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The interface behavior may significantly influence the mechanical properties of carbon nanotube 
(CNT)-reinforced composites due to the large interface area per unit volume at the composite.  The 
modeling of CNT/polymer interfaces has been a challenge in the continuum modeling of CNT-
reinforced composites.  This paper presents a review of recent progress to model the CNT/matrix 
interfaces via a cohesive law established from the van der Waals force.  A simple, analytical cohesive 
law is obtained from the interatomic potential, and is used to study the effect of CNT/matrix interfaces 
on the macroscopic properties of CNT-reinforced composites. 
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1.   Introduction 

Since the discovery of carbon nanotubes (CNTs)1 and 
the establishment of new effective methods to produce 
them,2 the properties of these novel materials and their 
potential technological applications have stimulated 
considerable interests in the research and engineering 
communities.  Due to their perfect molecular structure, 
CNTs are found to possess superior mechanical 
properties, such as high elastic modulus (on the order 
of 1TPa), high tensile strength (~200 GPa) and high 
fracture strain (10-30%),3-12 and are therefore an ideal 
candidate for reinforcements in composite materials.13-

18  
One challenge in CNT-reinforced composites is the 

uniform dispersion and orientation alignment of CNTs 
in a matrix to avoid the agglomeration of CNTs into 

bundles.  Significant efforts have been made to 
uniformly disperse and align CNTs in the matrix.19-23 
For well-dispersed and aligned CNTs that are perfectly 
bonded to the matrix, the theoretical and 
computational models predict superior properties of 
CNT-reinforced composites.24-28 However, extensive 
experiments on CNT-reinforced composites20,29-34 
show some improved properties, but many fall short to 
reach the theoretical predictions.  The discrepancy 
between the theoretical models and experiments 
requires further investigations in order to fulfill the full 
potential of CNTs as reinforcement in composites.   

Another challenge in CNT-reinforced composites 
is the load transfer efficiency across the CNT/matrix 
interface.  Similar to the conventional fiber-reinforced 
composites, the interfacial load transfer between the 
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CNTs and matrix is governed by three 
mechanisms.27,29,35   
(i) covalent bonding. 
The covalent bonding between atoms from the CNT 
and matrix results from chemical reactions at the 
interface.  The covalent bonding is strong.  For 
example, Frankland et al.36 predicted that CNT/matrix 
shear strength can be enhanced by more than an order 
of magnitude with the formation of cross-links 
involving less than 1% of the carbon atoms on the 
CNT.  The covalent bonding, however, requires the 
functionalization of CNT/matrix interfaces.  This may 
increase the difficulty in processing, and also 
introduce defects to the CNT,34,37,38 which 
compromises the performance of composites.25,36,39 For 
example, the maximum compressive (buckling) force 
for ethyne functionalized nanotubes is reduced by 15% 
due to the functionalization.40  
(ii) mechanical interlocking. 
The mechanical interlocking usually results from 
defects around the interfaces in conventional 
composites.41-43 But this mechanism hardly occurs in 
CNTs because their (nearly) defect-free atomic 
structure.29   
(iii) van der Waals force. 
The van der Waals (vdW) force between CNTs and 
matrix is the most common mechanism for interfacial 
load transfer efficiency since it always exists and does 
not require any functionalization.  The vdW force, 
however, is weak such that the CNTs do not bond well 
to the polymer matrix, which gives relatively low load 
transfer efficiency.27,29,33,44  

There are extensive experimental and atomistic 
studies on the vdW force at the CNT/matrix 
interfaces.29-31,45-48 These studies provide insights into 
the fundamental understanding of CNT-matrix 
interactions, but not the direct relation between the 
vdW force and the macroscopic properties and 
behavior of CNT-reinforced composites.  Furthermore, 
the atomistic studies widely used in studying the 
individual CNTs have limitations on both length scale 
(10-9-10-6 m) and time scale (10-12-10-9 s), and are not 
suitable to study macroscopic properties and behavior 
of CNT-reinforced composites, which involve large 
numbers of CNTs in the matrix.  

Continuum models have been developed to study 
the mechanical properties of individual CNTs 49-53 and 

also the CNT-reinforced composites.25-28,54 As 
compared to atomistic simulations such as molecular 
dynamics, the above continuum models for CNT-
reinforced composites are not constrained on the 
length and time scales, but they have not accounted for 
the important vdW force at the CNT/matrix interfaces.  
Since nanocomposites in general have high specific 
surface aspect ratio (i.e., high interface area per unit 
volume of the composite), the behavior of the 
CNT/matrix interfaces may significantly influence the 
macroscopic behavior of composites. 

The interface debonding and sliding in 
conventional composites has been studied via cohesive 
zone models in the continuum analysis.55-57 A cohesive 
zone model assumes a relation between the normal 
(and shear) traction(s) and the opening (and sliding) 
displacement(s).  When implemented in the finite 
element method, the cohesive zone model is capable of 
simulating interface debonding and sliding.58-68 The 
existing cohesive models, however, are all 
phenomenological because it is difficult to measure 
directly the cohesive laws for interfaces in 
experiments.  There are some recent experimental 
studies of microscale cohesive laws,67,69-74 but none on 
nanoscale cohesive laws such as for the CNT/polymer 
interfaces.  Recently, Jiang et al.75 developed a 
cohesive law for CNT/polymer interfaces based on the 
vdW force.  Such an approach avoids any assumed 
phenomenological cohesive laws, and accurately 
accounts for the vdW foces in the continuum model.  
Lu et al.76 extended such an approach to the cohesive 
law for multi-wall CNTs, and Tan et al.77 used this 
vdW-based cohesive law to study the effect of 
interface debonding on the macroscopic behavior of 
CNT-reinforced composites. 

This paper provides a review of the continuum 
modeling of interfaces in CNT-reinforced polymer 
matrix composites.  It focuses on the effect of vdW 
force on the CNT/matrix interface behavior and the 
macroscopic properties of CNT-reinforced composites.  
The interface cohesive law based on the vdW force is 
reviewed in Section 2, and its effect on the 
macroscopic behavior of CNT-reinforced polymer 
matrix composites is discussed in Section 3.   
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2.   Cohesive Law for Carbon 
Nanotube/Polymer Interfaces 

The energy between two atoms of distance r due to 
vdW interactions is usually represented by a pair 
potential V(r).  An example is the Lennard-Jones 6-12 
potential, 
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where σ6 2  is the equilibrium distance between the 
atoms and ε  is the bond energy at the equilibrium 
distance.  For the vdW force between carbon atoms, 
σ=0.341 nm and ε=2.39 meV.78 For the vdW force 
between a carbon atom on the CNT and a –CH2– unit 
in the polyethylene, σ=0.3825 nm and ε=4.656 meV.47 

2.1.   Cohesive law for graphene/polymer 
interfaces 

A graphene can be considered as a CNT with an 
infinitely large tube radius.  The cohesive law between 
a graphene and a semi-infinite polymer matrix can be 
obtained analytically from the vdW interactions.75  Let 
h denote the equilibrium spacing between a graphene 
and a semi-infinite polymer matrix (Fig. 1a).  The 
carbon atoms on the graphene are represented by their 

area density
2
033

4
lc =ρ , where 0l is the equilibrium 

bond length. The number of carbon atoms over area 
dA on the graphene is ρcdA. Similarly the volume 
density of polymer molecules is denoted by ρp, and the 
number of polymer molecules over a volume dV is 
ρpdV.  The energy stored in an infinitesimal area dA 
due to the vdW force is ( )

polymer

c p polymer
V

dA V r dVρ ρ∫ , 

where V(r) can be an arbitrary pair potential, and the 
integration is over the polymer volume. The cohesive 
energy Φ  is the energy stored per unit area, and is 
given by  

 ( ) ( )2 p c
h

V r r r h drΦ πρ ρ
∞

= −∫       (2) 

where the integration over the polymer volume is 
carried out analytically, and h is the equilibrium 
distance between the graphene and polymer (Fig. 1a) 

that is determined from energy minimization 0=
∂
Φ∂
h

 

by 

 ( ) 0=∫
∞

h

rdrrV .                     (3)   

 

 
Fig. 1a.   A schematic diagram of a graphene parallel to the surface 
of a polymer and the distance between graphene and polymer 
surface is h 

Once the graphene is subjected to an opening 
displacement v beyond the equilibrium distance h as 
shown in Fig. 1b, the distance between the graphene 
and polymer becomes h+v.  The cohesive energy is 
then obtained from Eq. (2) by simply replacing h with 
h+v, 

 ( ) ( ) ( )2 p c
h v

v V r r r h v drΦ πρ ρ
∞

+

= − −∫ .    (4) 

The tensile cohesive stress is then obtained as 

 ( ) ( )int 2 p c
h v

v V r rdr
v
Φσ πρ ρ

∞

+

∂
= = −

∂ ∫ .  (5) 

Since the cohesive energy in Eq. (4) is independent of 
the sliding displacement u, it gives a vanishing shear 
cohesive stress  

 int 0
u
Φτ ∂

= =
∂

.    (6) 

The vanishing shear cohesive stress above is the 
consequence of average van der Waals interactions at 
the interface.  For CNT composites with interfacial 
functionalization and/or mechanical interlocking, the 
shear cohesive stress may not vanish any more, just as 
in fiber-reinforced composites. 
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The equilibrium distance, cohesive energy, and 
cohesive stresses in Eqs. (3)-(6) hold for an arbitrary 
pair potential V(r) of the vdW force.  For the Lennard 
Jones 6-12 potential in Eq. (1), the equilibrium 
distance in Eq. (3) is given by 

 ( )1 62 5 0.858h σ σ= = .       (7) 

The tensile cohesive stress in Eq. (5) then becomes 
4
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which is the cohesive law for graphene/polymer 
interface.  It gives the total cohesive energy (area 

under v~intσ  curve) 3

2
5

9
4 εσρρπ

cptotal =Φ , and 

cohesive strength (maximum cohesive stress) 
2

max 5
6 εσρρπσ cp=  at the opening displacement 

( )1 6
0 1 2 5v δ σ⎡ ⎤= = −⎣ ⎦ .  For CNT/polyethylene, 

this critical separation becomes δ0=0.0542nm. 
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Fig. 1b.   A schematic diagram of a graphene parallel to the surface 
of a polymer; the graphene is subjected to the opening and sliding 
displacements. 

Figure 2 shows the tensile cohesive stress intσ , 
normalized by the cohesive strength maxσ , versus the 
normalized opening displacement v/δ0.  The cohesive 
stress increases rapidly at small opening displacement, 

reaches the cohesive strength, and gradually decreases 
after the peak is reached. 

2.2.   Cohesive law for carbon nanotube/polymer 
interfaces 

Figure 3 shows a CNT embedded in a polymer matrix 

 
Fig. 2.   The cohesive law for a graphene and polymer matrix 
established from the van der Waals interactions, where σmax is the 
cohesive strength and δ0 is the critical separation at which the 
cohesive strength is reached. 

with the equilibrium spacing h.  For a section of CNT 
and polymer of height dz, the energy due to the van 
der Waals force is ( )2

polymer

c p polymer
V

Rdz V r dVρ π ρ∫ .  

The cohesive energy Φ is the energy per unit area, and 
is given by  
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where dzhR ⎟
⎠
⎞

⎜
⎝
⎛ +

2
2π  is the average of CNT area 

Rdzπ2  and polymer surface area ( )dzhR +π2 .  For 
the Lennard-Jones potential in (1), the cohesive energy 
above becomes75  
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Fig. 3.   A schematic diagram of a carbon nanotube (CNT) in a 
polymer matrix. 

Figure 4 shows the cohesive energy in (10), 
normalized by the total cohesive energy for graphene 

3

2
5

9
4 εσρρπ

cptotal =Φ , versus the distance h 

between the CNT and polymer surface for several 
CNT radii, where h is normalized by its equilibrium 
value ( )1 62 5 σ  in (7) for graphehe, and σ=0.3825 
nm is the characteristic length in the van der Waals 
force.  The curves for different CNTs are very close, 
and they are all close to that for graphene.  This 
suggests that the CNT radius has little effect on the 
cohesive energy.  Each curve has a minimum, 
corresponding to the equilibrium distance between the 
CNT and polymer surface, and this distance is very 
close to ( )1 62 5 σ . 

For CNTs embedded in a polyethylene matrix, the 
area density of carbon atoms on the CNT can be 
estimated by that for the graphene, 

219
2
0

1082.3
33
4 −×== m

lcρ .  The volume density 

of polymer molecules is 328101.3 −×= mpρ , which 
is determined by polyethylene mass density 0.71×103 

kg·m-3 (Frankland et al.47) and the mass of –CH2– unit 
(2.3×10-26 kg).  These, together with σ=0.3825 nm and 
ε=4.656 meV for the vdW force between a carbon 
atom on the CNT and a –CH2– unit in the 
polyethylene,47 give a rather high interfacial cohesive 
strength MPa479max =σ  as compared to the 
Young’s modulus (~0.9 GPa) of the polyethylene 
matrix.  However, the total cohesive energy 

2/107.0 mJtotal =Φ  is low, which is consistent with 
the poor bonding between CNTs and matrix. 
 

 
Fig. 4.   The cohesive energy, normalized by the total cohesive 
energy Φtotal for graphene, versus the normalized distance h 
between the carbon nanotube (CNT) and polymer surface for 
several CNT radii and graphene, where h is normalized by its 
equilibrium value (2/5)1/6 σ for graphene. 

2.3.   Cohesive law accounting for polymer 
surface roughness 

Polymer of chain molecules exhibits irregular surface 
structure and roughness,37,79 and may not have the flat 
surface assumed in Sections 2.1 and 2.2.  Figure 5 
shows a wavy polymer surface with amplitude ∆ and 
wavelength λ.  The average distance between the 
polymer surface and graphene is still denoted by h.  
The average cohesive energy for an arbitrary pair 
potential V(r) is given by 
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where ∫
−

2

2

1 λ

λλ cdz  represents the average over the 

wavelength λ.  For the opening displacement v and 
sliding displacement u (along the wavy direction x) as 
shown in Fig. 5, the cohesive energy can be similarly 
obtained. 
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Fig. 5.   A schematic diagram of a graphene parallel to the wavy 
surface of polymer matrix. 

The tensile cohesive stresses int

v
Φσ ∂

=
∂

 can be 

analytically obtained as75  

 ⎢
⎣

⎡
−= ∫

∞

∆−+vh
cp rdrrV )(2int ρπρσ  

 ⎥
⎦

⎤

∆
−−

− ∫
∆++

∆−+

−
vh

vh

drvhrrrdV 1cos)(1
π

.   (12) 

Since the amplitude ∆ of polymer wavy surface must 
be less than h+v (otherwise the polymer surface 
penetrates the graphene), the Taylor expansion of Eq. 
(12) with respect to ∆  gives 

 cpcp

vh
rdrrV ρρπρπρσ

2
)(2int +

∞

+
−= ∫  

     [ ] )()()()( 32 ∆+∆+′+++ OvhVvhVhV .   (13) 

Its difference with the tensile cohesive stress in (5) for 
a flat polymer surface is on the order of ∆2.  Figure 6 
shows the tensile cohesive stress given by Eq. (12) 

(not the Taylor series expansion (13)) versus the 
normalized opening displacement v/δ0 for several 
waviness amplitudes ∆=0, 0.2, 0.4, 0.6 and 0.8h, 
where ∆=0 corresponds to no waviness and h is 
equilibrium spacing.  The tensile cohesive stress intσ  
is normalized by the cohesive strength maxσ  without 
waviness.  As the waviness ∆ increases, both the 
cohesive strength (peak value of the curve) and total 
cohesive energy (area underneath the curve) decrease.  
For example, the cohesive strength drops from maxσ  
for ∆=0 to max0.81σ  for ∆=0.2h, max0.60σ  for 
∆=0.4h, max0.48σ  for ∆=0.6h and max0.41σ  for 
∆=0.8h, respectively. 
 

 
Fig. 6.   The cohesive law for CNT/polymer matrix with different 
polymer surface waviness ∆, where h is the equilibrium spacing, 
σmax is the cohesive strength, and δ0 is the critical separation at 
which the cohesive strength is reached. 

The average shear cohesive stress also vanishes 

0int =
∂
Φ∂

=
u

τ .75 This represents shear stress averaged 

over the period of wavy polymer surface.  However, 
the local shear stress may not be zero. 

3.   Macroscopic Behavior of Nanocomposites 
Accounting for the Interface Cohesive Law 

Tan et al.77developed a theoretical framework to 
account for the effect of interfaces in CNT-reinforced 
polymer matrix composites.  The CNTs are modeled 
as elastic fibers, with the Young’s modulus and 
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Poisson’s ratio determined from the interatomic 
potential.52 The fiber (CNT) volume fraction is f. 

The macroscopic stress σ and strain ε  of the 
CNT-reinforced nanocomposites represent the 
collective, homogenized behavior of fibers (CNTs) 
and matrix.  They can be expressed in terms of the 
average stress σ  and strain ε  in the fibers and matrix 
as 

 mf ff σσσ )1( −+= ,  (14) 

 int)1( εεεε fff mf +−+= ,   (15) 

where the superscripts f  and m denote the fibers 
(CNTs) and matrix, respectively.  The additional term 

intεf  represents the contribution from the CNT/matrix 
interfaces, which is related to the displacement 
discontinuity fm uuu −=][  across the CNT/matrix 
interface by 

 ∫ ⊗+⊗=
int

])[]([
2

1int

S
f dA

V
unnuε .       (16) 

Here intS  represents CNT/matrix interface area and 
fV is the fiber volume.  
The matrix and CNTs are linear elastic with elastic 

compliance tensor mM  and fM , where fM  is 
determined from the interatomic potential.52 The 
stresses and strains in the matrix and CNTs satisfy 
their constitutive laws, respectively, 

 fffmmm σMεσMε :,: ==  .        (17)           
The macroscopic strain ε  of the composite can be 
obtained in terms of the macroscopic stress σ  via Eqs. 
(14), (15) and (17) as 

 { }int:)(: εσMMσMε +−+= fmfm f ,   (18) 

where intε  and fσ  are to be determined from the 
interface cohesive law, as illustrated in the following 
for an isotropic matrix containing randomly 
distributed, long and isotropic fibers subjected to 
hydrostatic tension σ I , and I is the second-order 
identity tensor.  The macroscopic strain of the 
composite is ε I , and ε  is obtained from Eq. (18) as 
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where mK  and fK  are the elastic bulk moduli of the 

matrix and fibers, respectively, int
kkε  is related to the 

displacement jump [ ]v  in the normal direction across 
the fiber/matrix interface via (16) by 

 
[ ]int 2kk

v
R

ε = ,      (20) 

and R is the CNT radius. 
Since the CNT volume fraction is usually low, the 

dilute model, which accounts for the CNT/matrix 
interactions but neglects the interactions among CNTs, 
can be used to determine f

kkσ  and int
kkε  in terms of σ .  

Let σ  and ε  denote the macroscopic stress and strain 
of the composite, and intσ  is the normal cohesive 
stress at the fiber/matrix interface.  In conjunction with 
the cohesive law int int ([ ])vσ σ=  in Eq. (8), the dilute 
model gives the macroscopic stress σ  in terms of [v]77 
as 
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2

])([
11][ int

,     (21) 

where Em, νm, Ef and νf are the Young’s modulus and 
Poisson’s ratio of the matrix and fibers, respectively.  
The macroscopic strain in Eq. (19) is given in terms of 
[v]77 as 

( )int1 1 1 [ ]2 [ ] 2
3 3 3 3m f m

f vv
K K K R

ε σ σ σ
⎧ ⎫⎛ ⎞⎪ ⎪⎡ ⎤= + − + +⎜ ⎟⎨ ⎬⎣ ⎦⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

                

                                                                        (22) 
 

 

 
Eqs. (21) and (22) give the macroscopic stress σ  and 
strain ε  in terms of [ ]v , and therefore provide the 
nonlinear stress-strain relation of the CNT-reinforced 
composite.   

The CNT Young’s modulus fE  is on the order of 
1TPa,52 which is several orders of magnitude higher 
than the modulus mE  of polymer matrix (e.g., 0.9 GPa 
for polyethylene).  There are variations of the CNT 
Young’s modulus,80 but they are all much higher than 
the modulus of polymer. For a solid rod model in 
nanocomposites,54 the modulus of the effective fiber is 
also much higher than that of the polymer matrix. 
Equations (21) and (22) can therefore be simplified to 
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which are independent of the CNT Young’s modulus.  
For each given [v], the above two equations give the 
macroscopic stress and strain, and therefore the 
nonlinear stress-strain relation of the CNT-reinforced 
composites. 

Figure 7 shows the stress-strain curve for a CNT-
reinforced polyethylene composite subjected to 
hydrostatic tension.  The Young’s modulus and 
Poisson’s ratio of the polyethylene matrix are 

0.9GPamE =  and 3.0=mν , respectively.47  The 
CNTs are armchair (18,18), with the radius R=1.25 
nm, and the volume fraction is f=1%, 5% and 10%.  
The interface cohesive law in (8) is used for the 
CNT/polyethylene matrix, with 
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0

1082.3
33
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lcρ , 328101.3 −×= mpρ , 

σ=0.3825 nm and ε=4.656 meV.  The stress-strain 
curve for f=10% has a peak strength 406 MPa, at 
which the strain is 13.9%.  Both the stress and strain 
decrease after the peak strength is reached due to the 
softening behavior in the CNT/matrix interface 
cohesive law.  The CNT/matrix interfaces reach 
complete debonding when the strain drops to about 
9.1%, after which the stress and strain start to increase 
again due to the linear elastic behavior of the matrix.  
For the displacement-controlled experiment, the stress-
strain curve would drop vertically from 406 MPa to 
289 MPa at the 13.9% strain, and then gradually 
increase.  For f=1%, 5% and 10%, the peak strength is 
exactly the same, 406 MPa, such that the CNT volume 
fraction has no effect on the composite strength.  But 
the critical strain at the peak strength changes slightly, 
13.9% for f=10%, 14.6% for f=5%, and 15.2% for 
f=1%.  Therefore the higher volume fraction of CNT 
gives higher initial modulus but gives lower 
incremental modulus at larger strain due to the 
debonding of CNTs.  Therefore, CNTs may reinforce 
the composite at the small strain but weaken it at the 

large strain if there is only the vdW force at the 
CNT/matrix interfaces. 

 
Fig. 7.   The macroscopic stress-strain relation of a carbon 
nanotube-reinforced polyethylene matrix composite with varying 
volume fraction and CNTs are armchair (18, 18). 

Figure 8 shows the effect of CNT size on the 
stress-strain curve with CNT volume fraction being 
fixed at f=10%.  Three different armchair CNTs, 
(18,18), (12,12) and (6,6), are examined, and the 
corresponding radii are R=1.25, 0.83 and 0.42nm, 
respectively.  The CNT radius has a significant effect 
on the nanocomposites behavior since the peak 
strength increases with the decrease of CNT radius.  
Small CNTs clearly give stronger reinforcing effect 
than large CNTs because, at a fixed CNT volume 
fraction, there are more small CNTs than large ones, 
and therefore more interfaces.  This observation of 
strong reinforcing effect for small CNTs also holds 
after CNTs are debonded from the matrix.  Therefore, 
small CNTs are more effective than large ones. 

4.   Summary 

This paper provides a review of the continuum 
modeling of carbon nanotube (CNT)/polymer 
interfaces based on van der Waals force, and the effect 
of interfaces on the macroscopic properties of CNT-
reinforced polymer matrix composites.  The 
continuum cohesive law for CNT/polymer interfaces is 
obtained analytically from the Lennard-Jones 
potential, as well as from any interatomic potential, for 
the van der Waals force.  These critical parameters in 
the cohesive law, namely the cohesive strength and 
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total cohesive energy, are given analytically in terms 
of the area density of carbon atoms on the nanotube 
and volume density of polymer molecules, as well as 
the parameters in the van der Waals force.  For the 
CNT/polyethylene matrix, the cohesive strength is 
very large, 479 MPa, but the total cohesive energy is 
small, 0.107 J/m2, which reflects the relatively weak 
interactions of the vdW force.   

A micromechanics model has been developed to 
study the macroscopic behavior for CNT-reinforced 
composites accounting for the CNT/polymer 
interfaces.  It is shown that CNTs can indeed improve 
the mechanical properties of the composite at small 
strain.  However, such improvement disappears at 
relatively large strain due to debonding of (or 
vanishing interactions at) CNT/polymer interfaces. 
 

 
Fig. 8.   The macroscopic stress-strain relation of a carbon 
nanotube-reinforced polyethylene matrix composite with varying 
sizes and fixed volume fraction f=10%. 
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