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The rapid development of single molecule experimental techniques in the last two decades has made
it possible to accurately measure the force–extension response as well as the transverse fluctuations of
individual rod-like macromolecules. This information is used in conjunction with a statistical mechanical
model based on the treatment of the molecule as a fluctuating elastic rod to extract its bending and
extension moduli. The models most commonly used to interpret the experimental data assume that the
magnitude of the Brownian fluctuations are independent of the length of the macromolecule, an assump-
tion that holds only in the asymptotic limit of infinitely long rods, and is violated in most experiments. As
an alternative, we present a theoretical treatment of a finite length, fluctuating rod and determine its me-
chanical behavior by measuring the transverse Brownian fluctuations under the action of large stretching
forces. To validate our theory, we have applied our methods to an experiment on short actin filaments
whose force–extension relation is difficult to measure, but whose transverse deflections can be captured
by current microscopy techniques. An important consequence of the short contour lengths is that the
boundary conditions applied in the experiment affect the fluctuations and can no longer be neglected as
is commonly done when interpreting data from force–extension measurements. Our theoretical methods
account for boundary conditons and can therefore be deployed in conjunction with force–extension
measurements to obtain detailed information about the mechanical response of rod-like macromolecules.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The development of single molecule visualization and manipu-
lation techniques in the last two decades has propelled mechanics
into the realms of molecular biophysics. It is now possible to ex-
ert known forces on biomolecules in the midst of chemical reac-
tions [1] and observe the consequences at the nanometer scale. This
has led to the realization that the mechanical properties of individ-
ual molecules which determine their response to mechanical stim-
uli are important players in the overall biochemistry. The technique
most commonly employed to determine the mechanical properties
of macromolecules is their force–extension response [2]. This tech-
nique has been used to determine the bending moduli of single- and
double-stranded DNA [3] and RNA [4,5] as well as proteins such as
titin [6], tenascin [7], and spectrin [8]. The bending moduli of fila-
mentous macromolecules such as actin and microtubules have also
been determined, albeit using different techniques [9,10].

The majority of force–extension measurements on macromole-
cules are carried out in three different types of apparatus—optical
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tweezers, magnetic tweezers, and the atomic force microscope
(AFM). Optical tweezers utilize the restoring forces exerted by light
refracting through a spherical bead to manipulate attached macro-
molecules. A typical arrangement is to attach a filamentousmolecule,
such as double-stranded DNA (dsDNA) [4], and actin [10], several
micrometers in length, to polystyrene beads at each end, which are
subsequently trapped in a laser beam. See Fig. 1(a). A known force
(usually in the pN range) is exerted on the beads and the resulting
distance between them is measured. The spherical beads are free
to rotate since conventional laser traps do not exert moments. On
the other hand, paramagnetic beads trapped by magnetic fields [11]
or optical beads with anisotropic properties [12] (see Fig. 1(c)) can
exert both forces and moments on the attached macromolecules.
Such an apparatus has been used to study plectoneme formation in
dsDNA [13,14] and also to extract the twisting modulus of dsDNA
by measuring how the force–extension behavior changes [14,15]
under constraints on the total linking number. Finally, the AFM is
typically used to exert forces in the hundreds of pN range and has
been used mostly to study the unfolding of proteins [16].

The force–extension data emerging from all these different types
of apparatuses are most commonly interpreted using a statistical
mechanical theory of Marko and Siggia [17] and Odijk [18]. The the-
ory is valid for longmolecules and is insensitive to the different types
of boundary conditions imposed by different apparatus. Hence, a
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Fig. 1. Setup for measuring the force vs. extension behavior of macromolecules. (a) Hinged–hinged condition. Both ends are attached to beads which are held in optical
traps that can exert forces but not moments. Hence, the curvatures at the ends are constrained but not the slopes. The trap does not allow transverse displacements. (b)
Clamped–clamped condition. The slopes and transverse displacements are constrained at both ends. (c) Partially clamped condition. One end of the macromolecule is secured
to a coverslip while the other end is attached to a bead in a magnetic or optical trap which ensures that the slope is held constant, but transverse displacements are allowed.

consequence of the use of this theory for interpretation of all man-
ner of force–extension measurements (irrespective of the length of
the molecule and testing apparatus) is that the mechanical proper-
ties are inferred to be functions of the contour length (see [19]). Ide-
ally, we expect the mechanical properties to be independent of the
length since they are intrinsic to the material. Furthermore, the end-
to-end extension of a molecule is an observable that neglects inho-
mogeneities along the contour of the molecule (such as the folded vs.
unfolded regions of a protein) and leads to the assignment of a sin-
gle average property to the entire molecule. By augmenting exten-
sion measurements with measurements of transverse fluctuations,
it may be possible to obtain local mechanical properties.

This paper represents an effort to infer mechanical behavior
of filamentous macromolecules using a different observable—the
magnitude of transverse Brownian fluctuations as a function of the
position along the filament. We first develop a statistical mechan-
ical theory that accounts for (i) the finite contour length of the
filamentous macromolecule and (ii) a variety of boundary condi-
tions that can be applied to it. We then obtain expressions for the
force–extension response as well as the transverse Brownian fluctu-
ations as functions of the contour length and the applied boundary
conditions. Some of our results are similar to those of two recent
studies [19,20] which also account for finite length effects and dif-
ferent boundary conditions of the testing apparatuses. However,
our methods are different from both of these studies which rely on
path integral techniques for semiflexible polymers. We rely on the
application of the equipartition theorem of statistical mechanics to
derive our expressions, and hence our results are valid only when
the deformations of the filament are not too large. On the other
hand, path integral techniques can be used to study polymer con-
formations even under large deformations [17]. We use our theory
to interpret data from an experiment designed to capture the trans-
verse fluctuations of short actin filaments suspended across a gap.
The filaments are trapped using AC dielectrophoresis [21,22] and
tracked in real time with a CCD camera. The emerging data are fit
excellently by our theory with the tension being the only adjustable
parameter.

Unlike the force–extension measurement, our method which
is based on measuring transverse Brownian fluctuations has the

potential to capture local inhomogeneities. For instance, we expect
that the transverse fluctuations of a filament will be large in re-
gions where the bending modulus is small and vice versa. When the
measurements differ significantly from the values predicted by an-
alytical expressions for homogeneous bending, a likely cause could
be the presence of inhomogeneities. A conventional force–extension
measurement will not be able to furnish such information. Fur-
thermore, a method of interrogation based on transverse Brownian
fluctuations would be able to distinguish between the response of
the macromolecule under different types of boundary conditions.
Finally, even with the same boundary conditions, we expect that
the transverse fluctuations of a filamentous macromolecule will be
larger for longer lengths, and so the contour length dependence can
be properly accounted for. This would be advantageous for filaments
with long persistence lengths for which it is difficult to design exper-
iments consistent with the assumptions of asymptotic theories that
assume a contour length much larger than the persistence length.

2. Theory

We consider a linearly elastic, isotropic, homogeneous, inextensi-
ble, and unshearable rod whose center-line is parameterized by the
position vector r(s) = r1(s)e1 + r2(s)e2 + z(s)e3, where s is the arc-
length. The unit vector triad [e1 e2 e3] represents the laboratory
coordinate frame. At each point s along the rod, we have a material
frame with a triad of orthogonal unit vectors [d1 d2 d3], such that
d3(s)=dr/ds=t1(s)e1+t2(s)e2+t3(s)e3 is the tangent to the rod. The
curvature vector �(s)=�1(s)d1(s)+�2(s)d2(s)+�3(s)d3(s) is defined
through

ddi
ds

= � × di. (1)

The torque

M = Kb�1d1 + Kb�2d2 + Kt�3d3 (2)

is a linear function of the curvature vector �. In the above, Kb is the
bending modulus and Kt is the twisting modulus. A constant tension
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F=Fe3 and a constant twisting moment � are applied to the rod (for
instance, in a magnetic tweezer setup) with the goal of measuring
the corresponding end-to-end extension. When the extension of the
molecule is controlled (as in an AFM) then F is interpreted as a
Lagrange multiplier enforcing the constraint |dr/ds|=1. The potential
energy functional for such a rod can be written as

E =
∫ L/2

−L/2

Kb
2

(�2
1 + �2

2) ds +
∫ L/2

−L/2

Kt
2

�2
3 ds −

∫ L/2

−L/2
F · d3 ds − 2��Lk,

(3)

where Lk is the total linking number. The statistical mechanics of
such a rod is rather cumbersome and was described in detail by
Moroz and Nelson [23]. We will adopt a simpler approach, which
is a modified version of the worm-like chain model proposed by
Marko and Siggia [17] for stretching DNA. The major assumption is
that the applied tension F is sufficiently large so that the tangent
to the rod d3(s) fluctuates around the average value of e3, which is
coalignedwith the force F. We also assume that there are no torsional
constraints on the rod so that the second and fourth terms on the
right hand side of (3) can be dropped. As a consequence of these two
assumptions, we have

d3(s) · e3 = t3(s) = cos�(s) =
√
1 − (t21 + t22) ≈ 1 − 1

2 (t
2
1 + t22)

(4)

and

�2
1(s) + �2

2(s) =
(
d�
ds

)2
=
∣∣∣∣dt1ds e1 + dt2

ds
e2

∣∣∣∣2, (5)

where �(s) is the angle between the tangent d3(s) and the e3 axis.
Note that there are no restrictions on the magnitude of the displace-
ments, but the analysis is restricted to small deviations of the tan-
gent vector d3(s) from e3.1 In the literature on the mechanics of
rods, approximation (4) corresponds to small strains and moderate
rotations (see [24,25] and references therein). Under the above con-
ditions, bending, twisting, and extensional deformations of a rod are
coupled. This is in contrast to a small strain, small rotation theory,
where d3 ·e3=dz/ds=t3(s) ≈ 1 and z(s) ≈ s. In such a theory, bending,
twisting, and extension are independent of each other. Furthermore,
z(s) ≈ s implies that the displacements are also small.

The potential energy functional for the small strain moderate
rotation theory can be written as

E =
∫ L/2

−L/2

Kb
2

∣∣∣∣dt⊥ds
∣∣∣∣2 ds +

∫ L/2

−L/2

F
2

|t⊥|2 ds − FL, (6)

where we have introduced the notation t⊥(s)=t1(s)e1+t2(s)e2. Next,
we expand t⊥(s) in an appropriate complete set of orthogonal basis
functions:

t⊥(s) =
∞∑
n=1

Anfon (s) +
∞∑

m=1

Bmf em(s), (7)

where n and m are mode numbers, fon (s) and f em(s) are, respectively,
odd and even basis functions, An =An1e1 +An2e2, and Bm =Bm1e1 +
Bm2e2. We will consider explicitly the three cases depicted in
Fig. 1: (a) hinged–hinged filament, (b) clamped–clamped fila-
ment, and (c) partially clamped filament. In each of these cases,
there are four boundary conditions to be satisfied. The following

1 For instance, when �=�/6 we make an error of 1% by using the approximate
expression (4) for cos�(s). When � = �/4, the error is 6%.

representation of t⊥(s) is appropriate for such circumstances:

t⊥(s) =
∞∑
n=1

An[sin(knos) + �n sinh(knos)]

+
∞∑

m=1

Bm[cos(kme s) + �m cosh(kme s)], (8)

where kno, k
m
e , �n and �m are constants that are determined by the

boundary conditions. Substituting the series expansion of t⊥(s) into
(6), assuming that the modes are independent,2 and taking averages
in a canonical ensemble, we find that the average energy takes the
form

〈E〉 =
∞∑
n=1

〈|An|2〉gon(Kb, F, L) +
∞∑

m=1

〈|Bm|2〉gem(Kb, F, L) − FL, (9)

where gon(Kb, F, L) and gem(Kb, F, L) are functions that depend on the
boundary conditions as well as on the particular values of the bend-
ing modulus Kb, force F, and the length L of the macromolecule.
In the above, 〈·〉 represents an average in the canonical ensemble
which requires constant length, constant temperature, and no mass
transfer. With the exception of case (c) (see Fig. 1), there are no
cross-terms with coefficients An · Bm since the domain of integra-
tion is [−L/2, L/2] and we have chosen a set of even and odd basis
functions. Moreover, 〈An · An+i〉 = 〈Bm · Bm+i〉 = 0 for i�0, since the
modes are independent. According to the equipartition theorem of
statistical mechanics, every quadratic mode in equilibrium has an
energy kBT/2, where kB is the Boltzmann constant and T is the ab-
solute temperature. This allows us to determine the mean-squared
amplitudes 〈|An|2〉 and 〈|Bm|2〉 of each mode which can then be used
to determine the force–extension relation and the magnitude of the
transverse fluctuations along the rod using the relations

z(s) − z
(

− L
2

)
=
∫ s

−L/2
cos�ds ≈

∫ s

−L/2

(
1 − |t⊥|2

2

)
ds

=
(
s + L

2

)
− 1

2

∫ s

−L/2
|t⊥|2 ds (10)

and∣∣∣∣r⊥(s) − r⊥
(

− L
2

)∣∣∣∣2 =
∫ s

−L/2

∫ s

−L/2
t⊥(u) · t⊥(v) dudv, (11)

where we have used (4) and defined

r⊥(s) = r⊥(0) +
∫ s

0
t⊥(s) = r1(s)e1 + r2(s)e2. (12)

We illustrate this procedure for the three special cases depicted
in Fig. 1. Of these, the clamped–clamped condition is used in our
experiments while the other two are commonly used for most
force–extension measurements.

Case (a) Hinged–hinged filament: When the ends of the filament
are attached to beads in an optical trap, we require dt⊥/ds = 0 at
s = ±L/2 since optical traps can only apply forces on a bead but
not moments. We also require r⊥(−L/2)= r⊥(L/2)= 0 since the trap
constrains the transverse motion of the beads. Starting from (8) and
applying the above boundary conditions, we find that �n = 0 for all
n and �m = 0 for all m, so that we are left with

t⊥(s) =
∞∑
n=1

An sin
(2n − 1)�s

L
+

∞∑
m=1

Bm cos
2m�s

L
. (13)

2 An and Bm are not independent for the problem in Fig. 1(c).
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Using (6) the average energy can be written as

〈E〉 =
∞∑
n=1

(
Kb
4

(2n − 1)2�2

L
+ FL

4

)
〈|An|2〉

+
∞∑

m=1

(
Kb
4

4m2�2

L
+ FL

4

)
〈|Bm|2〉 − FL. (14)

The equipartition theorem then gives

〈|An|2〉 = 4kBTL

Kb(2n − 1)2�2 + FL2
and

〈|Bm|2〉 = 4kBTL

4Kbm2�2 + FL2
, (15)

where we have accounted for the fact that each n and m term con-
tains two modes, i.e., the corresponding energy is kBT. The average
extension 〈z(s) − z(−L/2)〉 as a function of the position along the fil-
ament may now be computed using (10) and (15) as follows:

〈
z(s) − z

(
− L
2

)〉
= s + L

2
− 1

2

∫ s

−L/2

∞∑
n=1

〈|An|2〉sin2 (2n − 1)�s
L

ds

− 1
2

∫ s

−L/2

∞∑
m=1

〈|Bm|2〉cos2 2m�s
L

ds = s + L
2

−
∞∑
p=1

kBTL

Kbp2�2 + FL2

[
s + L

2
+ (−1)pL

2p�
sin

2p�s
L

]

=
(
s + L

2

)[
1 − kBT

2
√
KbF

(
coth

(
L

√
F
Kb

)
− 1

L

√
Kb
F

)]

− kBT
4F

⎡
⎢⎢⎢⎢⎣
sinh

(
2s

√
F
Kb

)

sinh

(
L

√
F
Kb

) − 2s
L

⎤
⎥⎥⎥⎥⎦ . (16)

In particular, the average end-to-end extension

〈
z
(
L
2

)
− z

(
− L
2

)〉
= L − kBTL

2
√
KbF

(
coth

(
L

√
F
Kb

)
− 1

L

√
Kb
F

)
.

(17)

This expression summarizes the force–extension relation for a
macromolecule held in an optical trap. We observe that for a
hinged–hinged macromolecule,

⎡
⎢⎢⎣1 −

〈
z
(
L
2

)
− z

(
− L
2

)〉
L

⎤
⎥⎥⎦ → kBT

2
√
KbF

in the limit of L
√
F/Kb → ∞, which is the result of Marko and Siggia

[17]. Interestingly, (17) is identical to an expression derived by Hori
et al. [20] for a different set of boundary conditions (which are the
same as our partially clamped case depicted in Fig. 1(c)).

Although the theory is not strictly valid for small F, it is still
worthwhile to investigate the asymptotic behavior as F → 0. We
find, in the limit of F → 0,
〈
z
(
L
2

)
− z

(
− L
2

)〉
L

≈ 1 − 1
6

L
Lp

+ 1
90

(
FL2

Kb

)
L
Lp

+ · · · , (18)

where Lp=Kb/kBT is the persistence length. In the absence of tension,
the estimated average end-to-end extension is somewhat smaller
than the contour length due to thermal fluctuations.

The excursions of the macromolecule in the planes with normal
e3 can be similarly computed using (11) and (15) to give the result

〈∣∣∣∣r⊥(s) − r⊥
(

− L
2

)∣∣∣∣2
〉

=
∞∑
n=1

4kBTL

Kb(2n − 1)2�2 + FL2
L2

(2n − 1)2�2
cos2

(2n − 1)�s
L

+
∞∑

m=1

4kBTL

4Kbm2�2 + FL2
L2

4m2�2
sin2

2m�s
L

. (19)

Witness that the series decays rapidly as the coefficients behave like
m−4. The series may be summed to give

〈∣∣∣∣r⊥(s) − r⊥
(

− L
2

)∣∣∣∣2
〉

= 2kBT
FL

⎡
⎢⎢⎢⎢⎣
(
L
2

+ s
)(

L
2

− s
)

−L

√
Kb
F

⎛
⎜⎜⎜⎜⎝
sinh2

(
L
2

√
F
Kb

)
− sinh2

(
s

√
F
Kb

)

sinh

(
L

√
F
Kb

)
⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ . (20)

Not surprisingly, 〈|r⊥(L/2)− r⊥(−L/2)|2〉=0, as expected for hinged-
hinged boundary conditions. Also, when Kb = 0 we recover an ex-
pression similar to the one derived by Van Lear and Uhlenbeck [26]
for a vibrating string. Finally, it is evident that the transverse fluctu-
ations of the macromolecule are large for large L and small for large
Kb and F.

Case (b) Clamped–clamped filament: Clamping the ends of the
macromolecule implies that t⊥(−L/2) = t⊥(L/2) = 0 and r⊥(−L/2) =
r⊥(L/2) = 0. Starting from (8) and imposing these boundary condi-
tions, we see that t⊥(s) can be expressed as follows:

t⊥(s) =
∞∑
n=1

An

⎛
⎜⎜⎝ cosh(kons)

sinh
(
konL
2

) − cos(kons)

sin
(
konL
2

)
⎞
⎟⎟⎠

+
∞∑

m=1

Bm

⎛
⎜⎜⎝ sinh(kems)

cosh
(
kemL
2

) + sin(kems)

cos
(
kemL
2

)
⎞
⎟⎟⎠ , (21)

where kon are the roots of the equation tan(konL/2) − tanh(konL/2) = 0
and kem are the roots of the equation tan(kemL/2)+tanh(kemL/2)=0. The
first few roots are ko1L ≈ 7.8532, ko2L ≈ 14.1373, . . . , konL ≈ (4n+1)�/2
and ke1L ≈ 4.7300, ke2L ≈ 10.9956, . . ., komL ≈ (4m − 1)�/2.

Analogous to the hinged–hinged case, we use the equipartition
theorem to get

4kBT
〈|An|2〉 = Kbk

o
n

⎡
⎢⎢⎣ sinh(konL) − konL

sinh2
(
konL
2

) + − sin(konL) + konL

sin2
(
konL
2

)
⎤
⎥⎥⎦

+ F
kon

⎡
⎢⎢⎣ sinh(konL)+konL

sinh2
(
konL
2

) + sin(konL)+konL

sin2
(
konL
2

) −8 coth
(
konL
2

)⎤⎥⎥⎦ , (22)
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and

4kBT
〈|Bm|2〉 = Kbk

e
m

⎡
⎢⎢⎣ sinh(kemL) + kemL

cosh2
(
kemL
2

) + sin(kemL) + kemL

cos2
(
kemL
2

)
⎤
⎥⎥⎦

+ F
kem

⎡
⎢⎢⎣ sinh(kemL) − kemL

cosh2
(
kemL
2

) + − sin(kemL) + kemL

cos2
(
kemL
2

) −8 tanh
(
kemL
2

)⎤⎥⎥⎦ .

(23)

A few values of 〈|An|2〉 and 〈|Bm|2〉 are given in Table 1 for various
tensions.

Using (10), (11), (22) and (23), we compute the extension 〈z(s)−
z(−L/2)〉 and the magnitude of the transverse fluctuations 〈|r⊥(s) −
r⊥(−L/2)|2〉 as functions of the position along the macromolecule.
The expression for 〈z(s) − z(−L/2)〉 is lengthy and will not be repro-
duced here, but the end-to-end extension is given by the following
series expression:

〈
z
(
L
2

)
− z

(
− L
2

)〉
= L − 1

2

∞∑
n=1

〈|An|2〉 1
kon

⎡
⎢⎢⎣ sinh(konL) + konL

2sinh2
(
konL
2

)

+ sin(konL) + konL

2sin2
(
konL
2

) − 4 coth
(
konL
2

)⎤⎥⎥⎦

− 1
2

∞∑
m=1

〈|Bm|2〉 1
kem

⎡
⎢⎢⎣ sinh(kemL) − kemL

2cosh2
(
kemL
2

)

+− sin(kemL) + kemL

2cos2
(
kemL
2

) − 4 tanh
(
kemL
2

)⎤⎥⎥⎦ . (24)

Numerical calculations indicate that the series (24) is equivalent to
the closed form expression derived by Hori et al. [20] for the same
boundary conditions (which they refer to as “axis clamping”) using
path integral techniques.

The magnitude of the transverse fluctuations as a function of the
position is similarly calculated as a series expression and is given
below:
〈
|r⊥(s) − r⊥

(
− L
2

)
|2〉
〉

=
∞∑
n=1

〈|An|2〉
(

1
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)2⎛⎜⎜⎝ sinh(kons)

sinh
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2

) − sin(kons)

sin
(
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2

)
⎞
⎟⎟⎠
2

+
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(

1
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)2⎛⎜⎜⎝ cosh(kems)

cosh
(
kemL
2

) − cos(kems)

cos
(
kemL
2

)
⎞
⎟⎟⎠
2

. (25)

It is evident from the above expression that 〈|r⊥(L/2)−r⊥(−L/2)|2〉=0
as expected for clamped–clamped boundary conditions. The rate of
decay of the coefficients 〈|An|2〉 and 〈|Bm|2〉 depends on the relative
values of F and Kb. In many cases, it is sufficient to retain the leading
order terms.

Case (c) Partially clamped: When one end of the filament is
clamped while the other is attached to a bead that constrains the
tangent but can translate laterally, we set t⊥(−L/2) = t⊥(L/2) = 0,

r⊥(−L/2)=0, and d2t⊥/ds2|s=L/2=0.3 Such a boundary condition can
be realized by the use of optical traps capable of angular trapping
[12,13]. The traps rely on anisotropic calcite microparticles and can
constrain the tangent at the end while still allowing free rotation
around the axis e3. In such a scenario, a routine calculation leads to

t⊥(s) =
∞∑
n=1

An

⎛
⎜⎜⎝ sinh(kns)

sinh
(
knL
2

) − sin(kns)

sin
(
knL
2

)
⎞
⎟⎟⎠

+
∞∑
n=1

Bn

⎛
⎜⎜⎝ cosh(kns)

cosh
(
knL
2

) − cos(kns)

cos
(
knL
2

)
⎞
⎟⎟⎠ , (26)

where Bn = −An and kn are the roots of the equation tan(knL) +
tanh(knL) = 0. The first few roots are k1L = 2.3650, k2L =
5.4978, . . . , knL = (4n − 1)�/4. Using the equipartition theorem, we
obtain an expression for the mean-squared amplitudes 〈|An|2〉 as
follows:

kBT

〈|An|2〉 = Kbk
2
nL

[
1

sinh2(knL)
+ 1

sin2(knL)

]

+ FL

[
1

sin2(knL)
− 1

sinh2(knL)
+ 2 cot(knL)

]
. (27)

Using (27), (10), and (11), we compute the end-to-end extension
〈z(L/2) − z(−L/2)〉 and the magnitude of the transverse fluctuations
〈|r⊥(s) − r⊥(−L/2)|2〉 as functions of the position along the macro-
molecule. The results in the form of series expressions are given be-
low:
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. (29)

3 Moment equilibrium of an inextensible filament requires that dM/ds+d3×F=0
at all points s (see [27]). At s=L/2 we have d3(L/2)=e3 which implies that d3 ×F=0
since F = Fe3. As a result the appropriate natural boundary condition at s = L/2 is
dM/ds = 0. Since we assume that there are no torsional constraints, it follows that
Kbd2t⊥/ds2 = 0 at s = L/2.
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Table 1
The mean square amplitudes 〈|An|2〉 and 〈|Bm|2〉 decay with increasing mode numbers n and m .

FLp
kBT

〈|A1|2〉 × 104 〈|A2|2〉 × 104 〈|A3|2〉 × 104 〈|A4|2〉 × 104 〈|A5|2〉 × 104

100 170.0 51.36 24.61 14.39 9.43
102 130.0 51.30 23.26 13.91 9.21
104 4.992 4.117 3.631 3.223 2.853

FLp
kBT

〈|B1|2〉 × 104 〈|B2|2〉 × 104 〈|B3|2〉 × 104 〈|B4|2〉 × 104 〈|B5|2〉 × 104

100 460.0 84.89 34.38 18.49 11.52
102 280.0 71.79 31.84 17.70 11.21
104 6.88 4.45 3.86 3.42 3.03

Here we use L/Lp = 0.5 and assume clamped–clamped boundary conditions.
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Fig. 2. Contour length and boundary conditions matter in the mechanics of fluctuating rods. (a) The transverse fluctuations of a filamentous macromolecule of non-dimensional
length L/Lp = 0.5 at non-dimensional force FLp/kBT = 2.25 plotted as a function of position along the filament for different boundary conditions. The lateral fluctuations are
constrained when both ends are clamped, causing the macromolecule to appear stiffer. (b) Force–extension behavior of a filamentous macromolecule depends strongly on
the contour length L of the macromolecule. The length dependence is weak only when the molecule is nearly fully stretched.

3. Discussion

The dependence of the transverse fluctuations 〈|r⊥(s) −
r⊥(−L/2)|2〉 on the position s for each of the apparatuses depicted in
Fig. 1 can be better understood by referring to Fig. 2(a). For the cases
where we have series expressions, we have plotted the sums of the
first five terms since the series converge rapidly. The transverse fluc-
tuations of the partially clamped filament (Fig. 1(c)) are non-zero at
the end held in the trap, since the bead is free to translate in any di-
rection. For the hinged–hinged filament, the transverse fluctuations
are zero at both ends. We contrast this with the clamped–clamped
filament whose transverse fluctuations are also zero at both ends
but the magnitudes of whose excursions are much smaller than
those of the hinged–hinged filament at all locations along the con-
tour. In other words, the clamped–clamped filament appears to be
stiffer than the hinged–hinged filament even though the values of
the bending modulus Kb, the tension F, and the contour length L are
the same. This is solely a result of the different boundary conditions.

The force–extension relation as well as the magnitude of the
transverse fluctuations is also strongly dependent on the length of
the macromolecule. This can be appreciated by appealing to Fig. 2(b),
where we have plotted the normalized average end-to-end exten-
sion (with hinged–hinged boundary conditions) as a function of the

normalized axial force for various values of the contour length L. The
contour length is normalized with the persistence length Lp=Kb/kBT
and the force is normalized with kBT/Lp. The lower limit of the or-
dinate 〈z(L/2) − z(−L/2)〉/L in Fig. 2(b) is chosen to be 0.75. This cor-
responds to |t⊥|2� 1

2 in (10) and �max = �
4 (see also [20]). We es-

timate that in the above range, the extension is accurate to within
6%. Indeed, Marko and Siggia have shown that the approximation
used in (10) gives results that are well within the above error even
at much lower values of the extension. All the curves in Fig. 2(b) are
bounded from below by the case of the very long filament L/Lp →
∞ (dashed line). This curve is identical to the one given by Marko
and Siggia [17]. It appears that when L/Lp >10, the filament can be
considered to be long with an error smaller than 12% in the range
0.75 < 〈z(L/2)−z(−L/2)〉/L <1. The main point of Fig. 2(b) is the strong
dependence of the force–extension relation on the contour length in
the region L/Lp <3. This prediction is quantitatively consistent with
those of Hori et al. [20] who arrived at similar conclusions using path
integral techniques. The length dependence of the force–extension
relation has also been demonstrated experimentally by Seol et al.
[19] for dsDNA, although the contour lengths in their experiment
were much larger (L/Lp >12.6). Seol et al. found that the error in
determining the persistence length Lp by the one parameter fit to
the force–extension data, proposed by Marko and Siggia, increased
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as the contour length became shorter. This is qualitatively consis-
tent with our results. Finally, when F → 0, the average extension is
nearly independent of the force. The curves in Fig. 2(b) approach the
asymptotic value of 1 − (1/6)(L/Lp) when F = 0.

4. Comparison with experiment

In order to test the validity of our theory, we designed an experi-
ment in which we positioned actin filaments at predetermined loca-
tions with the aid of AC electric fields [21] with the goal of observ-
ing their transverse fluctuations. During these experiments, we ob-
served that the amplitudes of the filaments' transverse fluctuations
depended strongly on the electric field intensity. Our hypothesis was
that the electric field altered the tension applied to the filament
which in turn determined the amplitude of transverse fluctuations.

Our experimental apparatus consisted of a 75�m high flow cell
sandwiched between two glass slides. Using standard microfabrica-
tion techniques, a pair of gold electrodes (10nm thick NiCr adhesion
layer and 100nm thick gold surface layer), with a small gap G=7�m
between them, was patterned on one of the slides, and a 1�m deep
trench was etched between the two electrodes to provide free space
under the suspended filaments (Fig. 3(a)). The flow cell was filled
with a solution of 50nM rhodamine-phalloidin-stabilized actin, sus-
pended in 37mM KCl, 2mM MgCl2, 1mM EGTA, 20mM Hepes, and
1mMDithiothreitol (DTT) (electrical conductivity 0.56 S/m), and was
placed on the stage of an inverted microscope. When an AC (2MHz)
potential difference was applied across the electrodes, the electric

Glass

~7μm

Gold electrode

Gold electrode

Actin

e3

Actin Filament

Electrodes

e1 r1(z(s))

e3

Actin Filament1μm

Fig. 3. The measurement of transverse fluctuations. (a) A schematic depiction of the experimental apparatus. (b) Contrast-enhanced image of an actin filament trapped
across the gap between two electrodes. The image also depicts the discretized position data (*). This figure is reproduced from Arsenault al. [22].
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Fig. 4. Validation of theory with experimental data on transverse fluctuations. (a) Experimental data for 1
2 〈|r⊥(s)− r⊥(−L/2)|2〉 at three different electric fields (symbols) are

fitted to (25) (solid curves) with the tension F as the fitting parameter and a known value of Kb =70×103 pNnm2 for actin. (b) The value of F giving the best least-squares fit
is found to vary linearly with E2

rms in agreement with the results of a fit using a linear Brownian dynamic model reported in Arsenault al. [22]. The manner of presentation
of the experimental data and the results of the least-squares fit in this figure are similar to that in Arsenault al. [22] but the data sets are different in each case.

field caused the actin to align parallel to the field lines, migrate to-
ward the maximum electric field intensity, and bridge the gap across
the electrodes. Fig. 3(b) is an image of a single filament spanning the
gap between the two electrodes. The bright line corresponds to the
fluorescent signal and the asterisks represent the digitized data.

In the absence of electric field, actin filaments occasionally
bridged the gap. In these cases the contour lengths L of the fil-
aments' segments confined between the electrodes' edges were
typically larger than the gap's width G. When the electric field was
present, a greater number of filaments bridged the gap between
the electrodes, and L ≈ G. In theory, this provides sufficient infor-
mation to determine the tension F which satisfies the constraint
〈z(L/2) − z(−L/2)〉 = G in the force–extension relation (24) for a
clamped–clamped filament. However, the contour length L is not
accurately known in our experiment, and so a fit relying on (24)
is likely to result in large errors. We, therefore, employ (25) to
determine the tension since we can accurately measure the mag-
nitude of the transverse fluctuations, as described in the following.
Once a filament was observed to bridge the gap across the elec-
trodes, an electron multiplying CCD camera (Photometrics Cascade
II) took images at 10Hz. A custom-written Matlab� program was
used to obtain the component r1(s) (see Eq. (12)) of the filament's
transverse displacement (Fig. 3(b)) as a function of the distance z(s)
from one of the anchoring points. The data were then used to com-
pute 〈(r1(s) − r1(−L/2))2〉 = 1

2 〈|r⊥(s) − r⊥(−L/2)|2〉 as a function of
z(s)/G. The results for various electric field intensities are plotted in
Fig. 4(a) together with the theoretical predictions, (25). In the theory,
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we used the accepted value of Kb ≈ 70 × 103 pNnm2 for actin and
determined the tension F that minimizes the discrepancy between
theory and experiment. In other words, we use one adjustable pa-
rameter. It is immediately apparent that (25) provides an excellent
fit to the experimental data. Furthermore, the tension F obtained
through the best least-squares fit is found to vary linearly with the
square of the electric field, as shown in Fig. 4(b). This is consistent
with the conclusions of Arsenault et al. [22] who fit the same data
using a linear Brownian dynamic model of a beam based on the
small strain, small rotation assumption. According to this model the
equation of motion of an elastic rod moving in a viscous fluid is

�
�2ri
�t2

+ f
�ri
�t

= �
�z

(
F
�ri
�z

)
− Kb

�4ri
�z4

+ W(z, t), (30)

where i can equal 1 or 2, corresponding to either of the transverse
directions, � is the linear density, f is the friction coefficient, and
W is a white noise, forcing term. Notice that s is replaced by z in
this small strain, small rotation theory. The solution to (30) follows
the methods outlined by Van Lear and Uhlenbeck [26] and is given
in detail in the electronic supplement to Arsenault et al. [22]. The
resulting expressions were then fit to the experimental data on the
filaments' transverse fluctuation to extract the tension. The tensions
predicted by the linear Brownian dynamic model of Arsenault et al.
are the same as those of our present theory and the E2rms dependence
of the predicted tension is preserved. In fact, similar values for the
tension are recovered when we use the appropriate expression of
Hori et al. [20].

5. Conclusions

In this paper, we have presented a theory for predicting the ex-
tension and variance of transverse fluctuations of inextensible rod-
like macromolecules subjected to Brownian motion and large tensile
forces. The main new features of the present theory are that (i) it ac-
counts for the contour length dependence of the force–extension re-
lation of the molecule and (ii) it accommodates a variety of boundary
conditions imposed by various testing apparatuses. The present the-
ory recovers the expressions for the force–extension relation given
by Marko and Siggia when the contour length L is large relative to
the persistence length Lp. The theory can be used to estimate various
mechanical properties of the macromolecules such as flexural rigid-
ity and tension. We have also demonstrated the application of our
theory to the transverse motions of a short fluctuating actin filament
and found that it provides an excellent fit to the experimental data.
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