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Abstract

In order to perform experimental identi�cation of high strain rate material models, engineers only
have a very limited toolbox based on test procedures developed decades ago. The best example is
the so-called Split Hopkinson Pressure Bar (SHPB) based on the bar concept introduced 100 years
ago by Bertram Hopkinson to measure blast pulses. The recent advent of full-�eld deformation
measurements using imaging techniques has allowed novel approaches to be developed and exciting
new testing procedures to be imagined for the �rst time. One can use this full-�eld information in
conjunction with e�cient numerical inverse identi�cation tools such as the Virtual Fields Method
(VFM) to identify material parameters at high rates. The underpinning novelty is to exploit the
inertial e�ects developed in high strain rate loading. This paper presents results from a new inertial
impact test to obtain stress-strain curves at high strain rates (here, up to 3000 s1). A quasi-isotropic
composite specimen is equipped with a grid and images are recorded with the new HPV-X camera
from Shimadzu at 5 Mfps and the SIMX16 camera from Specialized Imaging at 1 Mfps. Deformation,
strain and acceleration �elds are then input into the VFM to identify the sti�ness parameters with
unprecedented quality.

1 Introduction

In many areas of engineering, materials su�er deformation at high rates. This is the case when

structures undergo impact, crash, blast, etc. but also in material forming like stamping or ma-

chining for instance. Another important area concerns biological tissues. For instance, traumatic

brain injuries (TBI) involve damage of brain tissues caused by their high rate deformation fol-

lowing impact loading of the skull. Thanks to the spectacular progress of computing power and

computational mechanics, it is now possible to perform extremely detailed numerical simula-

tions of many complex situations where materials deform at high rates, with the objective to

design safer structures, assess tissue injuries or devise more e�ective manufacturing processes,

among others. However, to deliver their full potential, these computations require the input of

reliable mechanical constitutive models of the materials loaded at high strain rates. This is an

extremely challenging problem because of both the dynamic nature of the mechanical �elds and

the technological di�culties associated with strain metrology. Many dynamic test procedures
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have been devised within the last century, as reported in the review by Field et al. [9] with

pioneering work of Hopkinson celebrated in this special issue dating back to 1914 [17], and its

adaptation to the double bar system known as the Split Hopkinson Pressure Bar (SHPB) or

Kolsky bar [21]. It is beyond the scope of the current paper to review in detail the di�erent types

of high strain rate tests and the reader is referred to [9]. However, all these test methods share

common features and an important one is that they are all based on very limited experimen-

tal information. Indeed, the Kolsky bar uses strain gauges and a material with known elastic

modulus to derive a global stress and strain response of the specimen. The spalling test used

for concrete materials [7] uses point-wise Doppler laser velocimetry on the free specimen face as

well as strain gauges bonded onto the specimen to infer the dynamic failure tensile stress using

an analytical expression arising from simple 1D stress propagation [32, 33]. The Taylor impact

test [51] relies on post-mortem measurement of the permanent change of shape of the test piece

projectile, although it has also been used with in-situ high speed photography, see e.g. [56]. The

very limited availability of experimental information forced experimentalists to be inventive and

design test procedures that would be su�ciently simple so that this information could be used to

infer information on the material constitutive properties. As such, they are the dynamic coun-

terparts to the universal uniaxial tensile test or other simple statically determined tests. Going

back to the SHPB test, which is certainly the most popular high strain rate testing technique

as shown in Figs. 6 in [9, 53], while it has proved invaluable in obtaining information on the

high strain rate behaviour of a very wide range of materials, it su�ers from intrinsic limitations

arising from the poor experimental information it uses. First, the test is restricted to uniaxial

loading and relies on the assumption of homogeneous stress and strain states. This prevents a

more complete constitutive law identi�cation using heterogeneous stress states. Also, the e�ect

of transient stress waves has to be controlled, usually leading to very short test specimens. In

the general case, this cannot always be achieved easily, particularly for soft materials. There is

a very large literature on such e�ects, see [26] for instance.

The recent advent of inexpensive and powerful imaging devices (CCD or CMOS sensors)

coupled to automated image processing tools has led to new fully digital instrumentation ca-

pable of acquiring deformation at a great number of points, hence the terminology 'full-�eld'

measurements. This type of measurement technique typically provides from several hundreds to
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several tens of thousands of independent deformation measurement points. The most represen-

tative example of this is the so-called 'Digital Image Correlation' [49] (and its 3D counterpart

using stereovision) which has seen exponential di�usion within the last decade, thanks to the

availability of plug-and-play commercial systems. Many researchers in high strain rate testing

of materials see this as a great opportunity, as reported in [9]. Most of the applications cur-

rently published deal with simple uniaxial tests. In this case, the most basic use of the full-�eld

data consists in using it as a non-contact strain gauge by averaging the strains over the �eld

of view, see for instance [11, 20, 23, 24, 55], while checking that the strain �eld was reasonably

uniform. Such measurements have also been used to have better insight into strain localization

in uniaxial tests [6,50]. More rarely, the full-�eld data has been used to identify a model using a

uniform stress approach [50] or �nite element model updating [18, 19, 25]. It is to be noted that

large strains (metals in plastic deformation or polymers) are usually measured, which is in the

favourable end of the DIC usage range. However, such simple tests do not make the most of the

rich full-�eld strain information and the current authors agree with this statement from [11]:

"In the past, the use of the SHB technique was limited for testing specimens undergoing

uniform deformation. The introduction of 3D image correlation for measuring the full

strain �eld on the surface of the specimen provides means for developing new types

of experiments with the SHB technique in which the deformation in the specimen is

intentionally not uniform."

More rarely, such test specimens with more complex shapes leading to heterogeneous stress/strain

states have been considered [13,28,35], either with a view to validating FE models [35] or to iden-

tify constitutive models using �nite element model updating techniques [36] or the Virtual Fields

Method [4,31]. Finally, most of the previous examples deal with quasi-static situations, meaning

by this that transient inertial e�ects have vanished when the data are processed. In fact, it is

even a strong requirement for the standard SHPB analysis. Some authors have studied materials

in situations where stress waves were still propagating, either to investigate the behaviour of

low-impedance materials [30, 54] or to provide sti�ness measurements [48]. For sti� engineering

materials however, imaging in this range requires the use of ultra-high speed imaging, as de�ned

in [43], because of the very large wave speeds (several km.s−1).
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If full-�eld strain measurements clearly bring important additional information in the above

examples, a global force measurement is always required to obtain constitutive parameters (ex-

cept when stress waves are propagating, [30,48], which connects to the current paper). If external

force measurement in quasi-static is easy thorough load cells, inertial e�ects spoil such measure-

ments in dynamics ('ringing' e�ects). This is the reason for the Hopkinson bar which is basically

a load cell designed to work in a particular set of conditions (1D wave propagation, elastic de-

formation of the bar etc.). This constraint for external impact load measurement is one of the

main constraints on the design of current test con�gurations.

However, looking at other areas of engineering, there are examples of dynamic testing where

material constitutive parameters can be retrieved without any external load measurements. For

instance, ultrasonic testing uses measured wave speeds to derive elastic sti�ness components, even

though the associated metrology does not allow for spatial resolution and is limited to elasticity.

An extension of this idea can be found in Magnetic Resonance Elastography [29] where MRI-

based measurement of bulk dynamic strain �elds are combined with the wave equation to provide

a spatial map of shear modulus. This however requires the use of an inverse solution which has

led to much research, [45, 47] for instance. The idea is similar in [30] but the analysis is simpler

due to the uniaxial nature of the test. In both cases, the acceleration information serves as a load

cell, and the load cell gauge factor is the material density. Finally, several studies have shown

that elastic [14, 15] and viscoelastic [12] sti�ness components could be identi�ed from full-�eld

measurements and the Virtual Fields Method [39] using the inertial forces as load cell.

The objective of this article is to propose a general procedure to exploit dynamic impact tests

using full-�eld strain and acceleration measurements in order to identify constitutive material

parameters. The key idea is to fully exploit the full-�eld information so that the constraint for

external impact force measurement is relieved thanks to the use of inertial loads as an e�ective

load cell. The �rst part of the article is more didactic; it presents the current state-of-the-art

and uses a simple example as a demonstration. The second part of the paper is dedicated to

the design of a new purely inertial test. Optimized special virtual �elds extended to dynamics

from [2] are brie�y presented and validated from simulated measurements. In the third part,

an experimental validation is presented using two di�erent ultra-high speed cameras. Finally,

conclusions and perspectives are provided, opening the way for a new generation of dynamic high
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strain rate tests beyond Hopkinson's bar.

2 Acceleration as a load cell

In order to illustrate the concept of using acceleration maps in the material identi�cation process,

the simple test con�guration in Fig. 1 is considered. This is the typical situation of a specimen

loaded in an SHPB apparatus. The problem is considered as a 2D plane stress one (thin specimen

of thickness h) and Voigt contracted index notations are used. The forces acting on its two

boundaries are de�ned as:

F1(t) = −h

∫ b/2

−b/2
σ1(x1 = 0, x2, t)dx2 ; F2(t) = h

∫ b/2

−b/2
σ1(x1 = L, x2, t)dx2 (1)

In order to simplify the writing of the equations, the time variable will be omitted in the rest of

the paper but all mechanical �elds do depend on time even if time is not mentioned. Writing the

global dynamic equilibrium of the solid, the following equation is obtained in the x1 direction:

F1 + F2 = ρh

∫ L

0

∫ b/2

−b/2
a1dx1dx2 (2)

This can be obtained by writing the equilibrium of a thin transverse slice and integrating it

along x1 as in [1, 34]. In practice, if full-�eld displacements are obtained as a function of time

with su�cient spatial and temporal resolution, then the second term of this equation can be

calculated as: ∫ L

0

∫ b/2

−b/2
a1dx1dx2 ≈

n∑
i=1

a
(i)
1 s(i) (3)

where a
(i)
1 is the acceleration value at data point number i, s(i) is the small surface associated

with measurement at data point number i and n is the total number of measurement points.

Obviously, the quality of this approximation is highly dependent on both the spatial frequency

contents of the acceleration �eld and the density of the full-�eld measurements. Since most of

the time, the displacement data are obtained over a regular grid a with Digital Image Correlation

(DIC), then the discretized acceleration term can be written as:

n∑
i=1

a
(i)
1 s(i) = Lba1 (4)

where the overline indicates geometrical spatial averaging over the �eld of view. The �nal

equation is therefore:

F1 + F2 = ρV a1 (5)
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where V is the volume of the �eld of view. This very simple equation, valid at any time t during

the test, is very powerful in practice. For instance, if the force is obtained at one end of the

specimen, either F1 or F2, then average stress pro�les can be reconstructed at any x1 location

thanks to this equation, provided that the density is known. Othman et al. [1, 34] have used

it to identify the behaviour of a synthetic rubber material. They used a single output bar to

measure F1 and F2 was applied by an un-instrumented projectile. They were able to calculate

average true stress pro�les and produce true stress/strain curves at di�erent locations along the

test specimen, demonstrating the power of the approach.

A very similar application was recently published by Pierron and Forquin [38]. It concerned

a spalling test on a cylindrical concrete specimen. One end was connected to a Hopkinson bar

producing a compressive pulse. This compressive pulse travels along the specimen and is re�ected

o� the free end into a tensile pulse. The shaping of the pulse and the specimen length were such

that the specimen underwent tension after re�ection and fractured then. This is basically an

indirect tensile test usually exploited from strain gauge measurements on the bar to produce the

impact force, strain gauges on the specimen to monitor the strain rate and measure modulus from

the wave speed and point measurement of the velocity at the free end to identify the dynamic

failure stress from Novikov's formula [7]. Referring back to Fig. 1, in this case, F2 = 0 as x1 = 0

represents the free end. Starting from the free end as the known force (which is zero), average

stress pro�les were reconstructed from:

σ1(x1, t) = ρx1a1(x1, t) (6)

It should be noted that in this case, no external force is needed at all, or more accurately, one

force measurement is needed but provided by the free end condition. The results thus obtained

enabled local stress-strain curves and Young's modulus values to be derived as well as another

estimate of the dynamic fracture stress. Interestingly, this value did not match the Novikov

one. Only later was the reason for this disclosed as a di�erence between tensile and compressive

Young's modulus caused by the presence of initial micro-cracks [10].

The previous approach is very simple and powerful but unfortunately, it is restricted to some

very simple quasi-uniaxial tests. It can be extended to a shear force at both ends (i.e. a set

of vertical forces) or a bending moment. But let us now imagine that neither F1 nor F2 are

6



measured. This would happen in an SHPB set-up if no strain gauges on the bars were used,

for instance. The previous analysis would then produce an equation with two unknowns, which

would be useless. However, it is possible to extend this simple analysis by introducing the

principle of virtual work.

3 Extension to more general cases: the VFM

3.1 The Virtual Fields Method

The general equation for the principle of virtual work is:

−
∫
Vm

σ : ϵ∗dV︸ ︷︷ ︸
Internal virtual work

+

∫
∂Vm

−→
T .−→u ∗dS︸ ︷︷ ︸

External virtual work

=

∫
Vm

ρ
∂2−→u
∂t2

.−→u ∗dV︸ ︷︷ ︸
Acceleration virtual work

(7)

where:

− ∂Vm is the boundary surface of the volume Vm,

− −→
T is the Cauchy stress vector acting at the boundary surface ∂Vm,

− σ is the Cauchy stress tensor,

− −→u ∗ is a C0 vectorial function referred to as "virtual displacement �eld",

− ϵ∗ is the virtual strain tensor derived from −→u ∗ (ϵ∗ = 1
2(grad(

−→u ∗) +T grad(−→u ∗)),

− ρ is the material density,

− ":" and "." are the dot products respectively between matrices and vectors.

This equation is the integral form of the local stress equilibrium equation. It is possible to use

this equation to produce Eq. 5. Indeed, let us consider the following virtual �eld:

{
u
∗(1)
1 = 1

u
∗(1)
2 = 0


ε
∗(1)
1 = 0

ε
∗(1)
2 = 0

ε
∗(1)
6 = 0

(8)

Because of the zero virtual strain, the internal virtual work as de�ned above is zero. The

external virtual work is produced by both F1 and F2. For both ends of the specimen, the virtual

displacement is equal to 1, so the external virtual work is F1 + F2. Finally, because u
∗(1)
2 = 0,

the acceleration virtual work only depends on the x1 component and provides the same term as
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the right-hand side of Eq. 5, with a1 =
∂2u1

∂t2 . By using the two following virtual �elds, one could

get similar equations for a shear force or a moment:

Shear force

{
u
∗(1)
1 = 0

u
∗(1)
2 = 1


ε
∗(1)
1 = 0

ε
∗(1)
2 = 0

ε
∗(1)
6 = 0

(9)

Moment

{
u
∗(2)
1 = x2

u
∗(2)
2 = −x1


ε
∗(2)
1 = 0

ε
∗(2)
2 = 0

ε
∗(2)
6 = 0

(10)

These virtual �elds correspond to the three virtual rigid body �elds that produce zero virtual

strains. The resulting equations only involve end forces (or moments) and acceleration and can

be used to produce stress-strain curves without the need to formulate a model a priori. This can

be referred to as a non-parametric approach as quoted from [1,34]. But let us now imagine that

neither F1 nor F2 are measured. These three rigid body like virtual �elds are not useful anymore

and one needs to resort to a more complex formulation that includes virtual deformation. If the

end forces are unknown, it is possible to tailor a virtual �eld that will cancel out the contribution

of these forces to the principle of virtual work. For instance, using the following virtual �eld:

{
u
∗(1)
1 = x1(x1 − L)

u
∗(1)
2 = 0


ε
∗(1)
1 = 2x1 − L

ε
∗(1)
2 = 0

ε
∗(1)
6 = 0

(11)

The virtual displacement is zero for both ends at x1 = 0 and x1 = L. Therefore, the external

virtual work is zero. The �nal equation arising from this virtual �eld is:

−
∫ L

0

∫ b/2

−b/2
(2x1 − L)σ1dx2 =

∫ L

0

∫ b/2

−b/2
ρx1(x1 − L)a1dx1dx2 (12)

valid at any time t during the test. The key idea is now to substitute the σ1 stress component

using the constitutive equation. This requires the a priori selection of a model as with all inverse

techniques, as opposed to the simple non-parametric approach above. Here, a simple isotropic

linear elastic model is selected. For plane stress, the constitutive model depends on two sti�ness

components Q11 and Q12: σ1 = Q11ε1 +Q12ε2. Feeding this into Eq. 12 assuming the sti�ness

components to be constant and approximating the integrals by discrete sums (introducing the

spatial average indicated by the overline), the �nal equation is obtained:

−Q11(2x1 − L)ε1 −Q12(2x1 − L)ε2 = ρx1(x1 − L)a1 (13)
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One can clearly see here the role of load cell played by the acceleration term. In a quasi-static

situation, this equation would lead to zero equal to zero (uniform strain distribution and zero

acceleration). In order to extract both sti�ness components, another equation must be derived.

For instance, the following virtual �eld can be used:

{
u
∗(1)
1 = 0

u
∗(1)
2 = x1(x1 − L)x2


ε
∗(1)
1 = 0

ε
∗(1)
2 = x1(x1 − L)

ε
∗(1)
6 = (2x1 − L)x2

(14)

leading to the following equation:

−Q11

[
x1(x1 − L)ε2 + 0.5(2x1 − L)x2ε6

]
−Q12

[
x1(x1 − L)ε1 − 0.5(2x1 − L)x2ε6

]
= ρx1(x1 − L)x2a2

(15)

This leads to a linear system of two equations with two unknowns that can be solved for Q11

and Q12. This identi�cation technique is known as the Virtual Fields Method (VFM) and has

been applied over the past to a very wide range of materials and test con�gurations, including

non-linear problems for which the resolution is performed through optimization of the di�erence

between the terms in the principle of virtual work. It is beyond the scope of the current paper

to detail this, the reader is referred to the recent book on this topic [39]. It should be noted that

the equations above hold for any time at which a set of images is available. This leads to many

estimates of these parameters, as long as there is signi�cant acceleration. When the acceleration

dies out, the linear system fails to produce the sti�ness values, only Poisson's ratio can be

obtained (ratio of the two sti�ness components). This approach was validated experimentally on

quasi-isotropic composite specimens loaded in a tensile split Hopkinson bar (SHB) apparatus and

the grid method was employed to derive strain and acceleration �elds. The method successfully

provided estimates for the two sti�ness components of this particular material [27], which was

the �rst time such an approach was published to the best knowledge of the present authors.

Two di�culties were identi�ed however. First, the quality of the images provided by the ultra-

high speed Cordin 550-62 rotating mirror camera was still wanting compared to more standard

CDD cameras, leading to low signal to noise ratio measurements. This issue will be resolved as

UHS cameras improve, which is already happening as illustrated in the experimental validation

section of this paper. The second one relates to the test itself. The tensile SHB set-up produces

signi�cant accelerations during only the �rst 20 µs−1. Since this SHB set-up was not speci�cally
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designed for the new data processing procedure presented here, and since this new procedure

does not require any of the strong requirements of the SHB tests, a very wide design space opens

up which needs to be explored. Up to now, only three di�erent applications of the VFM at high

strain rates have been published [27, 38, 41], more as feasibility studies. However, it was clear

from these �rst experiences that inertial tests would be favourable. This is the route that is

explored here.

3.2 Special optimized virtual �elds

Before moving on to the inertial test described in this paper, a few words on the virtual �elds

selection are required. Indeed, there is an in�nity of possible virtual �elds and each of them,

when input into Eq .7, will produce a di�erent equation of the type of Eq. 13. As a consequence,

a legitimate question is that of the choice of virtual �elds. The �rst thing than can be said is

that if the strain data are exact, any choice of independent virtual �elds will lead to the same

identi�ed sti�ness values. But if data are corrupted by noise, which is the case for experimental

measurements, then di�erent sets of virtual �elds lead to di�erent sti�ness values. It was shown

in [2, 3] that for a certain basis of functions used to expand the virtual �elds (like polynomials,

harmonic functions or piecewise functions like �nite elements), there is a unique solution leading

to the maximum likelihood solution. These virtual �elds are called 'special optimized' and will be

used in this paper, using bilinear �nite element to expand the virtual �elds, see [39]. It should be

noted that this procedure also outputs coe�cients called ηij which relate the standard deviation

of the strain noise to the standard deviation of the identi�ed Qij sti�ness components. This

coe�cient is interesting as it is an a priori estimator of the identi�cation quality. This will be

commented in the next section.

4 Validation on simulated data

In order to validate the procedure described above, experimental data have �rst been simulated

by �nite element computations. This is always the �rst step as the sti�ness values entered in

the model serve as perfect reference. A 2D plane stress isotropic constitutive model has been

considered here in order to keep the number of unknowns low. This is also the law that will

be identi�ed in the experimental validation section. A 1-dimension inertial test is considered
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�rst. It is composed of a thin specimen of thickness 4× 10−3 m impacted by a steel projectile of

thickness also 4 mm, see Fig. 2. Due to the nearly uniform contact forces between the two solids,

the stress wave propagation is nearly unidirectional. The response of this impacted isotropic

specimen was simulated using ABAQUS/EXPLICIT to produce full-�eld strain and acceleration

maps which were then processed by the VFM. The details of the �nite element model are shown

in Table 1. The mesh density is the result of the a convergence study.

From the results, it was found that contact time is about 17 µs for this model, which corre-

sponds to the time needed for a return travel of the stress wave along the projectile, as expected.

Full-�eld strain and acceleration maps has been output from ABAQUS. Fig. 3 presents the full-

�eld strain and acceleration maps at 10 µs. As seen in Fig. 3, the acceleration levels in the

specimen are high. This feature is used to extract the constitutive parameters using the VFM.

As previously stated in Section 3.2, bilinear piecewise functions are used to expand the virtual

�elds. The virtual mesh consists of 4 elements in the horizontal direction and 3 elements in the

vertical direction. The virtual displacement vector along the contact boundary is set to 0 so

that the virtual work of the impact force between the two solids is zeroed out from the VFM

equation. The results will be expressed as Young's modulus and Poisson's ratio, related to the

sti�ness components Q11 and Q12 by: {
Q11 =

E
1−ν2

Q12 =
νE

1−ν2

(16)

The dynamic full-�eld strain and acceleration �elds were then processed using the VFM. The

identi�cation of Young's modulus and Poisson's ratio are shown in Fig. 4.

In this �gure, it is clear that the identi�cation is very good, which validates the VFM pro-

gramme as well as the forward FE calculations. The relative errors on the identi�ed values are

less than 1%. It is worth noting that the error on the identi�ed Poisson's ratio at 1 µs is much

larger. This is because at that time, the stress wave is concentrated in a very small area near

the contact end, increasing the e�ects of numerical noise.

The optimized nature of the virtual �elds de�ned here has been validated as follows. The

FE strain maps have been polluted with white Gaussian noise of increasing standard deviations.

For each noise level, 30 identi�cations have been performed using 30 di�erent copies of the

same noise. It is therefore possible to plot the coe�cient of variation of each identi�ed sti�ness
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component as a function of strain noise level. This is reported in Fig. 5 in the form of a cloud

of points of linear tendency �tted by a linear approximation. The slope of this approximation

is an experimental evaluation of the ηij/Qij provided by the optimized virtual �elds routine. It

is reported at the bottom of the plot as the '�tted value', which is compared to the 'theoretical'

one directly issued from the virtual �eld optimization procedure. As seen at the bottom of these

plots, both values match very well, validating the optimized VF de�nition. According to [2],

these coe�cients of variation are the smallest possible among the virtual �elds expanded over

the current set of piecewise functions (4 x 3 virtual mesh). Now that the VFM routines are

validated for this dynamic test, it is applied to real experimental data.

5 First experimental validation

5.1 Experimental set-up

A series of inertial tests according to Fig. 2 tests has been performed at the University of Oxford.

A picture of the experimental set-up can be found in Fig. 6. The projectile is a steel cylinder

of radius 34 mm and length 50 mm. It is launched by a gas gun to reach a nominal speed of

30 m.s−1 for these experiments. The specimen is positioned at the end of the launch tube of

the gas gun. It is resting on a foam stand that has been machined in an attempt to align the

specimen with the projectile at the moment of impact. Two pieces of thin copper �lm were bonded

onto the foam support right at the edge of the specimen so that when the projectile reaches, it

contacts both pieces of �lm which closes an electrical circuit, providing the triggering signal. The

specimen was cut to the dimensions of that in Fig. 2 from a carbon/epoxy laminated plate. The

material used here is a 3.6 mm [0/45/ − 45/90]s carbon/epoxy laminate made from CYTEC's

MTM58FRB prepreg. This prepreg is a 120 ◦C cure system using high strength carbon �bres.

It is mainly used in automotive applications like Formula 1, for instance. The nominal sti�ness

parameters obtained from quasi-static tests performed at the University of Southampton [22] are:

E11 = 124 GPa, E22 = 7.5 GPa, ν12 = 0.31, G12 = 4.0 GPa. Since the lay-up is quasi-isotropic,

the in-plane sti�ness behaviour only depends on two elastic constants. Using lamination theory,

this provides an in-plane Young's modulus E of 47.1 GPa and a Poisson's ratio of 0.31. because

such lay-ups are heavily dominated by �bre behaviour and carbon �bres exhibit very low strain

rate dependance, this quasi-static reference will be used as a target value for the current tests.
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The strain measurement technique used here is the so-called 'grid method' [5, 40], also more

recently referred to as sampling moiré [44]. A grid was transferred onto the specimens using the

procedure described in [42]. The choice of the pitch of the grid depends on the spatial resolution

of the camera used to record the images, which is detailed in the following.

5.2 Imaging set-up

Because it is required to calculate acceleration maps from the displacements, it is necessary to

grab images with very low inter-frame times, of the order of the microsecond. This is the range

of what Reu and Miller [43] de�ne as ultra-high speed imaging. Here, two di�erent cameras

have been used in order to check the e�ect of image quality on the results. The �rst camera is a

Specialized Imaging SIM 16. This is an intensi�ed gated camera which principle relies on dividing

the light into several optical paths, here, 16, and recording at very high rates by electronically

gating the corresponding 16 CCD sensors sequentially. The fact that light is divided by as many

channels as there are CCD sensors leads to the need for light ampli�cation. Unfortunately,

this causes a number of issues, including 'leakage' of light over neighbouring pixels, blurring

the image and creating signi�cant spurious strains. This is documented in [37, 52] for a similar

camera using the same technology, the IMACON200, even if the current SIMX16 camera su�ers

slightly less from this problem. Finally, because of small misalignment of the di�erent CCD

sensors, displacements have to be calculated from images of each individual sensors. Therefore,

a series of 16 images of the stationary specimen are �rst recorded before images of the deforming

specimens are acquired and the �rst set of images is used as the undeformed reference for each

sensor, as explained in [41, 52]. The second camera used here is a Shimadzu HPV-X, a recent

version of the older HPV-1/2 series. This camera uses a dedicated sensor called In-Situ CCD

(IS-CCD) which circumvents the issue of memory read-out by storing the data directly on the

chip [8]. There are a number of issues with this sensor, as summarized in [37] but when used with

the correct settings (dark image, avoid 1 Mfps frame rate), very good images can be captured as

evidenced in [38]. The new sensor implemented in the Shimadzu HPV-X seems to su�er much

less, if at all, from the issues noted on the previous generation cameras. It is not the objective

here to perform a full characterization of the measurement performances using these cameras,

only basic performance information is provided (see next section). Information concerning the
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imaging systems and grids is collated in Table 2.

5.3 Measurement results

From the raw grey level grid images, spatial phase maps relating to displacements are obtained

using spatial phase shifting. The algorithm implemented here is called WDFT (Windowed Dis-

crete Fourier Transform). Information about the grid method processing can be found in [5].

These phase maps may contain phase jumps from π to −π when the displacement range in

one image is larger than the grip pitch. This is known as 'phase wrapping'. Here, these maps

have been unwrapped using the algorithm published by Herraez et al. [16]. Finally, because of

the rigid body motion accompanying the stress wave propagation, the mean displacement as a

function of time also exhibits 'jumps' each time the rigid body translation goes above the grid

pitch. Since the rigid body movement is monotonic, simple temporal unwrapping is performed

by adding integer numbers of pitch size to the displacement maps so that the mean displacement

is monotonic. This is essential in dynamics to derive the acceleration maps.

Because of camera noise, spatial and temporal smoothing are necessary in order to reach

the required resolution in both strain and acceleration. A sensitivity study has been undertaken

which detailed results are beyond the scope of the present paper. The outcome is that strains have

been calculated from displacements smoothed with a Gaussian �lter over di�erent windows of

data points as reported in Table 2. As for the acceleration, it has been calculated from combined

spatial and temporal smoothing as also reported in Table 2. The resolution values have been

evaluated as the standard deviation of maps obtained from series of stationary images. The far

superior image quality from the Shimadzu HPV-X camera is obvious on the raw displacement

resolution, the only real advantage of the SIMX16 camera being its better spatial resolution, the

limited total number of images being also a very stringent limiting factor.

Fig. 7 shows the average strain and acceleration pro�les calculated over the whole �eld of

view. Even though these tests were performed on two di�erent days weeks apart, these plots

look very much alike, even though the SIMX16 data is much noisier, as expected. One can see

a shift of 2 µs between the two curves because of the di�erence in triggering. In order to get

a feel for the results, displacement, strain and acceleration maps are provided at time 8 µs for

the SIMX16 and 10 µs for the HPV-X so that the data correspond to the same state of the test
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(Figs. 8 to 10). Videos of the whole set of data are available as supplementary material. Again,

the maps are really similar, showing the same localization of the impact at the bottom. This

illustrates the reproducibility of the set-up which uses a rigid foam stand for the specimen.. This

means that better alignment of the set-up could also be possible to generate a more even impact.

From these images and videos, the superior data quality of the data delivered by the HPV-X

camera is spectacular. Looking at the acceleration maps, one can see values going up to nearly

1 million g's, which corresponds to what was obtained from the �nite element calculations, see

Fig. 3. As for the strain rate, Fig. 11 shows the average strain rate over the �eld of view as

well as the strain rate map at 6 µs for the HPV-X test. The strain rate reaches a maximum

value close to 3000 s−1 at the beginning of the test but with highly heterogeneous strain rate

maps. Here, this strain rate information is just used to provide an idea of the order of magnitude

reached in this test but it will not be used in the identi�cation. This issue will be commented

on later in the article. The next stage is to use these data in the identi�cation process. This is

presented in the next section.

5.4 Identi�cation results

5.4.1 Non-parametric approach

The �rst approach used in the current work is that of Section 2. Average σ1 stress along vertical

lines have been reconstructed using Eq. 6. This enables to plot average σ1 stress against average ε1

strain at all vertical sections of the specimen. Since the test provides a dominantly unidirectional

state of stress, the slope of this curve identi�es Young's modulus of the quasi-isotropic specimen,

as a �rst approximation. An example is provided in Fig. 12 for the SIMX16 test and in Fig. 13 for

the HPV-X one, at 20.7 mm from the free edge (about two-thirds towards the right hand-side of

the �eld of view). The �rst one is very noisy, as one would expect. Using a linear �t of the data,

one recovers a value of 51.7 GPa for E, about 10 % higher than the expected value of 47.1 GPa.

On Fig. 13(a), one can see that the stress strain curve from the HPV-X data is of much better

quality and exhibits nice linearity except during the early stages of the test. This is caused by the

temporal smoothing to obtain acceleration. It results in non-zero acceleration values before the

wave reaches, leading to stress without any strain. After about 12 images (half the smoothing

window of 25 images), correct data are recovered as seen on Fig. 13(b). In this case, a linear �t
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of the data leads to a Young's modulus of 40.1 GPa. This is 14 % lower than the expected value

of 47.1 GPa. In order to check for the consistency of these results, stress-strain curves have been

plotted in Fig. 14(a) for the unloading part of the response only, at three di�erent locations in

the �eld of view. The three curves are very similar, only the one at 20.7 mm exhibits an o�set

caused by the problem mentioned previously, which tends to decrease in intensity when moving

closer to the free end, probably because the wave front is less sharp there. From this, a modulus

around 40 GPa is recovered from the three sets of data, showing good consistency.

A legitimate question is whether the unidirectional stress assumption is reasonable. In order

to investigate this issue, Fig. 14(b) represents the average σ1 stress as a function of the average

of ε1 + νε2, the slope of which provides the Q11 sti�ness component which relates to E through

Eq. 16. One can also see good linearity of the response. Assuming a value of 0.31 for Poisson's

ratio, one can they calculate E from Q11 and compare the results to that obtained using the

uniaxial stress assumption. This is shown in Fig. 15, where data too close to both edges have

been discarded. Indeed, close to the free edge, stress and strain become too low and close to

the impact edge, issues with in-plane loading may occur. The results show that the di�erence

between the two values is about 15 % for about half the �eld of view, closer to the free end. The

value extracted from Q11 is the closest to the quasi-static reference, showing the limitations of

the uniaxial stress assumption, as could have been expected from the heterogeneous nature of

mechanical �elds in the test. However, both approaches converge to a lower value of E towards

the impact end of the specimen. It is not clear why this is happening but it is thought that the

contact between the projectile and the specimen is not perfect and may lead to some through

thickness strain heterogeneities. In this case, the strains may be too high on the front side where

the measurements are performed but because the thickness of the specimen is small, the strains

tend to average out through-the-thickness at a certain distance from the impact zone, a kind of

St-Venant e�ect. This will need to be investigated in the future, through both �nite element

modelling and experimental improvement of the projectile to specimen contact. The same data

for the SIMX16 is shown in Fig. 16. The variations in Young's modulus are much larger than

for the HPV-X data and only the mean value over the �eld of view excluding the edges (shown

in grey box on the �gure) relate to the reference values. Clearly, the quality of the data is not

good enough for this approach. The next section �nally investigates the method presented in
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Section 3 to extract both E and ν from the special optimized Virtual Fields Method.

5.4.2 Parametric VFM approach

The experimental data are now processed with the special optimized Virtual Fields Method as

described in Section 3.2. A piecewise virtual mesh is used, with varying virtual elements m along

x1 and n along x2. The �eld of view used in the identi�cation discard 9 mm from the impact

edge and 2.2 mm from the free edge for the reasons detailed above. The virtual nodes of the

virtual mesh are all constrained to zero virtual displacements to �lter out the unknown stress

distributions at the boundaries of the �eld of view. Identi�cation is performed at each time t

when an image is recorded. The results reporting E and ν obtained from Q11 and Q12, which

are the quantities delivered by the VFM, for m = 10 and n = 2 are shown in Fig. 17. They

are rather nice even though the data are bad for the early and late stages of the test. This is

not surprising as strains are low at the beginning and at the end. This is illustrated by the ηij

parameters in Fig. 18. One can see high values at the beginning and end, re�ecting bad signal

to noise ratio then because of low strains. If one only keeps the data between 6 and 12 µs, then

the average E is 47.2 GPa and the average ν is 0.28, which are very close to the reference. A

legitimate question concerns the stability of the identi�cation with respect to the virtual mesh.

Figs. 19 and 20 answer this question. Stability is excellent, with a slight convergence e�ect when

the virtual mesh density is increased and a saturation after 8 x 2. If the density was increased

further. This is consistent with previous results on this [39]. Globally, the stability of the VFM

approach is good even though some oscillations in sti�ness parameters can be seen. Further work

is required to investigate this issue in more depth, as is detailed in the conclusion.

6 Conclusion

While celebrating the 100th anniversary of the seminal article by Bertram Hopkinson [17], this

paper presents a new paradigm in high strain rate testing which has the potential to remove the

need for impact force measurement in dynamic testing in the future. Apart from simplifying

the experimental set-up by removing the need for the long and bulky Hopkinson bars, the main

advantage of this new paradigm is to relax the stringent assumptions on which the standard

Split Hopkinson or Kolsky bars approaches rest. Indeed, the main idea is to use ultra-high speed
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imaging to record deformation maps as a function of time, using either speckle patterns and DIC

or grids with phase shifting. From these data, strain maps can be derived by spatial di�erentiation

and acceleration maps by double temporal di�erentiation. Using integral mechanical equilibrium,

it is therefore possible to balance internal stresses calculated from strains and constitutive law

with inertial forces obtained from the acceleration maps and the density. In this case, the

need for external load measurement is relieved and all the required information is contained in

the camera images, provided that the material density is known. The inertial e�ects, far from

being a nuisance as in the standard SHPB/Kolsky approach, become an advantage by providing

an imbedded distributed load cell. As a consequence of the above, the design space for test

con�gurations opens up dramatically and needs to be explored as widely as possible in order to

reach suitable new standard tests using this new paradigm. The target time for this is at least

10 years as this new design space is very large and test techniques will need to be adapted to

the di�erent classes of materials (brittle, ductile, soft, sti� etc.).

This paper has reached several important conclusions to advance the current topic.

• It is possible to reach su�cient deformation and acceleration levels with a purely inertial

impact test as that of Fig. 2, with projectile speeds of 20 to 30 m.s−1.

• There is enough information to extract the two sti�ness components of an isotropic material.

In fact, results have also shown that it was possible to use this test to identify the four in-

plane orthotropic sti�ness components of a composite (not reported here), so this simple

test does have some mileage.

• Probably the major conclusion from this work is that recent progress in the technology of

ultra-high speed cameras now enables collection of full-�eld deformation information of an

unprecedented quality. It is also thought that while applications of full-�eld measurements

at high strain rate develop, this market will grow, drawing in more technological develop-

ment leading to further improved cameras. The current authors are of the opinion that at

the horizon of about 5 years, ultra-high speed imaging will become nearly as common as

high speed imaging currently is.

• Finally, the quality of the identi�cation data is impressive at that level of strain rate, about

2000 s−1. The two elastic sti�ness components of a quasi-isotropic laminate have been
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retrieved successfully, emphasizing the previous point about camera progress.

Clearly, this work is seminal in nature and only scratches the surface of the problem as many

issues need to be addressed in the near and not so near future, a few of which are listed below.

• For the moment, the strain rate dependence of the sti�ness has not been included in the

identi�cation. This is currently under implementation and will have to be validated �rst

with numerical simulations. The �rst experimental investigation, also underway, concerns

the strain rate dependence of the in-plane shear modulus of composites.

• Clearly, the identi�cation of non-linear laws is the main objective for such a new paradigm

to be successful. The feasibility of this using the VFM has already been proved in [4] but

without inertia e�ects. In fact, non-linear laws present a somewhat easier situation as strain

levels are usually higher and data contents richer.

• It is essential to understand the importance of all test parameters, including the imaging,

data processing (grid pitch, smoothing, �eld of view etc.) on the identi�ed quantities. An

extension of the simulator developed in [46] will be used in the future to address this issue.

• The design space for test con�guration needs to be explored in more depth. The current

test is simple and was designed by intuitive thinking. There is a need for a more rational

approach of test design. The identi�cation simulator [46] mentioned above can be used for

test design optimization with an objective of minimal bias on the identi�ed parameters,

taking into account as many test parameters as needed to make it realistic. This is a long-

term task and a di�cult problem as the identi�cation chain is very long and involves very

many parameters.

• Finally, there is a need for better constitutive models for high strain rate behaviour of

materials. This has mainly been hindered by the poorer experimental evidence that could

be collected compared to quasi-static situations. It is hoped that by improving test data,

mechanics of materials researchers will be able to use this to develop better material mod-

els to take full-advantage of the extraordinary current and future capacities of numerical

simulation.

This is an exciting time for high strain rate testing.
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7 Supplementary material

• Video 1: Two components of the displacement �eld for the test with the Shimadzu HPV-X

camera (�le name: HPV-X_spec20_disp.avi)

• Video 2: Two components of the acceleration �eld for the test with the Shimadzu HPV-X

camera (�le name: HPV-X_spec20_accel.avi)

• Video 3: Three components of the strain �eld for the test with the Shimadzu HPV-X camera

(�le name: HPV-X_spec20_strain.avi)

• Video 4: Two components of the displacement �eld for the test with the SIMX16 camera

(�le name: SIM16_QI_disp.avi)

• Video 5: Two components of the acceleration �eld for the test with the SIMX16 camera

camera (�le name: SIM16_QI_accel.avi)

• Video 6: Three components of the strain �eld for the test with the SIMX16 camera camera

(�le name: SIM16_QI_strain.avi)

• Video 7: Strain rate in the x-direction for the test with the Shimadzu HPV-X camera (�le

name: HPV-X_spec20_strain_rate_x.avi)
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Figure 1: Schematic of a dynamic uniaxial test
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Figure 2: The schematic of impact model with straight projectile. Isotropic materials: ρ = 2.2 ×
103kg/m3, E = 47.5 GPa, ν = 0.307.
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Figure 3: Maps of full-�eld strain and acceleration �elds at 10 µs
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Figure 6: Experimental set-up for the inertial impact tests.
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(a) Average strain ε1 (b) Average acceleration a1

Figure 7: Average ε1 strain and a1 acceleration for both cameras.
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(a) U1 at 10 µs, HPV-X (b) U2 at 10 µs, HPV-X

(c) U1 at 8 µs, SIMX16 (d) U2 at 8 µs, SIMX16

Figure 8: Displacement maps in mm for both cameras at 8 and 10 µs.
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(a) a1 at 10 µs, HPV-X (b) a2 at 10 µs, HPV-X

(c) a1 at 8 µs, SIMX16 (d) a2 at 8 µs, SIMX16

Figure 9: Acceleration maps in m.s−2 for both cameras at 8 and 10 µs.
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(a) ε1 at 10 µs, HPV-X (b) ε2 at 10 µs, HPV-X (c) ε6 at 10 µs, HPV-X

(d) ε1 at 8 µs, SIMX16 (e) ε2 at 8 µs, SIMX16 (f) ε6 at 8 µs, SIMX16

Figure 10: Strain maps for both cameras at 8 and 10 µs.
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Figure 11: ε̇1 strain rate map at 6 µs for the HPV-X camera.
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Figure 12: Stress-strain curves for the SIMX16 test.
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(a) Full stress-strain curve

(b) Stress-strain curve without initial part and with linear �t

Figure 13: Stress-strain curves for the HPV-X test.
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(a) Uniaxial stress assumption

(b) No uniaxial stress assumption

Figure 14: Stress-strain curves at di�erent locations for the HPV-X test.
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Figure 15: Modulus obtained from stress-strain curves with and without uniaxial stress assumption,
HPV-X camera.

Figure 16: Modulus obtained from stress-strain curves with and without uniaxial stress assumption,
SIMX16 camera.
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Figure 17: Identi�cation results from the VFM, 10 x 2 virtual mesh, HPV-X camera.

Figure 18: ηij parameters for the VFM, 10 x 2 virtual mesh, HPV-X camera.
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Figure 19: Identi�ed E for the VFM, with several virtual mesh densities, HPV-X camera.

Figure 20: Identi�ed ν for the VFM, with several virtual mesh densities, HPV-X camera.
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Table 1: Details for the ABAQUS/EXPLICIT model
Mesh size 5× 10−4 m
Element type CPS4R*
Inter-frame time 1 µs
Contact type Hard contact
Impact speed 10 m.s−1

*: 4-node bilinear plane stress quadrilateral, reduced integration, hourglass control
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Table 2: Imaging and measurement performance information
Specialized Imaging SIMX16 Shimadzu HPV-X

Pixel array size 1280 x 960 400 x 250
Interframe time (µs) 1 0.2
Number of images 16 128
Pitch of the grid 0.2 mm 0.6 mm
Sampling (pixels/period) 6 5
Field of view (data) 32.4 x 24.0 mm 32.0 x 25.2 mm
Raw displacement resolution 10 % of grid pitch 0.15 % of grid pitch
Spatial smoothing Gaussian 16 x 16 data points Gaussian, 9 x 9 then 10 x 10 data points
Temporal smoothing 3rd order polynomial over 5 µs 3rd order polynomial over 5 µs
Strain resolution (µ strain) 700 30
Acceleration resolution (m.s−2) 5.105 2.104
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