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Abstract

This paper proposes the design of a two-dimensional porous solid with omni-
directional negative Poisson’s ratio. The hexagonal periodic distribution of
the pores makes the effective behavior isotropic. Both experimental tests and
numerical simulations have been performed to determine the effective prop-
erties of the porous solid. A parametric study on the effect of the geometrical
microstructural parameters is also presented. This auxetic structure is easy
to fabricate and can be very useful in several engineering applications.
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1. Introduction

Most natural materials are characterized by a positive Poisson’s ratio,
namely they are observed to contract (expand) laterally when stretched (com-
pressed) longitudinally. Nonetheless, the classical theory of elasticity does
not preclude the existence of materials with negative Poisson’s ratio, known
also as ‘auxetic’ after Evans (1991). For linear isotropic materials constitu-
tive stability imposes the condition that the Poisson’s ratio lies in the interval
(—1,0.5) (Timoshenko (1955)), while for anisotropic materials the Poisson’s
ratio is unbounded along specific directions and a stability domain can de-
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fined in a proper n—dimensional space, as shown by Norris (2006) for cubic
materials.

Love (1944) was among the first to propose an example of an auxetic
material and he showed that the Poisson’s ratio of cubic crystals of pyrite
is nearly equal to —1/7. Natural materials exhibiting a negative Poisson’s
ratio include silicates (Yeganeh-Haeri et al. (1992)), cubic elemental metals
(Baugham et al. (1998)), zeolites (Grima et al. (2000, 2007)) and ceramics
(Song et al. (2008)). Lakes (1987) presented the first designed auxetic ma-
terial, consisting of a reentrant foam. Using topology optimisation Sigmund
(1994) showed numerical results concerning materials with Poisson’s ratio
equal to —1, constructed from cells based on truss elements or continuous
discs. Since these trailblazing works many artificially-made auxetic models
have been proposed, based on different mechanisms such as reentrant units
(Choi and Lakes (1995); Scarpa and Tomlin (2000)), chirality (Prall and
Lakes (1997); Grima et al. (2008); Spadoni and Ruzzene (2012)), rigid rotat-
ing units (Grima et al. (2005); Grima and Gatt (2010)) and elastic instability
(Bertoldi et al. (2010); Shen et al. (2014)). Recently, Grima and Gatt (2010)
and Taylor et al. (2014) showed that metallic sheets with orthogonal voids,
having two-dimensional cubic symmetry, are auxetic for specific values of the
porosity and of the voids shape. Chen et al. (2013) carried out a numerical
and experimental investigation on a fiber-reinforced composite flexible skin
with in-plane negative Poisson’s ratio. Chen et al. (2014) studied a curved
cellular structure, manufactured by using Kirigami techniques, that is char-
acterized by a null Poisson’s ratio. Cabras and Brun (2014) analyzed and
fabricated two-dimensional lattice structures, with isotropic or cubic behav-
iors, having a Poisson’s ratio arbitrarily close to —1. Referring to the work
by Sigmund (1994), Slann et al. (2015) conducted a numerical and experi-
mental analysis on plates with centrosymmetric rectangular perforations and
Mizzi et al. (2015) presented new auxetic metamaterials created with differ-
ent slit patterns. Other models are described in recent reviews (Greaves et
al. (2011); Milton (2015); Prawoto (2012); Zhou et al. (2013)).

In comparison with traditional materials, auxetic systems have some su-
perior characteristics that can be exploited technologically, like higher resis-
tance to indentation, larger fracture toughness and enhanced vibration ab-
sorption properties (Grima and Gatt (2010)). Relevant applications where
auxetic systems may be particularly useful are the replacement of blood
vessels (Evans and Alderson (2000)), the fabrication of smart filters and
fasteners (Lakes (1987)), the design of structures with double curvature for
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aircraft wings and car doors (Evans and Alderson (2000); Alderson and Alder-
son (2007)) and the production of auxetic fibers that are more resistant to
pull-out (Evans and Alderson (2000)).

Here we present a porous auxetic structure, represented by a perforated
sheet. The microstructured medium is shown in Fig. 1 in its undeformed con-
figuration (a) and when it is stretched (b) and compressed (c): the negative
value of the Poisson’s ratio on the deformation of the medium is clear, and
it is generated by relative rotation of internal parts of the microstructured
medium causing an increase of porosity. A comparable design has been very
recently proposed by Shan et al. (2015), who have simultaneously worked on
a similar model. The novelty of the model in Fig. 1 with respect to other
auxetic porous structures lies in its plane-isotropic behavior, ensuing from
the threefold symmetry of the voids arrangement. In the present work, we
consider for the first time a new class of porous materials with different rel-
ative inclinations and relative dimensions of the pores. The geometry of the
single pores is carefully designed in order to reduce stress concentration. The
study is focused on the modeling of the effect of the microstructural parame-
ters on the effective properties considering both Poisson’s ratio and Young’s
modulus, and it is based on an advanced comparison between numerical and
experimental results both on effective properties and local fields.

We envisage that this structured medium can be of great value to devise
novel stents and artificial blood vessels in biomedical engineering (Evans and
Alderson (2000)) and to design the structural components of gas turbines
constituted of perforated surfaces (Taylor et al. (2014)).

2. The isotropic auxetic porous medium

We consider a two-dimensional sheet containing holes, which are arranged
in a hexagonal pattern as shown in Fig. 2a. The holes are inclined by an
angle 6 with respect to the normals to the hexagon sides, which have length
[. As sketched in Fig. 2b, each hole consists of a rectangle of length a with
two semicircles of radius b at the ends, introduced in order to reduce stress
concentration.

We stress the fact that the proposed design makes the medium isotropic
in the linear regime, as ensued from the threefold symmetry of the voids ar-
rangement. In the following, we present a numerical and experimental study
of the effective properties of the porous structure. We detail the mechanical
behavior of the specimens tested experimentally and we also perform the



Figure 1: Auxetic porous medium proposed in this paper. (a) Undeformed configuration.
(b) Deformed configuration under tensile forces. The inset shows a sketch of the deforma-
tion mechanism leading to negative Poisson’s ratio; in particular, internal rotations of the
bulk material are accommodated by enlargements of the pores, inducing a macroscopic
volumetric expansion. (¢) Deformed configuration under compressive forces. The red and
blue colors indicate positive and negative horizontal displacements, respectively.



study of the unit cell in a periodic structure in order to obtain homogenised
properties and to analyse the effect of the microstructural parameters.

The experimental tests have been performed at the Experimental Me-
chanics Laboratory of the Department of Mechanical, Chemical and Materi-
als Engineering of the University of Cagliari. The constitutive properties of
the solid phase were determined from standard uniaxial tensile tests on ho-
mogeneous specimens, engraved from the original Lexan polycarbonate sheet
at different angles. The tests were performed on a Galdabini 5kN Quasar 5
testing machine under displacement control at a velocity rate of 2 mm/min.
Lateral displacements were obtained with the supplementary use of a strain
gauge. The behavior is isotropic and the Young’s modulus, Poisson’s ratio
and yield stress were found to be equal to £ = 2.9 GPa, v = 0.35 and o, = 40
MPa, respectively.

2.1. Analysis of the specimens of finite dimensions

First, we analyzed the finite structure in Fig. 1, which has a length
of 420 mm, a heigth of 110 mm and a thickness of 3 mm. We built the
model in the finite element package Comsol Multiphysics with three different
configurations of the perforations. We reproduced the same models with real
specimens, which are displayed in Fig. 3. These specimens are indicated
by A, B and C in Fig. 3 and in the rest of the paper. The geometry of
the perforations is identified by the following microstructural parameters:
a =10 mm, b =1 mm, [ =& 9 mm and § = 45°. Samples B and C differ
from sample A since the voids arrangement in B and C is rotated by 45° and
90°, respectively, relatively to A. This allows to test the system along three
different directions if, for all samples, the uniaxial load is applied along the
y direction.

The mesh of the finite element model, which was optimised with regards
to convergence of results, consists of 95690 triangular elements and is refined
in proximity of the holes.

The experimental specimens were produced using a 5-axis numerical con-
trolled milling machine (DMU 60 p Hi Dyn). Cutting speed for the generation
of the pores was adjusted to prevent residual stresses. Before the production
of the specimens, we performed a series of photo-elastic experiments starting
from a bench of stress-relaxed plates, in which a single hole was created using
different cutting parameters. The optimal parameters were used to realize
the specimens and an a posteriori test was performed to verify that residual



Figure 2: (a) Disposition of the perforations inside the two-dimensional structure, where
l is the side of the hexagon and 6 is the orientation angle of the perforations with respect
to the normals to the hexagonal sides; (b) detail of each perforation, made of an elongated
rectangle ending with two semicircles; (c) elementary cell representative of the infinite
periodic structure.



Figure 3: Specimens used in the experimental tests, where ¢ = 10 mm, b = 1 mm, [ =~ 9
mm and 6 = 45° (refer to Fig. 2 for the definitions of the geometrical quantities). The
disposition of the holes in samples B and C is rotated by 45° and 90°, respectively, with
respect to the disposition in sample A.

stresses were below a minimum threshold in the final product. In particular,
the cutting speed was about 950 mm/s for a cut depth of 0.1 mm.

We applied a uniform vertical traction at the top boundary and imposed
zero vertical displacements at the bottom boundary. We considered a rect-
angular area in the central part of the model of dimensions 81 mm x 93
mm, which contains a sufficient amount of elementary cells and where the
boundary layer effects are smaller. By referring to this area, we computed
the average values of the normal stresses o,, and oy, and of the axial strains
€z and gy,. We solved the problem by performing a plane stress analysis,
which is justified by the loading conditions and the small thickness. Simple



calculations lead to the following expressions for the Poisson’s coefficient v
and the Young’s modulus E:

2 2
Exz0yy — EyyOzx Ope — 0
V= Uy = woWw= E=E =EFE,= W (1)
CaxOzz — EyyOyy Cxa0zz — EyyOyy

We report the results in the first column of Table 1, together with the
outcomes obtained from the periodic study (discussed in Section 2.2) and
from the experiments (described in Section 3.1).

numerical numerical
(finite)  (periodic) experimental

—0.552  —0.553 —0.551 v
sample Ao 10 8 254.8 — E [MPa]

—0.552  —0.553 —0.550 v
sample B 47 g 254.8 — E [MPa]

—0.557  —0.553 ~0.548 v
sample G5 170 254.8 — E [MPa]

Table 1: Values of Poisson’s ratio ¥ and Young’s modulus E determined from the numerical
computations on the finite and periodic models and from the experiments.

We also note that the maximum stress localization, computed as the ratio
between the maximum von Mises stress, detected in proximity of the pores,
and the average von Mises stress in the rectangular area, is equal to 21.7.
This value is in a very good agreement with the stress concentration factor for
a plate with an elliptical hole (see, for example, Anderson (2005), Chapter
2.2): when the major axis is equal to a + b and a minor axis is equal to
b, the stress concentration is equal to 1 + 2(a + b)/b = 23. Such a result
also indicates that the elastic interaction between pores does not induce an
increase of stress localization.

2.2. Periodic system

Here we consider a perfectly periodic system made of repetitive cells, as
that shown in Fig. 2c. We constructed a finite element model of the unit
cell in Comsol Multiphysics by using a discretization of 10921 triangular
elements. We imposed periodic conditions at the boundaries of the cell.

We applied firstly a macroscopic axial strain e,, = 107%, secondly a
macroscopic axial strain e, = 10 and finally a macroscopic shear strain
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esy = 107% For all three cases, we computed the average values of the
relevant components of the stress tensors. We determined the Poisson’s co-
efficient and the Young’s modulus from Eqgs. (1), while the shear modulus is
given by

Ozy
= Uy = . 2
H= Hay 2E gy ( )

The first and second cases (g,, = 107 and ¢, = 107*) yield the same results:
v = —0.553 and F = 2.548 - 10® Pa. From the third case (g,, = 107*) we
obtained p = 2.849 - 108 Pa, which is equal to the corresponding isotropic
value E/[2(1 4+ v)]. Returning back to the results in Table 1 we observe
that the numerical findings confirm that the medium is auxetic and isotropic
in the plane. The small discrepancies in the results for the finite samples
considered in Section 2.1 are due to the boundary effects.

We recall that, for a generic cubic material, the Poisson’s ratio depends
on the stretching direction. Denoting by § the angle between the stretching
direction and the principal = axis of the structure, the Poisson’s ratio can

be calculated by using the following formula (see, for example, Cabras and
Brun (2014)):

cos? Bsin® B(2/E — 1/p) — (sin' B+ cos’ B) v/E
B (sin* B+ cos? B) JE+1/p—2v/E ’

where E and v are determined from a tensile test and p from a shear test with
B =0,7/2. In Fig. 4 we show the polar diagrams of v(3) for the structured
medium proposed in this paper and for a generic cubic material. It is clear
that the present model is isotropic in the plane, since v does not vary with f3.
On the other hand, the Poisson’s ratio of a generic cubic material depends
on 3, and it can even be negative in some directions but positive in others.
Obviously, the variation of v with the direction of the applied load can have
significant drawbacks in practical applications.

v(B) = (3)

2.2.1. Effect of microstructural parameters

We investigated how the length ratios a/l and b/l and the orientation
angle of the voids # influence the constitutive properties of the perforated
sheet. In Fig. 5 we show how the Poisson’s ratio and the Young’s modulus
vary with the ratio a/l for different values of 6 and for b/l = 1/9 (a) and
for b/l = 1/18 (b). The results obtained for the particular values of the
parameters characterizing the specimens in Fig. 3 are highlighted by black
dots in Fig. ba.



Figure 4: Polar diagrams of the Poisson’s ratio as a function of the angle 3, defining the
orientation of the stretching direction with respect to a principal axis of the structure,
for the model described in this paper (blue color) and for a generic cubic material with
w# E/[2(1 4 v)] (red color).
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Figure 5: Poisson’s ratio v and Young’s modulus F as functions of a/I for different values
of § and for b/l =1/9 (a) and b/l = 1/18 (b). The dots in part (a) indicate the values of
v and E for the samples in Fig. 3 (see also Table 1).
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For the sake of completeness we point out that, in order to avoid the
merging of the holes, their length a must be kept below a limit, which depends
on the angle #. This limit is obtained from geometrical considerations and is
equal to

o = Y320, AVE
cosf + /3 sin b 3

; W2 s *
as =Ilsinf — T—ZCOSQ for 0 > 6". (4)

The transition value
P 2(3—/3)b -
T2 3 1 (5)
is calculated by solving the equation a,(f) = az(f). We also note that Eq.
(4b) requires that | cos(8)| < 2b/(v/31).

Fig. 5 shows that for low values of a/l, namely for short voids, the
Poisson’s coefficient of the perforated sheet is close to the value of the intact
material, equal to 0.35 in this case. As the relative length of the holes a/l is
increased, the value of v diminishes and it reaches a transition value beyond
which the structured medium becomes auxetic (v < 0). We also note that
it is possible to set the geometrical parameters in order to have a Poisson’s
coefficient close to the limit —1. At the same time, the elastic modulus
obviously decreases at increasing a/l, hence the material becomes softer.

It is interesting to note - and not trivial - that, generally, v and E can be
decreased by increasing the orientation angle of the voids 6, for a fixed value
of the ratio a/l. The comparison between the insets (a) and (b) reveals that,
for specified values of the geometrical parameters a/l and 6, the coefficients
v and F can be decreased by making the perforations wider.

3. Experimental validation

We tested in the laboratory the three specimens indicated with A, B
and C in Fig. 3. In order to perform a comparative analysis with numerical
simulations, we made use of an advanced Digital Image Correlation technique
and photoelasticity.

3.1. Digital Image Correlation

We obtained the displacement and strain fields within the samples by
means of the Digital Image Correlation (DIC) technique. Digital Image Cor-
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Figure 6: Experimental values of the Poisson’s ratio for the samples A, B and C in Fig. 3,
obtained for different values of the axial strain €,,. The horizontal dashed line v = —0.533
represents the theoretical value of the Poisson’s coefficient for the infinite periodic structure
(see second column of Table 1).

relation is a non-interferometric experimental technique able to estimate bi-
dimensional (tri-dimensional in its stereo version) displacement fields. Its
basic assumption is the constancy of the intensity of each point during mo-
tion. Thus, if the surface texture is not uniform, it is possible to correlate
each point in the reference image with the corresponding point in the de-
formed image. Formally, this results in the well-known optical flow equation

g'_i_ﬁ‘_i_ﬁ— (6)
Bz dyv dt

where v and v are the x and y displacement components and [ is the image
intensity. Looking at this equation it is apparent that it involves two un-
knowns, i.e. the velocity components © and ©, hence an auxiliary condition
has to be specified. The most commonly used solution to this problem is the
Lucas-Kanade approach (Lucas and Kanade (1981)), which assumes that the
displacement field can be locally approximated by a simple function, which
is usually an affine transform. Provided that a sufficiently large number of
pixels is involved in the least square fit, the set of parameters controlling the
mapping can be identified by reverse calibration (usually by a Newton-like
iterative algorithm); moreover, by sampling the images at different locations,
full-field data can be obtained by interpolating the displacements at the sam-
pling points.

From the practical viewpoint, performing the measurements requires the
comparison of two images acquired before and after each load increment. To
comply with the basic hypothesis of the technique, i.e. pixel intensity does
not change with motion, the illumination has to be (nearly) isotropic, the

13



specimen surface needs to be opaque (to minimize directional components
associated with reflection) and the surface has to be textured with a chaotic
pattern (to ensure its uniqueness) (see Del Bimbo et al. (1995)).

The tests on the porous specimens were performed under displacement
control. We applied a series of 5 displacement steps (0.5 mm each) along
the y direction on the photoelastic bench and the experimental results were
taken under static conditions. The applied displacement was such that the
local stress did not exceed the yield limit on the basis of Finite Element sim-
ulations. The absence of yielding was verified by an a posterior: photoelastic
inspection in the vicinity of the pores groove tips, where no significant resid-
ual stress was detected after unloading the specimens. Images were acquired
using a D700 Nikon camera with a 200 mm focal lens to reduce prospec-
tive artifacts. To remove the influence of the Bayer pattern, the resulting
(raw) images were binned using a 2 x 2 mask. Then they were processed
using an in-house-developed software (ofTri). Finally, the output data (i.e.
nodal displacements and strains) were post-processed to compute the Pois-
son’s ratio. The standard deviation of displacements, when acquired using
the standard Digital Image Correlation, is relatively large: indeed, due to the
statistical approach, it depends on the square root of the number of pixels
involved in the local computation. Moreover, each sampling is uncorrelated,
thus the strain uncertainty is about 250 pm/m. To reduce this value, we
replaced the local measurement with a global approach: instead of using a
local model of the displacement field, we opted for a global description using
a finite-element-like approach (Sun et al. (2005)). Displacements inside each
element are controlled by nodal parameters, which make the model global
being shared with adjacent elements. In this way the standard deviation
of displacements is significantly reduced (Hild and Roux (2012)) and the
solution is more robust.

For each sample, we considered a rectangular region in the central part
of the specimen, where the boundary layer effects are smaller. We calculated
the averages of the horizontal displacements u in the left (L) and right (R)
sides of the rectangle and the averages of the vertical displacements v in the
bottom (B) and top (T) boundaries. Accordingly, the experimental value of
the Poisson’s ratio was estimated as

TP o _<5m‘> _ (<u ) = (u >) /Lo (7)

(eyy) ((WT) = (vB)) /Ly’

where (g) represents the average value of the quantity ¢, L, and L, are
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the dimensions of the horizontal and vertical sides of the rectangle, while
€ze and gy, stand for the axial strains in the x and y directions. We also
considered different values of the applied load, yielding different strains ¢,,),
but restricting the range of deformation within the linear regime.

We report the results for the three specimens A, B and C and for three
values of the applied load in Fig. 6. The experimental values of v**? are
indicated by black dots. We note that, as ¢,, increases, the data tend to
converge to the horizontal dashed line, which indicates the theoretical value
determined from the periodic analysis described in Section 2.2. Thus, the
load needs to be sufficiently large to allow for the necessary adjustment of
the specimen. Fig. 6 shows that the proposed structured medium is auxetic,
since the Poisson’s ratio is negative. In addition, the latter does not depend
significantly on the loading direction, hence the material is isotropic in the
plane.

The experimental values of the Poisson’s ratio for the three specimens
are given in the third column of Table 1, where we report the values at
the highest deformation ¢,,. The comparison of the test outcomes with the
values in the first and second columns, obtained from the numerical analysis
on the finite and periodic model respectively, reveals a very good agreement
between the numerical and experimental data.

In Fig. 7 we plot the contour maps of the horizontal (a) and vertical
(b) displacements of the sample A, obtained both experimentally (left) and
numerically (right). The internal black regions represent the perforations,
for which the displacement field could not be evaluated. It is apparent that
the correspondence between the two studies is excellent. The horizontal
displacement field confirms that the behavior of the medium is auxetic.

The same comparative analysis is reported in Figs. 8 and 9 for the samples
B and C, respectively. Again the agreement is excellent and the auxetic
behavior is evident.

3.2. Photoelasticity

We used photoelasticity to evaluate the stress distribution in the porous
medium. In Fig. 10a we show the difference between the principal stresses,
namely o; — 09, obtained experimentally with a circular polariscope. The
structure exhibits stress concentration in proximity of the ends of the per-
forations, as expected. Fig. 10b presents the o; — oo distribution derived
from the finite element model. The comparison between the experimental
and numerical outcomes is remarkable.
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Figure 7: Contour maps of the horizontal (a) and vertical (b) components of the displace-
ment field, obtained from the lab tests and from the finite element simulations, for the
sample A displayed in Fig. 3. The average axial strain is ,, = 2.77 - 1073.
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Figure 8: Contour maps of the horizontal (a) and vertical (b) components of the displace-
ment field, obtained from the lab tests and from the finite element simulations, for the
sample B shown in Fig. 3. The macroscopic axial strain is €y, = 2.24 - 1073,
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Figure 9: Contour maps of the horizontal (a) and vertical (b) components of the displace-
ment field, obtained from the lab tests and from the finite element simulations, for the
sample C shown in Fig. 3. The macroscopic average axial strain is e,, = 1.70 - 1073,

Figure 10: Contour maps of the difference in the first and second principal stresses o1 — o9
obtained experimentally with a circular polariscope (a) and numerically by means of finite
element computations (b).
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4. Conclusions

We have proposed the design of a two-dimensional porous solid, which
exhibits a negative Poisson’s ratio. The arrangement of the microstructure
makes the effective behavior isotropic. The planar auxetic and isotropic be-
havior of the considered porous medium has been observed experimentally
on three specimens, characterized by a 45° rotation of the pores disposition
relative to each other and loaded in the same direction. The experimental
findings have been corroborated by numerical computations on finite mod-
els, reproducing the real specimens. The numerical study of the unit cell
has given a more refined evaluation of the effective properties, independent
of boundary conditions. It has confirmed the perfect isotropy of the porous
material, so that negative Poisson’s ratio is omni-directional and independent
on the direction of the applied load. The parametric study of the dependance
of the effective properties on the geometrical microstructural parameters of
the system shows, in particular, that the Poisson’s ratio is strongly influ-
enced by the relative orientation of the pores. Both advanced Digital Image
Correlation technique and photoelasticity confirm the auxetic behavior and
the isotropy, and they have been found to be in excellent agreement with
numerical simulations.

We believe that this structure, which is simple to manufacture and easily
adaptable to specific requirements, may be exploited in a great variety of
industrial applications, considering also that the effective behavior of the
porous material is scale-independent.
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