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Abstract. This paper aims to apply a recently developed numerical scheme towards multi-time
scale modeling, which we refer to as ‘Practical Time Averaging’ (PTA), to molecular dynamical
(MD) systems. In the first part, we investigate the fine-scale dynamics of a one-dimensional
chain of identical particles under cyclic loading. Assuming a double-well interatomic potential
among adjacent particles leads to a phase transition between two distinct equilibrium states.
Specifically, we study the macroscopic stress-strain behavior of the dynamical chain in three
settings, i.e. Newtonian MD, Newtonian MD with viscous dissipation and Newtonian MD with
thermostat. Rate-independent high frequency oscillations are observed in Newtonian MD due
to an instability that is related to the non-convexity of the strain energy. This is stabilized
by adding viscosity or a thermostat, which leads to strong hysteresis that is consistent with
quasi-static results (i.e. lattice statics). In the second part, we first define coarse variables as
finite time averages of phase functions in MD. Then we apply the technique of PTA developed
in Tan, Acharya and Dayal [16] to numerically approximate the coarse dynamics for the time
averaged quantities. The tested model problems include a two-dimensional lattice made of s-
toichiometric Nickel-Manganese undergoing detwinning and a three-dimensional atomic chain
made of face-centered cubic (FCC) Nickel under uniaxial tension. The macroscopic features
(such as space-time averaged strain/stress) are obtained from coarse dynamics. It is also shown
that the time savings become significant when the loading rate is small.
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1. Introduction

Molecular dynamics (MD) has become an important simulation tool in understanding mate-
rial behaviors in a vast variety of settings. This method is based on a particle description of
atoms or molecules and treats the interaction between the particles using Newtonian dynamics.
However, a key difficulty in using MD for engineering applications is the extremely large sepa-
ration between the timescales of atomic bond vibrations (femtoseconds) and even the smallest
timescales of engineering interest (nano to micro seconds). This limits MD to unrealistically
small time intervals for many applications. This situation is even worse for materials under
extremely slow loading rates. When the loading rate tends to zero, the equations of motion
become a singularly perturbed system of Ordinary Differential Equations (ODE). The objective
of this paper is to apply and evaluate the temporal coarse-graining strategy developed in [16]
to such singularly perturbed problems in the mechanics of materials.

In the first part of the paper, we study the macroscopic stress-strain behavior of a one-
dimensional dynamical chain of atoms joined by springs with a non-monotone stress-strain
relation. A sinusoidal loading with small loading rate is applied at one end of the chain.
The magnitude of the external loading is large enough so that the chain will go from one
equilibrium state to the other during this dynamical process. Due to the non-monotonicity in
the constitutive relation (or equivalently, the non-convex interatomic potential), the dynamics
will lead to rate-independent high frequency vibration of the atoms beyond a certain critical
strain as a result of an instability of the system (reported before in [7] and called the ‘inner
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instability’) that is insensitive to external excitation. This finding is quite different from the
observation under quasi-static dynamics that ignores inertia, which is normally associated with
a hysteresis indicating energy dissipation at the macroscopic level. It is also suggested in [7]
that the inner vibrations of the atoms can be stabilized by a small dissipation, which leads to
a strong hysteresis rather than a steady state stress-strain dependence. We test two cases in
order to dissipate the high kinetic energy of the system. One is by adding viscosity and the
other is by thermostatting. The effects in both cases are essentially the same and thus give rise
to quite similar results. Furthermore, the hysteresis converges to the quasi-static result as the
loading rate tends to zero.

In the second part of the paper, a numerical strategy developed in [16] and referred to as
‘Practical Time Averaging’(PTA) is applied to two MD problems. The approach may be viewed
as a natural extension of the method of averaging motivated by practical considerations, nat-
urally for systems whose limiting fast flows may not converge to an equilibrium. The theory
of [5, 4] is utilized here, where the limit behavior of the fast flow (parameterized by the slow
variable) in a singulary perturbed system is characterized by an invariant measure rather than
algebraic equations in the standard reduced order approach. However, this theory requires that
variables that can be averaged be ‘slow’, i.e. orthogonal to the fast flow in a precise sense,
but does not provide a prescription for generating such ‘orthogonal observables’. Following [15]
(which makes rigorous some of the ideas presented in [2, 3]) and [16], a natural class of slow vari-
ables based on time averaged coarse observables and their evolution are defined and practically
implemented.

Two model problems are investigated with the implementation of PTA. One is a two-
dimensional infinite strip of a Ni-Mn lattice with two variants of martensite coexisting in the
lattice. A twin boundary is located within the strip in a stress-free initial configuration. The two
variants have the same free energy. When the body is subjected to an applied cyclic loading, the
free-energies of the different variants are no longer equal and one variant becomes energetically
more favorable than the other. This leads to the motion of the twin boundary and the dynamics
of detwinning. We study the macroscopic stress-strain behavior of the two-dimensional lattice.
The other tested example is a three-dimensional dynamical chain system made of FCC Ni un-
dergoing uniaxial tension. The macroscopic stress-strain behavior with different loading rates
is studied. We define the overall stress and strain as coarse variables. The averaged response
of fine-scale dynamics and PTA are found to be in broad agreement. Moreover, in the range of
slow loading rate, we show that the time savings from PTA is significant in both examples.

This paper is organized as follows: In Section 2, we construct a one-dimensional atomic
dynamical chain under cyclic loading and study the stress-strain behavior in three different set-
tings. Section 3 is excerpted from [16], which shows the procedures of PTA to write down the
coarse evolution equation for singularly perturbed systems based on the Young measure theory
(i.e. [5, 4, 15, 16]). In Section 4 and 5, we implement the idea of PTA on a two-dimensional
Ni-Mn system and a three-dimensional atomic chain made of FCC Ni, respectively. The stress-
strain relations from fine dynamics and from PTA are investigated in both cases. We end in
Section 6 with summarizing the main findings from the various numerical tests and discussing
the advantages as well as the limitations of the proposed multi-scale modeling technique.

2. Atomistic Study

2.1 MODEL DESCRIPTION

The dynamics of interest is adopted from [14]. This problem is chosen since the set-up is quite
similar to large scale MD.

Figure 1 shows a chain of atoms interacting with each other through non-linear springs with
two states of equilibrium. The relation between the potential energy and the distances of atoms
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is also plotted in Figure 1. The interactions are limited to the first nearest neighbors.
In this example, we assume double-well potential energy, i.e.,

ϕ =
N−1∑
i=1

ϕ1(xi+1 − xi) =
N−1∑
i=1

(xi+1 − xi − as)
2(xi+1 − xi − al)

2, (1)

where xi denotes the position of mass i at any time. as is the equilibrium separation between
two adjacent masses in the low strain phase and al is the equilibrium separation between them
in the high strain phase. The initial configuration of the atoms is chosen to be in the low strain
phase, so the displacement of atom i can be written as

ui = xi − (i− 1)as. (2)

The potential energy becomes

ϕ =

N−1∑
i=1

ϕ1(ui+1 − ui) =

N−1∑
i=1

(ui+1 − ui)
2(ui+1 − ui − (al − as))

2. (3)

We consider a dynamical system with the first atom fixed at the left end and a sinusoidal force
applied at the right end. Let the applied force be

L(t) = Asin(ωt). (4)

By introducing another variable g(t) to denote the time derivative of L(t), we have the au-
tonomous system

L̇ = ωg,

ġ = −ωL.
(5)

We assume the mass of each atom to be mi = 1 ∀ i and u1 = v1 = 0. The fine theory can be
written as

u̇i = vi, ∀ i from 2 to N,

v̇i = − ∂ϕ

∂ui
, ∀ i from 2 to N − 1,

v̇N = − ∂ϕ

∂uN
+ L,

L̇ = ωg, ġ = −ωL.

(6)

!
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Figure 1: One-dimensional chain of interacting masses. The graph below shows the interaction potentials
for the connecting nonlinear springs.
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The partial derivatives in the above equations are dependent on the displacement of atoms,
denoted as

∂ϕ

∂ui
= Λ1 + Λ2, ∀ i from 2 to N − 1,

∂ϕ

∂uN
= Λ2,

(7)

where

Λ1 = −2(ui+1 − ui)(ui+1 − ui − (al − as))(2(ui+1 − ui)− (al − as)),

Λ2 = 2(ui − ui−1)(ui − ui−1 − (al − as))(2(ui − ui−1)− (al − as)).
(8)

2.2 HAMILTONIAN VS. DISSIPATION

As is to be expected and shown in [7] (as well as from our numerical study), in Newtonian
MD there is no heat loss during the cyclic loading at the microscopic level (it also shows no
hysteresis even at the macroscopic level, as evidenced by averaged stress-strain curves in our
numerical tests). In [7], it is suggested that hysteresis can be obtained by adding some viscosity
to the system, therefore we test the cases of Newtonian MD, damped system and MD with
thermostat. In all the cases, we consider both load control and strain control devices. The
strain-load curves are demonstrated in each case.

2.2.1 Newtonian MD

Newtonian MD consists of an isolated system with no heat transfer with the outside. The en-
ergy is conserved in the sense that the external work is transferred to the total increase of the
potential energy and the kinetic energy of the system. The governing equations of this type of
system follow Hamiltonian dynamics.

a. Load Control

The equations of motion in the load control case are exactly (6).

b. Strain Control

In the case of strain control, the load is applied to the system by controlling the displacement
of the atom at the free end, which is defined as

uN =

(
A2 −A1

2

)
sin(ωt− θ0) +

A1 +A2

2
, (9)

where A1 and A2 are the lowest and highest amplitudes of the displacement of the last atom,
respectively. We set them to be

A1 = −(N − 1) ·A0, A2 = (N − 1) · (al − as) + (N − 1) ·A0, (10)

such that the averaged strain will go from −A0 to (al − as) + A0, where A0 is an arbitrary
constant (usually we want A0 to be significantly smaller than al − as). θ0 is the phase shift,
which is determined by

θ0 = arcsin

(
A1 +A2

A2 −A1

)
, (11)



5

so as to satisfy uN (0) = 0. With these definitions in hand, the equations of motion are

u̇i = vi, ∀ i from 2 to N − 1,

v̇i = − ∂ϕ

∂ui
, ∀ i from 2 to N − 1,

with uN =

(
A2 −A1

2

)
sin(ωt− θ0) +

A1 +A2

2
.

(12)

From Newton’s second law, the external load is

L =
∂ϕ

∂uN
+ üN . (13)

2.2.2 Damped System

a. Load Control

For the case where damping is added to the system, the equations of motion become

u̇i = vi, ∀ i from 2 to N,

v̇i = −cvi −
∂ϕ

∂ui
, ∀ i from 2 to N − 1,

v̇N = −cvN − ∂ϕ

∂uN
+ L,

L̇ = ωg, ġ = −ωL,

(14)

where c is the damping coefficient.

b. Strain Control

In the strain control case, we have

u̇i = vi, ∀ i from 2 to N − 1,

v̇i = −cvi −
∂ϕ

∂ui
, ∀ i from 2 to N − 1,

with uN =

(
A2 −A1

2

)
sin(ωt− θ0) +

A1 +A2

2
.

(15)

The loading on the last atom is given by

L =
∂ϕ

∂uN
+ cvN + üN . (16)

2.2.3 MD with Thermostat

We consider the dynamical system of the atomic chain at a constant temperature by thermostat-
ting. The primary purpose is to control the temperature of the system, thus to control the total
kinetic energy of atoms. As observed in [7], a chain with non-convex interaction potential ener-
gy between atoms will go through high frequency oscillations, indicating an unstable dynamical
process due to the negative stiffness in the constitutive relation beyond certain critical strain.
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This is the inner instability of the system in the sense that the intensity of the vibrations is de-
termined by the structure of the system, and is independent of the rate of the external loading.
Our aim is to remove the inner vibrations of atoms by keeping the temperature of the system
at a low value, with an expectation to see hysteresis in the macroscopic stress-strain behavior.
A good review on thermostat algorithms based on Newtonian MD scheme can be found in [10].
We choose the Woodcock algorithm [17] in the context of the leap-frog integrator to maintain
a constant temperature. In this algorithm, a scaling factor λ is introduced and determined by
constraining the instantaneous temperature T to be equal to a reference temperature T0 at each
time step. In the following, we describe the algorithm for both load control and strain control
cases.

a. Load Control

The equations of motion are given as

üi = −c(t)u̇i −
∂ϕ

∂ui
, ∀ i from 2 to N − 1,

üN = −c(t)u̇N − ∂ϕ

∂uN
+ L.

(17)

Note here that c(t) is like a control parameter. When the temperature of the system is higher
than the reference temperature T0, c is positive, which means the system will transfer heat into
the environment. On the other hand, c becomes negative when the temperature is lower than
the reference temperature, indicating that the system will absorb heat from the environment.

We apply the Woodcock algorithm [17, 10] to compute the scaling factor λ that is directly
used to modify the leap-frog algorithm in the case of thermostat. The instantaneous temperature
is defined as

T =

(
1

2N

N∑
i=1

(vi − ⟨vi⟩)2
)1/2

=

(
1

2

(
⟨v2i ⟩ − ⟨vi⟩2

))1/2

, (18)

where

⟨·⟩ = 1

N

N∑
i=1

(·). (19)

In classical MD, the leap-frog algorithm is presented as

ui(t) = ui(t−△t) + vi

(
t− △t

2

)
△t,

vi

(
t+

△t

2

)
= vi

(
t− △t

2

)
+ üi(t)△t.

(20)

For thermostat to be imposed on the system, the scaling factor λ is computed as follows,

ui(t) = ui(t−△t) + vi

(
t− △t

2

)
△t,

vi

(
t+

△t

2

)
= λ(t; △t)v

′
i

(
t+

△t

2

)
= λ(t; △t)

[
vi

(
t− △t

2

)
+ üi(t)△t

]
,

(21)

where v
′
i

(
t+ △t

2

)
is approximated from classical Newton’s equations without damping.

Imposing the constrain λ(t; 0) = 1, we can show that

c(t) = − lim
△t→0

λ(t; △t)− 1

△t
= −∂λ(t; △t)

∂△t
|△t=0 . (22)
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From the definition of temperature, we have

T
(
t+

△t

2

)
=

[
1

2

⟨(
vi

(
t+

△t

2

))2
⟩

− 1

2

⟨
vi

(
t+

△t

2

)⟩2
]1/2

= T0. (23)

Substitute the second equation of (21) into (23),(
T
(
t+

△t

2

))2

=
λ2

2

⟨(
vi

(
t− △t

2

)
+ üi(t)△t

)2
⟩

− λ2

2

⟨
vi

(
t− △t

2

)
+ üi(t)△t

⟩2

= T 2
0 .

(24)

Denote

vi = vi

(
t− △t

2

)
, ui = ui(t) (25)

for simplicity. From (24), we can solve for λ, that is,

λ =
T0[

1
2

⟨
(vi + üi△t)2

⟩
− 1

2 ⟨vi + üi△t⟩2
]1/2 =

T0
T ′
(
t+ △t

2

) , (26)

where T ′
(
t+ △t

2

)
denotes the instantaneous temperature at the time t + △t

2 from Newton’s

equation.
We can check that

λ(t; 0) =
T0[

1
2

⟨
v2i
⟩
− 1

2⟨vi⟩2
]1/2 = 1. (27)

Thus the control parameter c can be determined following (22). Note that even though this
model is physically unrealistic (a ‘structural’ ODE system with negative damping), the algo-
rithm is stable as long as the denominator in (26) is nonzero regardless of the sign of c.

b. Strain Control

The equations of motion are

üi = −c(t)u̇i −
∂ϕ

∂ui
, ∀ i from 2 to N − 1,

with uN =

(
A2 −A1

2

)
sin(ωt− θ0) +

A1 +A2

2
.

(28)

The velocity of the last atom becomes

vN = ω

(
A2 −A1

2

)
cos(ωt− θ0), (29)

and can be assumed to be zero for slow loadings. The procedures for computing the coefficient
λ and the control parameter c are the same as before, except we can take vN = 0.

The loading on the last atom is again determined by

L =
∂ϕ

∂uN
+ c(t)vN + üN . (30)
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2.3 NUMERICAL EXPERIMENTS

The next series of computer simulations aims to study the load-strain response of the atomic
chain under a slow external force, with the strain defined as

ε =
1

N − 1

N∑
i=2

(ui − ui−1) =
uN

N − 1
. (31)

The number of atoms is set to be 2000. Our numerical observation shows that in both the load
control and strain control cases (see Figure 2(a) and 3(a), respectively), the atomic chain goes
through high frequency oscillations when the strain between any two adjacent atoms becomes
greater than the critical strain (thus the stiffness in the constitutive relation becomes negative).
In our case, the critical strain equals (1/2−

√
3/6)(al − as). This dynamical problem has been

studied by Balk et al [7]. Here we excerpt some main findings from their work:

1. “When the elongation of one of the springs becomes greater than the critical elongation, the
springs start to oscillate with “high” frequencies, no matter how slowly we increase the total
length of the chain. This is another reason to say that this mass spring structure is unstable:
high frequency oscillations appear in the structure while stress changes slowly”.

2. “In unstable chains, the inner instabilities excite an intense dynamical process. This process
is determined by the structure of the system. Its intensity is not small independently of the
rate of the external elongation”.

3. “The inner vibrations can be stabilized by a small dissipation. The introduced dissipation
leads to a strong hysteresis instead of a steady state stress-strain dependence”.

In Newtonian MD, the energy is conserved ‘microscopically’ in the sense that the applied
work has been totally transferred to the mechanical energy (i.e. potential energy plus high
atomic kinetic energy), thus no hysteresis at the microscopic level. It is generally believed
that this process is irreversible and the high atomic oscillation is considered as heat loss at the
macroscopic level. However, we show the absence of hysteresis in the ‘macroscopic’ response
(i.e. time-averaged load-strain behavior defined below), as can be seen in Figure 4, where the
time-averaged variable is defined as

(·)(t) := 1

τ

∫ t+τ

t
(·)(s)ds. (32)

In this calculation, we set τ to be around 400 of the natural period of atomic vibration.
Based on the last finding pointed out in [7], we construct damped systems with different

damping coefficients c. The strain vs. load curves are plotted in Figure 2(b) and 3(b), corre-
sponding to the load control and strain control cases, respectively. The natural frequency ω0

of the oscillation of two neighboring masses is about 10, so the damping coefficients are consid-
erably smaller than this value. We observe strong hysteresis in the cases of c = 1e-2, c = 0.05
and c = 0.1, while the hysteresis is not so obvious in the case of c = 1e-4.

Figure 5 and 6 describe the strain vs. load relations of the system with thermostat, un-
der load control and strain control, respectively. We set the number of atoms to be 1000. In
all the tests, the temperature of the system is a constant equal to the reference temperature
T0. We find that by maintaining the instantaneous temperature at a low value (for example,
T0 = 1), the hysteresis is obvious, as shown in Figure 5(a) and 6(a). However, when setting a
high temperature to the system (for example, T0 = 10), the hysteresis is hardly observed. The
physical explanation of this phenomenon is the following: The kinetic energy is allowed to be
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Figure 2: (a) Newtonian MD under load control; (b) Damped system under load control
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Figure 3: (a) Newtonian MD under strain control; (b) Damped system under strain control
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Figure 4: (a) Averaged load-strain curve in Newtonian MD under load control; (b) Averaged load-strain
curve in Newtonian MD under strain control
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high when the reference temperature is set high, and with this high kinetic energy in the atomic
system, jumping over the double-well energy barrier becomes much easier, even without any
phase transformation; On the contrary, when the kinetic energy is forced to be low, significant
amount of potential energy is required for the atoms to go over the barrier.

2.4 DYNAMICS VS. QUASI-STATIC

In this section, we consider the atomic chain under quasi-static dynamics, i.e. with inertia set
to zero. We solve the following system of nonlinear equations,

∂ϕ

∂ui
= 0, ∀ i from 2 to N − 1,

∂ϕ

∂uN
= L.

(33)

We set N = 100 in the tests. In the case of load control, L = Asinωt. The unknowns
(u2, . . . , uN ) can be solved by using Newton-Raphson method. In the case of strain control,
we impose the constrain on the displacement of the last atom at the free end as before, then we
solve (u2, . . . , uN−1) and L. We also run the dynamical systems with small viscosity and with
thermostat. The results are exhibited in Figure 7 and 8, respectively. We find that

1. The results from the damped system and thermostatted MD are quite similar to each other.

2. Although the hysteresis in the cases of load control and strain control looks quite different
when the loading rate is large, it converges as the loading rate decreases and the two cases
give almost the same stress-strain curve.

3. When the loading rate is small, the stress-strain response from the dynamical tests (with
damping or a thermostat) is consistent with the quasi-static results in the stable regions (the
stable regions correspond to strains or interatomic separations where the potential function
is locally convex). In the limit of ω → 0, the hysteresis will converge to the quasi-static
results and is independent of ω (see Chapter 3, [1] on a discussion of the static hysteresis
based on a continuum theory).

3. Practical Time Averaging

This section is mainly adopted from [16] and presented here for completeness.
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Figure 5: MD with Thermostat under load control
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Figure 6: MD with Thermostat under strain control
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Figure 7: Comparison of the hysteresis of damped system and the stress-strain curve from quasi-static
loading. (a) Load Control; (b) Strain Control.
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Figure 8: Comparison of the hysteresis of MD with thermostat and the stress-strain curve from quasi-
static loading. (a) Load Control; (b) Strain Control.
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The problems of interest here are singularly perturbed systems that display highly oscillatory
response and whose limiting behavior often retains fast oscillatory response. Many physical
problems can be expected to fall into this category. For instance, in MD simulations where
external loading is applied to the system, the loading rate is usually at least 109 times slower
than the fundamental frequency of atomic vibrations. This large separation of time-scales leads
to a singularly perturbed form of the fine-scale dynamics.

The work of [4] building on earlier work of [5] allows dealing with limits of fast flows that are
not necessarily equilibria. The theory accounts for the limit behavior of fast flows that may be
supported on ω-limit sets of complicated topology. The relevant part of the theorem is stated
below, following the terminology presented in [15]:

Suppose the ODEs of the fine-scale dynamics are given as

df

dt
= H(f, I)

dI

dt
=

1

T
L(I),

(34)

where f is an N -dimensional vector of fine degrees of freedom and H is a generally nonlinear
function of fine states, referred to as the vector field of the fine dynamical system. N can be
large in principle, and the function H rapidly oscillating. I is an n dimensional vector of slow
loading variables that do not vary appreciably compared with the oscillation of fine variables.
Here, T is a non-dimensional parameter that represents the ratio of natural frequency of the fine
dynamics to the loading frequency, i.e. T := ωf/ω, where ωf denotes a characteristic frequency
of the fast dynamics and ω is the time scale of the loading (e.g. constant rate of monotonic
loading, frequency of cyclic loading). L takes the form L(I) := L̂(I)ωf , where L̂ is a bounded
smooth function with dimensions of the load vector I. For ωf fixed (which is what we have in
mind), by definition, T → ∞ as ω → 0.

Let c denote the coarse variables of dimension m and Λ be a user-specified function of the
fine states producing vectors with m components whose time averages over intervals of period
τ can be measured in principle and are of physical interest. Given the fixed time interval τ
characterizing the resolution of coarse measurements in time, a coarse trajectory corresponding
to each fine trajectory f(·) is defined as the following running time average:

c(t) :=
1

τ

∫ t+τ

t
Λ(f(p))dp, (35)

where τ < 1/ω. Thus, τ is the period of time averaging, referred to the fast time scale. In this
study, we are interested in understanding the evolution of time averages of phase functions of
the fast flow on the slow time scale of loading. The developed approach is a natural, practical
extension of the method of averaging proposed in [5, 4]. We construct the evolutionary equations
of time averaged quantities following the work of [15] and refer to this collection of theoretical
and numerical ideas as ‘Practical Time Averaging’.

Define a new time scale s := t/T and denote ε := 1/T. Note that since T is dimensionless,
s has the unit of time and ε is a dimensionless number. For the functions f and I of the fast
time variable t, we define the functions f̃ and Ĩ of the slow time variable s as follows:

f̃(s) = f(sT), Ĩ(s) = I(sT). (36)

Then, on the slow time scale the system reads

ε
df̃

ds
= H(f̃ , L̃)

dĨ

ds
= L(Ĩ).

(37)
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The coarse variable is defined as

c̃(s) = c(sT) =
1

τ

∫ sT+τ

sT
Λ(f(p))dp, (38)

and we assume that τ = κ/ω with κ a non-dimensional constant and 0 < κ < 1. Introducing
the change of variables r = p/T, we have

c̃(s) =
1

λ

∫ s+λ

s
Λ(f̃(r))dr, (39)

where λ = τ/T. Therefore, λ = κ/(ωT) = κ/ωf is a constant as ε → 0, with physical dimensions
of time.

Removing all overhead tildes, we have the slow-fast system, posed on the slow time scale:

ε
df

ds
= H(f, I)

dI

ds
= L(I)

c(s) =
1

λ

∫ s+λ

s
Λ(f(r))dr.

(40)

Let fε,I,f0 represent solutions of the fast system

ε
dfε,I,f0

ds
= H(f ε,I,f0 , I) ; f ε,I,f0(0) = f0 (41)

with I fixed. Rewrite the fast system with the introduction of the fast time scale t = s/ε,

df (0),I,f0

dt
(t) = H(f (0),I,f0(t), I) ; f (0),I,f0(0) = f0 (42)

where

f (0),I,f0(t) = f (0),I,f0
(s
ε

)
= f ε,I,f0(s). (43)

Assume that for 0 ≤ t < ∞, fε,I,f0 lie in a bounded set for each I. Hence, on [0,T] we will have
for any continuous function F

F (fε,I,f0(s)) →
∫
RN

F (γ)µs,I,f0(γ)dγ weak ⋆ L∞[0,T], (44)

where µs,I,f0 is the Young measure generated by the sequence fε,I,f0 ∈ L∞(0,T;RN ). Moreover,
the theory proves that µs,I,f0 is an invariant measure supported on the ω-limit set of f (0),I,f0 .

Note that fε,I,f0 is obtained from running the fast system (42) for a sufficiently long period of
time, starting from f0 while keeping I fixed; The function F in (44) can be linear or nonlinear.
In situation when the ω-limit set of the fast dynamics is not an equilibrium point, the Tikhonov
approach may not in general be expected to approximate the time evolution of the first-moment
of nonlinear functions of state. Furthermore, the theory proves that coarse evolution equations
can be written down for state variables that are ‘slow’, i.e. orthogonal to the fast flow in a
precise sense, but does not provide a prescription for generating such ‘orthogonal observables’.

We follow the work of [15], which provides a straightforward way of generating a large
class of slow variables via time averaging that are shown to be ‘orthogonal observables’ (for a
corresponding infinite dimensional dynamics) for which a slow dynamics can be written down.
This approach and the numerical approximation ideas developed here are referred as ‘Practical
Time Averaging’.
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Recall the coarse variable defined on the slow time scale (40) and write down its evolution:

c(s) =
1

λ

∫ s+λ

s
Λ(f(r))dr =⇒ dc

ds
(s) =

1

λ
[Λ(f(s+ λ))− Λ(f(s))] . (45)

Let us define the sequence (on ε) of smooth functions cε,f0 such that

cε,f0(s) =
1

λ

∫ s+λ

s
Λ(fε,I(r),f0(r))dr, (46)

where we follow the notation in (41) but now I is a function of the slow time. Then the evolution
equation is

dcε,f0

ds
(s) =

1

λ

[
Λ(fε,I(s+λ),f0(s+ λ))− Λ(fε,I(s),f0(s))

]
. (47)

Let cf0 denote the weak limit of the sequence cε,f0 , and using (44), we have

dcf0

ds
=

1

λ

(∫
RN

Λ(γ)µs+λ,I(s+λ),f0(γ)dγ −
∫
RN

Λ(γ)µs,I(s),f0(γ)dγ

)
(48)

in the weak (variational) sense. (48) can be considered as the instantaneous evolution equation
of the limit slow variable cf0 of the sequence cε,f0 . It should be noted that if any arbitrary
instantaneous function, say A(f), is taken as the coarse variable, we have

dA(f)

ds
(s) =

1

ε
∇fA ·H. (49)

Since 1/ε is built in the evolution equation, the Young measure limit is usually not applicable
unless the function A(f) satisfies ∇fA·H = 0. However, our definition of coarse variables allows
constructing coarse evolution equation for more general kinds of averaged phase functions. For
example, to approximate the change of temperature of a MD system, where temperature can
be interpreted as a function of particle velocities but normally does not satisfy ∇fA ·H = 0, we
can define the time average of temperature and follow the procedure from (45) to (48) to write
down the coarse evolution equation.

The Young measures in (48) are approximated as averages of M Dirac masses at M values
of f , i.e.

µs,I(s),f0 ≈ 1

M

M∑
i=1

δ(f (0),I(s),f0(ti)), (50)

where ti is a discrete time instant in the fast run from i.c. f0 and I(s) held fixed. M is normally
chosen to be large enough for the averages to converge. For practical numerics we have found
that a ‘direct’ implementation of (48) does not work. In the following we discuss what a ‘direct’
implementation might constitute and the actual procedure that we adopt.

The procedures of the ‘direct’ implementation suggested in [6] include:

1. Evolve the fast system (42) with slow variables fixed at time step s and s + λ, respectively
to estimate the weak limit of the continuous function Λ, i.e.∫

RN

Λ(γ)µs,I(s),f0(γ)dγ ≈ 1

M

M∑
i=1

Λ(f (0),I(s),f0(ti))

∫
RN

Λ(γ)µs+λ,I(s+λ),f0(γ)dγ ≈ 1

M

M∑
i=1

Λ(f (0),I(s+λ),f0(ti)),

(51)

where the above equations are derived from (50).
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2. Extrapolate to obtain the coarse variable at the next coarse step s + T using the Forward
Euler method,

cf0(s+ T ) ≈ cf0(s) +
T

λ

[∫
RN

Λ(γ)µs+λ,I(s+λ),f0(γ)dγ −
∫
RN

Λ(γ)µs,I(s),f0(γ)dγ

]
, (52)

where T is the coarse time step. Usually T is set to be much larger than λ. I(s+ T ) can be
obtained from evolving (40)2 solely.

3. Reconstruct to find fine data that matches cf0(s+ T ) and I(s+ T ).

4. Repeat.

The primary shortcoming of all of this theory as acknowledged in [5, 4] and carries over for the
model with time averages in [15] is that the theory is silent about fine initial conditions required
to generate the Young measures at the discrete slow time-levels. This is a serious practical issue
and renders f0 as an essentially free parameter whose choice, nevertheless, affects results and
has to be made on an ad-hoc basis based on numerical experimentation. We mention here that
the unsubstantiated assumption of ergodicity is often made to sweep this important issue under
the rug.

Given the above uncertainty and the need to use it twice to follow the evolution prescribed
by (52), an alternative procedure is the following. Based on (43), the sequence of functions
cε,f0(s) can be written as

cε,f0(s) = c(0),f0
(s
ε

)
= c(0),f0(t). (53)

Using the substitutions p = r/ε, τ = λ/ε and (43), the right-hand-side term in (46) can be
interpreted on the fast time scale as

1

λ

∫ s+λ

s
Λ(f ε,I(r),f0(r))dr ≈ 1

τ

∫ t+τ

t
Λ(f (0),I(t),f0(p))dp, (54)

where we make the realistic assumption that the loads I do not vary appreciably in the (fast-
time) interval [t, t+ τ ]. From (53) and (54), we have

c(0),f0(t) =
1

τ

∫ t+τ

t
Λ(f (0),I(t),f0(p))dp. (55)

We are interested in cε,f0 as ε → 0, which by definition, is the time average of functions of the
fast variables as τ → ∞ when the slow variable I is fixed. We simply follow (55) to calculate
this average at each coarse time step T . Theoretically, we need to run the fast system for an
infinite period of time. However, for the numerical tests conducted here we have seen that the
average converges quickly, thus taking a reasonable period of time is sufficient.

4. 2D Ni-Mn System

The setting of this problem is from [9], which is a 2D lattice system made of Ni-Mn. The initial
configuration of the 2D Ni-Mn lattice is shown in Figure 9.

The 2D lattice is infinite in the horizontal direction and has heightH in the vertical direction.
Since it is infinite, we apply periodic boundary conditions (PBC) on a simulation box, where
the total number of atoms (including Ni and Mn) is 1390. The distance between the twin
boundary and the bottom is h. In the tests, we set h = 2/3H. The material above the twin
boundary is associated with martensite variant-1 while the material below it is associated with
variant-2. The force F applied on the upper and lower sides of the lattice in the horizontal
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Figure 9: Two-dimensional Ni-Mn lattice of infinite width in the horizontal direction.

direction. Define the domain of the simulation box as Ω. The upper edge of the box is denoted
as Ωupper and the lower edge is denoted as Ωlower. We apply strain-control on the upper and
lower boundaries of the system, thus the equations of motion are

ṗNi
αi = vNi

αi , ∀ α ∈ Ω\(Ωupper ∪ Ωlower),

ṗMn
αi = vMn

αi , ∀ α ∈ Ω\(Ωupper ∪ Ωlower),

v̇Ni
αi =

1

mNi

(
− ∂Φ

∂pNi
αi

)
, ∀ α ∈ Ω\(Ωupper ∪ Ωlower),

v̇Mn
αi =

1

mMn

(
− ∂Φ

∂pMn
αi

)
, ∀ α ∈ Ω\(Ωupper ∪ Ωlower),

ṗNi
αi = ω, ∀ α ∈ Ωupper,

ṗMn
αi = ω, ∀ α ∈ Ωupper,

ṗNi
αi = −ω, ∀ α ∈ Ωlower,

ṗMn
αi = −ω, ∀ α ∈ Ωlower.

(56)

where Φ is the total potential energy of the system and ω is the loading rate. As before, α
denotes the atom number and i indicates the directions (i = 1 for horizontal axis and i = 2 for
vertical axis). We assume Lennard-Jones potentials among the atoms, i.e.,

Φαβ(d) = 4εαβ

[(
σαβ

d

)12

−
(
σαβ

d

)6
]
, (57)

where αβ =NiNi, MnMn and NiMn.
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Substituting the explicit form of potential energy into (56), we have

ṗNi
αi = vNi

αi , ∀ α ∈ Ω\(Ωupper ∪ Ωlower),

ṗMn
αi = vMn

αi , ∀ α ∈ Ω\(Ωupper ∪ Ωlower),

v̇Ni
αi =

1

mNi


−
∑

βNi∈(αNi,r) 24ε
NiNi

[(
σNiNi

)6(
dNiNi
αβ

)7 − 2

(
σNiNi

)12(
dNiNi
αβ

)13
]
pNi
αi − pNi

βi

dNiNi
αβ

−
∑

βMn∈(αNi,r) 24ε
NiMn

[(
σNiMn

)6(
dNiMn
αβ

)7 − 2

(
σNiMn

)12(
dNiMn
αβ

)13
]
pNi
αi − pMn

βi

dNiMn
αβ

 ,

∀ α ∈ Ω\(Ωupper ∪ Ωlower),

v̇Mn
αi =

1

mMn


−
∑

βMn∈(αMn,r) 24ε
MnMn

[(
σMnMn

)6(
dMnMn
αβ

)7 − 2

(
σMnMn

)12(
dMnMn
αβ

)13
]
pMn
αi − pMn

βi

dMnMn
αβ

−
∑

βNi∈(αMn,r) 24ε
NiMn

[(
σNiMn

)6(
dNiMn
αβ

)7 − 2

(
σNiMn

)12(
dNiMn
αβ

)13
]
pMn
αi − pNi

βi

dNiMn
αβ

 ,

∀ α ∈ Ω\(Ωupper ∪ Ωlower),

ṗNi
αi = ω, ∀ α ∈ Ωupper,

ṗMn
αi = ω, ∀ α ∈ Ωupper,

ṗNi
αi = −ω, ∀ α ∈ Ωlower,

ṗMn
αi = −ω, ∀ α ∈ Ωlower.

(58)

We further define the following non-dimensionalized terms,

mNi =
mNi

µ0
= 58.59; mMn =

mMn

µ0
= 54.93; ω = ωT0;

εNiNi =
εNiNi

ε0
= 1.0; εNiMn =

εNiMn

ε0
= 0.9905; εMnMn =

εMnMn

ε0
= 0.9810;

σNiNi =
σNiNi

σ0
= 1.0; σNiMn =

σNiMn

σ0
= 1.0205; σMnMn =

σMnMn

σ0
= 0.8736.

(59)

The parameters ε0, σ0, µ0 and T0 are chosen following [9], i.e.,

ε0 = εNiNi; σ0 = σNiNi; µ0 = 1.66011× 10−27kg; T0 =
√

µ0σ2
0/ε0. (60)
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The non-dimensionalized equations of motion become(
pNi
αi

)′
= vNi

αi, ∀ α ∈ Ω\(Ωupper ∪ Ωlower),(
pMn
αi

)′
= vMn

αi , ∀ α ∈ Ω\(Ωupper ∪ Ωlower),

(
vNi
αi

)′
=

1

mNi



−
∑

βNi∈(αNi,r) 24ε
NiNi

 (σNiNi
)6(

d
NiNi
αβ

)7 − 2

(
σNiNi

)12(
d
NiNi
αβ

)13
 pNi

αi − pNi
βi

d
NiNi
αβ

−
∑

βMn∈(αNi,r) 24ε
NiMn

 (σNiMn
)6(

d
NiMn
αβ

)7 − 2

(
σNiMn

)12(
d
NiMn
αβ

)13
 pNi

αi − pMn
βi

d
NiMn
αβ


,

∀ α ∈ Ω\(Ωupper ∪ Ωlower),

(
vMn
αi

)′
=

1

mMn



−
∑

βMn∈(αMn,r) 24ε
MnMn

 (σMnMn
)6(

d
MnMn
αβ

)7 − 2

(
σMnMn

)12(
d
MnMn
αβ

)13
 pMn

αi − pMn
βi

d
MnMn
αβ

−
∑

βNi∈(αMn,r) 24ε
NiMn

 (σNiMn
)6(

d
NiMn
αβ

)7 − 2

(
σNiMn

)12(
d
NiMn
αβ

)13
 pMn

αi − pNi
βi

d
NiMn
αβ


,

∀ α ∈ Ω\(Ωupper ∪ Ωlower),(
pNi
αi

)′
= ω, ∀ α ∈ Ωupper,(

pMn
αi

)′
= ω, ∀ α ∈ Ωupper,(

pNi
αi

)′
= −ω, ∀ α ∈ Ωlower,(

pMn
αi

)′
= −ω, ∀ α ∈ Ωlower.

(61)

In the following discussion, the overbars are removed in the above equations for simplicity. The
numerical tests are carried out using LAMMPS [13]. The initial configurations are set to be
in force equilibrium at 0 K, thus the particle velocities are zero in the beginning. We use the
values from [9] to create the geometry of the lattice, that are

a = 1.54110σ0, b = 1.14101σ0. (62)

The force equilibrium can be obtained by minimization. Following the initial set-up, we run
NVE ensemble (i.e. with specifying macroscopic variables being the number of particles N ,
the volume V and the total energy E) to generate the fine trajectories of the system. The
temperature is small during the evolution but we do NOT employ a thermostat.

Figure 10(a) shows the stress-strain curve from fine dynamics. The displacement u and the
loading L are defined as

u =
uupper − ulower

2
, (63)

and

L =
Lupper − Llower

2
, (64)

respectively, where uupper and ulower indicate the space-averaged displacements of the upper and
lower atoms. The loading L is the average of the magnitudes of the load applied on the top and
bottom surfaces. The shear strain γ and shear stress τ are defined as follows

γ =
2u

H
, τ =

L

B × b
, (65)
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where H and B are the height and width of the simulation box as indicated in Figure 9. b is
the nearest distance between two Ni, which is considered as the width in the third direction.

We have tested three loading rates, i.e. ω = 10−3, 10−4 and 10−5. The characteristic
frequency of atomic system is about 1 (note that we are dealing with (61), thus the approximated
quantity is dimensionless), so the loading rate is small compared to atomic oscillations. The
hysteresis is obvious in all cases. The twin boundary nucleates at different places and the
variant-2 is gradually transformed to variant-1, which is associated with lower free energies. At
this stage, the deformation under shearing is accommodated by the solid phase transformation,
which corresponds to the softening part in the stress-strain curve. Once the variant-2 has been
fully transformed to variant-1, the lattice deforms like a homogeneous body under shearing,
which gives linear-elastic stress-strain behavior. During the unloading process, the lattice first
recovers from shear deformation, followed by phase transformation from variant-1 to variant-2.
Once the lattice consists of all variant-2 of martensite, it will again deform homogenously. In
the implementation of PTA, the procedures are as follows based on the theory given in Section
3:

1. To begin with, we need the fine-scale problem defined as a system of autonomous ODE,
i.e.(61). The initial conditions (such as atom positions and velocities) also need to be speci-
fied. In this case, we choose crystals at 0K.

2. Starting from the given initial conditions, we run the fast system (i.e. MD) for a sufficiently
long period of time to generate the Young measures while holding the slow variables (i.e. the
external loading) fixed. The running time is chosen until the Young measure converges.

3. The coarse variables of interest (in this case, we choose shear strain and stress defined in (65))
are computed using (55) at s = 0.

4. Next, we need to take a large coarse time step T to generate the Young measures at s = T ,
which depends heavily on the fast initial conditions f0. Here we assume the initial conditions
to be the last state from the fine trajectories in the Young measure approximant run in the
previous coarse time step. Since the shear force is applied horizontally, it is reasonable to
assume that the movement of the particles in the vertical direction is negligible. Therefore,
the vertical atom velocities are reset to be zero in the initial conditions for each Young
measure approximant run.

5. The steps 2-4 are repeated until we obtain the coarse dynamics for a desirable period of time.

Figure 10(b) exhibits the stress-strain curves from PTA with different coarse time steps. It can
be seen that setting T = 0.5 gives considerably different result from the other two while the
curves from T = 0.2 and T = 0.1 are quite similar. In Figure 11, we compare the results from
fine dynamics and from PTA. The loading rate is 10−4 in fine dynamics. The response from
PTA in the case of T = 0.2 is presented in Figure 11(a). It seems that PTA is able to predict
the softening and linear-elastic parts of the hysteresis very well. Figure 11(b) demonstrates
coarse dynamics from PTA with other options for defining the initial conditions. However,
these approximations are not as good as before. Figure 12 presents snapshots for one full cycle
of sinusoidal loading from direct numerical simulation of MD and from configurations recovered
from Young measure approximant runs from Figure 11(a). We can easily observe the process
of phase transformation between variant-1 and variant-2. Although the atomic configurations
diverge locally, PTA succeeds in approximating the overall behavior of the 2D lattice under
shear deformation. If taking a more detailed view of the transformation of individual atoms
on a row at different times, we observe the motion of steps along a twin boundary in the
horizontal direction, both from fine and PTA. The observation of step motions is also discussed
in [9, 18, 12].
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A rough estimation of the total steps in the time integration of the fine ODE is the following

nf =
Ttot

ω△t
,

ns =
Ttot

T
×M.

(66)

In the above equations, nf and ns denote the total time steps required to run the full fine
ODE over the total simulation time and the time steps required to generate Young measure
approximants (i.e. (50)) in all coarse steps when implementing PTA. Ttot is the total simulation
time defined on the slow time scale. △t is the fast time step and M is the number of integration
steps needed in the approximation of Young measures in each coarse step. The parameters
we used in the numerical simulations are △t = 0.01 and M = 1000. Thus in the case of
Figure 11(a), the total time savings in PTA is about 200 times of fine.

5. 3D Atomic Model

Figure 13 shows the initial configuration of the atomic assembly. We are simulating a cubic
lattice with lattice spacing as where each cube is face-centered. For each atom α, its position
and momentum vectors have components in x, y and z directions, respectively, i.e.,

p
α
= (pα1, pα2, pα3)

T , q
α
= (qα1, qα2, qα3)

T . (67)

The system is under uniaxial tension along the longitudinal direction. The atoms are at rest
initially. The interatomic interactions between any pair of atoms are modeled by Lennard-Jones
(LJ) potentials. Similar to (61), the non-dimensionalized Hamiltonian equation is given by

(pαi)
′ = vαi, ∀ α ∈ Ω\(Ωleft ∪ Ωright),

(vαi)
′ = − 1

m

∑
β∈(α,r)

24ε

[
(σ)6(
dαβ
)7 − 2

(σ)12(
dαβ
)13
]
pαi − pβi

dαβ
∀ α ∈ Ω\(Ωleft ∪ Ωright),

(pαi)
′ = −ω, ∀ α ∈ Ωleft,

(pαi)
′ = ω, ∀ α ∈ Ωright.

(68)
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Figure 10: (a) Stress-strain curve from fine dynamics with different loading frequencies; (b) Stress-strain
curve from PTA with different choices of coarse time steps.
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Figure 11: (a) Comparison of the stress-strain curve from fine evolution and PTA. In PTA, the initial
particle positions are defined as the last configuration from approximating the Young measures at previ-
ous coarse time step while the initial particle velocities are set to be zero at every coarse time step; (b)
Comparison of the stress-strain curve from fine evolution and PTA. In the red curve, the initial values
(including particle positions and velocities) are chosen to be the last points from the approximation of
Young measures at previous coarse time step; In the green curve, the initial positions are chosen to be
the first moments of the position function with respect to the approximate Young measures at previous
coarse time step while the velocities are set to be zero initially at every step.

Similarly, the overbars are removed for simplicity. We test a system with L = 12as, a = 5as
and the total number of atoms is 1513. In the initial atomic configuration, we set as = 1.05

√
2

to make sure that the distance between two nearest neighbors is close to the equilibrium state
(i.e. dNiNi = 1.12246). Then we apply energy minimization to further assure that the atomic
system is in (or near) equilibrium. In this case we do NOT employ a thermostat either. Linear
increasing displacement is applied at the left and right ends at the same time with opposite
signs. We define the strain ε and the overall stress σ as

ε =
pright − pleft

L
− 1.0,

σ =
Tright − Tleft

2× a× a
,

(69)

where pleft and pright denote the averaged atom positions on the left and right sides, respectively.
Tleft and Tright denote the tensile forces on the left and right sides, respectively.

We first obtain the stress-strain curves from simulating fine-scale dynamics under various
strain rates. The results are shown in Figure 14. Oscillations can be observed in high strain
rate along the deformation due to inertia effect. With the decrease of the strain rate, the
oscillations are smoothed out and the maximum stress is decreased (which is also supported
in [8] theoretically and experimentally). Despite of the differences, the constitutive relations in
the elastic part are almost the same. Figure 15 presents the stress-strain curve in the case of
ω = 10−5 with the points a to j on the curve corresponding to the snapshots in x-z plane at
different stages shown in Figure 16. Once after energy minimization, the bar is under slight
compression due to the internal forces prior to the application of tension, as can be seen in
Figure 15 and Figure 16(a). The bar deforms uniformly and elastically with the increasing of
the tensile strain before attaining its maximum tensile strength (Figure 16(a)-(d)). Although
there is a certain amount of stretch in the horizontal direction, the atoms are organized regularly
without any change in its original microstructure ordering. This is followed by a drop in the
stress to zero, simply implying the breaking of the atomic bonds. Considerable disorder in
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(a) Snapshots at s=0 (b) Snapshots at s=5

(c) Snapshots at s=10

(d) Snapshots at s=15

(e) Snapshots at s=20 (f) Snapshots at s=25

(g) Snapshots at s=30

Figure 12: Snapshots from fine and PTA. In all the figures, the left one shows the snapshots from
fine dynamics and the right one shows the snapshots from PTA, which present the approximated
Young measures of atom positions rather than the actual configuration from MD.
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Figure 13: Graphic Illustration of the initial configuration of the 3D Atomic System.

the middle of the bar is observed during this fracture process (Figure 16(e)), with the disorder
extending throughout the entire length of the body on subsequent pulling (Figure 16(f)-(i)). A
disordered necking region of decreasing diameter can be seen in Figure 16(j) towards the later
stage, indicating the total failure of the structure.

We notice that the bar fractures in the uniaxial tension testing as opposed to showing s-
lip/plasticity, probably because of the very few atoms in the x section. This finding is also
pointed out in [11]. However, in their case, significant plastic deformation were observed far
before the reach of maximum stress, due to dislocation pileup and subsequent rapid motion of
dislocations.

We also implement the idea of PTA to obtain the coarse response as ω tends to zero. Figure 17
shows the results with different coarse time steps. The stress-strain curves in the elastic part
match very well but the peaks vary with the coarse time step T . We compare the stress-strain
relations from fine dynamics and from PTA, and plot a set of consistent results in Figure 18.
Following (66) to estimate the time costs, we find nf/ns = 5 and 50 in the cases of ω = 10−5

and ω = 10−6, respectively.

6. Final Remarks

We summarize the main findings of this paper in this section.

• We find high frequency oscillations of the atoms (thus high kinetic energy) in the atomic
chain system. This is due to the inner instability of the material governed by non-convex
interaction potentials. The inner vibration of the system is independent of loading rates and
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Figure 14: Results from fine dynamics under different loading rates. The black, red, green, blue
and magenta curves present the results with loading frequency ω = 10−2, 10−3, 10−4, 10−5 and 10−6

respectively.
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Figure 15: Stress-strain curve from fine dynamics in the case of ω = 10−5. The points a to j correspond
to the snapshots in Figure 16.

can only be stabilized by applying viscosity or thermostat in the system, which in turn, lead
to strong hysteresis. When the loading rate tends to zero, the hysteresis converges to the
quasi-static result.

• An interesting observation from the fine-scale dynamics is that in the one-dimensional atomic
chain system, the chain becomes unstable beyond the critical strain and undergoes high fre-
quency vibrations while in the case of the two-dimensional Ni-Mn system, the kinetic energy
of the 2D lattice is kept low even without any constrain on the temperature of the system.
This phenomenon can be explained by different mechanisms of phase transformations. In the
first case the atomic chain needs to move from a low-strain equilibrium state to a high-strain
equilibrium state where the unstable region is in between (the critical points are denoted
by green dots in Figure 19(a)). In the second case, the lattice transforms between two dif-
ferent variants of martensite. The routes between energy minimum points are illustrated in
red in Figure 19(a) and (b), respectively. Taking the non-dimensionalized data in (59) and
computing ϕNiNi using (57), we find the red curve in Figure 19(b) is defined as

|xβ − xα|2 + |yβ − yα|2 = 21/3. (70)

The two variants of martensite correspond to two points on this curve and also satisfy the
kinematical compatibility condition. We assure that the lattice deforms within a reasonable
range near the equilibrium states, thus keep the deformation away from the instability points,
which are located on the green curve.

• PTA describes the limit dynamics of an induced slow-fast system with explicit separation of
time scales between the fast and slow motion. Therefore, in the implementation of PTA on
MD systems, the assumption of slow loading is essential. This is the limitation of PTA, but
this limitation does not influence its application on a class of engineering problems where
running the MD systems under slow loading rate is more challenging.

• Our definition of coarse variables as time averages of phase functions provides a systematic
procedure for the Young measure theory to be applied. If the coarse variables are chosen to
be any arbitrary instantaneous functions of the fine variables, the coarse evolution equation
will normally take a singularly perturbed form.

• The Young measures involved here are not unique and can be dependent on fine i.c.s. The
limit dynamics in the cases of unique and non-unique Young measures is given in [5], where
in the latter case, the limit of the slow motion solves a differential inclusion. In practice we
generate the approximate Young measures in a coarse time step by using as initial conditions
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(a) Snapshot at s=0 (b) Snapshot at s=0.5

(c) Snapshot at s=1 (d) Snapshot at s=1.4

(e) Snapshot at s=1.5 (f) Snapshot at s=1.6

(g) Snapshot at s=2.0

(h) Snapshot at s=2.5

(i) Snapshot at s=3

(j) Snapshot at s=3.5

Figure 16: Snapshots from fine dynamics in the case of ω = 10−5. Here s(= ωt) is the slow
time which will be used in the implementation of PTA later.
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Figure 17: Results from PTA with different coarse time steps. The black, red, green, blue and magenta
curves present the results with coarse time steps T = 0.05, 0.03, 0.01, 0.005 and 0.003 respectively. In P-
TA, the initial particle positions and velocities are set to be the same as the last point from approximating
the Young measures at previous coarse time step.
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Figure 18: Comparison of results from fine evolution and from PTA. The black and red curves present
the results from fine evolution with loading frequencies ω = 10−5 and 10−6 respectively. The blue curve
shows the result from PTA with coarse time step T = 0.005.
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Figure 19: Interatomic potential functions. The red curves indicate the possible energy routes between
the minimums of energy. (a) Double-well energy function that is used to describe the interatomic
potential in the one-dimensional atomic chain system; (b) Lennard-Jones energy function that is used to
describe the interatomic potential in the two-dimensional Ni-Mn system.
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for a fast run the last state from the approximation of the Young measure at the previous
coarse step. This strategy seems to work fine in the current (non-trivial) problems, but
we have to emphasize that this is only one option, and more sophisticated and systematic
methods are required to tackle this issue.

• An essential, required improvement beyond this first study to evaluate the efficacy of PTA is
the development of error-estimates for the scheme. In particular, knowledge of upper bounds
on coarse time step size would be desirable.

• From the numerical study, we find that at high strain rate in fine-scale dynamics, PTA usually
fails to generate consistent coarse response even when the coarse time step is chosen to be
small. However, when the strain rate is small, we observe consistent results from PTA. This
observation implies a favorable trend since in the range of extremely slow loading, current
MD takes unrealistically long simulation time. Thus, PTA could be a good alternative to
MD.

• Another finding is that some of the coarse responses from fine are non-smooth. With the
implementation of PTA, we successfully predict these non-smooth behaviors. Note that we
are essentially solving (55) instead of the system of ODE (48), which relaxes the smoothness
requirement of the coarse response.

• The PTA technique was first proposed in [16] and tested there on two model problems.
These problems were designed to probe its capability on the most important qualitative
feature required of it, that of averaging fast, nonlinear, oscillatory dynamics subject to
slowly evolving forcing. Of necessity, these first test problems had to be ‘simple’ and low-
dimensional. In this paper, we focus on the application of PTA on atomistic simulations,
giving its first demonstration on realistic models for the mechanics of materials. However,
this is not a trivial application - it requires real advances of the methodology, for instance:

- Incorporating our multiscale technique into MD software LAMMPS.

- Defining physically interesting variables and retrieving the associated dynamics at slow
time scale.

- Setting appropriate coarse time steps by evaluating accuracy and efficiency of our method
compared to direct MD simulation.

- Tackling the problem of non-uniqueness mapping from slow time-scale dynamics to fast
MD.

- Exploring the range of strain rate where our method works fine.

We discuss all these issues in the paper and hopefully, our work could shed light on the
longstanding open problem of MD, that is, slow process as strain rate goes to zero.
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