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Abstract

In this paper, we study the dynamic flexural behavior of a long bridge, modeled
as an infinite periodic structure. The analysis is applied to the ‘Brabau’ bridge
across the river Tirso in Italy. The approach reduces to a spectral problem
leading to the analytical expression of the dispersion relation, which provides
the ranges of frequencies for which waves do and do not propagate. The con-
tributions of the bridge structural elements on the dispersive properties of the
structure are investigated in detail. The direct link between frequency intervals
determined by the proposed approach and distribution of eigenfrequencies of the
full three-dimensional structure is demonstrated. The analysis of the unit cell
allows to avoid the tedious computations required when using a finite element
code, at least at a preliminary stage of the design. Finally, we demonstrate
that a more precise prediction of the eigenfrequency ranges of the bridge can be
obtained by studying a single repetitive cell numerically and imposing Floquet-
Bloch conditions at its ends. The proposed approach can be implemented as a
simple procedure to design structures with repetitive units, with the advantage
of simplifying numerical simulations and reducing the computational cost.

Keywords: Multi-span Bridge, Flexural Waves, Dispersion Relation,
Structural Dynamics

1. Introduction

Long structures with repetitive units are very common in engineering applica-
tions for technological and economical reasons. In fact, in order to make the
construction process faster and cheaper, many structures are made of precast
elements that are connected in situ by appropriate joints. Typical repetitive
structures are bridges and viaducts, pipelines and industrial warehouses.
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‘Repetitive structures’ with discontinuities or inhomogeneities are charac-
terised by bands of frequencies for which waves travel without attenuation
(‘propagation ranges’) and intervals of frequencies for which waves decay ex-
ponentially in space (‘non-propagation ranges’). In structures with an infinitely
large number of units (‘periodic structures’), these frequency bands are de-
noted as ‘pass-bands’ and ‘stop-bands’, respectively. The determination of the
non-propagation ranges is of paramount importance in problems of vibration
isolation. Indeed, if the repetitive structure is designed such that the frequency
components of the external dynamic source (be it traffic, a vibrating machine
or an earthquake) lie within the non-propagation ranges of the structure, the
amplitudes of the waves generated by the source are significantly attenuated
without the need to install dampers.

From the above considerations, we envisage that the availability of a simple
modeling tool for the prediction of the non-propagation frequency intervals of
a repetitive structure may be of high value for the engineering practice both
at the design and verification stages. In particular, long bridges can be effi-
ciently modeled as waveguides representing phononic band gap systems, and
the associated dispersion relations enable to deduce the dynamic properties of
the vibrating slender structures. A particular feature of the proposed model is
the Floquet-Bloch study based on the analysis of a single cell, which drastically
simplifies the analytical and numerical modeling of large scale structures and
the post-processing analysis.

The first studies on waves in periodic systems date back to the 1950s [1, 2, 3,
4]. Later, one-dimensional elastic structures - such as laminates, assemblies of
rods and monodimensional lattices - were investigated by Mead [5], Faulkner and
Hong [6], Martinsson and Movchan [7], Brun et al. [8], Carta and Brun [9], Brito-
Santana et al. [10]. Lekner [11] examined the propagation of electromagnetic
waves in stratified media. Wu et al. [12, 13] used the spectral element method
to study the band-gap properties of sandwich panels with corrugated cores and
periodic Mindlin plate structures. Hull [14] studied laminated plates by means
of a higher-order shear deformation model.

Dynamic properties of beam systems were analysed by Mead [15, 16], Heckl
[17], Romeo and Luongo [18], Xu et al. [19]. In this case, the governing equation
of motion includes a fourth-order derivative with respect to the spatial coordi-
nate, hence two waves (with or without amplitude attenuation) are expected to
travel in each direction. By employing different techniques, Mead [20, 21, 15],
Sen Gupta [22, 23], Brun et al. [24] proved that the spectral analysis of Floquet-
Bloch waves can be linked directly to the eigenfrequency intervals of a finite real
structure. Carta et al. [25, 26] examined the stop-bands and localization phe-
nomena produced by a diffuse damage on a long elastic two-dimensional strip; in
addition, they showed that in the low- and medium-frequency regimes the lim-
its of the stop-bands are predicted accurately by means of a lower-dimensional
beam model with elastic junctions, the stiffnesses of which can be estimated
via asymptotic techniques. A comprehensive analysis of the effects of different
geometric distributions of structural elements having discrete and continuum
nature is given in [27]. The effects of random perturbations in beam systems



Figure 1: The ‘Brabau’ bridge across the river Tirso in Oristano, Sardinia, Italy; 39°54’42.5” N
8°32’54.2” E (online version in colour).

were investigated in [28, 29, 30, 31, 32]. Propagation of stable, non-linear waves
in periodic buckled beams is discussed in [33, 34], where a parametric resonance
model shows that wave propagation depends on pre-compression and dynamic
amplitude.

In this paper, we study the dynamics of long bridges with repetitive units.
While Floquet-Bloch analysis on periodic structures is known in the literature,
its applications in Structural Mechanics are far from being fully exploited, es-
pecially as a simple tool for the dynamic design of civil structures. We apply
the quasi-periodic analysis to a particular case, namely the road and pedestrian
‘Brabau’ bridge across the river Tirso in Sardinia, Italy (see Fig. 1). This bridge
is made of equally-long spans, consisting of five prestressed concrete beams sup-
ported by a dosseret standing on two pillars; the decks of adjacent spans are
joined by the only slab in correspondence of the pillars. This construction tech-
nology, which ensures the achievement of span lengths up to 30 m, is widespread
throughout the world due to its simplicity, speed of execution and relatively low
cost. Moreover, the precasting phase guarantees durability and quality of the
artifact.

We show that the vibration frequencies of the bridge are confined within
specific ranges, which can be estimated through an analytical approach based
on the dispersion analysis of the corresponding periodic structure. In particular,
we focus our attention on the flexural motion of the bridge. As recommended
by European Regulations [35], the vertical component of an earthquake has a
relevant importance in case of prestressed concrete bridge decks and, thus, it
has to be taken into account for an appropriate design of the structure.

In this work, we provide for the first time an analytical formula, given by
Eq. (11), which can be used as a first approximation for the dynamic optimisa-
tion of the structure according to the specific demands imposed by the project.
Eq. (11) embeds a class of structural parameters which strongly contribute to
the dynamic behaviour of the bridge. We show the dynamic effects of these
structural parameters and the limitations of the applied formula. Moreover, we
provide a complementary simple numerical approach to overcome the limita-
tions of the analytical formulation and to widen the range of applications of the



quasi-periodic analysis to more complicated structural systems.

The paper is organised as follows. In Section 2 we describe the actual bridge
and the structural models adopted to investigate its dynamic behavior. In
Section 3 we present the analytical method used to predict the eigenfrequency
intervals of the bridge, and we discuss how these ranges are affected by the
single contributions of the different structural elements. In Section 4 we compare
the analytical results with the numerical values obtained from a finite element
model, detailing the advantages of the analysis of the single unit cell. We
conclude the paper with Section 5, where we provide some concluding remarks.

2. Description of the bridge

The bridge shown in Fig. 1 is located in the west coast of Sardinia, Italy. The
structure, which was inaugurated in 2012, connects the city of Oristano with
the touristic town of Torregrande.

2.1. Geometric and constitutive properties

The structure of the bridge is shown in Fig. 2. It consists of 41 spans of
length | ~ 25.4 m. The elevation of a typical span is 5 m (Fig. 2a). The deck
is made of 5 prestressed concrete beams, which in the construction process are
assembled by a special crane and subsequently connected to a superior slab,
that is designed to resist the horizontal forces transmitted to the main structure
by vehicular loads. All the spans are usually pre-designed as simply-supported
beams, namely the cross-section and the steel reinforcement are usually calcu-
lated conservatively by assuming rigid pillars and pinned connections between
the spans, even though in proximity of the pillars the slab generates a struc-
tural continuity which reduces the maximum bending moment in the mid-span
cross-section. This structural continuity is not taken into account in the static
design of the structure, but we will show in Section 4 that it affects significantly
the dynamic behavior of the bridge.

The height of the deck is approximately 1.91 m (Fig. 2b). Each beam,
including the effective width of the slab (see Fig. 2c), has cross-sectional area
Ay = 1.14 m? and second moment of inertia Jy = 0.52 m*. The Young’s
modulus, Poisson’s coefficient and mass density of the deck are given by F =
34 GPa, v = 0.2 and po = 2500 kg/m3, respectively. We point out that pg takes
into account also the mass density of the reinforcement.

The deck is sustained by circular pillars of length [, ~ 3.8 m and diameter
d, = 1.2 m (Fig. 2a). The material properties of the pillars are E, = 31 GPa,
v, = 0.2 and p, = 2500 kg/m3. There are two pillars at each connection, which
are joined by a dosseret of mass my = 69300 kg.

We underline that the constitutive properties of the bridge and their techni-
cal characteristics have been ascribed in accordance with the design codes [36]
and [37].
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Figure 2: Elevation of a typical bridge span (a); detail of the deck (b); beam cross-section at
an internal point of the span (c) and at the junction (d). The dimensions are indicated in m.

2.2. Structural models

The repetitive unit cell of the actual bridge is schematised in Fig. 3a. In
proximity of the junction between the main deck and the pillars we consider
the change in the cross-section of the deck, as shown in Figs. 2c and 2d. In
particular, the centroids of the two cross-sections are at a distance A = 0.50 m
and the length of the bridge region with reduced cross-section is I3 = 1.40 m
(Figs. 2a and 3a). The two parts of the deck are joined by rigid connectors,
indicated by dashed boxes in Fig. 3a. The dosseret is modelled as an horizontal
beam rigidly connected to the pillar and joined by hinges to the main deck.
The hinges represent the elastomeric bearings, which, for sufficiently low loading
values, do not permit relative displacements due to friction. We assume that
the dosseret and the foundation are rigid.

We determine the eigenfrequencies of the bridge by implementing the model
of Fig. 3a in the commercial finite element software Strand7, which is widely
used by structural engineers for design purposes. The bridge is modelled as
a three-dimensional structure with beam elements, which are commonly em-
ployed in the practice. The model is calibrated to take into account the realistic
mechanical features of the structure. In particular, infinitely-rigid transverse
beams are inserted to ensure the solidity of the deck, according to Courbon’s
method [38]. In addition, the abutments are idealised as hinges.

Not rarely the structural continuity in proximity of the pillars is restored
through a post-tensioning technology. This methodology allows to reach longer
spans. For this reason, in this work we have also examined a bridge with a deck
made of continuous beams that are rigidly connected to the pillars, as shown
in Fig. 3b. In Section 4 we compare the dynamic behaviors of the two bridge
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Figure 3: Structural schemes for a repetitive unit of the actual bridge (a) and for a bridge
with a continuous beam rigidly connected to the pillars (b).

typologies sketched in Fig. 3. We emphasize that the proposed approach can be
applied for any type of connection between the deck and the pillars by varying
the bending stiffness of the internal junction.

3. Analytical model of the periodic structure

In this section, we study the repetitive structure of Fig. 1 as a periodic beam
placed on elastic supports and with internal elastic connections, as shown in
Fig. 4a. The effective properties of the beam representing the upper deck are:
Young’s modulus F, mass density p, cross-sectional area A, second moment of
inertia J and span length [. Kp represents the effective bending stiffness of
the internal junction modeling the deck region with reduced cross-section, while
K71 and Kg denote the effective translational and rotational stiffnesses of the
supporting pillars, respectively. In the concentrated mass m we include the
inertial effects of the pillars and the dosseret.

Here the foundation is assumed to be rigid. In the case of an elastic foun-
dation of stiffness Kp, the longitudinal stiffness K7 needs to be replaced by
KTKF/(KT + KF)

3.1. Dispersion relation

We consider small amplitude vibrations superimposed on the static displace-
ment due to weight, which is taken as the reference state. Denoting by v(z) the
time-harmonic vertical displacement, where x is the spatial coordinate along
the beam axis, the equation of motion of the beam between the connections is
given by

EJv' (z) — pAw?v(x) =0, (1)
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Figure 4: (a) Beam on elastic supports with internal elastic junctions and point masses m
at the junction points; (b) quasi-periodic Floquet-Bloch conditions applied to the generic
junction node i of the periodic structure; (c) sign conventions for the bending moments and
shear forces; (d) simple beam clamped at the left end and with prescribed displacement vg
and rotation ¢g at the right end; (e) linear and angular momentum balance at node i.

where w is the radian frequency. The general solution of Eq. (1) can be expressed
as
v(x) = By cos (Bz) + Basin (Bx) + Bs cosh (Bz) + By sinh (Bz), (2)

where 3 = (pAw?/EJ)'/*.

Considering the periodicity of the structure, we impose Floquet-Bloch quasi-
periodic conditions for the generic nodes ¢ — 1, ¢ and i + 1 (see Fig. 4b). In
particular, the displacements at nodes ¢+ 1 and ¢ — 1 are related to the displace-
ment at node i by the following expressions:

ikl —ikl
vir1 = vie™, v = vie T (3)

Here, k stands for the wavenumber or Bloch parameter, which defines the phase
difference of the displacements calculated at points located at distance [; the
wavenumber is associated with the wavelength A\ = 27 /k. Similar relations
apply to every field, i.e. rotations, bending moments and shear forces. We
point out that at the connections the displacements are continuous, while the
rotations are generally discontinuous.

In order to determine the bending moments M and shear forces T' at the left
and right ends of the generic connection ¢, we compute the constants By, Bs, B3
and By appearing in the solution (2) by referring to a beam with the boundary
conditions sketched in Fig. 4d. The sign conventions for bending moments and
shear forces are reported in Fig. 4c. The ‘dynamic compliance coefficients’ at



x=0and z =1 when vg = 1 and ¢ = 0 are (see also [39])

T B3EJ [sin (8l) + sinh (81)]
07 1—cos(Bl)cosh(Bl)
_ B3EJ [cosh (B1) sin (B1) + cos (81) sinh (B1)]
B 1 — cos (B1) cosh (B1) ’
M= B2E.J [cos (Bl) — cosh (B1)]
O 1—cos(Bl)cosh(pl)
, _ B?EJsinh (l)sin (61)
7 1= cos (Bl) cosh (81) )

11[/

conversely, for vg = 0 and ¢ = 1 the compliances are given by

—B2E.J [cosh (Bl) — cos (B1)]

To = 1 —cos(Bl)cosh (Bl)
T _ —B2?EJ sinh (B1) sin (B1)

L' 1 —cos(Bl)cosh (Bl)
M- —BEJ [sin (Bl) — sinh (51)]

1 —cos(Bl)cosh (Bl)
—BE.J [cosh (BI) sin (81) — cos (A1) sinh (51)] (5)
1 — cos (81) cosh (BI) '

" __
M =

In the quasi-static limit w — 0, the dynamic compliance coefficients tend to
their static values:

T - Ty g,
M|} — —M| — GZE—QJ,
=T = %a

M — —2M} — ﬂ (6)

The bending moments and shear forces at node i (refer to Fig. 4b) are
expressed as

M~ = Mjv;e ™ 4 M v; — MY ¢ e ™ + M o7,
M"F — Mé v, elk}l + Ml/ v; + M(l)/ ¢; elk}l _ Ml// ;l»
T = *T(S v; eflkl 4 j“ll/ v, + T(l)/ Qsj- eflk:l + j-vl// 7;—’

T+ — Té v; eikl _ jvl/ v; + Té/ ¢’L— eikl + j‘vl// ¢;‘,— (7)
Inserting relations (7) into the kinematic compatibility condition
M-

¢?_:¢;_K73a (8)



and the balances of linear and angular momentum at node i (see Fig. 4e)

M+:M_—KR<W>,

TH =T 4 (Kr — mw?) v;, (9)

where the effect of the rotary inertia of the mass m has been neglected, we obtain

the following linear homogeneous system of equations in term of the kinematic
variables v;, ¢; , ¢ :

M(l)efikl Jrjwl/ Ml// B M(/)/efikl N
<K,B v; + KBil ¢i+ 17TB ¢Z *0’

. K
[21 M} sin (kl)]v; + (Mé’elkl — M+ 2R> b;

10)
+ (Méle—lkl _ Ml// + QR) (bj —0:;
(2T} cos (k) — 2T) — K + mw?] v; + (T§e™ - T)") ¢
+ (1) = T e ") ¢f = 0.

The condition for a non-trivial solution of system (10) is the dispersion
relation for the periodic beam in Fig. 4a, which is given by

21"1//
Kp

K .
[M[Ml” — MM + cos (kL) (MM, — M M) — TR (M) + Mge‘kl)]

1

o [MoMy" — MMy’ + cos (kl) (M M;" — MoMy)
B

+2Ty {2 M sin? (kl) —

K .
_TR cos (kl) (M] + Mée_lkl)} } + [2 cos (k)T — 2T] + mw® — Kr|

"2 "2 " 11 ,—ikl
X [2 cos(kl)M6'72Ml”+u —Kpg (W 1)} =0

(11)

It is evident that the transcendental dispersion relation (11), relating the fre-
quency w (also embedded in the parameter ) to the wavenumber k, depends
on the stiffnesses of the supporting pillars Kr and K, the lumped mass m and
the bending stiffness of the connection K. In the next subsection, we describe
the separate effects of these four quantities on the dispersive properties of the
periodic beam.

Kg 2Kp

3.2. Effects of structural parameters on dispersion properties

We introduce the non-dimensional stiffness ratios xg = Kgl/EJ, xr =
Krl?/EJ, xg = Kgl/EJ and the non-dimensional mass ratio x,, = m/pAl.
Consequently, we express the dispersion relation (11) in terms of the non-di-

mensional frequency parameter 8 = I and non-dimensional Bloch-parameter



k = kl. In Fig. 5 we show in black colour the dispersion curves of the beam in the
-k plane, highlighting the contributions of x g, X7, Xm and x g taken separately.
The grey lines represent instead the dispersion curves for a homogenoeus beam
without supports (xg = X7 = Xm = 0) or cross-section discontinuity (xp —
00).

For the continuous beam without supports the dispersion curves 8 = +k +
2n7 (n positive integer) do not exhibit stop-bands [40], which implies that waves
of any frequency can travel in the structure without attenuation. Conversely, the
presence of inhomogeneities in the form of elastic supports or internal junctions
open stop-bands at specific frequencies. More specifically, the introduction of
the rotational stiffness of the pillars (Fig. 5a) lifts up the lower limits of the
optical branches without influencing the frequency interval of the low-frequency
acoustic branch (the solution w = 0, k& = 0 can be easily retrieved from the
dispersion relation (11)). In addition, the group velocity, describing energy
propagation and associated to the slope of the dispersion curves, is null at each
band limit.

We also note a stiffening effect in the quasi-static limit (B, kE— 0), where
the dispersion relation takes the form

2 EJ 1 12XR ]{72,

A S\ 12
PAL+xm 12+ xR (12)

On the other hand, the dispersion relation for a homogeneous beam is given by
w? = (EJ/pA)k*. Eq. (12) has the same structure, with different structural
parameters, as the dispersion curve associated with longitudinal waves, which
are governed by a second-order harmonic equation.

The longitudinal stiffness of the pillars x (Fig. 5b) leads to similar effects
concerning optical branches, but mainly gives rise to a cut-off frequency below
which waves cannot propagate, opening a band gap at zero frequency. We also
note that there is an optimal stiffness for which the frequency interval associated
to the acoustic branch becomes negligibly small. An increase of the stiffness
above the optimal value is not beneficial in terms of wave filtering.

Both the point mass m (Fig. 5c) and the elastic junction described by xp
(Fig. 5d) open band gaps. The main effect is the decrease in the upper limits
of both acoustical and optical branches.

The above discussion should give clear indications to the engineer on how to
modify the limits of the stop-bands, in accordance with the design demands. In
particular, it appears that the principal contribution is given by the longitudinal
stiffness of the supporting pillars, which opens a band gap at zero frequency
and has a quantitatively greater influence on the widths of the pass-bands.
The effects of rotational stiffness and pillars inertial contribution can be used to
modulate the pass-band opening. In terms of possible technological applications,
we stress that longitudinal and rotational equivalent stiffnesses of the supporting
pillars, i.e. x1 and xg, can be strongly influenced by the introduction of ad hoc
bearing elements at the junctions between the pillars and the upper deck of the
bridge.

10
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Figure 5: Dispersion curves for the periodic structure, obtained from Eq. (11). In black
colour: (a) xp = 10, x7 = Xm = 0, x5 — o0; (b) X1 = 500, Xxr = Xm = 0, xB — °0;
(¢) xm =025, xp =x7 =0, xB = o0; (d) xr = X = Xm =0, x5 = 1. In grey colour:
XR = XT = Xm =0, xB = 0.
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4. Dynamic study of the bridge

The dispersion analysis developed in Section 3 is relevant to periodic structures,
namely structures with an infinite number of repetitive units. The bridge de-
scribed in Section 2 is instead a structure with a finite number of spans. In this
section we show that the finite and periodic models are related to each other,
since the eigenfrequencies of the finite bridge fall inside the pass-bands of the
periodic structure.

4.1. Bridge with rigid deck-pillars connections

We start by examining a continuous model of the bridge, in which the deck
and the pillars are rigidly connected, as in Fig. 3b. The rotational and transla-
tional rigidity of the two supporting pillars are evaluated as

E,J
Kp=—"""L (13)
lp
and A
Kp =22, (14)
lp
respectively, while the concentrated mass m is given by
Ayl
m = pp% + myg. (15)

In Egs. (13)-(15) Ep, pp, lp, A, and J, are respectively the Young’s modulus,
the mass density, the length, the total area and the total second moment of
inertia of the two pillars, while my is the mass of the dosseret. Expressions
(13) and (14) correspond to the flexural and longitudinal rigidities of a clamped
beam, while the equivalent mass in (15) has been determined evaluating the
kinetic energy of the supporting pillars and the dosseret. In this model, the
bending stiffness of the connection K — oco.

We determine the eigenfrequencies of the bridge associated with flexural
modes by using the finite element model described in Section 2.2. For the pur-
pose of illustration, we consider three bridge structures with different numbers of
spans: 5, 10 and 15. We report the corresponding eigenfrequencies for w < 400
rad/s on the right of Fig. 6, where they are indicated by dots.

The first three dispersion curves of the periodic analytical model, derived
from Eq. (11), are plotted in solid line in Fig. 6, where the horizontal dashed
lines indicate the limits of the analytical pass-bands. From Fig. 6 it is ap-
parent that the eigenfrequencies of the finite structure lie within well-defined
frequency intervals, that correspond to the pass-bands of the periodic model.
The agreement is excellent for the first two bands, while the small differences in
the third band are due to the approximation of the analytical mono-dimensional
beam model, which loses accuracy at higher frequencies with respect to the be-
havior of a three-dimensional structure. Finally, we note that the number of
eigenfrequencies in each pass-band coincides with the number of spans.

12
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Figure 6: Dispersion curves (solid lines) for a periodic bridge with rigid deck-pillars connections
(see Fig. 3b) and eigenfrequencies (dots) for the analogous finite bridge with 5, 10 and 15
spans, determined with Strand7.

The percent differences between the limits of the pass-bands determined
analytically and the bounding frequencies computed numerically are reported
in Table 1. The percent differences A are calculated with the following formula:

A — WAN T WFE

x 100, (16)
WFE

where way is the limit of the pass-band predicted analytically, while wgg is the
bounding frequency determined with the finite element model. The numerical
values confirm the good agreement between Floquet-Bloch and eigenfrequency
analyses; the larger differences relative to the first pass-band can be attributed
to the smaller value of the frequency in the denominator of Eq. (16).

4.2. Bridge with internal elastic junctions

Here we consider the more accurate model of the real bridge, which consists
of simply-supported decks connected only by the slab in correspondence of the
pillars (Fig. 3a). The connection due to the slab is represented by a rotational
spring of stiffness Kp (Fig. 4a).

In order to evaluate Kp we study the frame in Fig. 7, which resembles
the structural scheme in Fig. 3a. We recall that h is the distance between
the centroids of the deck and of the slab, while Ej, Is, bs, hs, As = bshs and
Js = bsh3/12 are the elastic modulus, the length, the width, the height, the

13



Table 1: Percent differences A between the limits of the pass-bands predicted by means of the
analytical approach and the bounding frequencies of the finite structures with different spans
computed numerically, for the case of rigid connections.

pass-band limit 5 spans | 10 spans | 15 spans
inf (k==n/l) | -6.95% | -7.81% -8.02%
1
sup (k=10) | 6.14% 1.42% 0.67%
inf (k =0) -2.23% | -2.85% -2.85%
2 sup (k=m/l) | 0.92% | -0.59% | -0.59%
inf (k= 0) -3.23% | -2.60% -2.60%
3 sup (k==/l) | -1.06% | -1.33% -1.33%
E,, As, Js _
h =0.50 m
ls =1.40 m
bs = 12.00 m
hs =0.25 m

Ls

Figure 7: Structural model of the connection between the decks due to the slab.

area and the second moment of inertia of the slab. The values of h, I,, b, and
hs are reported on the right of Fig. 7. The columns of the frame are assumed
to be infinitely rigid. Simple calculations yield

Kp=— = . (17)

I,

M  2E,(J; + Ash?)
6

The dispersion curves of the periodic analytical model with internal elastic
connections are obtained from Eq. (11) by using the formulae (13)-(15) and
(17). They are indicated in solid line in Fig. 8, together with their limits in
dashed line. On the right of Fig. 8 we include the eigenfrequencies of the finite
element model with 5, 10, 15 and 41 spans (the latter represents the real bridge).

By comparing Figs. 8 and 6, we observe that the ranges of eigenfrequencies
shrink if rigid connections are substituted by elastic junctions, consistently with
the results shown in Fig. 5d. We point out that, while the junction is designed
to sustain static loads, it can also be considered as a structural system that can
be implemented to limit propagation of dynamic excitation within the bridge.
The periodic analysis on a single cell provides an efficient tool to achieve such
a design goal.

Fig. 8 shows that the first range of eigenfrequencies, which is the most
important one for practical applications, is obtained with high accuracy. At
higher frequency the results are less accurate. The loss of precision is expected
considering the higher complexity of the model with elastic junctions and the
difficulty in assessing the bending stiffness of the connections. Nevertheless,

14
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Figure 8: Analytical dispersion curves (solid lines) for a periodic bridge with internal elastic
junctions (refer to Fig. 3a) and eigenfrequencies (dots) for the actual bridge with 5, 10, 15
and 41 spans computed with Strand7. Some examples of the structural modes obtained with

Strand7 and relative to the bridge with 10 spans are also illustrated.
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Table 2: Percent differences A obtained from Eq. (16) between the limits of the pass-bands
estimated analytically and the bounding frequencies of the finite structures determined nu-
merically, for the case of elastic connections.

pass-band limit 5 spans | 10 spans | 15 spans | 41 spans
inf (k=wn/l) | -4.95% | -5.85% -6.07% -6.07%
: sup (k =0) 4.32% 0.65% -0.06% -0.06%
inf (k =0) -2.23% | -2.23% -2.23% -2.23%
2 sup (k=m/l) | -2.36% | -3.91% | -3.91% | -3.91%
inf (k =0) -5.86% | -5.56% -5.56% -5.56%
3 sup (k=m/l) | 4.97% 4.97% 4.97% 4.97%

we notice that the eigenfrequencies tend to accumulate within well-defined fre-
quency intervals, which correspond to the pass-bands of the periodic structure
and can be determined by a more accurate analytical or numerical model of
the unit cell. Table 2 shows the percent differences A between the limits of the
pass-bands calculated analytically and the bounding frequencies found numeri-
cally. We observe that there are no differences between the structures with 15
and 41 spans.

In order to obtain more accurate dispersion curves, we build a finite element
model of the periodic unit of the bridge, imposing quasi-periodicity Floquet-
Bloch conditions at its left and right boundaries. For this purpose, we use the
software Comsol Multiphysics (version 4.3b), which allows the implementation of
quasi-periodic boundary conditions. The determination of the dispersion curves
through this numerical model requires the implementation of a single unit cell
instead of the whole structure. The numerical dispersion curves are reported in
grey colour in Fig. 9, together with the eigenfrequencies of the finite bridges
indicated by black dots, which are identical to those in Fig. 8. The comparative
analysis between the numerical periodic and finite models reveals the excellent
agreement between eigenfrequency distribution and frequency intervals obtained
numerically by studying a single unit cell. The percent differences are reported
in Table 3. They are calculated with this formula:

AF = Pper T Win g0, (18)
Wfin
where wper is the limit of the pass-band for the periodic system and wgy, is the
bounding frequency of the finite structure.

The limits of the pass-bands for the periodic system can be predicted by
imposing specific boundary conditions at the ends of the elementary cell, con-
sidered as a finite structure. In particular, the limits of the first and third
pass-bands coincide with the first four eigenfrequencies of a single isolated ele-
mentary cell with sliders at the ends, corresponding to zero rotations and equal
and opposite displacements at k = 0 and k = 7/l, respectively. The limits of
the second pass-band are equal to the first two natural frequencies of the ele-
mentary cell with hinges at its boundaries, corresponding to zero displacements
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Table 3: Percent differences A* between the limits of the pass-bands of the periodic system
and the bounding frequencies of the finite structures with different spans, both determined
numerically.

pass-band limit 5 spans | 10 spans | 15 spans | 41 spans
inf (k=n/l) | 2.62% 1.65% 1.41% 1.41%
1
sup (k =0) 4.82% 1.13% 0.42% 0.42%
inf (k =0) 0.44% 0.44% 0.44% 0.44%
2
sup (k==/l) | 1.50% | -0.11% | -0.11% | -0.11%
inf (k =0) -0.19% 0.13% 0.13% 0.13%
3 sup (k==/l) | 0.76% 0.76% 0.76% 0.76%

and equal and opposite rotations at k¥ = 0 and k = w/l, respectively. The
eigenmodes computed at kK = 0 and k = 7/, which are illustrated in Fig. 9,
provide a clear indication of the boundary conditions to apply at the ends of
the elementary cell to predict the limits of the pass-bands.

4.3. Bridge with simple supports

We also study the special case of a continuous bridge over periodic supports,
for which an analytical expression of the pass-bands and stop-bands is given in
the literature [22].

The solid lines in the left diagram of Fig. 10 represent the dispersion curves
obtained from the analytical approach presented in this paper, which are calcu-
lated from Eq. (11) after substituting m = 0, Kz = 0, K7 — oo and K — oo.
In the same diagram, the dots are the numerical values determined with the
three-dimensional finite element model of a periodic cell of the bridge, developed
in Comsol Multiphysics. 1t is apparent that there is a perfect correspondence
between analytical and numerical results.

The pass- and stop-bands of a periodically-supported beam can be calculated
by using the following expression [22]:

cot (B1) — coth (BI)
~ cosech (1) — cosec(Bl)’

cosh (u) = (19)

where [ is the distance between the supports, 8 = (pAw?/EJ)'/* and p is the
propagation constant, which is related to the decay of wave amplitudes. In
particular, the real part of p is used to determine the pass- and stop-bands for
the structure: if ;4 = 0 waves propagate without attenuation (pass-bands), while
if p > 0 waves decay exponentially (stop-bands). In the right diagram of Fig.
10 we plot the propagation constant u in relation with the radian frequency
w. An expression similar to (19) is obtained in [24] by means of the Green’s
function method.

The horizontal dashed lines in Fig. 10 indicate the limits of the pass-bands.
The comparison between the two diagrams shows that the results of our an-
alytical method and our numerical model agree perfectly with the analytical
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Figure 9: Grey colour: numerical dispersion curves derived from Comsol Multiphysics by
applying Floquet-Bloch conditions to a periodic unit of the real bridge with elastic junctions;
some instances of the eigenmodes of the structure are also presented. Black colour: eigenfre-
quencies of the actual bridge with a finite number of spans, determined with Strand?7.
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Figure 10: Dispersion curves for a three-dimensional bridge with periodic supports, obtained
from Eq. (11) (solid lines) and from the numerical model built in Comsol Multiphysics (dots);
variation of the real part of the propagation constant p with the angular frequency w, given
by Eq. (19). The horizontal dashed lines represent the limits of the pass-bands for the two
diagrams, which coincide.
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approach presented in [22]. This comparative study confirms the validity of our
approach.

Experimental results on simply-supported [41] and binary [42] repetitive
beams show the agreement between theoretical predictions and experimental
outcomes.

5. Conclusions

The dispersion analysis is a powerful tool for the design of repetitive structures,
as it quickly provides the frequency ranges for which waves can or cannot prop-
agate without the need to analyse the full structure and to use a finite element
model. In this paper, we have employed the dispersion analysis to derive the
formula (11), which allows to estimate the positions and the widths of the pass-
bands of a complicated periodic structure, such as a long bridge. The main
benefit of Eq. (11) is that it quickly provides the intervals of natural frequen-
cies of a repetitive structure, which are very difficult to obtain especially when
the structure consists of more than 30 units. Moreover, in the analysis pre-
sented in Section 3.2 we have illustrated the influence of each single structural
element on the dynamic properties of the whole structure. In particular, we
have found that the major contribution is from the longitudinal stiffness of the
pillars, which strongly affects the limits of the pass-bands. The contributions
of the main structural elements are included in Eq. (11), which can be easily
used by the designer at the pre-design stage of the project to tune the dynamic
response of the system by varying the proper parameters. The limits of the
pass-bands can be also assessed by studying a single isolated repetitive unit and
imposing the appropriate boundary conditions at the ends. After determining
the geometric and material properties that need to be assigned to the structure
to satisfy specific demands, the designer could improve the results by build-
ing a finite element model of the system and calculating the eigenfrequencies
numerically.

The dispersion relation (11) contains quantities (such as the stiffnesses of
the pillars and of the elastic connections) that need to be evaluated a priori,
either analytically as in Eqgs. (13)-(17) or carrying out simple static finite ele-
ment computations. The latter generally yield more precise results, but require
additional numerical work.

In the majority of cases, the eigenfrequency intervals of the structure are
predicted with sufficient accuracy by the analytical formula (11). To estimate
the eigenfrequency ranges of the repetitive structure more precisely, it is also
possible to analyse the periodic structure numerically, performing a finite ele-
ment eigenfrequency analysis on a single unit cell of the structure subjected to
Floquet-Bloch quasi-periodicity conditions applied at its boundaries. Following
this approach only a single cell needs to be implemented, drastically reducing
the number of degrees of freedom with respect to the implementation of the
whole structure and simplifying the post-processing visualisation and data in-
terpretation. The reported eigenfrequency analysis of the whole bridge with 41
spans has pointed out numerical issues, which are avoided by the quasi-periodic
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analysis of a single cell. In particular, in the finite element modal analysis of
the real bridge with 41 units we have experienced several convergence problems,
hence we had to tune the number of iterations and the convergence tolerance
for the Sub-Space Iteration Method giving the extremely close eigenfrequencies
and the corresponding eigenmodes; in addition, in view of the large number
of modes, we had to subdivide the modal analysis into several different steps
starting from different minimum frequencies.

The analysis of the ‘Brabau’ bridge has shown the applicability of the pro-
posed methodology and particular aspects that require special attention when
a real structure is considered. Of course, the periodic analysis contains some
intrinsic limitations. For example, it cannot be used to calculate the exact val-
ues of all the eigenfrequencies of the bridge. However, as the number of spans
is increased, the eigenfrequencies cover completely the pass-bands of the cor-
responding periodic structure. Furthermore, a more sophisticated analysis is
required when uncertainties are included into the analytical formulation. These
uncertainties concern the geometric and material properties of the bridge but
not the loads, which are not relevant in the dynamic characterisation of the
structure. A disordered or perturbed system can be studied by introducing
random parameters when defining the properties of the structure. The main
effect of random perturbations is generally to decrease the propagation ranges
and to create localised modes within the system [28, 29, 30, 31, 32]. A detailed
analysis of the ‘Brabau’ bridge under perturbed conditions will be carried out
in a future work. We also plan to carry out an experimental validation of the
bridge in a future investigation, first by building a scaled model in the lab and
then by extrapolating dynamic data from the real structure.

Finally, we point out that in this paper we have considered only the flexural
modes of the structure. An analogous formulation can be easily developed for
axial, torsional or other vibration modes by substituting Eq. (1) with the proper
equations of motion.
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