

ME 7953: Simulations in Materials
Fall 2002

Project II (Friday, 10/25/2002)

Projects II is on Material Point Method (MPM) two-dimensional simulation. Problems are due at the beginning of the class on Friday, 11/8/2002. You have two weeks to finish the work.

1) Shape function

Consider a two-dimensional MPM problem with background grid shown below. The x and y coordinates of grid nodes are saved in $x _g$ and $y _g$ vectors.

$$
\begin{aligned}
& \text { x_g=[0.0, 0.0, 1.0, 1.0, 2.0, 2.0]; } \\
& y_{-}=[0.0,1.0,0.0,1.0,0.0,1.0] \text {; }
\end{aligned}
$$

The body is divided into 4 particles. The coordinates of particles are saved in $x _p$ and Y_p.

```
x_p=[1.2, 1.7, 1.3, 1.8];
Y_p=[0.75, 0.81, 0.26, 0.24];
```


Answer following questions:
(A) Write a MATLAB function to calculate shape function $N^{(n)}(x, y)$, that relate node n with the point (x, y).
function $[\mathrm{N}]=$ shape $(\mathrm{n}, \mathrm{x}, \mathrm{y})$
(B) Write a MATLAB function to calculate the derivatives of the shave function, $\frac{\partial}{\partial x} N^{(n)}(x, y)$ and $\frac{\partial}{\partial y} N^{(n)}(x, y)$.

```
function [dN_dx, dN_dy] = dshape(n,x,y)
```

(C) Calculate the value of $N^{(3,2)}$, which means a shape function between node 3 with coordinates ($1.0,0.0$), and particle 2 with coordinates ($1.7,0.81$)?
(D) For each particle p, calculate all the shape function between particle p and grid nodes. Show that $\sum_{n} N^{(n, p)}=1$ for $p=1, \ldots, 4$.

2) Mass matrix

For the above grid and particles, assume all the particle masses are the same to be 1 . The mass-matrix on the grid is defined as

$$
\bar{m}^{\left(n, n^{\prime}\right)}=\sum_{p} N^{\left(n^{\prime}, p\right)} N^{(n, p)} m^{(p)}, \quad n, n^{\prime}=1, \ldots, 6, \quad p=1, \ldots, 4
$$

where $m^{(p)}$ is the mass of particle p, and $N^{(n, p)}=N^{(n)}\left(x^{(p)}, y^{(p)}\right)$ is the shape function of node n at the location of particle p.

Answer the following questions with the help of MATLAB.
(A) Compute the details of the 6 by 6 mass-matrix.
(B) Compute the lumped mass $\bar{M}^{(n)}$ at each node n. Lumped mass is defined as $\bar{M}^{(n)}=\sum_{p} N^{(n, p)} m^{(p)}$.
(C) Show that $\bar{M}^{(n)}=\sum_{n^{\prime}} \bar{m}^{\left(n, n^{\prime}\right)}$ for every grid node n.

3) Solving dynamic equations

The body-force densities for all particles are the same,

$$
\begin{aligned}
& b_{x}^{(p)}=5 \\
& b_{y}^{(p)}=10, p=1, \ldots, 4 .
\end{aligned}
$$

Answer the following questions with the help of MATLAB.
(A) Compute the external force at grid. Grid external force at node n is defined as $\bar{F}_{x}^{(n)}=\sum N^{(n, p)} m^{(p)} b_{x}^{(p)}$

$$
\bar{F}_{y}^{(n)}=\sum_{p} N^{(n, p)} m^{(p)} b_{y}^{(p)}
$$

(B) Compute the internal force at grid. Grid internal force is defined as

$$
\begin{aligned}
& \dot{f}_{x}^{(n)}=-\sum_{p} V^{(p)}\left(\frac{\partial N^{(n, p)}}{\partial x} \sigma_{x x}^{(p)}+\frac{\partial N^{(n, p)}}{\partial y} \sigma_{x y}^{(p)}\right) \\
& \bar{f}_{y}^{(n)}=-\sum_{p} V^{(p)}\left(\frac{\partial N^{(n, p)}}{\partial x} \sigma_{x y}^{(p)}+\frac{\partial N^{(n, p)}}{\partial y} \sigma_{y y}^{(p)}\right) .
\end{aligned}
$$

Assume the volume of all the particles are the same, $V^{(p)}=2$, for all p.
(C) Using the lumped mass, calculate the acceleration at nodes where the lumped mass is not zero.

$$
\begin{aligned}
& \bar{a}_{x}^{(n)}=\frac{\bar{F}_{x}^{(n)}+\dot{f}_{x}^{(n)}}{\bar{M}^{(n)}} \\
& \bar{a}_{y}^{(n)}=\frac{\bar{F}_{y}^{(n)}+\bar{f}_{y}^{(n)}}{\bar{M}^{(n)}}
\end{aligned}
$$

4) System updating

For the above problem, the particle velocities before this step are

```
vx_p=[1.25, 1.1, 0.9, 0.8];
vy_p=[0.25, 0.3, 0.33, 0.34];
```

Assume the current stresses developed in particles are

$$
\begin{aligned}
& \text { sigxx_p }=[-5.1,-4.7,-4.1,-3.5] ; \\
& \text { sigyy_p=[-0.1, -0.2, -0.25, -0.3]; } \\
& \text { sigxy_p=[2.1, 2.2, 2.3, 2.5]; }
\end{aligned}
$$

Answer the following questions with the help of MATLAB. Take time step $\Delta t=0.001$.
(A) Map the velocities from particles to grid. Compute the grid velocities at nodes where the lumped masses are not zero. Grid velocities are defined as

$$
\begin{aligned}
& \bar{v}_{x}^{(n)}=\frac{1}{\bar{M}^{(n)}} \sum_{p} N^{(n, p)} m^{(p)} v_{x}^{(p)} . \\
& \bar{v}_{y}^{(n)}=\frac{1}{\bar{M}^{(n)}} \sum_{p} N^{(n, p)} m^{(p)} v_{y}^{(p)} .
\end{aligned}
$$

(B) Update the grid velocities using

$$
\begin{aligned}
& \bar{v}_{x}^{(n)} \leftarrow \bar{v}_{x}^{(n)}+\bar{a}_{x}^{(n)} \Delta t \\
& \bar{v}_{y}^{(n)} \leftarrow \bar{v}_{y}^{(n)}+\bar{a}_{y}^{(n)} \Delta t
\end{aligned}
$$

at those nodes where lumped masses are not zero.
(C) Update the particle positions using

$$
\begin{aligned}
& \bar{x}^{(p)} \leftarrow \bar{x}^{(p)}+\frac{\Delta t}{2}\left(v_{x}^{(p)}+\sum_{n} \bar{v}_{x}^{(n)} N^{(n, p)}\right) \\
& \bar{y}^{(p)} \leftarrow \bar{y}^{(p)}+\frac{\Delta t}{2}\left(v_{y}^{(p)}+\sum_{n} \bar{v}_{y}^{(n)} N^{(n, p)}\right)
\end{aligned}
$$

(D) Update the particle velocities using

$$
\begin{aligned}
& \bar{v}_{x}^{(p)} \leftarrow \bar{v}_{x}^{(p)}+\Delta t \sum_{n} \bar{a}_{x}^{(n)} N^{(n, p)} \\
& \bar{v}_{y}^{(p)} \leftarrow \bar{v}_{y}^{(p)}+\Delta t \sum_{n} \bar{a}_{y}^{(n)} N^{(n, p)} .
\end{aligned}
$$

(E) Calculate the strain rates at particles using

$$
\begin{aligned}
& \dot{\varepsilon}_{x}^{(p)}=\sum_{n} \bar{v}_{x}^{(n)} \frac{\partial N^{(n, p)}}{\partial x} \\
& \dot{\varepsilon}_{y}^{(p)}=\sum_{n} \bar{v}_{y}^{(n)} \frac{\partial N^{(n, p)}}{\partial y} \\
& \dot{\varepsilon}_{x y}^{(p)}=\frac{1}{2} \sum_{n}\left(\bar{v}_{x}^{(n)} \frac{\partial N^{(n, p)}}{\partial y}+\bar{v}_{y}^{(n)} \frac{\partial N^{(n, p)}}{\partial x}\right)
\end{aligned}
$$

(F) Update the particle stresses using particle strains. Take Young's modulus to be $E=100$, and Poisson's ration to be $v=0.3$.
$\sigma_{x x}^{(p)} \leftarrow \sigma_{x x}^{(p)}+\frac{E}{1-v^{2}}\left(\dot{\varepsilon}_{x x}^{(p)}+\nu \dot{\varepsilon}_{y y}^{(p)}\right)$
$\sigma_{y y}^{(p)} \leftarrow \sigma_{y y}^{(p)}+\frac{E}{1-v^{2}}\left(\dot{\varepsilon}_{y y}^{(p)}+\nu \dot{\varepsilon}_{x x}^{(p)}\right)$
$\sigma_{x y}^{(p)} \leftarrow \sigma_{x y}^{(p)}+\frac{E}{2(1+v)} \dot{\varepsilon}_{x y}^{(p)}$

