accuracy and systematic convergence of then@@God. In the present
work, we identified the primary cause of these shortcomiod®etthe use of a non-local
representation of energy to describe the extended intaratimteractions in materials.
We have demonstrated that cluster summation rules intextio a non-local representa-
tion of energy result in a lack of consistency—approximagorors do not systematically
reduce with increasing refinement of the solution spacest€iisummation rules which
are introduced in the spirit of numerical quadratures arevelé from a local notion of
numerical approximation, and result in inconsistent saewhen used on non-local rep-
resentations of energy.

In the present work, we resolved these outstanding issuesfgmulating the extended
interatomic interactions into a local variational probl@molving potential fields. We
have demonstrated this approach for commonly used intaratpotentials, and sub-
sequently introduced the quasi-continuum reduction o$eéhgotential fields following
the ideas first suggested in ( ) in the context of electronic structure cal-
culations. The key ideas behind the quasi-continuum réatucif field theories are: (i)
decomposition of potential fields into predictor fields amdrector fields; (ii) an effi-
cient representation of these fields using nested finitexah triangulations—predictor
fields are resolved on an auxiliary unit cell, whereas caoorefields are represented on a
coarse-grained triangulation; (iii) introduction of quatlire rules which reduce all com-
putations to the complexity commensurate with the numbeafse-grained variables
in the system. We have demonstrated that the quasi-comimaduction of a field for-
mulation satisfies the necessary conditions for a consistenerical approximation, and
hence is likely to provide a systematic convergence of tipeagmation errors. Further,
we have shown using numerical examples the remarkable iraprent in the accuracy
of the solution afforded by the suggested field approache¢oQf method. Numerical
results from this study suggest that the approximatiorrgiroa field approach are solely
from the coarse-graining of displacement fields which canbeosurpassed by any QC
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formulation. In comparison, other seamless QC formulatioased on non-local repre-
sentations of energy incur orders of magnitude larger nioalegrrors from quadrature
approximations, and also suffer from a lack of systemativemence.

The suggested field theoretic approach to the quasi-camtirmethod has the follow-
ing properties. A single field theory is used to describe thgsyzs in all regions of the
model. The formulation is seamless and does not rely on aehipg conditions. The for-
mulation has a variational structure and thus the compuesk$ are conservative. The
approximations introduced are consistent, and hence geavisystematic convergence
to the exact solution. Moreover, the present work providgereeral framework for the
guasi-continuum reduction of any field theory, where quasitinuum reduction is solely
a numerical coarse-graining technique.

It may appear that the computation of potential fields, whietuires resolving these
fields on a length-scale finer than interatomic distance, significantly increase the
computational cost. We note that the computation of thesenpial fields is mostly an
overhead cost as it is the initial computation of these fieldigh is time consuming, and
the subsequent evaluations are updates which require gerytérations. On the other
hand, the field formulation provides a significant advant&gée computation of forces
and energy is a local computation involving the potentidtieunlike force and energy
computations in conventional QC formulations. In our siatians, the field formulation
was about four times more expensive in computational tirae ttonventional node-based
formulations. However, there is significant room for optzation in our preliminary im-
plementation of the field formulation. For instance, the afseulti-grid approaches can
significantly reduce the computational complexity of porfield calculations.

In the present work we have restricted our attention to alsiogmponent material sys-
tem. Extending the present ideas to multi-component systequires careful considera-
tion as the PDE’s describing potential fields can have difieforms in different regions
of the model, and presents itself as a direction for futuvestigations. Further, a numer-
ical analysis of the proposed method which includes dewetpg priori error estimates,
investigating the stability and accuracy of the formulatideveloping effective precondi-
tioned iterative solvers are potential directions for fetinvestigations.
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A Error Estimates

For completeness we provide the details of the estimateuatean (38) that corresponds
to the error in the computation of forces using element-thas@ster summations. Fol-

lowing the notation introduced in section 3.2 and 3.3 we tienth) = >, K (z, —
) = @ (X1 Xo), ka (i) = & —jandk,(i) = & —i which fori = —ry. ..y denote
the posmons of the atoms in the clusters Iocated in the tements shown in figure 4.
The expressions fay(k(i)) andg(—k2(i)) for i € {—ro, ..., 70} are given by

Ny . —j kl(i)—l_l Ny —j
s = > Rlalh-i) 5 ~{ Y Kk -i) 5
Jj=k1(i)+1 j=0

N .
~ L N- |
+ Y Kk +i)=2}  i=—ro...r0,

j=1
N . ka(3)—1 .
. = ) N — — N
(k@) == > Klalk@) -2 +{ Y Klalk) -i)=—~
j—kg(i)—i-l J=0
—|—ZK (a1|ka( +]|)N]yv;j} 1=—"g...7T0
(A.1)
The approximate force on representative néde- 0 is given by
~ "0 Ny N
- (i ol ) A2
o= 3 (g o) + 5 —9(-ta) (A2)
From symmetry we note that
o Ny _, k1(i)— 1_
> (X Rah®-ih- Y Kk -i) -
i=—ro j=k1(i)+1 Jj=0
v k-1 v (A.3)
> (X Rlakm-ih- ¥ Kk -i)) -
i=—T0 7=0 j=ka(i)+1

Using equation (A.3) in equation (A.1) and rearranging, dpproximate force is given
by

49



lyer & Gavini

2

N ro 1

fo=>_ <z(k1(i))—z(/€2( —l—NZK (a1]j + ka(3) Z (a1]j + ki ( )|)>
i=—rg 27‘0 +1 = e
k1(i)—1 Ny

2(k (i) = > K (a1l — ka1 (3)))j — > K (a1]j — k1 (i)))j + yZK,(alU +k1(4)])J

7=0 j=k1(3)+1 j=1
ka(i)—1 N

2(ka(i)) = K (a1]j — ka(i)))j — _Z K (a1]j — ka(i)))j + 5 Xy:K/(alU + ka(i)])J.

j=0 Jj=ka(i)+1 J=1

which is equation (38). To simplify this expression we malsedes of approximations.
First we choose clusters containing only one atom, whichesponds te, = 0. Further
for simplicity we will drop the terms o@(ﬁ) in comparison to terms @ (). Lastly,

we assume = 1 + e with ¢ > 0 ande << 1. Using the decay assumption &hin
assumption Al (section 3) and properties of p-series notsdgtion 3.1, we arrive at the
following estimates

Ny

Z (al + ka(@)]) = Ny K’(a|j+k1(¢)\)z%7

Mz iM=

N . 1 — . . . 3—ple
VR i+ k@) - 5 R (ol + k)i ~ Bope
= yia plp—Dat " (5)P
; o (A.5)
Z "(arlj — k1 (2)))5 — Z K'(a1]j — ka2(9)])J
=0 =0
N =/ . . . Ny =/ . 4e
+ Y K(ali—k@i- > K(alj-k@)i~ 5y
j=ka(i)+1 j=k1(i)+1 ay ()P

Using the estimates in (A.5), we note thfatis O(Lh).
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