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Abstract

The recent literature of finite eignestrains in nonlinear elastic solids is reviewed, and Eshelby’s in-
clusion problem at finite strains is revisited. The subtleties of the analysis of combinations of finite
eigenstrains for the example of combined finite radial, azimuthal, axial, and twist eigenstrains in a finite
circular cylindrical bar are discussed. The stress field of a spherical inclusion with uniform pure dilata-
tional eigenstrain in a radially-inhomogeneous spherical ball made of arbitrary incompressible isotropic
solids is analyzed. The same problem for a finite circular cylindrical bar is revisited. The stress and
deformation fields of an orthotropic incompressible solid circular cylinder with distributed eigentwists
are analyzed.

Keywords: Eigenstrain, Anelasticity, Nonlinear Elasticity, Inclusion, Geometric Mechanics, Material Man-
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1 Introduction

In general, only part of strain (we assume that some measure of strain is chosen, e.g., deformation gradient)
is directly related to stress through the constitutive equations. The remaining part is called eigenstrain.
Eigenstrain is a hybrid German-English term whose origin goes back to the pioneering paper of Hans Reissner
[Reissner, 1931] (Eigenspannung means proper or self strain). The term eigenstrain was popularized by Mura
[Kinoshita and Mura, 1971, Mura, 1982]. In the literature several other terms can be found that describe the
same concept; initial strain [Kondo, 1949], nuclei of strain [Mindlin and Cheng, 1950], transformation strain
[Eshelby, 1957], and inherent strain [Ueda et al., 1975] (see also [Jun and Korsunsky, 2010, Zhou et al.,
2013]). Inclusions and their stress fields were systematically studied in the setting of linear elasticity and
for infinite bodies by Eshelby [1957]. Eshelby showed that for an ellipsoidal inclusion that is embedded in
an infinite linear elastic medium and has uniform eigenstrains the stress field inside the inclusion is uniform.
This uniformity property does not hold for finite bodies, in general. For a spherical inclusion centered at a
finite ball Li et al. [2007] showed that, in general, stress inside the inclusion is not uniform.

Eshelby’s inclusion problem in nonlinear elasticity has been studied only fairly recently. The study of
inclusions has been overwhelmingly restricted to linear elasticity, with the exception of some two-dimensional
solutions in the case of harmonic solids [Ru and Schiavone, 1996, Ru et al., 2005, Kim and Schiavone, 2007,
2008, Kim et al., 2008]. The first three-dimensional investigation of the stress fields of inclusions in nonlinear
solids was the numerical study of Diani and Parks [2000]. In the case of a spherical inclusion with pure
dilatational eigenstrains in their finite element simulations they observed uniform hydrostatic stress inside
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the inclusion. This was later proved analytically for incompressible isotropic solids and a class of compressible
isotropic solids by Yavari and Goriely [2013]. For transversely isotropic and orthotropic solids Golgoon and
Yavari [2018b] proved some similar results. The first exact solutions for the stress fields of inclusions in
nonlinear elasticity were obtained in [Yavari and Goriely, 2013]. In that work a theory of distributed finite
eigenstrains in nonlinear solids was formulated. The idea is to construct a global natural configuration—
the material manifold—for a body with a distribution of finite eigenstrains. The natural configuration is
a Riemannian manifold with a metric that explicitly depends on the eigenstrain distribution (see Fig.1).
Yavari and Goriely [2015a] analyzed certain stress singularities induced by distributed eigenstrains. Yavari
and Goriely [2015b] analyzed finite cylindrical bars with distributed finite eigentwists. The stress fields of
finite eigenstrains in elastic wedges were studied in [Golgoon et al., 2016]. Toroidal inclusions with uniform
finite pure dilatational eigenstrains in solid tori were studied in [Golgoon and Yavari, 2017]. It was shown
that the stress field inside the inclusion is not uniform.

(a) Classical nonlinear elasticity (a) Geometric nonlinear anelasticity

ϕt
ϕt

ϕt(B)

B (B,G)
(S,g) (S,g)

Figure 1: (a) In classical nonlinear elasticity both the reference and deformed configurations are submanifolds of the Euclidean
ambient space (S,g). (b) In anelasticity the deformed configuration is still a submanifold of the Euclidean ambient space
while the reference configuration is an abstract Riemannian manifold. Anelasticity is encoded in the geometry of the material
manifold (B,G).

Suppose in a body B, a subset I ⊂ B has non-vanishing eigenstrains. This subset is called an inclusion
(or inclusions when I is not a connected set). Eigenstrains change the natural configuration of the body.
We model the natural configuration of the body by a Riemannian manifold (B,G), where G is the so-called
material metric. The distances of material points in the natural configuration are calculated using G. These
distances for a body with eigenstrains, in general, do not agree with the corresponding distances calculated
using the metric of the Euclidean ambient space. This discrepancy between the two geometries is the source
of residual stresses (see Fig.2). In the literature, eigenstrains have been used to model a large class of
anelasticity problems including swelling and cavitation [Pence and Tsai, 2005, 2006, 2007, Goriely et al.,
2010, Moulton and Goriely, 2011], bulk and surface growth [Amar and Goriely, 2005, Yavari, 2010, Sozio
and Yavari, 2017, 2019], thermal strains [Stojanovic et al., 1964, Ozakin and Yavari, 2010, Sadik and Yavari,
2015], and defects [Yavari and Goriely, 2012a,b,c, 2014, Sadik and Yavari, 2016, Golgoon and Yavari, 2018a].

This paper is organized as follows. In §2 we tersely review nonlinear elasticity and modeling anisotropy
at finite strains. In §3 we discuss a geometric theory of finite eigenstrains. We also discuss the subtleties
of analyzing combinations of eigenstrains. The problem of radially-symmetric distributions of finite pure
dilatational eigenstrains in a finite spherical ball made of a nonlinear incompressible elastic solid is revisited
in §4. We present a simple but significant generalization of the analysis of Yavari and Goriely [2013]; we
assume that the spherical ball is radially inhomogeneous. A similar problem for finite circular cylindrical bars
is revisited in §5. The analysis of Yavari and Goriely [2015b] is extended to orthotropic circular cylindrical
bars in §6. Conclusions are given in §7.
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(a) (b) (c)

Figure 2: (a) Part of a stress-feee 2D body is partitioned into a set of squares. (b) Imagine that each square is cut from the
body. Note that all the squares are already relaxed. In other words the squares in (b) can be put back together to reconstruct the
stress-free configuration (a). (c) Assume that each square is given a pure dilatational eigenstrain λ. Every square is relaxed
to another square, which is unique up to rigid body translations and rotations. The gray squares have λ > 1 while the orange
ones have λ < 1. The blue squares have no eigenstrain, i.e., λ = 1. The relaxed squares cannot be put back together without
elastic strains. In other words, this configuration is incompatible. The material metric G is defined such that the area of each
square in the set shown in (a) calculated using G is equal to its relaxed area shown in (c).

2 Anisotropic nonlinear elasticity

Kinematics. Motion in nonlinear elasticity and anelasticity is modeled by a time-dependent mapping
between a reference configuration (or natural configuration) and the ambient space. This is written as
ϕt : B → S, where (B,G) and (S,g) are the material and the ambient space Riemannian manifolds,
respectively [Marsden and Hughes, 1994] (see Fig.1). Using the material metric G one can measure distances
in a natural stress-free configuration. This metric explicitly depends on eigenstrains. In the ambient space
g is a fixed background metric.1

A line element at X ∈ B in the reference configuration is a vector on B, i.e., an element of the tangent
space TXB. The corresponding line element in the deformed configuration at x = ϕ(X) is an element of TxS.
The deformation gradient F maps the undeformed line element to its corresponding deformed line element,
i.e., F(X, t) = Tϕt(X) : TXB → Tϕt(X)S is the tangent map of ϕt. The transpose of F is denoted by FT,
and is defined as

FT(X, t) : Tϕt(X)S → TXB , 〈〈W,FTw〉〉G = 〈〈FW,w〉〉g, ∀W ∈ TXB, w ∈ Tϕt(X)S . (2.1)

It has components, (FT)Aa = GABF bB gab. The right Cauchy-Green deformation tensor is another measure
of strain and is defined as C = FTF : TXB → TXB, which has components CAB = F aMF

b
B gabG

AM . Note
that C[ is the pull-back of the ambient space metric by ϕt, i.e., C[ = ϕ∗tg, where [ is the flat operator. In
components, CAB = F aAF

b
B gab.

Balance laws. The balance of linear momentum in spatial form reads

divg σ + ρb = ρa, (2.2)

where σ is the Cauchy stress, and ρ, b, and a are the mass density, body force, and acceleration, respectively.
The balance of angular momentum is equivalent to symmetry of the Cauchy stress.

Incompressibility. The Jacobian of deformation J relates the deformed and undeformed Riemannian
volume elements dv(x,g) = JdV (X,G), and is defined as

J =

√
det g

det G
det F. (2.3)

1The metric g can be time dependent for some problems of physical interest [Arroyo and DeSimone, 2009, Yavari et al.,
2016].
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Constitutive equations. The energy function of an inhomogeneous anisotropic hyperelastic material at
a material point X has the following form

W = Ŵ (X,C[,G, ζ1, . . . , ζn) , (2.4)

where ζi, i = 1, . . . , n are structural tensors that characterize the material symmetry group at the point X
[Spencer, 1971, Boehler, 1979, Spencer, 1982, Liu et al., 1982, Zheng and Spencer, 1993, Lu and Papadopou-
los, 2000]. Using structural tensors makes the energy function an isotropic function of its arguments. Hilbert’s
theorem tells us that for any finite collection of tensors, there exist a finite number of isotropic invariants
forming a basis—an integrity basis—for the space of isotropic invariants of the collection of tensors. There-
fore, if Ij , j = 1, . . . ,m, form an integrity basis for the set of tensors in (2.4), one has W = W (X, I1, ..., Im).
Let us define

Wj =
∂W

∂Ij
, j = 1, ...,m . (2.5)

Isotropic solids. For isotropic solids, the energy function has the form W = W (X, I1, I2, I3), where
I1 = tr C, I2 = det C tr C−1, and I3 = det C are the principal invariants of the right (or left) Cauchy-Green
deformation tensor. The Cauchy stress for compressible and incompressible isotropic solids has the following
representations

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3)gab − I3W2 c
ab
]
,

σab = −pgab + 2
(
W1b

ab −W2 c
ab
)
,

(2.6)

where
bab = F aAF

b
BG

AB , cab = (F−1)Mm(F−1)NnGMNg
amgbn , (2.7)

and p is the Lagrange multiplier associated with the incompressibility constraint J =
√
I3 = 1.

Transversely isotropic solids. Let us assume that the unit vector N(X) identifies the material preferred
direction at a point X in the reference configuration. The energy function has the form W = W (X,G,C[,A),
where A = N ⊗N is a structural tensor that represents the transverse isotropy of the material symmetry
group [Doyle and Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000]. The energy function W
depends on the following five independent invariants

I1 = tr C , I2 = det C tr C−1 , I3 = det C , I4 = N ·C ·N , I5 = N ·C2 ·N . (2.8)

In components they read

I1 = CAA , I2 = det(CAB)(C−1)DD , I3 = det(CAB) , I4 = NANBCAB , I5 = NANBCBDC
D
A . (2.9)

For a compressible transversely isotropic solid the Cauchy stress tensor has the following representation
[Golgoon and Yavari, 2018b, 2021]

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3)gab − I3W2 c
ab +W4 n

anb +W5(nabbcnc + nbbacnc)
]
, (2.10)

where na = F aAN
A. For incompressible transversely isotropic solids

σab = −pgab + 2
[
W1b

ab −W2 c
ab +W4 n

anb +W5(nabbcndgcd + nbbacndgcd)
]
. (2.11)

Orthotropic solids. For an orthotropic material three G-orthonormal vectors N1(X), N2(X), and N3(X)
specify the orthotropic axes in the reference configuration at a point X. A choice of structural tensors is
A1 = N1 ⊗ N1, A2 = N2 ⊗ N2, and A3 = N3 ⊗ N3. However, only two of the structural tensors are
independent because A1 + A2 + A3 = I. The energy function has the form W = W (X,G,C[,A1,A2)
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[Doyle and Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000]. The energy function W depends on
the following seven independent invariants

I1 = tr C , I2 = det C tr C−1 , I3 = det C , I4 = N1 ·C ·N1 ,

I5 = N1 ·C2 ·N1 , I6 = N2 ·C ·N2 , I7 = N2 ·C2 ·N2 .
(2.12)

The Cauchy stress tensor has the following representation for compressible orthotropic solids [Golgoon and
Yavari, 2018b, 2021]

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3)gab − I3W2 c
ab

+W4 n
a
1n

b
1 +W5

(
na1b

bcnd1gcd + nb1b
acnd1gcd

)
+W6 n

a
2n

b
2 +W7

(
na2b

bcnd2gcd + nb2b
acnd2gcd

) ]
,

(2.13)

where na1 = F aAN
A
1 , and na2 = F aAN

A
2 . In the case of incompressible solids

σab =− pgab + 2
[
W1b

ab − I3W2 c
ab +W4 n

a
1n

b
1 +W5

(
na1b

bcnd1 gcd + nb1b
acnd1 gcd

)
+W6 n

a
2n

b
2 +W7

(
na2b

bcnd2 gcd + nb2b
acnd2 gcd

) ]
.

(2.14)

3 A geometric theory of finite eigenstrains

3.1 The material manifold of an elastic body with distributed finite eigenstrains

The stress-free body in the absence of eigenstrains is denoted by B, which is a subset of the Euclidean space
and has metric G0. Let us consider a coordinate chart {XA

0 } for the Euclidean space. In the absence of
eigenstrains the natural length of a line element dXo is calculated as

dS2
o = 〈〈dX0, dX0〉〉G0

= G0ABdX
A
0 dX

B
0 , (3.1)

where 〈〈, 〉〉G0
is the inner product induced by G0. The same line element with eigenstrain if allowed to

relax in the Euclidean space would be relaxed to another line element dX, which is unique up to rigid body
translations and rotations. Eigenstrain can be defined as the relaxation map K such that dX = KdXo. Let
us describe the relaxed line element using another coordinate chart {Xα} for the Euclidean space. Thus,
dXα = Kα

AdX
A
o . The length of the relaxed line element is calculated as

dS2 = 〈〈dX, dX〉〉G0
= G0αβdX

αdXβ = (Kα
AK

β
BG0αβ) dXA

o dX
B
o = 〈〈dX0, dX0〉〉K∗G0

, (3.2)

where G = K∗G0 is the material metric.2 Note that Fp of finite plasticity is a special case of K [Sadik and
Yavari, 2017]. Note also that, in general, K is incompatible, i.e., it is not the tangent of any map from B to
itself. Incompatibility of K is the source of residual stresses (see Fig.2).

Let us assume that the body is made of an isotropic material in its relaxed state. The relaxed configuration
is locally described by the metric G. Therefore, W = W (X, I1, I2, I3), where the invariants are calculated
using the metric G. Similarly, for transversely isotropic and orthotropic solids all the invariants are calculated
using the metric G.

3.2 Combinations of radial, azimuthal, axial, and torsional eigenstrains in a
circular cylindrical bar

Let us consider a circular cylindrical bar with radius Ro and length L in its undeformed configuration. For
this bar we consider the radial, azimuthal, and axial eigentrains eωR(R), eωΘ(R), and eωZ(R) in the cylindrical
coordinates (R,Θ, Z). We also consider an eigentwist per unit length ψ(R). We next show that unlike the

2Note that there is a typo in Eq.(2.7) in [Yavari and Goriely, 2015b]. However, none of the calculations were affected by
this typo.
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problems that were considered in [Yavari and Goriely, 2013, 2015b] having the four functions ωR(R), ωΘ(R),
ωZ(R), and ψ(R) does not specify the material metric unambiguously. Let us denote the radial, azimuthal,
axial, and twist eigenstrains by K1,K2,K3, and K4 respectively, which have the following representations
in cylindrical coordinates:

K1 =

eωR(R) 0 0
0 1 0
0 0 1

 , K2 =

1 0 0
0 eωΘ(R) 0
0 0 1

 , K3 =

1 0 0
0 1 0
0 0 eωZ(R)

 , K4 =

1 0 0
0 1 ψ(R)
0 0 1

 . (3.3)

Note that
[K1,K2] = [K2,K3] = [K3,K1] = 0 , (3.4)

where [A,B] = AB−BA is the commutator of the matrices A and B. Eq.(3.4) implies that in the absence of
eigentwists the material metric is defined unambiguously as K = Kτ(1)Kτ(2)Kτ(3), where {τ(1), τ(2), τ(3)}
is any of the six permutations of {1, 2, 3}. Note that

[K1,K4] = 0, [K2,K4] =

0 0 0
0 eωΘ(R) − 1 ψ(R)(eωΘ(R) − 2)
0 0 0

 , [K3,K4] =

0 0 0
0 0 −ψ(R)
0 0 eωZ(R) − 1

 . (3.5)

The twenty four permutations of {1, 2, 3, 4} give four different total eigenstrain matrices. However, we
are interested in the eigenstrains K1K2K3 and K4. The two total eigenstrains Ki = K1K2K3K4 and
Kii = K4K1K2K3 have the following corresponding material metrics

Gi =

e2ωR(R) 0 0
0 e2ωΘ(R)R2 e2ωΘ(R)R2ψ(R)
0 e2ωΘ(R)R2ψ(R) e2ωZ(R) + e2ωΘ(R)R2ψ(R)2

 ,
Gii =

e2ωR(R) 0 0
0 e2ωΘ(R)R2 eωΘ(R)+ωZ(R)R2ψ(R)
0 eωΘ(R)+ωZ(R)R2ψ(R) e2ωZ(R)(1 +R2ψ(R)2)

 .
(3.6)

Note that Gi = Gii if and only if ωΘ(R) = ωZ(R). In the special case of ωR(R) = ωΘ(R) = ωZ(R) = ω(R),
the material metric reads

G = e2ω(R)

1 0 0
0 R2 R2ψ(R)
0 R2ψ(R) 1 +R2ψ(R)2

 . (3.7)

4 Radially-symmetric eigenstrains in a finite spherical ball

The problem of calculating the deformation and stress fields of a finite spherical ball with a radially-symmetric
distribution of finite eigenstrains was solved by Yavari and Goriely [2013] for isotropic solids and by Golgoon
and Yavari [2018b] for transversely isotropic solids. In [Goodbrake et al., 2020] it was shown that the
eigenstrain distributions considered in [Yavari and Goriely, 2013] are the only universal eigenstrains consistent
with the universal deformations of incompressible isotropic spherical shells [Ericksen, 1954]. In this section
we revisit Yavari and Goriely [2013]’s analysis for pure dilatational eigenstrains and extend their analysis to
radially inhomogeneous spherical balls.

Let us consider an inhomogeneous finite ball of radius Ro made of an incompressible isotropic nonlinear
elastic solid at R with an energy function W = W (R, I1, I2).3 Also consider a radially-symmetric distribution
of pure dilatational eigenstrains. We assume that in the absence of eigenstrains the body is stress free. In
the spherical coordinates (R,Θ,Φ) a line element dS2

0 = dR2 +R2dΘ2 +R2 sin2 ΘdΦ2 in the initial stress-free

3Our analysis can be easily extended to a ball made of a transversely isotropic solid with radial material preferred direction
[Golgoon and Yavari, 2018b]. Also note that radial deformations are still universal for radially inhomogeneous isotropic and
transversely isotropic spherical balls [Golgoon and Yavari, 2021].
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configuration is mapped to the line element dS2 = e2ω(R)dS2
0 , for some function ω(R). This means that in

the presence of eigenstrains the material metric has the following representation

G(X) = G(R) = e2ω(R)

1 0 0
0 R2 0
0 0 R2 sin2 Θ

 . (4.1)

Note that the material metric is independent of the constitutive equations of the ball. It is natural to use
the spherical coordinates (r, θ, φ) for the Euclidean ambient space with the metric

g(x) =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 . (4.2)

Let us consider deformations of the form (r, θ, φ) = (r(R),Θ,Φ). Thus, F = diag(r′(R), 1, 1), and hence
det F = r′(R). For an incompressible solid J = 1, where

J =

√
det g

det G
det F =

r2(R)r′(R)

R2e3ω(R)
. (4.3)

Therefore, assuming that r(0) = 0, one obtains

r(R) =

[∫ R

0

3ξ2e3ω(ξ)dξ

] 1
3

. (4.4)

Using the representation (2.6) the non-zero components of the Cauchy stress are

σrr(R) = −p(R) + 2W1(R)
e4ω(R)R4

r4(R)
+ 4W2(R)

e2ω(R)R2

r2(R)
,

σθθ(R) = − p(R)

r2(R)
+ 2W1(R)

1

e2ω(R)R2
+ 2W2(R)

[
e2ω(R)R2

r4(R)
+

r2(R)

e4ω(R)R4

]
,

σφφ(R) =
1

sin2 Θ
σθθ ,

(4.5)

where

W1(R) =
∂W (R, I1, I2)

∂I1
, W2(R) =

∂W (R, I1, I2)

∂I2
, (4.6)

and

I1 = I1(R) =
R4e4ω(R)

r4(R)
+

2r2(R)e−2ω(R)

R2
, I2 = I2(R) =

e−4ω(R)
(
r6(R) + 2R6e6ω(R)

)
R4r2(R)

. (4.7)

In the absence of body forces, the only non-trivial equilibrium equation is

σrr,r +
2

r
σrr − rσθθ − r sin2 θ σφφ =

1

r′(R)
σrr,R +

2

r
σrr − 2rσθθ = 0. (4.8)

Or
d σrr(R)

dR
=

4W1(R)

R

[
eω(R)R

r(R)
− e7ω(R)R7

r7(R)

]
+

4W2(R)

R

[
r(R)

Reω(R)
− e5ω(R)R5

r5(R)

]
. (4.9)

Therefore

σrr(R) = σrr(Ro)−
∫ Ro

R

{
4W1(ξ)

ξ

[
eω(ξ)ξ

r(ξ)
− e7ω(ξ)ξ7

r7(ξ)

]
+

4W2(ξ)

ξ

[
r(ξ)

ξeω(ξ)
− e5ω(ξ)ξ5

r5(ξ)

]}
dξ . (4.10)
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(B,G)

ϕt

I

Figure 3: A spherical inclusion I with uniform pure dilatational finite eigenstrain centered at a spherical ball. Left: The
material manifold is a Riemannian manifold whose metric has a jump discontinuity on the boundary of the inclusion. Right:
The deformed configuration.

A spherical inclusion in a finite ball. Let us consider an inclusion of radius Ri < Ro with pure
dilatational eigenstrain ω0 (see Fig.3). This corresponds to the following eigenstrain distribution in the ball

ω(R) =

{
ω0 0 ≤ R ≤ Ri,
0 Ri < R ≤ Ro.

(4.11)

The incompressibility constraint fully determines the kinematics of deformation as

r(R) =

{
eω0R 0 ≤ R ≤ Ri,[
R3 +

(
e3ω0 − 1

)
R3
i

] 1
3 Ri < R ≤ Ro.

(4.12)

For R < Ri, from (4.12) and (4.9) one can easily see that d σrr(R)
dR = 0. Therefore, σrr(R) = σi, and

σθθ(R) = σrr(R)/r2(R) = σi/r
2(R). Denoting the physical components of the Cauchy stress by σ̂rr, σ̂θθ,

and σ̂φφ, it is seen that inside the inclusion σ̂rr = σ̂θθ = σ̂φφ = σi. In other words, inside the inclusion
stress is homogeneous and hydrostatic. This is a nonlinear analogue of Eshelby’s celebrated result and a
generalization of [Yavari and Goriely, 2013, Proposition 3.1] to radially-inhomogeneous spherical balls. The
value of σi is calculated using the continuity of traction on the boundary of the inclusion and is written as

σi = σrr(Ri) = σrr(Ro)−
∫ Ro

Ri

{
4W1(ξ)

ξ

[
ξ

r(ξ)
− ξ7

r7(ξ)

]
+

4W2(ξ)

ξ

[
r(ξ)

ξ
− ξ5

r5(ξ)

]}
dξ . (4.13)

Note that the constant σi explicitly depends on the energy function W (R, I1, I2).
For a homogeneous neo-Hookean spherical ball (α = µ/2, β = 0) the uniform stress inside the inclusion

is calculated as

σi =
µ

2

[
e−4ω0 + 4e−ω0 − 5R3

o + 4(e3ω0 − 1)R3
i

[R3
o + (e3ω0 − 1)R3

i ]
4
3

Ro

]
. (4.14)

Assuming that σrr(Ro) = 0, outside the inclusion (Ri < R < Ro) the radial stress has the following
distribution

σrr(R) =
2µR3

i

(
e3ω0 − 1

)
R

[R3 +R3
i (e3ω0 − 1)]

4
3

+
5µR4

2 [R3 +R3
i (e3ω0 − 1)]

4
3

− µRo
[
4R3

i

(
e3ω0 − 1

)
+ 5R3

o

]
2 [R3

i (e3ω0 − 1) +R3
o]

4
3

. (4.15)

Fig.4 shows the distribution of radial stress for four different values of eigenstrain for Ri

Ro
= 0.2 (solid

curves). The corresponding solutions using linear elasticity are also shown (dashed curves). The classical
linear solution is

σrrlin(R) =

σ
lin
i = −4µω0

[
1− R3

i

R3
o

]
0 ≤ R ≤ Ri,

−4µω0

[
R3

i

R3 − R3
i

R3
o

]
Ri < R ≤ Ro.

(4.16)
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σrr/μ

R/R
o

linear solution

nonlinear solution

ω
0
 = 0.1

ω
0
 = -0.1

ω
0
 = 0.2

ω
0
 = -0.2

Figure 4: Radial stress distribution inside and outside a spherical inclusion. It is assumed that Ri
Ro

= 0.2 and the ball is made

of a homogeneous incompressible neo-Hookean solid. Four different values of ω0 are considered. The dotted curves are the
linear elasticity solutions. It is seen that for ω0 > 0 the linear elasticity solution overestimates the compressive stress inside
the inclusion, while for ω0 < 0 the linear elasticity solution underestimates the tensile stress inside the inclusion. Note that
unlike the linear solution the nonlinear solution is not symmetric with respect to change in sign of ω0.

5 Radially-symmetric eigenstrains in a finite circular cylindrical
bar

In this section we revisit another example that was analyzed by Yavari and Goriely [2013] and relax the
homogeneity assumption. Let us consider a cylindrical bar with radius Ro and length L in its initial stress-
free configuration in the absence of eigenstrains. We assume that this solid cylinder is radially inhomogeneous
and is made of an arbitrary incompressible isotropic solid at R with energy function W = W (R, I1, I2). Now
if the cylinder has a radially-symmetric distribution of finite eigenstrains the problem is to calculate the
induced stress field. We assume that radial and circumferential eigenstrains are equal (the more general
case was discussed in [Yavari and Goriely, 2013]) but the axial eigenstrain can be different. In cylindrical
coordinates (R,Θ, Z) the material metric has the following representation

G = G(R) =

e2ω(R) 0 0
0 R2e2ω(R) 0
0 0 e2ωZ(R)

 , (5.1)

where ω(R), and ωZ(R) are some given functions (note that the two functions ω(R) and ωZ(R) unambigu-
ously specify the metric as was discussed in §3.2). The natural coordinates to describe the deformed configu-
ration are the cylindrical coordinates (r, θ, z). We assume deformations of the form (r, θ, z) = (r(R),Θ, λZ),
where λ is a constant axial stretch. Deformation gradient reads F = diag(r′(R), 1, λ), and hence det F =
λr′(R). The incompressibility constraint is written as

J =

√
det g

det G
det F =

λr(R)

Re2ω(R)+ωZ(R)
r′(R) = 1 . (5.2)
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Assuming that r(0) = 0 this gives

r(R) =
1√
λ

[∫ R

0

2ξe2ω(ξ)+ωZ(ξ)dξ

] 1
2

. (5.3)

Using the representation (2.6) the non-zero components of the Cauchy stress are

σrr(R) =− p(R) + 2W1(R)
e2ω(R)R2

λ2e−2ωZ(R) r2(R)
+ 2W2(R)

[
1

λ2e−2ωZ(R)
+

e2ω(R)R2

λ2e−2ωZ(R) r2(R)

]
,

σθθ(R) =− p(R)

r2(R)
+ 2W1(R)

1

e2ω(R)R2
+ 2W2(R)

[
1

λ2e−2ωZ(R) r2(R)
+
λ2e−2ωZ(R)

e2ω(R)R2

]
,

σzz(R) =− p(R) + 2W1(R)λ2e−2ωZ(R) + 2W2(R)

[
e2ω(R)R2

r2(R)
+
λ2e−2ωZ(R) r2(R)

e2ω(R)R2

]
,

(5.4)

where

W1(R) =
∂W (R, I1, I2)

∂I1
, W2(R) =

∂W (R, I1, I2)

∂I2
, (5.5)

and

I1 = I1(R) = λ2e−2ωZ (R) +
r2(R)e−2ω(R)

R2
+
R2e2ω(R)+2ωZ (R)

λ2r2(R)
,

I2 = I2(R) =
e2ωZ(R)

λ2
+
R2e2ω(R)

r2(R)
+
λ2r2(R)e−2(ω(R)+ωZ(R))

R2
.

(5.6)

The only non-trivial equilibrium equation reads

σrr,r +
1

r
σrr − rσθθ = 0. (5.7)

Or
d

dR
σrr(R) =

2

R

[
W1(R)eωZ(R)

λ
+
W2(R)λ

eωZ(R)

] [
1− e2ωZ(R)λ−2 e

4ω(R)R4

r4(R)

]
. (5.8)

Thus

σrr(R) = σrr(Ro)−
∫ Ro

R

2

ξ

[
W1(ξ)eωZ(ξ)

λ
+
W2(ξ)λ

eωZ(ξ)

] [
1− e2ωZ(ξ)λ−2 e

4ω(ξ)ξ4

r4(ξ)

]
dξ . (5.9)

This means that

−p(R) = σrr(Ro)− 2W1(R)
e2ω(R)R2

λ2e−2ωZ(R) r2(R)
− 2W2(R)

[
1

λ2e−2ωZ(R)
+

e2ω(R)R2

λ2e−2ωZ(R) r2(R)

]
−
∫ Ro

R

2

ξ

[
W1(ξ)eωZ(ξ)

λ
+
W2(ξ)λ

eωZ(ξ)

] [
1− e2ωZ(ξ)λ−2 e

4ω(ξ)ξ4

r4(ξ)

]
dξ .

(5.10)

Therefore

σzz(R) = σrr(Ro) + 2W1(R)λ2e−2ωZ(R) + 2W2(R)

[
e2ω(R)R2

r2(R)
+
λ2e−2ωZ(R) r2(R)

e2ω(R)R2

]
− 2W1(R)

e2ω(R)R2

λ2e−2ωZ(R) r2(R)
− 2W2(R)

[
1

λ2e−2ωZ(R)
+

e2ω(R)R2

λ2e−2ωZ(R) r2(R)

]
−
∫ Ro

R

2

ξ

[
W1(ξ)eωZ(ξ)

λ
+
W2(ξ)λ

eωZ(ξ)

] [
1− e2ωZ(ξ)λ−2 e

4ω(ξ)ξ4

r4(ξ)

]
dξ .

(5.11)
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A cylindrical inclusion in a finite cylindrical bar. Let us consider an inclusion with radius Ri < Ro
such that

ω(R) =

{
ω1 0 ≤ R < Ri

0 Ri < R ≤ Ro
, ωZ(R) =

{
ω2 0 ≤ R < Ri

0 Ri < R ≤ Ro
. (5.12)

Therefore

r(R) =

{
1√
λ
e

1
2 (2ω1+ω2)R 0 ≤ R ≤ Ri,

1√
λ

[
R2 +

(
e2ω1+ω2 − 1

)
R2
i

] 1
2 Ri < R ≤ Ro.

(5.13)

For R < Ri, from (5.13) and (5.8) one can easily see that d
dRσ

rr(R) = 0, and hence σrr(R) = σi, where4

σi = σrr(Ro)−
∫ Ro

Ri

2

ξ

[
W1(ξ)λ−1 +W2(ξ)λ

] [
1− λ−2 ξ4

r4(ξ)

]
dξ . (5.15)

This also implies that inside the inclusion σrr(R) = r2σθθ(R), and thus the physical component σ̂θθ(R) = σi.
From (5.4)1 one can see that inside the inclusion p(R) is not uniform. The axial stress reads

σzz(R) = σi + 2W1(R)(λ2e−2ω2 − λ−1eω2) + 2W2(R)(λe−ω2 − λ−2e2ω2) . (5.16)

It is seen that the axial stress is not uniform inside the inclusion unless the inclusion is homogeneous. For
R > Ri:

σzz(R) = σrr(Ro) + 2W1(R)

[
λ2 − R2

λ2 r2(R)

]
+ 2W2(R)

[
R2

r2(R)
+
λ2 r2(R)

R2
− 1

λ2
− R2

λ2 r2(R)

]
−
∫ Ro

R

2

ξ

[
W1(ξ)λ−1 +W2(ξ)λ

] [
1− λ−2 ξ4

r4(ξ)

]
dξ .

(5.17)

Therefore, stress inside the inclusion is not homogeneous unless the inclusion is homogeneous. Even in that
case stress is not necessarily hydrostatic. This is a generalization of [Yavari and Goriely, 2013, Proposition 3.5]
to radially-inhomogeneous circular cylindrical bars.

The axial force F needed to maintain the deformation is calculated as

F =

∫ ro

0

σzz(r) 2πr dr = 2π

∫ Ro

0

σzz(R) r(R)r′(R) dR =
2π

λ

∫ Ro

0

Re2ω(R)+ωZ(R)σzz(R) dR. (5.18)

Suppose that there is no axial force, i.e, F = 0. Thus∫ Ro

0

Re2ω(R)+ωZ(R)σzz(R) dR = e2ω1+ω2

∫ Ri

0

Rσzz(R) dR+

∫ Ro

Ri

Rσzz(R) dR = 0 . (5.19)

For a homogeneous neo-Hookean solid (α = µ/2, β = 0) and for zero axial eigenstrain ω2 = 0 this gives

λ3 = λ3(ω1, c0) = eω1

coshω1 −
[
1− 2c0 + c0 ln c0 + c0 ln 1+(e2ω1−1)c0

e2ω1c0

]
sinhω1

1 + 2eω1c0 sinhω1
, (5.20)

where c0 = R2
i /R

2
o. Note that λ3(0, c0) = 1, and it can be shown that λ3 is a strictly increasing function of

ω1 for ω1 > 0 and is strictly decreasing for ω1 < 0. Therefore, λ(ω1, c0) > 1 for ω1 6= 0.

4In the case of a homogeneous neo-Hookean solid

σi =
µ

2λ

[
e−2ω1 −

R2
o

R2
o + (e2ω1 − 1)R2

i

+ ln
R2

i

R2
o

+ ln
R2

o + (e2ω1 − 1)R2
i

e2ω1R2
i

]
. (5.14)
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6 Radially-symmetric eigentwists in an orthotropic circular cylin-
drical bar

In this section we extend Yavari and Goriely [2015b]’s analysis to orthotropic solids. Let us consider a
circular cylindrical bar that has initial length L and radius Ro and is made of an incompressible orthotropic
material with an energy function W = W (R, I1, I2, I4, I5, I6, I7). We also assume that the material preferred

directions are radial, azimuthal, and axial, i.e., N1 = R̂, N2 = Ẑ, and N3 = Θ̂, where R̂, Ẑ, and Θ̂ are the
unit vectors in the radial, longitudinal, and circumferential directions, respectively. We assume an eigentwist
distribution ψ(R). In cylindrical coordinates the material metric has the following representation

G(R) =

1 0 0
0 R2 ψ(R)R2

0 ψ(R)R2 1 + ψ2(R)R2

 . (6.1)

Therefore

N1 = ER =
∂

∂R
,

N2 =
1√

1 + ψ2(R)R2
EZ =

1√
1 + ψ2(R)R2

∂

∂Z
,

N3 =
1

R
EΘ =

1

R

∂

∂Θ
.

(6.2)

In the ambient space the cylindrical coordinates (r, θ, z) are used and metric has the representation (4.2).
We consider deformations of the form:

(r, θ, z) = (r(R),Θ + τZ, λZ) , (6.3)

where τ and λ are some unknown constants to be determined. The deformation gradient reads

F =

r′(R) 0 0
0 1 τ
0 0 λ

 . (6.4)

The incompressibility condition is written as

J =

√
det g

det G
det F =

λr(R)r′(R)

R
= 1. (6.5)

Assuming that r(0) = 0, we have r(R) = R√
λ

. The principal invariants read

I1(R) =
2

λ
+ λ2 +

R2

λ
(τ − ψ(R))2 , I2(R) = 2λ+

1

λ2
+
R2

λ2
(τ − ψ(R))2 ,

I4(R) =
1

λ
, I5(R) =

1

λ2
, I6(R) =

λ3 +R2τ2

λ[1 +R2ψ2(R)]
,

I7(R) =
R2τψ(R)

[
R2τψ(R)− 2

(
λ3 +R2τ2

)]
+
(
λ3 +R2τ2

)2
+R2τ2

λ2[1 +R2ψ2(R)]
.

(6.6)
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From (2.14) the Cauchy stress has the following non-zero components

σrr(R) = −p(R) +
2W1(R)

λ
+ 2

[
λ+

1

λ2
+
R2

λ2
(τ − ψ(R))2

]
W2(R) +

2W4(R)

λ
+

4W5(R)

λ2
,

σθθ(R) = −λp(R)

R2
+ 2

[
1

R2
+ (τ − ψ(R))2

]
W1(R) +

2

λ

[
λ3 + 1

R2
+ (τ − ψ(R))2

]
W2(R) +

2τ2

1 +R2ψ2(R)
W6(R)

+
4τ

λ

τ
(
1 + λ3 +R2τ2

)
+R2τψ2(R)− ψ(R)

(
λ3 + 2R2τ2

)
1 +R2ψ2(R)

W7(R) ,

σzz(R) = −p(R) + 2λ2W1(R) + 4λW2(R) +
2λ2

1 +R2ψ2(R)
W6(R) + 4λ

λ3 +R2τ2 −R2τψ(R)

1 +R2ψ2(R)
W7(R) ,

σθz(R) = 2λ(τ − ψ(R))W1(R) + 2(τ − ψ(R))W2(R) +
2λτ

1 +R2ψ2(R)
W6(R)

+ 2

[
τ +

2τ
(
λ3 +R2τ2

)
− ψ(R)

(
λ3 + 3R2τ2

)
1 +R2ψ2(R)

]
W7(R) .

(6.7)
The radial equilibrium equation (5.7) is simplified to read

dσrr

dR
=

2R(τ − ψ(R))2

λ
W1(R)− 2

λR
W4(R)− 4

λ2R
W5(R) +

2Rτ2

λ(1 +R2ψ2(R))
W6(R)

+
4Rτ

λ2

τ
(
1 + λ3 +R2τ2

)
− ψ(R)

(
λ3 + 2R2τ2

)
+R2τψ2(R)

1 +R2ψ2(R)
W7(R) .

(6.8)

Assuming that the cylindrical boundary of the bar is traction free, one obtains

σrr(R) =

∫ Ro

R

{
− 2ξ(τ − ψ(ξ))2

λ
W1(R) +

2

λξ
W4(R) +

4

λ2ξ
W5(R)− 2ξτ2

λ(1 + ξ2ψ2(ξ))
W6(R)

− 4ξτ

λ2

τ
(
1 + λ3 + ξ2τ2

)
− ψ(ξ)

(
λ3 + 2ξ2τ2

)
+ ξ2τψ2(ξ)

1 + ξ2ψ2(ξ)
W7(R)

}
dξ .

(6.9)

Thus, from (6.7)1, one obtains

−p(R) = −2W1(R)

λ
− 2

[
λ+

1

λ2
− R2

λ2
(τ − ψ(R))2

]
W2(R)− 2W4(R)

λ
− 4W5(R)

λ2

+

∫ Ro

R

{
− 2ξ(τ − ψ(ξ))2

λ
W1(R) +

2

λξ
W4(R) +

4

λ2ξ
W5(R)− 2ξτ2

λ(1 + ξ2ψ2(ξ))
W6(R)

− 4ξτ

λ2

τ
(
1 + λ3 + ξ2τ2

)
− ψ(ξ)

(
λ3 + 2ξ2τ2

)
+ ξ2τψ2(ξ)

1 + ξ2ψ2(ξ)
W7(R)

}
dξ .

(6.10)

Therefore, the axial stress is calculated as

σzz(R) = 2

(
λ2 − 1

λ

)
W1(R) + 2

[
λ− 1

λ2
+
R2

λ2
(τ − ψ(R))2

]
W2(R)− 2W4(R)

λ
− 4W5(R)

λ2

+
2λ2

1 +R2ψ2(R)
W6(R) + 4λ

λ3 +R2τ2 −R2τψ(R)

1 +R2ψ2(R)
W7(R)

+

∫ Ro

R

{
− 2ξ(τ − ψ(ξ))2

λ
W1 +

2

λξ
W4(R) +

4

λ2ξ
W5(R)− 2ξτ2

λ(1 + ξ2ψ2(ξ))
W6(R)

− 4ξτ

λ2

τ
(
1 + λ3 + ξ2τ2

)
− ψ(ξ)

(
λ3 + 2ξ2τ2

)
+ ξ2τψ2(ξ)

1 + ξ2ψ2(ξ)
W7(R)

}
dξ .

(6.11)
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The axial force and torque at the two ends of the bar Z = 0, L are calculated as

F = 2π

∫ ro

0

σzzdr =
2π

λ

∫ Ro

0

σzz(R)RdR, M = 2π

∫ ro

0

σ̂θzr2dr =
2π

λ2

∫ Ro

0

σθz(R)R3dR , (6.12)

where σ̂θz = rσθz is the physical θz component of the Cauchy stress. Assuming that there are no applied
force and torque at the ends of the bar one obtains the following two nonlinear algebraic equations for (λ, τ):∫ Ro

0

σzz(R)RdR = 0 ,

∫ Ro

0

σθz(R)R3dR = 0 . (6.13)

7 Conclusions

The nonlinear mechanics of solids with distributed finite eigenstrains was revisited. In our geometric for-
mulation the classical reference configuration of nonlinear elasticity is replaced by a Riemannian manifold
whose metric explicitly depends on the distribution of eigenetrains. The calculation of the stress field of a
spherical inclusion with pure dilatational eigenstrain centered at a finite spherical ball was revisited. The
analysis of Yavari and Goriely [2013] was extended to radially-inhomogeneous spherical balls. It was shown
that even for this more general case stress is uniform and hydrostatic inside the inclusion. A similar extension
was presented for the problem of a cylindrical inclusion in a finite circular cylindrical bar made of arbitrary
incompressible isotropic solids. Yavari and Goriely [2015b]’s analysis of eigentwists in a finite circular cylin-
drical bar was extended to orthotropic solids. Exact solutions in nonlinear elasticity and anelasticity are
quite rare. There are only a handful of such solutions for simple geometries. These exact nonlinear solutions
can serve as benchmark problems for both the linear solutions and for checking the accuracy of numerical
simulations.
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