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Abstract

The paper presents a novel analysis of localisation and transmission proper-
ties of randomly-perturbed flexural systems. Attention is given to the study
of propagation regimes and the connection with localised resonance modes in
the context of Anderson’s localisation. The analytical study is complemented
with numerical simulations relevant to the design of efficient vibration isola-
tion systems.
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1. Introduction

1.1. Periodic versus perturbed structures

Many structures are designed as assemblies of identical units, connected
to each other with different kinds of joints. Such structures behave as fil-
tering systems, since in some ranges of frequencies waves propagate without
attenuation (if damping is neglected), while in others waves decay exponen-
tially. For an infinite periodic system, these frequency ranges are denoted
as pass-bands and stop-bands, respectively. A finite system exhibits similar
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Figure 1: (a) Oil storage tanks in a power generation plant (from
http://www.chromalox.com, accessed on 30 July 2015); (b) failure of the San Saba bridge
in Texas, occurred in May 2013 due to fire (image captured on 30 July 2015 from the
video https://www.youtube.com/watch?v=LLVKb1HxhAY). (Online version in colour.)

transmission properties, provided that the number of its components is large
enough. For a finite system, we distinguish between propagation ranges and
non-propagation ranges since, strictly speaking, the definitions of pass-bands
and stop-bands cannot be adopted.

Real structures are never perfect, as errors in manufacturing processes are
likely to occur. The presence of defects and imperfections in the geometric
and constitutive properties of the structure is generally referred to as “disor-
der”. Disordered systems consisting of many units can be found at different
scales, from photonic crystals at the nanoscale to mechanical and civil engi-
neering structures at the macroscale. In this paper, we focus the attention on
elastic media that can be modelled as discrete systems. For instance, arrays
of tanks (Fig. la) can be studied as chains of masses connected by flexural
links, which simulate the elastic plate supporting the tanks. In this case,
disorder can be represented by the randomly-varying amount of fluid inside
the containers. Bridges can be studied as discrete sets of masses connected
by non-inertial beams and resting on elastic supports, as in the analytical
model developed by Brun, Giaccu, Movchan, & Slepyan (2014) to describe
the recent collapse of the San Saba bridge in Texas (Fig. 1b). In the case
of bridges, the random parameters could be the span lengths or the pillar
heights.

Systems made of modular units can be classified according to the number
of kinematic variables p defining the coupling between two adjacent units:
mono-coupled if p =1, bi-coupled if p = 2, and so on. The dynamic proper-



ties of mono-coupled disordered systems have been extensively investigated in
the literature. Sigalas & Soukoulis (1995), Cetinkaya (1999), Li, Wang, Hu,
& Huang (2006), Chen & Wang (2007), Guenneau, Movchan, Movchan, &
Trebicki (2008), Asatryan, Gredeskul, Botten, Byrne, Freilikher, Shadrivov,
McPhedran, & Kivshar (2010), Asatryan, Botten, Byrne, Freilikher, Gre-
deskul, Shadrivov, McPhedran, & Kivshar (2012) studied propagation of
elastic waves with different angles of incidence in disordered layered struc-
tures, where the quantity undergoing a random perturbation is the thickness
of the layers, the elastic constant of one phase or the sequence of the lay-
ers. The effect of disorder in continuous one-dimensional randomly-perturbed
systems is described by Godin (2005) with the analysis of the Lyapunov ex-
ponent for exponentially decaying perturbations, and by Godin, Molchanov,
& Vainberg (2011) by examining the dependence of the Lyapunov exponent
on the frequency and on the magnitude of disorder. A simple mass-spring
model is employed by Yan, Zhang, & Wang (2009) to analyse localised modes
in a layered structure after introducing different sources of disorder. In the
context of bi-coupled systems, Ariaratnam & Xie (1995), Bouzit & Pierre
(2000), Li, Wang, Hu, & Huang (2004) investigated different aspects of wave
localisation in continuous beams, resting on many supports and having ran-
dom span length, using the notion of localisation factor, which is related to
the Lyapunov exponents of the dynamic system. For a general discussion on
localisation phenomena in engineering structures, the reader is referred to
the review by Bendiksen (2000).

In this paper, we describe spectral and transmission properties of discrete
flexural systems with random parameters, and we make a comparison with
the properties of perfect systems. In particular, we discuss localisation of
eigenvectors and eigenvalues of matrices with random entries, derived from
the equations of motion of the disordered system, in the framework of a gen-
eralised notion of Anderson’s localisation (Anderson (1958)). We show that
in a perturbed system localised resonance modes appear (Fig. 2a), while in a
perfect system the eigenstates are spread over the entire structure (Fig. 2b).
[solated eigenvalues are detected in the spectrum of the perturbed system,
especially near its boundaries (Fig. 2a). We demonstrate that there is a
link between the eigenvalue problem and the energy transmission problem,
since at the frequencies where localised modes are observed all the energy
transferred to the system by an external source is reflected back. We verify
the above results by computing also the localisation factor, which defines the
decay rate of the wave amplitudes.
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Figure 2: Eigenfrequencies w and examples of eigenvectors of a finite discrete flexural sys-
tem, consisting of disks connected by massless beams, in the case of perturbed conditions
(a) and in the perfect configuration (b).

1.2. Anderson’s localisation in discrete systems

Strong dynamic localisation. There are two classes of mathematical mod-
els of disordered systems in the modern physics: continuous and discrete. The
continuous models are described, for example, by the Schrodinger equation
with a random potential, while the discrete models are based on the random
matrix of the Hamiltonian. The Schrodinger equation is a partial differen-
tial equation that determines the wave functions of the system and describes
their changes with time. In the Copenhagen interpretation of quantum me-
chanics, the squared modulus of the wave function, |p|?, is proportional to
the probability of finding the particle at that point. Another postulate of
quantum mechanics is that observables are represented by linear Hermitian
operators which act on the wave function, and the eigenvalues of the opera-
tors correspond to the possible values the observables take (Griffiths (2004)).

In the discrete case, one of the most important properties of disordered
systems is the possible appearance of localised states. The wave functions of
such states may vary significantly in some domains of a finite volume. In his
remarkable work P.W. Anderson (1958) introduced a tight-binding model to
study the dynamics of an electron moving in a random medium. His model
is described by the Schrodinger equation on the three-dimensional lattice Z3

ihg; = Ejo;+ > Viegr,
k#j



where h = 1, ¢, is the wave function, Ej; is a random and independent vari-
able, and Vjy, is the interaction matrix that may or may not contain stochastic
variables. From the physical point of view £ is the potential energy of a spin
occupying site j and ), 4 Vikr is the kinetic energy of the particle which,
in the absence of magnetic field, is given by the Laplacian. Anderson showed
that, at sufficiently strong disorder, the interferences can start to dominate
the transport. In this case, the material becomes a semiconductor.

The localisation studied by P.W. Anderson is sometimes called strong dy-
namic localisation. Here we use the definition given by Hundertmark (2000).
Consider for any localised initial condition ¢ the part of ¢ with energy in
the interval [a, b]. A random Schrodinger operator has strong dynamic local-
isation with energy in [a, ] if ¢ stays in compact regions for all times up to
arbitrary small errors.

Spectral localisation. Under some mild physically reasonable conditions,
a random Schrodinger operator has spectral localisation in an energy interval
[a, b] if the spectrum of the Hamiltonian is a pure point (see Hundertmark
(2000) for more details).

Anderson’s localisation was initially given a spectral interpretation: for
nearest neighbour interactions and random potential the spectrum is pure
point and the corresponding eigenstates are exponentially localised (see Ishii
(1973), Kunz & Souillard (1980), Pastur (1980) for the one-dimensional case
and Martinelli & Scoppola (1985) for the multi-dimensional case). Indeed
strong dynamic localisation and spectral localisation are closely related. One
can find in the literature that both are sometimes called Anderson’s locali-
sation. By the RAGE theorem (due to Ruelle, Amrein, Georcescu and Enss)
strong dynamic localisation implies spectral localisation, but the converse is
not true. Counter examples of (non-random) one-dimensional Schrodinger
operators were constructed by del Rio, Jitomirskaya, Last, & Simon (1996).

Many experiments and numerical simulations on localisation were done
by solid-state physicists. Borland (1963) examined the one-dimensional lo-
calisation problem from a probabilistic perspective, while Dean & Bacon
(1963) performed numerical simulations on disordered chains of atoms of fi-
nite length and showed that eigenstate localisation is more pronounced at
high frequencies than at low frequencies.

After P.W. Anderson was awarded the Nobel prize, localisation due to
disorder became a very popular topic. Nowadays the notion of Anderson’s
localisation is not restricted to electrons but used for any type of waves. In
the 1980s, localisation due to disorder was found relevant in the context of




classical waves in random media (see Anderson (1985), Maynard (1988) and
John (1991)).

Disordered spring-mass elastic systems. Dyson (1953) and Schmidt (1957)
studied the effects of disorder on the vibration frequencies of a one-dimensional
spring-mass chain in the limit when the chain is infinitely long. Though they
did not study the influence of disorder on the eigenvectors or on wave prop-
agation, their results help to explain wave transmission in such systems.
Eigenstate localisation and wave propagation in disordered chains were in-
vestigated by Matsuda & Ishii (1970) and by Ishii (1973). Their approach
is based on the theorem by Furstenberg (1963), which states that each bay
of a disordered periodic structure can be modelled with a random transfer
matrix and, as a result, the entire structure can be modelled with a product
of random matrices.

In this paper we study disordered flexural and mass-spring systems, in
which we observe eigenstate localisation. Though it is due to disorder, this
is not the localisation in the sense of Anderson (1958), who considered a
formally different problem. Nevertheless there are some similarities, and in
the literature Anderson’s localisation is sometimes related to the localisation
of the eigenvectors of a random matrix (see Trefethen & Embree (2005),
Chapter 36). For consistency, we will include both types of localisation under
the broad name of “generalised Anderson’s localisation”.

In the case of continuous disordered systems of infinite volume, the spec-
trum splits into discrete and continuous parts. In some cases the continuous
parts may disappear. For example, it was proved by Gol’dsheid, Molchanov,
& Pastur (1977) that for a one-dimensional continuous random Schrédinger
operator with a random homogeneous potential the spectrum has only pure
points. The exact location of the spectrum and the criterions for a given
part in the spectrum to be a pure point or purely continuous were obtained
by Kunz & Souillard (1980). The discrete part of the spectrum is a good
candidate to find localised eigenstates. In the case of discrete systems, the
spectrum has no continuous parts. However, as demonstrated by our simula-
tions, the spectrum can be represented as the union of two parts by analogy
with the continuous model. One part - where we observe eigenstate local-
isation - can be thought as the “discrete” part of the spectrum, while the
other part - where points of the spectrum cluster - can be thought as the
“continuous” part of the spectrum. Furthermore, in the case of a medium
with a gap in the spectrum, Klein & Koines (2001) proved that the spectral
gap shrinks (possibly closing) as randomness is added to the medium, and
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localisation occurs at the edges of the gap.

1.3. The structure of the paper

The paper is organised as follows. In Section 2 we present the results for a
bi-coupled system made of translational and rotational masses connected by
non-inertial beams, both when the system is ordered and disordered. Then,
we show that in some situations this system can be well approximated by
simpler mono-coupled structures consisting of one (Section 3) or two (Section
4) types of point masses linked by springs. In Section 5 we analyse a more
sophisticated bi-coupled system, made of two types of disks. Finally, in
Section 6 we provide some concluding remarks.

2. Discrete bi-coupled system

We consider a system made of masses m; with rotational inertia I;, con-
nected in series by Euler-Bernoulli beams of length [, flexural stiffness £.J
and mass per unit length p (see Fig. 3a). In the time-harmonic regime, the
equation of motion of the beam is given by

d‘;v;f) — Bh(z) = (dd—; + 52) (dd—; - 52) v(z) =0, ()

where v(x) is the transverse displacement, z is the spatial coordinate and
B = (uw?/EJ)Y* being w the angular frequency. The solution of Eq. (1)
can be written as the superposition of propagating waves of Helmholtz type
(vy) and decaying waves of modified Helmholtz type (vys), namely

v(x) = vy (x) +vp(x), (2)
e (dd—; + 52) vy (r) =0, (3a)
<dd—; - B2> var(z) = 0. (3b)

For the system in Fig. 3a, the beam equation (1) needs to be complemented
by the equations of linear and angular momentum balance of the concentrated
mass.
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Figure 3: (a) Discrete bi-coupled system, consisting of translational and rotational masses
connected by Euler-Bernoulli beams; (b) unit cell of the system; (c¢) transmission problem
for the discrete flexural system, placed between two homogeneous semi-infinite Euler-
Bernoulli beams with flexural stiffness £.J and linear density /i.

The transfer matrix T; of a generic unit cell of the system, sketched in
Fig. 3b, links the vector UT of generalised displacements and forces at the
end of the cell to the analogous vector U™ at the beginning of the cell:

+ i i i i -

v 11 412 413 L14 v

+ i i i i -

Ut = ¥ —T.U = Ty T3y T3 T3y ¥ (4)
R WA G = i i i i 7 (-
31 132 433 134

+ i i i i -
M 41 Lag Ly3 Ly M

Here p(x) = v'(z) is the rotation, M (z) = EJv"(z) is the bending moment
and T'(z) = —EJv"(x) is the shear force. This system is bi-coupled since its
motion is described by two kinematic variables: the transverse displacement
v(x) and the rotation ¢(x). The sign conventions for the kinematic and static
variables of the problem are indicated in Fig. 3b. By imposing continuity
conditions at the boundaries between the discrete mass and the beams, the
following expression for the transfer matrix associated with the unit cell in



Fig. 3b is obtained:

cos(ﬁl)+cosh([3l)+ sin(ﬁl)+sinh(ﬂl)+

2 28 sin(8l)—sinh(8l)  cos(Bl)—cosh(Bl)

_miw?[sin(B)—sinh(80] | Ijw?[cos(B1)—cosh(BD)] 2EJB3 2EJB2
28783 28782

_ B[sin(Bl) —sinh(B1)] cos(Bl)+cosh(Bl)
3 + 2 +  cos(Bl)—cosh(Bl)  sin(Bl)+sinh(Bl)

_ myw?leos(8)—cosh(8D)]  _ Iw?[sin(81)+sinh(51)] 2EJ52 2EJB

T, — 2B B2 2EJf
;=

_EJ,83[sin(/31)+sinh(m)]+ E.J B2 [cos(81)—cosh(81)]
2 2

+  cos(Bl)+cosh(Bl) Blsin(Bl)—sinh(B1)]

_miwz[cos(ﬁl)+cosh(5l)] _IinE[SiH(Bl)fsinh(Bl)] 2 2
2 2

EJB2[cos(B1)—cosh(BL EJB[sin(B1)—sinh(B1)]
_ [ (2) ( )]+ _ s ) in n

__sin(Bl)+sinh(Bl)  cos(Bl)+cosh(Bl)
+miw2[sin([3l)+sinh(ﬁl)] _Iiw2[cos([‘}l)+cosh(ﬁl)] 25 2
— 2B 2

()
The transfer matrix is symplectic (Romeo & Luongo (2002); Yao, Zhong, &
Lim (2009)), namely it satisfies the condition

TIQT, = Q, where Q = [ 0 12} , (6)
-I, 0
where I is the 2 x 2 identity matrix. Being symplectic, the transfer matrix
has unit determinant and its first and third invariants coincide (Z; = tr(T) =
Iy = (tr3(T) + 2tr(T?) — 3tr(T?) tr(T))/6). Furthermore,
DT -BT A B
-1 _ . o
N ey IS S 7)
where A, B, C and D are 2 x 2 matrices.
In the case of massless beams (u — 0), the transverse displacement is a
cubic function (see Eq. (1) for § = 0) and the transfer matrix admits this
simplified form:

mw2l3 ;w22 13 12
(1+ 6EJ> (l_ 2EJ> T 6EJ 2EJ

miw?i? 1 — Liw?l P2 il

T, = 267 EJ 267 EJ | - (8)
—myw? 0 1 0
mw?l —Lw? —1 1

The aim of this paper is to investigate the dynamic properties of discrete
systems, hence we will assume that the beams are massless and that the total
mass of the system is concentrated at the nodes of the beams. Accordingly,
in the rest of the section we will compute the transfer matrix by means of

Eq. (8).



2.1. FEigenvalue and transmission problems for the bi-coupled system

In this section, we formulate the two approaches considered in this paper:
the eigenvalue problem and the transmission problem.

2.1.1. An auziliary eigenvalue problem
The equations of linear and angular momentum balance of a generic mass
1 are given by

12EJ 6EJ o 24EJ 12EJ 6EJ
Vet i (Mt = g Ui g lin — i = 0, (9a)

6EJ 2EJ SEJ 6FJ 2EJ
B I <I@'”2 - z) pit vt~ =i =0 (9b)

For a finite chain of n masses, the assembly of the equations of motion -
complemented by the boundary conditions - leads to the classical eigenvalue
problem

(A- X)X =0, withA=M"K. (10)
In the system above, X = {vy,¢1,v2, 02, , Un_1, Pn_1, Un, @n}T is the vec-
tor of the unknowns, M = diag (mq, Iy, mo, Is, -+ ,my_1, I_1,my, I,,) is the

mass matrix, A = w? are the eigenvalues and K is the stiffness matrix. For a
system with clamped ends, the stiffness matrix is obtained by imposing that
the transverse displacements and the rotations at the ends are null: vy = 0,
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wo =0, v11 =0, p,r1 = 0. In this case, the stiffness matrix is expressed by

ERE T 0
0 % _65]@ 0 0
_ 12151 _%} 24Z;EJ 0 — 12Z§J 6%] 0 o 0
K — (11)
0 o 0 — 12@] _6;5_2J 241135J 0 — 12lf3EJ GQE_QJ
o 0 —pr v ug

If different boundary conditions are considered, the first two and the last
two rows of matrix K need to be modified. In the example of Fig. 2
simply-supported boundary conditions were considered, namely the trans-
verse displacements and the bending moments at the ends of the system
were supposed to be zero.

The eigenvalues and eigenvectors of the discrete bi-coupled system are
determined by solving Eq. (10). The square roots of the eigenvalues, w = VA,
represent the eigenfrequencies (or natural frequencies) of the system.

2.1.2. Transmission problem: energies and localisation factor

In order to better evaluate the transmission properties of the flexural
system, we consider a finite stack of n masses that is connected to two homo-
geneous semi-infinite beams, indicated by A and B in Fig. 3¢ and having, for
simplicity, the same flexural stiffness EJ and linear density ji. We consider
a right-travelling wave of amplitude V; = 1 propagating in beam A, which
impinges on the discrete system at the left boundary. This incident wave
is, generally, partly reflected by and partly transmitted through the discrete
system. Consequently, in medium A the transverse displacement is given
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by the superposition of the incident wave and of two reflected waves, one
propagating to the left and one evanescent:

va(z) = Vie? 4 Ve 0% 4 Ve, (12)
where § = (fiw?/EJ)"/*. In medium B the displacement field is the sum
of two transmitted waves, one propagating to the right and the other one
decaying exponentially:

vp(z) = Vel 4 Vie oo, (13)

The reflection and transmission coefficients Vi, V; and Vi, Vi are obtained
from the following system of equations (with V; = 1):

vg(z = zp) eiBjEBVT‘i‘e_Bz?Vt va(z =)
ep(z=1ap) | _ iBei?xB Vr — Be_ﬁxBV:t _ ) oa(r =xa)
Mp(z = zB) B2EJeP"Vy — B2EJe eV, Ma(z = z5)
Tg(x = xB) iBSETJeinBVT + BBEJe Py, Ta(z =xp)
Tl(;l) Tl(g) Tl(g) Tl(z) RN + o—iBzaA Va + eB;cAVr
B R O SRR iBeifra —ifeiBeaVy + felray,
T Ty T T ) BREJES ¢ 2EJe Pravg — B2EJePmay, [
) | B ETera — BB EJefravy — B3E Ty,

(14)
where T is given by

T =] T (15)
=1

The transfer matrices T; in Eq. (15) can be all equal (ordered system) or
different (disordered system). In the case of an ordered system, the matrices
T, are all the same and they can be expressed as

T, =T =PAP, (16)

where P and A are the matrices of eigenvectors and eigenvalues of T, respec-
tively. In this case, Eq. (15) is equivalent to

T = PA"P~L. (17)
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If the matrices T; are different but coaxial, they can be written as
T, = PA,P, (18)

where the eigenvalue matrix A; is different for different unit cells, while the
eigenvector matrix P is the same for all cells. In this case, Eq. (15) is
tantamount to

AL oAl 0 0 0
™ _p 0 A X AYY 0 0 bl
0 0 A xox Al 0 ’
0 0 0 A xox A
(19)

where the superscript of the eigenvalues in brackets indicates the number of

the unit cell. In the case of a disordered system with non-coaxial matrices
T;, Eq. (19) is not valid, therefore the more general formula (15) should be
used to determine the transfer matrix of the whole system.

Neglecting the evanescent components, the reflected and transmitted en-
ergies are calculated as R = VxVi and T = ViV, where the bar stands for
the complex conjugate. Obviously, the energy conservation law requires that
R+ T = 1. In the non-propagation ranges all the energy is reflected back,
hence R ~ 1 and T ~ 0. For consistency, we assume that a propagation
range is defined by the condition that the transmitted energy 7 is a very
small quantity, more specifically T < 107%. The widths of the propagation
and non-propagation ranges depend on the size of the finite system. As the
number of the unit cells is increased, the propagation ranges are reduced
in extension. In the limit case of an infinite disordered mono-dimensional
system, all states are localised.

The propagation characteristics of the bi-coupled system can be iden-
tified also by means of the localisation factor, which is by definition the
smallest positive Lyapunov exponent (Castanier & Pierre (1995)) and is the
inverse of the localisation length (Godin (2005)). The Lyapunov exponent is
used to measure chaos in dynamic systems, as it represents the average rate
of convergence (or divergence) between nearby trajectories in phase space;
analogously, the localisation factor is used to measure the average rate of
decay (or growth) of the wave amplitudes (Chen & Wang (2007)). For a
bi-coupled system four Lyapunov exponents can be defined, two of which are
positive and the other two are equal in absolute value but opposite in sign
(due to the left-right symmetry of the propagation properties of the system).
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The Lyapunov exponents are ordered as follows:

11> 92 2> 02> (=) > nul=-—mn) (20)

Thus, 72 is the localisation factor. In the propagation ranges 7o >~ 0 (7, =0
in the limit case of an infinite system), since the wave propagates without
attenuation; on the other hand, in the non-propagation ranges v > 0, the
wave amplitude decays as e™7? and the energy is attenuated as e 272 (Chen
& Wang (2007)).

We determine the Lyapunov exponents by using the general formula-
tion of the Wolf algorithm (Wolf, Swift, Swinney, & Vastano (1985)). First,
we choose a set of four independent vectors, namely vy, - -+, v94. These vec-
tors are ortho-normalised by using the Gram-Schmidt Re-orthonormalisation
(GSR) procedure; we indicate the orthonormalised vectors as vjy,- - , U),.
Then, we pre-multiply each vector v, (k =1,---,4) by the transfer matrix
and we apply again the GSR procedure. These operations are repeated until
the last unit cell of the system. The orthonormalised vectors computed up
to the ith unit cell are indicated as v],. Finally, each Lyapunov exponent is
calculated as follows:

1 n
fyk:EZln(vik-vgk) k=1,--- .4, (21)
=1

where the dot indicates the scalar product. Formula (21) converges to the
exact Lyapunov exponent as the number of cells n tends to infinity.

In the following, we assume that the discrete masses are disks of radius
R and density (with dimensions of mass per unit area) p;. The translational
mass and the rotational inertia of each disk are given by m; = 7R?p; and
I; = wRp;/2, respectively. First we study the case when the disks have
the same density (ordered system), and then we consider the case when the
density is perturbed randomly (disordered system).

2.2. Ordered system of disks
In an ordered (or perfect) system the density is the same for all disks, i.e.
p; = pfori=1--- n;accordingly, m; = m = tR?p, I, = [ = nR'p/2 and
If the system is periodic, namely if it consists of an infinite number of
identical cells, we can impose Bloch-Floquet conditions at the ends of each
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cell to obtain the dispersion relation, which is given in compact form by
det (T — ™) =0, (22)

where k is the wave number, [ is the distance between the disks and I is
the identity matrix. Eq. (22) admits two positive solutions, which have the
following explicit expressions:

1

wig = <mIl4 {2EJ1 [61 4 2ml® + (ml* — 61) cos (k)]

1/2
jE\/ZlE‘pl2 [61 + 2mi2 + (mi2 — 61) cos (k1)]> — 192mI EJ214 sin® (Zl) }> ‘
(23)

The lower dispersion curve w; and the upper dispersion curve wy are hereafter

referred to as translational branch and rotational branch, respectively. The
reason is that the motion of the flexural system at frequencies belonging
to the upper branch is characterised by small transverse displacements and
large rotations, with this effect becoming more pronounced as the rotational
inertia is decreased. At lower frequencies, transverse displacements increase
in magnitude relatively to rotations; in particular, in the long-wave limit the
motion is almost purely translational. In the limit case of a system with
masses having negligible rotational inertia (e.g. in a system made of point
masses), the upper dispersion curve diverges to infinity and the motion of
the system - which is mainly translational - is described by the only lower
dispersion curve. We prove the above statement by looking at the limits of
the dispersion curves at the ends of the first Brillouin zone:

wi(k=0)=0, (24a)
2EJl (ml? + 121 — |ml? — 121
E
Wl = 0) = 24/ 27 (24c)
Il
2EJ1 (ml? + 121 + |mi? — 121))
wa(k =7/l) = \/ i : (24d)
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Figure 4: (a) Dispersion curves of the periodic disk-system for three different values of the
disk radius; (b) representation of the propagation regions in the physical plane w-R (for
the calculations we have taken p =1, EJ = 10,1 =1).

If the value of the translational mass m of the disks is kept constant while
their rotational inertia I tends to zero, the limits above become:

_ . 3EJ
(k= 0) =0, Jimw(k =m/1) =4/ 705 (25)

}li%u&(k =0) = }%wg(k: =7/l) = 0.
Fig. 4a illustrates the dispersion curves obtained from three different values
of the disk radius.

In bi-coupled periodic systems, four different propagation regions are dis-
tinguished (Romeo & Luongo (2002); Carta & Brun (2015)): the Pass-Pass
(PP) zones, where two waves propagate with constant amplitude in each di-
rection; the Pass-Stop (PS) zones, where one wave propagates and the other
one is evanescent; the Stop-Stop (SS) zones, where both waves decay expo-
nentially; and the Complex (C) zones, which are special SS Zones where the
eigenvalues are complex conjugate and have moduli different from 1. These
propagation regions are represented in the physical plane w-R in Fig. 4b.
The lines r, s and p, separating the different zones, are given respectively by
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(Romeo & Luongo (2002); Carta & Brun (2015))

T Ig = 21-1 — 2, (26&)
S IQ = —21-1 - 2, (26b>
1

In the equations above, Z; and Z, are the first and second invariant of the
transfer matrix:

 24EJ + (ml® — 611)w”

7, = tx(T) ol : (27a)
1, o T2EJ* — EJ(8ml® 4 2411)w? + mIl'w!
L= [tr*(T) — tr(T?)] = SET . (27b)

For R =1/ V6 the band-gap between the translational and rotational branches
disappears, implying that for this value of the radius the two branches are
connected.

In the following calculations we consider the particular case R = 0.5.
The corresponding dispersion curves, drawn with solid lines in Fig. 4a, are
reproduced in Fig. 5a with the normalised coordinates 2 = wy/mi3/EJ and
kl. The limits of the bands are indicated by dashed lines.

In Fig. 5b we report the (normalised) eigenfrequencies of a finite disk-
system with clamped ends, determined by means of Eqs. (10) and (11).
The eigenfrequencies lie within the propagation bands of the corresponding
periodic system, in accordance with the results of previous works (see, for
instance, Mead (1975) and Brun, Giaccu, Movchan, & Movchan (2012)),
apart from two eigenfrequencies which fall inside the band-gap between the
two branches. However, the eigenvectors corresponding to the latter eigen-
frequencies are extremely localised, as shown in the inset of Fig. 5b. Natural
frequencies associated with localised eigenvectors and found inside the non-
propagation zones have been observed also in other periodic bi-coupled sys-
tems (see Carta, Brun, & Movchan (2014a,b)). Localisation in ordered sys-
tems is influenced by boundary conditions. In the case of simply-supported
boundary conditions, used in Fig. 2b, all the eigenfrequencies fall inside
the propagation bands of the periodic system and the eigenvectors are not
localised.

For the transmission problem, the reflected and transmitted energies are
plotted in Figs. 5c and 5d, respectively. The energies are obtained by solving
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Figure 5: Dispersion curves for the periodic system of disks (a); eigenfrequencies (b),
reflected energy (c), transmitted energy (d), localisation factor (e) and largest Lyapunov
exponent (f) for the finite ordered system with n = 100 disks (p = 1, R = 0.5, EJ = 10,
I=1,EJ=1,a=1).
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system (14) with n = 100. In correspondence of the dispersion curves of the
periodic system, part of the energy is reflected back and part is transmitted
through the disk-system (we have checked that R + T = 1 far from the
boundaries between the disk-system and the homogeneous beams). On the
contrary, in correspondence of the band-gaps of the periodic system almost
all the energy coming from an external source is reflected back by the stack
of disks, since R ~ 1 and T ~ 0.

In Figs. 5e and 5f we show the localisation factor v, (i.e. the smallest
positive Lyapunov exponent) and the largest Lyapunov exponent 7, respec-
tively. 79 =~ 0 in correspondence of the Pass-Stop zones of the periodic
system and 7, > 0 in correspondence of the Stop-Stop zones. Conversely, v,
is positive for all frequencies, since in both directions one wave always decays
exponentially.

2.3. Disordered system of disks

Now we assume that a parameter ( of the system is perturbed with the
variables €X; (e > 0,4 =1,--- ,n), where X; are independent random vari-
ables with probability density functions f;. Accordingly, the transfer matrix
of the disordered system can be expressed as

T = H T = H Ti(¢ + €X,). (28)
=1

i=1

We consider the case in which the random variables X; have a normal dis-
tribution with zero mean value and unit variance:

filw) = = (292)
<X;>=p= /xfz(m)dx =0, (29Db)
var(X;) = 0® = /IZfi(SL’)dI— < X; >*=1. (29¢)

In the following, we assume that the perturbed parameter of the system is
the density p of the disks.

The eigenvalues and eigenvectors of a finite disordered system of n disks
with clamped ends are computed by solving the eigenvalue problem (10),
where in this case the mass matrix M contains random entries. The (nor-
malised) eigenfrequencies calculated for ¢ = 0.1 and for the average density
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p = 1 are reported in Fig. 6a, where for comparison the limits of the prop-
agation bands for the periodic system are indicated by dashed lines. The
eigenfrequency intervals of the perturbed system are larger than those of the
ordered system. This result is in accordance with the theory of pseudospec-
tra (Trefethen & Embree (2005); Davies (2007)). The pseudospectrum of a
square matrix A (as that in Eq. (10)) is defined as (Trefethen & Embree
(2005))

AA)={z€C:|z2I-A|'>n""} (30)

or, equivalently, as
A(A)={z€C:ze A(A+AA) for ||AA|| <n}, (31)

for any n > 0. A,(A) is a larger set than the spectrum A(A), even for very
small values of n (Davies (2007)). This explains why the eigenvalue intervals
of a disordered system are wider than those of the corresponding ordered
system. Moreover, we notice the presence of isolated eigenfrequencies near
the boundaries of the spectrum, in particular at high frequencies.

The eigenvectors calculated near the limits of the eigenfrequency ranges
are localised, implying that at these frequencies the energy cannot be trans-
mitted throughout the structure. For example, the eigenvector shown in
Fig. 7a, which is associated with the largest eigenfrequency of the perturbed
system, is highly localised near one end of the system. The largest eigen-
frequency corresponding to an eigenvector that involves the whole structure
(plotted in Fig. 7c) is found at 2 ~ 8.9. This value of € is smaller than
the superior limit of the rotational branch  ~ 9.8 of the perfect periodic
system (see Fig. 5). At Q =~ 9.8 the eigenvector of the disordered sys-
tem is very localised (Fig. 7b), meaning that this frequency belongs to the
non-propagation region. Also at the inferior limit of the rotational branch,
) ~ 6.9, and at the superior limit of the translational branch, € ~ 5.5, of
the perfect periodic system, the eigenfrequencies of the perturbed structure
are localised (see Figs. 7d and 7e). We can thus conclude that, though the
eigenfrequency intervals of the disordered system are wider, the frequency
ranges where waves can propagate in the perturbed structure are reduced
with respect to the ordered system. It is interesting to observe that the
major reductions occur at higher frequencies.

The results described above are confirmed by the diagrams in Figs. 6b,
6c and 6d, which show that R >~ 1, T ~ 0 and 5 > 0 in frequency intervals
that are wider than the non-propagation regions of the ordered system.
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Figure 6: Eigenfrequencies (a), reflected energy (b), transmitted energy (c¢) and Lyapunov
exponents (d,e) for a finite system of n disks with random density p; = p + €X;, where X;
have a normal distribution as in Eqs. (29) (i =1,---,n; n =100; e =0.1; p=1; R = 0.5;
EJ=10;l=1;EJ=1; i = 1). The dashed lines are the limits of the Pass-Stop zones
of the corresponding periodic system (see Fig. 5).
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Figure 7: Eigenvectors of a finite disordered system of n disks associated with different
(normalised) eigenfrequencies (¢ = 1,--- ,n; n = 100; e = 0.1; p = 1; R = 0.5; EJ = 10;
l=1).

2.3.1. Random sub-systems inside an otherwise ordered disk-system

Here we consider the situation in which only one or two sub-systems of
the structure are affected by random perturbations, while the rest is made
of identical unit cells.

We start by examining the case of a system of n = 100 disks, where the
density is the same everywhere except in the disks from 30 to 39. The (nor-
malised) eigenfrequencies are plotted in Fig. 8a. Also when perturbation
involves only a sub-system, the eigenfrequency range increases, mainly near
the upper limit of the rotational branch. Moreover, in this case the eigen-
vectors corresponding to the eigenfrequencies falling in the non-propagation
ranges are either localised within the random sub-system (see for instance
Fig. 8b) or concern only the part of the system on the left or on the right of
the random sub-interval (see for example Fig. 8c).

We also study the situation when two sub-systems have random density,
in particular the sub-intervals made of disks 20-29 and 60-69. Generally, the
eigenfrequency interval is larger when more units of the system are perturbed
(compare Figs. 8a and 9a). Furthermore, most of the eigenvectors relative to
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Figure 8: (a) Eigenfrequencies of a finite system of n = 100 disks, where p; = p for
i=1,---,29 and 7 = 40,--- ,100, while p; = p + X, for i = 30,--- ,39, with X; having
a normal distribution as in Egs. (29); eigenvectors obtained at  ~ 10.2 (b) and Q ~ 9.8
(¢) (e=0.1,p=1, R=0.5, EJ =10, [ = 1). The dashed lines in (a) are the limits of the
Pass-Stop zones of the corresponding periodic system (see Fig. 5).
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Figure 9: Eigenfrequencies (a) and two instances of eigenvectors (b,c) in the case of two
perturbed sub-systems, i.e. p; = p+ €X; for ¢ = 20,---,29 and ¢ = 60,---,69, while
pi = p elsewhere (e = 0.1, p =1, R=0.5, EJ = 10, [ = 1). The dashed lines in (a) are
the limits of the Pass-Stop zones of the corresponding periodic system (see Fig. 5).

the eigenfrequencies lying in the non-propagation ranges are different from
zero either inside one of the two random sub-systems (see Figs. 9b and 9c)
or in the ordered parts of the structure.

3. Discrete mono-coupled system

The time-harmonic equation of motion of a rod in absence of external
forces is given by
d?u(z)
dx?

EA + pAw?u(z) =0, (32)
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Figure 10: (a) Monatomic lattice consisting of n masses m; linked by springs of uniform
stiffness K; (b) unit cell of the system; (c) transmission problem for a monatomic lat-
tice located between two semi-infinite elastic rods with elastic moduli Fx, Fg and mass
densities pa, pB-

where u(x) is the displacement at the position x, E is the elastic modulus,
p is the mass density, A is the cross-sectional area and w is the angular
frequency. If we assume that the total mass of the rod is lumped at points ¢
separated by a distance [, Eq. (32) can be discretised as

EA

- (Uip1 — 2u; + ui_y) +mw?u; = 0, (33)

where m = pAl is the concentrated mass at each point 7. If this mass is not
uniform and if we set K = FA/l, Eq. (33) takes the following form:

K (2U1 — Uj—1 — Ui+1) - miw2ui =0. (34)

Eq. (34) represents the equation of motion of a mass m; (i =1,--- ,n) of a
chain of n particles connected by springs of stiffness K, which is illustrated
in Fig. 10a. This system is known in the literature as spring-mass system,
or monatomic lattice after Brillouin (1953), and it can be also used to model
the dynamic response of continuous laminated structures in the low- and
medium-frequency regimes (Carta & Brun (2012)).

The monatomic lattice is a mono-coupled system, because each mass has
only one degree of freedom and the coupling between two adjacent cells is
provided by the only force exerted by the spring. Consequently, in this
case the transfer matrix is a 2 x 2 matrix and it relates the vector u™ of
displacement and force at the end of each cell to the analogous vector u™ at
the beginning of the cell:
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The transfer matrix associated with the unit cell in Fig. 10b has the following
expression:

| ome? 1 mw?
T, = [—mi}lg e ,;1{5] . (36)
? 2K

3.1. Connection between the bi-coupled and mono-coupled systems

Eq. (32) is formally analogous to the Helmholtz equation (3a), which
describes propagating waves in a continuous beam. This analogy is consistent
only if the frequency parameter 5 in Eq. (3a) plays the role of the angular
frequency w or, more specifically, if 5 is substituted by \/p/F w.

Similarly, in the discrete case the spring-mass system can be used to
approximate the low-frequency behaviour of a bi-coupled system made of
translational and rotational masses connected by non-inertial beams. To
justify this claim, we consider a periodic monatomic lattice and assume that
its unit cells are made of two masses m (see Fig. 11a). The total mass and
moment of inertia of the two particles in the unit cell are given by M = 2m
and I = mli?/2 = MI?/4, respectively. Indeed, the dispersion curve of the
monatomic lattice approximates very well the translational branch of a bi-
coupled discrete system with I = MI[?/4 (see Fig. 11b), provided that the
numerical value of the spring stiffness is chosen such that the slopes of the
two curves in the long-wave limit are the same (i.e., K = /EJm/(203)).
Furthermore, it can be easily checked that the translational equation of mo-
tion (9a) of the bi-coupled discrete system can be expressed as the sum of the
equations of motion (34) of the two particles in the unit cell of the monatomic
lattice, supposing that the transverse displacement v and the rotation ¢ in
Eq. (9a) are defined as the average of the displacement of the two particles
and as the difference of the displacements of the two particles divided by
their distance [, respectively.

If the rotational inertia I has a different value, it is preferable to employ a
mono-coupled model with two different masses, m; and mo, as also suggested
by Kunin (1982). This model, which was named biatomic lattice by Brillouin
(1953), is depicted in Fig. 12a for the case of an infinite number of identical
cells. The total mass M and the total moment of inertia I with respect to
the centroid G of particles m; and my are M = my +my and I = (mym3 +
mam?)1?/(my+ms)?, respectively. If the values of M and I are given, masses
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Figure 11: (a) Periodic monatomic lattice as an assembly of unit cells made of two particles;
(b) comparison between the dispersion curve of the monatomic lattice (Eq. (50)) and
the translational branch of a bi-coupled system with masses M having rotational inertia
I = MI?/4 in terms of \/w1 (Eq. (23)) (the curves are drawn for EJ = 10,1 =1, M = /4,

I=MP2/4, m=M/2, K =/EIm/(2B)).

my and my can be derived from the following formula:

MIF v M?2?2 —4M1
2l '

mio = (37)
In Fig. 12b we compare the dispersion curves of the disk-system, examined
in Section 2.2, and of the biatomic lattice, in which the spring stiffness is
taken as K = \/4EJM /I3 to match the slopes of the curves at the origin.
The figure shows that the lower branches of the two systems are very close
to each other, while the upper branches are significantly different.

In order to improve the approximation at higher frequencies, we could
choose the values of m; and msy such that the superior limits of the upper
dispersion curves of the two systems be the same. Simple calculations lead

to
M 1 SM~/3MI
mig=—F | M?* - —F——.
V3l

2 2
From the formula above it can be noticed that the superior limits of the upper
branches of the two systems can coincide only if the value of the rotational
inertia is limited from above, namely if I < 3M[?/64. If this is the case, both
the lower and upper dispersion curves of the two systems are very close to

(38)
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Figure 12: (a) Periodic biatomic lattice and identification of the unit cell; (b) branches
Vwi and (/w; (Eq. (23)) of the disk-system analysed in Section 2.2 (EJ = 10, | = 1,
M = n/4, I = 7/32) and dispersion curves of the blatomic lattice (Egs. (57)) with my
and ms given by Eq. (37) and K = \/4EJM/13; (¢) comparison of the dispersion curves
Vwr and (/wz (Eq. (2 )) of a bi-coupled ﬂexural system (EJ = 10,1 =1, M = «n/4,
I = 7/96) with the dispersion curves of the biatomic lattice (Eqgs. (57)) with my and mq
determined from Eq. (38) and K = \/4EJM/I3.

each other (see Fig. 12c), hence the biatomic system can be used to model
the more complex bi-coupled system examined in Section 2.2.

3.2. Figenvalue and transmission problems for the mono-coupled system

3.2.1. Figenvalue problem

We consider a finite lattice with free ends. The assembly of the equations
of motion (34) leads to the following eigenvalue problem:

I -1 Uq mi Uq 0
-12 -1 Uy mo U 0
K . — w? ={...
-1 2 —1| [ un- M1 Up—1 0
11 Up, My, Up, 0

) ) ) ) (39)
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The first and last row of the stiffness matrix in Eq. (39) change if the
lattice is subjected to different boundary conditions.

3.2.2. Transmission problem

The energies reflected by and transmitted through the monatomic lattice
when a time-harmonic scalar wave of angular frequency w impinges on it are
determined by considering the discrete system to be perfectly connected to
two semi-infinite elastic rods at its boundaries, labelled as A and B in Fig.
10c. The equation of motion of each rod j is given by

d?u;(z)
B

+ pjwu;(r) =0 j=A,B. (40)

Here Ea, Eg and pa, pg are the elastic moduli and mass densities of the two
rods, respectively. In addition, we denote as ca = \/Ea/pa,cs = \/EB/pB
and Qp = Faw/ca,Qp = Fpw/cp the phase velocities and impedances of
the two rods, respectively. In rod A the displacement field is represented by
the sum of the incident and reflected waves:

UA(ZL‘) = leeikA;r + URe_ikAx, (41)

where kx = w/ca is the wave number. In rod B the displacement field has
the form: .
up(z) = UrpelF? (42)

where kg = w/cp. Denoting the stresses in the rods by 0; = E; du;/dx (j =
A B) and considering unit cross-sections, the following system of equations
is derived:

ug(z =p) | _ Ure'tses _ up(z = x8)
O'B(x = :CB) ikBEBUTelkBIB UA(LC = iCA)
Tl(?) Tl(;) UIeikA:cA + URe—ik:AxA
Té?) TQ(;) ik‘AEA (UleikAxA — URefikAxA)

In this case, it is possible to write the expressions of the reflection and trans-
mission coefficients, which are given by

Ur _ QAQBTy + 151 +1(QaT5, — QBTlnl)erAxA
Ur QaQsT]y — T35 +1(QaTss + QuTHY)
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and :
ﬁ _ IQQA ei(k/‘Al'A—kBmB), (45)
UI QAQBT& — Tin +1 (QATQnQ + QBTlnl)
respectively. Accordingly, the reflected and transmitted energies are defined
as

R — ‘ Un|* _ (Qa@sTi +T5)" + (QuT3; — @sTH)’ (46)
Url (QaQeTl — T5)* + (QaTss + QsTh)’
and
T QB _ 42QAQB 5 (47)
(QAQBT& —T3)" + (QaTs, + QsTT)

Considering that det(T ™) = 1, it is easy to verify that R +T = 1, which
represents the conservation of energy law. In the non-propagation ranges
almost all the energy is reflected, therefore R ~ 1 and T ~ 0.

A mono-coupled system is characterised by two Lyapunov exponents,
which are equal in absolute value but opposite in sign. The localisation
factor is the positive Lyapunov exponent, which is defined as (Castanier &

Pierre (1995))
v = lim lln <||un||> , (48)

where u,, is the vector of displacement and force at the end of the nth cell,
while ug is the analogous vector at the beginning of the system. In the case
of a finite number of cells, Eq. (48) can be approximated by (Castanier &

Pierre (1995))
IS ur

The formula above is equivalent to Eq. (21) for £ = 1 (Castanier & Pierre
(1995)). In the propagation ranges v ~ 0, since waves propagate without
attenuation.

In Section 3.3 we assume that all masses are equal, while in Section 3.4
we perturb the masses randomly and evaluate the effects of the perturbation
on the dynamic properties of the system.

(49)

|uz 1||H

3.3. Ordered monatomic system

Here we assume that m; =mand T; =T fori=1,--- ,n
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Figure 13: Dispersion curve (a) for the periodic monatomic lattice; eigenfrequencies (b),
reflected energy (c), transmitted energy (d) and localisation factor (e) for the finite ordered
monatomic lattice with n = 200 masses (for the calculations we have taken m = 1, K = 10,
EA:LCA:LEB:l,CB:l).

The dispersion relation of the periodic system, which is obtained from
Eq. (22) after introducing the expression (36) for the transfer matrix, has

the explicit form
kl
in | — 50
sin ( 5 ) ‘ , (50)

where [ is the distance between the masses and k is the wave number. The
dispersion curve is shown in Fig. 13a, where Q = wy/m/K is the normalised
frequency. For 0 < 2 waves propagate without attenuation (pass-band),
while for €2 > 2 they decay exponentially (stop-band).

The eigenfrequencies of the finite lattice with n = 200 masses and free
ends are computed by solving system (39). In this case, they can also be
written in explicit form (see Lombardi & Rebaudo (1988)):

wi:\/% {1—Cos(n;i7r>} i=1,...n (51)

By comparing Figs. 13a and 13b it can be seen that the eigenfrequencies of

K
w=24/—
m
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the finite ordered lattice fall inside the pass-band of the periodic system. The
corresponding eigenvectors are not localised. We observe that, if the ends of
the system were fixed, two eigenfrequencies would lie in the band-gap, but
their eigenvectors would be localised near the boundaries (similarly to what
occurs in the flexural system with clamped ends, as shown in Fig. 5b).

In Figs. 13c, 13d and 13e we plot the reflected energy, the transmitted
energy and the Lyapunov exponent as functions of the normalised frequency
). The dashed line in Fig. 13c represents the reflected energy for n — oo,
which is given by (Felbacq, Guizal, & Zolla (1998))

1 —tr(T)%/4
o =1— H(T)'/ 5 in the pass-band, (52a)
(T12Qa — T21/Qn)
R =1 in the stop-band. (52b)

Fig. 13 shows that in the stop-band of the periodic system (2 > 2) R ~
Roo = 1, T >~ 0 and v > 0, while in the pass-band (0 < 2 < 2) v ~ 0.
We also point out that in the pass-band |tr(T)| < 2, while in the stop-band
[tr(T)| > 2, as proved by Lekner (1994) and Felbacq et al. (1998).

3.4. Disordered monatomic system

Now we perturb the masses of the lattice by means of independent random
variables €X;, i.e. m; = m + €X;, where the variables X; have a normal
distribution with zero mean value and unit variance (see Eqs. (29)).

The reflected energy R, the transmitted energy T and the localisation
factor v of the disordered lattice are plotted in Figs. 14a-14c, respectively,
for e = 0.1 and n = 200. The comparison with the corresponding diagrams
in Fig. 13 shows that the propagation range is reduced.

The eigenfrequencies of the finite lattice with free end masses are reported
in Fig. 14d. By comparing Figs. 13b and 14d it can be seen that the
range of eigenfrequencies of the perturbed array of masses is larger than
that of the chain with equal masses. However, the eigenvectors calculated
for the larger eigenfrequencies are localised, implying that energy cannot be
transmitted at these frequencies. Some instances of localised eigenvectors
are presented in Fig. 15. At Q ~ 2.09 (Fig. 15a), which corresponds to the
highest eigenfrequency, the wave is extremely localised. Energy localisation
is reduced as lower values of the frequency are considered (Fig. 15b). The
eigenvector calculated for 2 ~ 1.83, close to the highest frequency for which
T # 0, exhibits a pattern that is not clearly localised (Fig. 15c¢). In the
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Figure 14: Reflected energy (a), transmitted energy (b), localisation factor (c) and eigen-
frequencies (d) for the finite monatomic lattice with perturbed masses m; = m + X,
where X; have a normal distribution as in Egs. (29) (e = 0.1, n =200, m = 1, K = 10,
EA=1,CA=1,EB=1,CB=1).
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Figure 15: Eigenvectors of the finite perturbed monatomic lattice corresponding to differ-
ent (normalised) eigenfrequencies (i = 1,--- ,n; n = 200; e = 0.1; m = 1; K = 10).

propagation range non-localised eigenvectors are present, such as the one in
Fig. 15d, though some slightly localised eigenvectors (due to the oscillation
of the transmitted energy) can also be found.

The effect of localisation becomes more evident as the degree of disorder,
represented by €, increases. In Figs. 16a-16¢ we show the dependence of the
transmitted energy on the normalised frequency () for e = 0.05, ¢ = 0.1 and
e = 0.15, respectively. The size of the propagation range decreases as € is
increased. We note peaks of transmission in the propagation range, while
in the non-propagation range resonance modes are possible, but they are
confined in an internal region of the mechanical system and energy cannot
propagate from one boundary to the other.

The propagation range shortens also by increasing the number of masses
n, as illustrated in Fig. 17. In particular, Figs. 17a, 17b and 17¢ show the
transmitted energy T(£2) in a disordered lattice with n = 50, n = 200 and
n = 500, respectively.
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Figure 16: Transmitted energy in a finite perturbed monatomic lattice for e = 0.05 (a),
e =0.1 (b) and € = 0.15 (¢) (n =200, m =1, K = 10).
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Figure 17: Transmitted energy in a finite perturbed monatomic lattice with n = 50 (a),
n =200 (b) and n =500 (¢) (¢ =0.1, m =1, K = 10).
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Figure 18: Lyapunov exponent (a), eigenfrequencies (b) and eigenvectors (c) for a
monatomic lattice with m; = m for ¢ = 1,---,59 and ¢ = 71,---,100 and m; = m/2
for i = 60,---,70 (m =1, K = 10).

3.4.1. Random sub-systems inside an otherwise ordered lattice

In this section, we consider a finite ordered lattice in which one or two
sub-systems have different masses.

Mass variation in one sub-system. First, we analyse a lattice with n =
100 masses, where m; = m for i = 1,--- .59 and ¢« = 71,---,100, while
m; = m/2 for i = 60,---,70. In Figs. 18a, 18b and 18c we plot, respec-
tively, the Lyapunov exponent, the eigenfrequencies and all the eigenvectors
of this system. By looking at Fig. 18b, we notice the appearance of localised
eigenfrequencies for {2 > 2 and that the eigenfrequency interval expands sig-
nificantly with respect to the system with all masses equal (compare Figs.
18b and 13b), because the masses 60-70 are very different from the masses
in the rest of the lattice. However, the frequency range where the Lyapunov
exponent v ~ 0 is slightly shorter than in the case with all masses equal
(compare Figs. 18a and 13e). The eigenvectors corresponding to the eigen-
frequencies such that {2 > 2 are localised in the sub-system 60-70, while the
other eigenvectors are not localised (see Fig. 18c).

Now we assume that in the sub-interval 60-70 the masses take random
values, i.e. m; = m + €X; for « = 60,---,70, where X; have a normal
distribution as in Eqgs. (29). In this case, the eigenfrequency range increases
slightly with respect to the perfect system (compare Figs. 19b and 13b)
and there are few localised eigenvectors (see Fig. 19c). Nonetheless, the
Lyapunov exponent v > 0 for Q > 1.8 (Fig. 19a), which implies that the
propagation range of the system decreases significantly if the masses of a
sub-system are assigned random values.

These two examples show that the introduction into an ordered system
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Figure 19: Lyapunov exponent (a), eigenfrequencies (b) and eigenvectors (c) for a
monatomic lattice with m; = m fori=1,---,59 and ¢ = 71,--- ,100 and m; = m + eX;
for i = 60, ---,70, with X; given by Eqgs. (29) (e = 0.1, m = 1, K = 10).

of a sub-region with strongly different but equal masses may change the
eigenfrequencies of the system, but has a small effect on the widths of the
propagation intervals. On the contrary, the propagation intervals are much
more sensitive to randomness, since their widths are reduced even for small
perturbations of the sub-system.

Cases with different distributions. We examine again the latter case of
one random sub-system (made of masses 60-70), but considering different
distributions for the random variables X;. First, we assume that X; have an
exponential distribution with unit mean value and variance:

filz) = Ae ™, (53a)
1

< X; >= 3= 1, (53b)
1

var(X;) = Yo 1, (53c)

where f;(z) are the probability density functions and where we have set
A = 1. The corresponding Lyapunov exponent, eigenfrequencies and eigen-
vectors are plotted in Fig. 20. With this distribution, the spectrum of the
system expands dramatically and it exhibits localised eigenfrequencies for
2 > 2 (Fig. 20b). On the other hand, the propagation range is reduced con-
siderably (Fig. 20a). Localised eigenvectors are observed inside the random
sub-interval also in this case (Fig. 20c).

Second, we consider the case in which the random variables X; have a
Gamma distribution, defined as

fi(z) =

ma—le—x/b

T(a) (54a)
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Figure 20: Results for a monatomic lattice with a random sub-system as in Fig. 19, but
where the random variables X; have an exponential distribution as in Eqgs. (53) (A = 1,
m =1, K =10).
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Figure 21: Results for a monatomic lattice with a random sub-system as in Fig. 19, but
where the random variables X; have a Gamma distribution as in Egs. (54) (a = 10,
b=0.1, m=1, K = 10).

<X;>=ab=1, (54b)
var(X;) = ab® = 0.1, (54c)

where I'(a) is the gamma function evaluated at a and where we have taken
a = 10 and b = 0.1. The outcomes of the computations are shown in Fig.
21. Though only two eigenfrequencies are found for Q > 2 (Fig. 21b),
the propagation range of the system decreases significantly since v > 0 for
Q> 1.6 (Fig. 21a).

Mass variation in two sub-systems. We study a monatomic lattice with
two sub-systems having different masses from the rest of the structure, i.e.
m;=mfori=1,---,9,i=21,--- 59 and i = 71,--- ;100 and m; = m/2
for + = 10,---,20 and ¢« = 60,---,70. The results are reported in Fig. 22.
For the sake of clarity, only the localised eigenvectors are plotted in Fig.
22c. The number of eigenfrequencies found for €2 > 2 is the double of the
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Figure 22: Lyapunov exponent (a), eigenfrequencies (b) and localised eigenvectors (c) for
a monatomic lattice with m; =mfori=1,---,9,i=21,--- ,59 and i = 71,--- ,100 and
m; =m/2 for i =10,--- ,20 and 7 = 60,--- ,70 (m =1, K = 10).
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Figure 23: Lyapunov exponent (a), eigenfrequencies (b) and localised eigenvectors (c) for
a monatomic lattice with m; =m fort=1,---,9,4=21,--- ;59 and ¢ = 71,--- ,100 and
m; =m+eX; fori =10,---,20 and i = 60, - -- , 70, with X; having a normal distribution
as in Egs. (29) (e=0.1, m =1, K = 10).

number of eigenfrequencies of the lattice with only one sub-system with half
mass (see Fig. 18), but the upper limit of the eigenfrequency range does not
change. The localised eigenvectors involve both sub-systems with half mass.

The outcomes for the case with two random sub-systems are illustrated
in Fig. 23. By comparing Figs. 23 and 19, we can deduce that if the number
of random sub-systems increases, generally the eigenfrequency range of the
system is larger and the frequency interval for which waves propagate through
the structure is smaller.

4. Discrete mono-coupled system with two types of masses

In Section 3.1 we showed that the translational and rotational branches
of a bi-coupled discrete system made of masses M with rotational inertia [/
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Figure 24: Biatomic lattice, made of two types of masses that can take random values.

are fitted very accurately by the dispersion curves of a biatomic lattice if
I < 3MI?/64, where [ is the distance between the masses. Therefore, it is
of great interest to study the localisation and transmission properties of the
biatomic lattice. In the following, we will discuss both the cases when the
unit cells of the system are identical (Fig. 12a) and when the two masses
have random values (Fig. 24).

The transfer matrix of a generic cell j is given by the product of the
transfer matrices (36) of the two particles:

pomder 1 omyet| g w1 mp e
T — 3k K AK? IR K iR? 55
Jj = . 2j 2 . 2j—1 2 ( )
—mP? - Y B T B L W
2 oK 1 IR

The eigenvalues and eigenvectors of a finite system with n masses and free
ends are determined by solving the following eigenvalue problem:

[ 1 -1 | U -m% | Ul 0
-12 -1 u9 m% u9 0
K . — w2 .. =
-1 2 -1 Up_1 ml—l Unp_1 0
I 11 Up I my | Up, 0
(56)

The reflected and transmitted energies and the localisation factor are com-
puted from Eqs. (46), (47) and (49), respectively.

4.1. Ordered biatomic system
An ordered biatomic lattice consists of two masses that have the same
values throughout the system, namely m¢ = m; and m} = m,. Consequently,
the transfer matrix is the same for all cells, i.e. T; =T for j=1,--- ,n/2.
The dispersion curves of the periodic biatomic lattice are obtained from
Eq. (22). Their expressions can be written explicitly as

K

mimes

W =

(mq +mgy) — \/(m1 + my)® — 4myms sin <%) 2 (57a)
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(acoustic branch) and

kI
Wy = (my +mqy) + \/(m1 + m2)2 — 4mymeg sin (3) (57b)

mimes

(optical branch), where [ is the distance between the particles and k is the
wave number. Eqs. (57) are plotted in Fig. 25a in the normalised coordinates
Q= wy/my/K and kl. The superior limit of the acoustic branch is given
by w = y/2K/msy, while the inferior and the superior limits of the optical
branch are w = \/2K/my and w = /2K (my + my)/(myms) respectively.

Fig. 25b contains the (normalised) eigenfrequencies of the finite lattice
with free ends, which are calculated from system (56). By comparing Fig.
25b with Fig. 25a we can see that the eigenfrequencies of the finite system
lie within the pass-bands of the corresponding periodic system, as expected.
Furthermore, all the eigenvectors are not localised.

For the transmission problem, Figs. 25c, 25d and 25e show how the
reflected energy R, the transmitted energy T and the localisation factor
change with the normalised frequency 2. The dashed line in Fig. 25c rep-
resents the reflected energy as n — oo, which is calculated by using Eqgs.
(52). Obviously, in correspondence of the stop-bands of the periodic system
(1<Q<vV2and Q>+V3) R~R=1,T~0and y> 0.

4.2. Disordered biatomic system

We start by perturbing only the larger masses ms with the random vari-
ables €X; (j =1,---,n/2),i.e. my = my+eX; and m¥P " = m,;. We assign
to X the statistical properties defined by Eqgs. (29).

Figs. 26a-26c¢ illustrate how the reflected energy, the transmitted en-
ergy and the localisation factor vary with the normalised frequency €2 =
wy/mq /K, respectively. The upper limits of the optical and acoustic propa-
gation ranges decrease with respect to the ordered system (see Fig. 25), while
the lower limit of the optical propagation range remains unchanged. The rea-
son is that the inferior limit of the optical pass-band of the corresponding
periodic system is independent of my. Therefore, the effect of making mso
vary randomly while keeping m; fixed is to reduce the propagation ranges
from above.

Fig. 26d includes the eigenfrequencies of the perturbed system with free
ends. The comparison between Figs. 25b and 26d shows that the eigenfre-
quency intervals of the perturbed system are larger than those of the ordered
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Figure 25: Acoustic and optical branches (a) for a periodic biatomic lattice; eigenfrequen-
cies (b), reflected energy (c), transmitted energy (d) and localisation factor (e) for a finite
ordered biatomic lattice with n = 200 masses (m; =1, mg =2, K =10, Eo =1, ca =1,
EB = 1, CB — 1)
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Figure 26: Reflected energy (a), transmitted energy (b), localisation factor (c¢) and eigen-
frequencies (d) for a finite biatomic lattice after perturbing the masses mo with the inde-
pendent random variables €X;, with the properties specified in Eqs. (29) (j =1,---,n/2;
n=200;e=0.2;my=2;m =1; K =10; EA = 1; cpo = 1; Eg = 1; ¢cg = 1). The dashed
lines indicate the limits of the pass-bands of the periodic system.

system. However, the eigenfrequencies of the perturbed system near the up-
per limits of the two intervals are associated with localised modes. Other
localised modes appear to arise at frequencies inside the propagation ranges,
as observed also for the monatomic lattice discussed in Section 3.

Next, we consider the situation in which we keep ms fixed and make m;
vary randomly, namely m> ™" = m; + eX; and my =my (j = 1,--- ,n/2).
The results obtained for e = 0.1 are reported in Fig. 27, which shows that the
optical propagation range is reduced significantly, while the acoustic propa-
gation range is not modified with respect to the unperturbed case. This is
explained by noting that the limits of the optical branch of the correspond-
ing periodic system depend on the perturbed quantity m, while the superior
limit of the acoustic branch does not.

Finally, we assume that both m; and my vary randomly and indepen-
dently from each other: m} = my + eX;, mi = mo +€X; (i =1,---,n). In
this case, the optical propagation range almost disappears and the acoustic
propagation range slightly shrinks, as illustrated in Fig. 28. This is a further
indication that the effects of random perturbations are more significant at
higher frequencies. Similar results are found if the spring stiffness K is varied
randomly and the other parameters are uniform throughout the system.
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Figure 27: Reflected energy (a), transmitted energy (b), localisation factor (c¢) and eigen-
. A . . . . -1 2j
frequencies (d) for a finite biatomic lattice with mj = my + €X; and m;’ = mo
(G=1,---,n/2;n=200; e =0.1;m; =1, my=2; K=10; Epn = 1;¢cA = 1; Eg = 1;
¢g = 1). The dashed lines indicate the limits of the pass-bands of the periodic system.
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Figure 28: Reflected energy (a), transmitted energy (b), localisation factor (c¢) and eigen-
frequencies (d) for a finite biatomic lattice with m? = m; + eX; and m} = my + €X;
(i=1,---,n;n=200;e=01m =1, m=2, K =10; Ex = 1; ca = 1; Eg = 1;
cg = 1). The dashed lines indicate the limits of the pass-bands of the periodic system.
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Figure 29: Discrete bi-coupled system made of two disks linked by massless beams (bi-disk
system).

5. Discrete bi-coupled system with two types of disks

In this section, we examine a system consisting of two different types
of disks connected by massless beams. This system, shown in Fig. 29, is
hereafter referred to as bi-disk system. The radii of the two disks are indicated
by R and Rp. Assuming that the density p; (i = 1,---,n) can vary, the
masses and the rotational inertias of the two disks are given by m’, = 7R3 p;,
mb = mRip; and I = TRAp;/2, Iy = mRyp;/2, respectively.

The transfer matrix of each unit cell j (j = 1,--- ,n/2) is given by the
product of the transfer matrices (8) calculated with R = Ry and R = Rp:

1 mgjwzla . Iéjwzlz B2 1 m?71w2l3 . Iij—lwzlz B2
+ —6E7 T T 2EJ T 6EJ 2EJ + 6EJ - 2EJ T 6EJ 2EJ

E
m2 w?1? 127 w2 2 m37 w212 13771,2 2
T, = 2EJ L= =57 T 2EJ EJ 2EJ 1= EJ T 2EJ EJ |.
7m%jw2 0 1 0 7mij71w2 0 1 0
méijZ fléij -1 1 mQAjflwgl 7Iij71w2 —1 1
(58)
The eigenvalues A\ = w? of a finite bi-disk system are the solutions of the
. T
elgenvalue problem (10)7 where X = {Uh $1,V2,¥2, " s Un—-1; Pn—1;Un; Spn}
is the unknowns vector, M = diag (m}, I\, m, I3, - ,mi " I3 mi, If)

is the mass matrix and K is the stiffness matrix, which in the case of clamped
ends is defined by Eq. (11). The reflected and transmitted energies are
calculated from system (14), which was derived by assuming that a finite
stack of n disks is placed between two homogeneous semi-infinite beams with
flexural stiffness £.J and linear density /i (refer to the discussion in Section 2).
Finally, the Lyapunov exponents are computed by following the procedure
leading to Eq. (21).

In Section 5.1 we will analyse the bi-disk system with uniform density,
while in Section 5.2 we will show how the dynamic properties of the system
change if the density is perturbed randomly.
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5.1. Ordered bi-disk system

Here we assume that p; = p for i = 1,--- ,n. Accordingly, mij_l = M,
Iij_l = Ia, m%j = mg, ]éj =lgand T; =T forj=1,--- ,n/2.

The dispersion curves of a periodic bi-disk system, obtained from Eq.
(22), are plotted in Fig. 30a in the normalised coordinates 2 = w+/mal3/E.J
and kl. In this case, there are four branches, indicated by wi-wy4, because
there are two types of disks with two degrees of freedom each. The superior
branch w, is dominated by rotations, while the inferior branch w; is mainly
characterised by translations. The motion associated with the branches wy
and ws is instead a combination of rotations and translations.

The (normalised) eigenfrequencies of a finite bi-disk system with clamped
ends are reported in Fig. 30b. All the eigenfrequencies fall within the Pass-
Stop regions of the periodic system, except four of them, which are associated
with localised eigenvectors (see the insets of Fig. 30b). We remind that the
appearance of localised eigenstates in a perfect system is due to the chosen
boundary conditions.

The reflected and transmitted energies are shown in Figs. 30c and 30d,
respectively. In these figures, the functions R(£2) and T(Q2) are plotted in
different scales because the energy transmitted through the system at higher
frequencies is very small, but still different from zero. Indeed, we note that
T ~ 0 and R ~ 1 only within the Stop-Stop regions of the periodic system.

Fig. 30e presents the variation of the localisation factor (i.e. the smallest
positive Lyapunov exponent) with the normalised frequency ). As expected,
v9 =~ 0 in correspondence of the Pass-Stop zones of the periodic system,
while 75 > 0 elsewhere. On the other hand, the largest Lyapunov exponent
~v1 > 0 at any frequency, since one flexural wave always decays exponentially
in space.

5.2. Disordered bi-disk system

Now we consider the situation in which the density of the disks is varied
randomly, in particular p; = p + €X; (i = 1,---,n), where € is a small
parameter and the variables X; have a normal distribution as in Eqgs. (29).

The (normalised) eigenfrequencies of a finite random system with clamped
ends are shown in Fig. 31a, where the dashed lines represent the limits of the
Pass-Stop zones of the periodic system, which are almost coincident with the
limits of the eigenfrequency intervals of the perfect finite system (compare
Figs. 30a and 30b). It is apparent that the spectrum of the perturbed system
is larger than that of the perfect system. Nonetheless, all the eigenvectors
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Figure 30: (a) Dispersion curves of a periodic bi-disk system; eigenfrequencies and localised
eigenvectors(b), reflected energy (c), transmitted energy (d), localisation factor (e) and
largest Lyapunov exponent (f) for a finite system with n = 100 disks (p = 1, Ry = 0.5,
Rg=1,EJ=10,l=1,EJ=1,p=1).

46



relative to the eigenfrequencies belonging to the two upper clusters are lo-
calised. Other localised eigenvectors are observed near the boundaries of the
two lower clusters.

In order to determine the frequency ranges where waves can propagate
through the finite system, we compute the reflected and transmitted energies,
plotted in Figs. 31b and 31c. For €2 > 1.6 all the energy is reflected back by
the stack of disks. Indeed, all the eigenstates corresponding to normalised
eigenfrequencies €2 > 1.6 are localised. Therefore, the third and fourth prop-
agation ranges of the finite system become non-propagation regions if the
density of the disks is perturbed randomly. The same conclusion is drawn
by looking at Fig. 31d, which shows that the localisation factor 5 > 0 for
Q> 1.6.

While randomness reduces propagation in correspondence of the bound-
aries of the pass-bands of the periodic system, it decreases the decay rate of
the corresponding evanescent waves in the periodic system, as can be noticed
for example by comparing the local maxima in Figs. 30e-f and in Figs. 31d-e.

6. Conclusions

In this work, we have examined discrete elastic systems with uniform and
random parameters. These are bi-coupled systems, made of translational and
rotational masses connected by non-inertial beams. We have demonstrated
that, in terms of dispersion properties, bi-coupled systems can be approx-
imated by mono-coupled spring-mass models, provided that the rotational
inertia of the masses of the bi-coupled systems is sufficiently small, as in the
current engineering practice.

For each system, we have studied two problems. The spectral problem
concerns the computation of the eigenfrequencies and eigenvectors of a fi-
nite stack. The transmission problem is focussed on the evaluation of en-
ergy transmission. In the randomly-perturbed structure we have detected
localised modes, in particular near the limits of the propagation ranges and
at high frequencies. We have shown that, while randomness expands the
frequency spectrum of the ordered structure (a result that can be considered
counterintuitive), the frequency intervals corresponding to energy propaga-
tion shrink. Furthermore, eigenfrequencies in the non-propagation regimes
are associated with localised eigenstates, which indicates that a finite amount
of energy is confined within a sub-region of the randomly-perturbed struc-
ture and it cannot propagate from one boundary to the other. Such result
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Figure 31: Eigenfrequencies (a), reflected energy (b), transmitted energy (c¢) and Lyapunov
exponents (d,e) for a finite perturbed bi-disk system with random density p; = p + eXj,
where X; are defined by Egs. (29) (n =100, e =0.1, p=1, Ry = 0.5, Rg = 1, EJ = 10,
l=1,EJ=1, 4= 1). The dashed lines indicate the limits of the Pass-Stop regions of
the periodic system (see Fig. 30).
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is in contrast with the case of ordered structures, where resonance modes
correspond to peaks in transmission. The introduction into the structure
of heterogeneous sub-regions with uniform or randomly-perturbed proper-
ties confirms that reduction of the propagation frequency intervals is mainly
due to randomness. Conversely, sub-regions with uniform properties have a
strong influence on the generation of localised modes (this problem will be
further studied in the future with the aim to maximise energy storage). We
have also shown that the type of random distribution (normal, exponential
and Gamma) strongly affects propagation ranges and frequency spectra. Fi-
nally, paradigmatic examples of bi-disk and bi-atomic structures highlight the
possibility of fine-tuning propagation intervals by properly coupling regular
and randomly-perturbed structures.

The results of this paper suggest that random perturbations can be de-
liberately introduced into the system to stop the transmission of waves of
specific frequencies, thus creating a filter for elastic waves or a vibration
shield. In this respect, we envisage new methodologies to design dynamically-
optimised civil engineering structures, like arrays of tanks in industrial plants.
Enhanced localisation can also be exploited to store the energy in confined
regions of the structure. The procedures developed in this work could be ex-
tended to study higher-dimensional media, for which however a significantly
larger computational cost would be required.
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