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When a heteroepitaxial film is grown on a vicinal substrate, the terrace steps at the growth front may
bunch together to relieve strain, resulting in a rough surface. On the other hand, proper manipulation of the
growth kinetics may suppress the inherent bunching instability, thus preserving step-flow growth. Here we
show that the step dynamics in the early stages of growth can already determine whether the bunching
instability is truly suppressed, prior to bunching actually taking place in the unstable regime. We
determine the critical film thickness above which steps will bunch and exploit its scaling properties
and usefulness for extracting intrinsic energy parameters. Experimental studies of SrRuO; films grown on
vicinal SrTiO; substrates clearly establish the existence of the critical film thickness in step bunching.
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Understanding of the morphological evolution in epitax-
ial growth is an important area of interdisciplinary science
[1]. Progress in this area may lead to better control of the
fabrication processes of various low-dimensional struc-
tures. In particular, considerable effort has been devoted
to synthesizing various thin-film materials. These materials
may exhibit unique physical properties, which can be
exploited to develop new devices. Because the physical
properties and device performance of thin films depend
critically on the film quality, it remains a challenge to gain
precise control of the film morphologies under diverse
growth conditions, so that a preferred mode of growth
can be selected to meet specific practical needs.

In epitaxial thin films, commonly observed growth
modes on a vicinal substrate are step flow, step bunching,
and island formation [2,3]. For most device applications,
atomically flat films are desired, making step flow the
preferred growth mode. Yet, when a heteroepitaxial film
is grown on a vicinal substrate, there exists an inherent
instability for the steps at the growth front to bunch to-
gether to relieve strain, resulting in a rough film [3,4].
Recent studies have shown that proper control of the
growth kinetics may suppress the bunching instability,
preserving step-flow growth [3,5,6]. This has been demon-
strated experimentally [7-9], and certain effective system
parameters of fundamental importance have been extracted
aided by proper modeling of the growth systems [7,9].
Once such intrinsic system parameters are known, the
growth mode under given growth conditions can be pre-
dicted, and the film quality can be controlled.

In this Letter, we study theoretically the dynamical
evolution of steps at the growth front of an epitaxially
strained film on a vicinal substrate. We show that the step
dynamics in the early stages of growth can be used to
determine whether the bunching instability is truly sup-
pressed, prior to step bunching actually taking place in the
unstable regime. We also determine the critical film thick-
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ness above which step bunching becomes unavoidable and
further elucidate the scaling properties of the critical thick-
ness. These scaling relationships allow one to extract
intrinsic energy parameters of the system. Preliminary
experimental results of SrRuO; (SRO) films epitaxially
grown on vicinal SrTiO5; (STO) substrates confirm quali-
tatively these predictions, in particular, the existence of the
critical film thickness in the bunching regime. The present
findings should be instrumental in future experimental
efforts to grow smooth films of desired thickness.

We first focus on the step dynamics of an infinite one-
dimensional (1D) array of parallel steps as a heteroepitax-
ial film is grown on a vicinal substrate. During the time of
observation, we assume the conservation of step numbers
and denote the position of step n at time ¢ by x,(f). The
velocity of the step n (V) is a function of the positions of all
of the other steps relative to the step: r, = x,,; — x;. The
1D translational symmetry of the infinite step array dictates
that the function V is the same for every step and indepen-
dent of the absolute position of each step. Acknowledging
this symmetry, the step velocity follows:

dxn/dt = V[(xn+1 - xn): (xn+2 - xn)’ e (xn—l - xn)r
(xn*2 - xn)’ .. ] (1)

We further assume that V does not depend on time explic-
itly. Under the deposition flux F, the steps flow at the
average velocity of FL, where L is the average terrace
width. If the terraces are of the same width, the step
velocity is expressed as FL = V[L,2L,...,—L, —2L,...].

Next, we denote the deviation in the individual terrace
width from the average by 6,(¢) = x,+(t) — x,,(r) — L.
Assuming small deviations, we expand Eq. (1) into a
Taylor series up to terms linear in 6,,:

dan/dt = _Z (6n+m - 8n)av/armr (2)

m==*1
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where the partial differentials 9V /dr,, are evaluated at
rnr=L,r,=2L,...,r_y=—L,r_,= —2L, and so on.
Whether the step trains are stable upon the introduction of
the linear perturbations can be determined by applying a
standard capillary (sinusoidal) wave analysis [3,9], where
the complex frequency (K) of wave vector K, or, equiv-
alently, the dispersion relation, is defined by the relation of
95/9t = Q(K)$ obtained by taking the Fourier transfor-
mation of Eq. (2), yielding:

*+oo

Q(K) = Z [exp(iKm) — 110V /dr,,. (3)

m==1
Consequently, 5 evolves in time according to
(K, 1) = 8(K, 1) exp[ UK)(t — 1)), “)

where 8(K, 1,) is the Fourier component of the perturbation
8,(ty) at time ¢, and 5,(r) can be obtained by taking the
inverse Fourier transformation of Eq. (4). In general, ((K)
is a complex number, whose imaginary part is given by the
phase of 5(K, 1)/8(K, t,), which is also the rate of oscil-
lation of the step deviation. The real part of )(K) is given
as

5(K, 1)

1
nl A
tO 5(1() ZO)

Re Q(K) = P

, &)

which determines the rate of decay or amplification of the
deviation. Based on Eq. (5), a dispersion relation can be
determined if the step positions at only two subsequent
times are measured. The real part of )(K) represents the
growth rate of the Fourier component of the deviation with
wave number K, 8(K, 7). A step flow is stable only when all
of the Fourier components of the deviation decay, requiring
Q(K) <0 for all K.

Now we specify to the case of strained films, where the
steps interact elastically. Following [3], the elastic driving
force on the steps, defined as the energy reduction associ-
ated with the motion of step n, is

*+oo

fn=m_z+l[ N % } ©)

Xn+m — Xn (xn+m - xn)3

where a, = 2Ye?h*/m)(1 + v)/(1 — v), h is the step
height, & is the misfit strain between the overlayer and
the substrate, Y is the Young’s modulus, » is Poisson’s
ratio, and a, depends on the magnitude of the force dipoles
[3]. The two parameters a;and «, define a characteristic

length scale Ly, = /a,/a;, characterizing the equilibrium
separation between two steps isolated from all other steps.
As usual, here we have neglected the interaction between
adatoms and the steps [3,5,9,10]. The energy reduction
given in Eq. (6) adds to the formation energy of adatoms
on the terrace near step n. In equilibrium with step n, the

coverage of adatoms is ce(x,) = coexp(—f,A/kgT),
where ¢, = exp(—Ey/kgT) is the equilibrium coverage
in the absence of elastic interaction, with E; being the
formation energy of an adatom on the terrace, A is the
area a step advances upon reception of an adatom, kp is the
Boltzmann constant, and T is the substrate temperature. In
the attachment-limited regime, the actual coverage of ada-
toms near a step, c(x;) with the “—> and “+” signs
indicating the upper and lower terraces, respectively,
may defer from the equilibrium coverage ceq(x,). The
difference drives the adatoms to attach to or detach from
the step with the adatom attachment fluxes —Ddc/dx =
k_[c(x,) —coylx,)]  at  x, and  —Ddc/dx =
—ky[c(x)) — coq(x,)] at x, . Here D is the diffusion con-
stant of adatoms on terraces, and k_and k. are, respec-
tively, the rate constants of attaching adatoms to a step
from the upper and the lower terraces.

Using the attachment fluxes on steps as the boundary
conditions to the diffusion equation on a terrace, we can
solve for the steady-state adatom distribution c(x), from
which the velocity of step n can be obtained by calculating
the net influx from both sides [3,5,9,10]:

dx, _ ~Qu1  FloaGo 1 58) O+ FLGE+3p)

a 141 4 by 11 40k
dt k,+k++D k,+k++D

bl

)

where ln = Xnt+1 T Xy and 0, = Ceq(xn+1) - Ceq(xn)-
Finally, the dispersion relation is obtained [9] from the

linear stability analysis of Eq. (7):

— cos(K) [alAcoS B (k+)z - ﬁ}

1
1 1 L 2 1 1 L

O(K) =

+ iFsin(K), (8)

where § = KQ7 — K)[1 — a,/(4a,L)KQ7 — K)].

To test the validity of Eq. (8), we carry out numerical
simulations of step evolution following the nonlinear equa-
tion of motion—Eq. (7). This exercise, in turn, also offers
an opportunity to illustrate the power of Eq. (5). In our
simulation, a unit cell containing 64 steps is periodically
repeated, and the initial step positions are randomly as-
signed. The dimensionless parameters used for demonstra-
tion purposes are BAcya,/Ly,=0.02, FL?>/D = 0.1,
D/(Lk_) = 0.2 for the unstable case and BAcya;/Ly =
0.02, FL?/D = 1.0, D/(Lk_) = 0.2 for the stable case. In
the unstable case [Fig. 1(a)], the steps bunch during time
evolution, while, in the stable case [Fig. 1(b)], all of the
steps flow parallel to each other as they evolve. Next, the
ratio of the Fourier transforms of the step-width deviation
5(1) between two subsequent times is calculated for both
cases, with the simulation results represented by the dashed
lines and that from Eq. (8) by the solid lines [Figs. 1(c) and
1(d)]. In the plots, we choose K = 77/4 as a representative
component. Both cases exhibit oscillatory behavior, with
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FIG. 1. Time evolution of the relative step positions in the

(a) unstable and (b) stable regime. In (c) and (d), the dashed lines
are from numerical simulations using Eq. (7), while the solid
lines are based on linear stability analysis. The dynamics of the
deviation amplitude increases exponentially in (c) the unstable
case and decreases sinusoidally in (d) the stable case. The
dispersion relations obtained from the numerical simulations
using Eq. (7) and from linear stability analysis are compared
in the (e) unstable and (f) stable cases.

the period given by the imaginary part of (K). In
Fig. 1(c), the amplitude increases exponentially, even
though before bunching takes place the steps appear to
preserve equidistance in Fig. 1(a), suggesting the existence
of a critical film thickness in the bunching regime. In
Fig. 1(d), the amplitude decays exponentially, indicative
of persistent step flow. Also, a severe discrepancy appears
only after step bunching in Fig. 1(c), where linear stability
analysis is deemed to break down. In Figs. 1(e) and 1(f),
the dispersion relation calculated from the simulation data,
using Eq. (5), is compared to the result of linear stability
analysis, Eq. (8). Excellent agreement is obtained for both
cases; in particular, the unstable dynamics has a positive
Re)(K), whereas it is negative in the stable case.

Now we focus on the unstable case and determine the
critical film thickness. Some simplifications based on
physical considerations are introduced. First, adatoms on
the lower terrace typically attach to a step much faster than
adatoms on the upper terrace (k; << k_, the Ehrlich-
Schwoebel barrier effect [11]). Second, L, < L; therefore,
the repulsion in Eq. (7) is negligible for the dynamics of
nearly equidistant steps. Third, L is large enough that the
system is in the diffusion-limited regime, with k_L/D >
1. With these considerations, the real part of the dispersion

relation (8) reduces to

L 7

CY]ACOD
Re Q(K) ~ e T
e (UK) [ L* K27 — K)

W i|(] - COSK),

()]

which maximizes at K = 7. Here L* = 72 a,Acy/kzyTDF
is the critical terrace width above which a persistent step
flow is the selected mode of growth. The maximum of
Eq. (9) defines a time scale ¢, during which the fastest
growing mode of the perturbation has developed large
enough to cause step bunching. This time scale translates
into a critical film thickness, via 7o = Ft.:

3 _
Tc ~CkBTL <I—L> 1

L*

10
F CYIACOD ( )

The dimensionless parameter C is of order 1. The sche-
matic behavior of 7 as a function of L is shown in Fig. 2. If
the terrace width is far below L*, we have 7./F ~ L3. As
L approaches L*, 7. increases rapidly towards infinity,
signifying the persistent step-flow regime.

Here we note that, in the strongly unstable regime (L <
L™), once the vicinal angle or the average terrace width L is
given, the rest of the right-hand side of Eq. (10) consists
only of intrinsic or controllable growth parameters. This
expression embodies several important messages. First,
even if the growth conditions are chosen in the regime
that step bunching is deemed to occur, there still exists a
critical film thickness, below which growth proceeds via
the step-flow mode, offering more opportunities to grow
smooth films. Second, for a given system, the critical
thickness scales with the deposition flux if other system
and growth parameters are kept constant. Third, Eq. (10),
in principle, offers an approach to determine some of the
intrinsic energetic parameters of a system. We also note
that Eq. (10) was derived within the linear stability analy-

step bunching step flow
D 4
= ’ ﬁi -cr
g c . F
L=L*

log(L)

FIG. 2. A schematic view of the critical thickness 7. as a
function of the average terrace width L. When L is much shorter
than L*, 7 scales with L. When L approaches L*, 7 deviates
from C,L> and approaches infinity, with C, being a constant.
The data points marked by the solid circles correspond to the
AFM images shown in Fig. 3.
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FIG. 3 (color online). AFM images of SrRuO; films of (a) 4
and (b) 10 nm grown on a vicinal SrTiO; substrate with a terrace
width of ~200 nm. SRO films of (c) 10 and (d) 40 nm grown on
a vicinal substrate with a terrace width of ~400 nm. The white
scale bars are 10° nm in width.

sis, but its validity, in particular, in the strongly unstable
regime where a simple L>*-scaling law is well defined, has
been independently verified by numerical simulations of
the step dynamics using the nonlinear equation of motion
Eq. (7).

In principle, Eq. (10) can be applied to a wide range of
heteroepitaxial growth systems. Nevertheless, a thorough
literature review identified only limited indirect evidence
[12], with no existing experimental or theoretical work
directly addressing the dynamical transition from the
step-flow growth regime below a certain critical film thick-
ness to the step-bunching regime above. Here we present
results of preliminary experimental studies of the SRO on
STO growth system to check qualitatively the validity of
Eq. (10). The results are presented in Fig. 3, showing the
atomic force microscopy (AFM) images of SRO film mor-
phologies at different film thicknesses on STO substrates
of two different average terrace widths, under otherwise
identical growth conditions by pulsed laser deposition [8].
The substrate temperature used was 700 °C, and the aver-
age deposition flux was F = 0.06 ML/s. X-ray diffraction
confirmed that the SRO films were fully strained to match
the STO substrates. Figures 3(a) and 3(b) were obtained on
a substrate with L ~ 200 nm, but at different film thick-
nesses of 4 and 10 nm, respectively. Whereas the film
illustrates step-flow growth at 4 nm [Fig. 3(a)], the growth
mode is via step bunching when the film thickness is
increased to 10 nm [Fig. 3(b)]. In contrast, when L ~
400 nm, the growth mode is still via step flow at the film
thickness of 10 nm [Fig. 3(c)]. Furthermore, when the film
thickness is further increased to 40 nm on the wider terrace
substrate, the growth mode again shows clear signs of step
bunching [Fig. 3(d)]. These observations agree qualita-

tively with the predictions, as visualized in the schematic
plots of Fig. 2, where the data points (A—D) correspond to
the experimental images shown in Fig. 3 (see also Fig. 2 of
Ref. [9], where images B and C were taken). In particular,
the data clearly establish the existence of a critical film
thickness before step bunching occurs.

Finally, we note that the steps shown in Fig. 3 are clearly
meandered rather than straight, but as long as the magni-
tudes of the meandering are much smaller than the average
terrace width, these steps can be modeled by 1D step trains.
Such a condition holds as long as the system is still in the
step-flow regime or when the bunching instability is just
about to prevail. Also, the observed bunching occurred at a
much lower thickness than what would be predicted by
Eq. (10) if using the intrinsic parameters inferred previ-
ously [9]. The improved understanding achieved here ne-
cessitates a revisit of the earlier quantitative analysis,
taking into consideration that an experimental observation
of step flow (at a given film thickness) is not sufficient to
delineate a region of persistent step flow. Such a more
systematic experimental effort is in progress. The present
work is expected to offer new pathways to obtain smooth
films of desired thickness in other related systems where
growth has to proceed in the strongly bunching regime.
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