1 Errata: Metamaterials and Waves in Composites

1. Section 5.6.1: Ensemble averaging: The definition of ensemble averaged displacements should read

$$
p_{j}(\mathbf{x})\langle\mathbf{u}(\mathbf{x}, t)\rangle_{j}=\int_{\mathcal{A}} \chi_{j}(\mathbf{x} ; \alpha) \mathbf{u}(\mathbf{x}, t ; \alpha) \mathrm{d}[p(\alpha)] .
$$

2. Section 5.6.2: The Willis equations: The convolution operator was not clearly defined in the text. Here is an example of how the operator should be interpreted when both space and time are involved

$$
\begin{aligned}
G \star(\nabla \cdot S-\dot{\mathbf{m}}) & =\int_{\Omega} \mathrm{d} \mathbf{x}^{\prime}\left[G\left(\mathbf{x}^{\prime}-\mathbf{x}, t\right) \star(\nabla \cdot S-\dot{\mathbf{m}})\left(\mathbf{x}^{\prime}, t\right)\right] \\
& =\int_{\Omega} \mathrm{d} \mathbf{x}^{\prime}\left[\int_{-\infty}^{t} \mathrm{~d} \tau G\left(\mathbf{x}^{\prime}-\mathbf{x}, t-\tau\right) \cdot(\nabla \cdot S-\dot{\mathbf{m}})\left(\mathbf{x}^{\prime}, \tau\right)\right] .
\end{aligned}
$$

3. Section 5.7: Forces The expression for the elastic force in equation (5.111) has the wrong sign. The correct equation is

$$
\mathbf{f}_{4}^{\text {elastic }}=h k\left[\left(1-A_{3}\right) \mathbf{1}+\left(A_{3}-A_{1}\right) \boldsymbol{D}_{41}+\left(1-A_{2}\right) \boldsymbol{D}_{42}\right] \cdot \mathbf{u}_{4} .
$$

4. Section 5.7: A simpler model: The dispersion relation given in the text is wrong. The correct equation is

$$
\begin{aligned}
& 9 c^{2} k^{2}-3 k \cos \left(h k_{2}\right)\left[2 c^{2} k\left[1+2 \cos \left(h k_{1}\right)\right]+\left(1+c^{2}\right)^{2} \delta h \omega^{2} \sin ^{2}\left(\frac{h k_{2}}{2}\right)\right] \\
& \quad+\cos ^{2}\left(h k_{2}\right)\left[c^{2} k^{2}\left[1+2 \cos \left(h k_{1}\right)\right]^{2}+\left(1+c^{2}\right)^{2} \delta h k \omega^{2}\left[1+2 \cos \left(h k_{1}\right)\right] \sin ^{2}\left(\frac{h k_{2}}{2}\right)+\left(1+c^{2}\right)^{2} \delta^{2} h^{2} \omega^{4} \sin ^{4}\left(\frac{h k_{2}}{2}\right)\right] \\
& \quad+\left(1+c^{2}\right)^{2}(\delta h-2 m)^{2} \omega^{4} \sin ^{4}\left(\frac{h k_{2}}{2}\right) \sin ^{2}\left(h k_{2}\right)=0 .
\end{aligned}
$$

When $\delta=0$, we have

$$
9 c^{2} k^{2}-6 c^{2} k^{2} \cos \left(h k_{2}\right)\left[1+2 \cos \left(h k_{1}\right)\right]+c^{2} k^{2} \cos ^{2}\left(h k_{2}\right)\left[1+2 \cos \left(h k_{1}\right)\right]^{2}+4\left(1+c^{2}\right)^{2} m^{2} w^{4} \sin ^{4}\left(\frac{h k_{2}}{2}\right) \sin ^{2}\left(h k_{2}\right)=0 .
$$

In the limit $h \rightarrow 0$, the above equation is degenerate.
5. Section 5.7: A simpler model: The inertial traction in equation (5.113) has the wrong sign. The correct expressions are
(a) "A force $\mathbf{t}_{4}^{\text {inertial }}=-\mathbf{f}_{4}^{\text {inertial }} /(2 h)$ needs to act...$"$
(b) Equation (5.113):

$$
\mathbf{t}_{4}^{\text {inertial }}=\frac{m \omega^{2}}{2}\left(c u_{4 y} \mathbf{e}_{1}+\frac{u_{4 x}}{c} \mathbf{e}_{2}\right)
$$

6. Section 5.7: A simpler model: The expression for the elastic force at node 4 is wrong. The correct expression is

$$
\begin{aligned}
\mathbf{f}_{4}^{\text {elastic }=}= & h k\left[\left\{1-e^{-i h k_{1}} \cos \left(h k_{2}\right)\right\} u_{4 x}+i e^{-i h k_{1}} \sin \left(h k_{2}\right) u_{4 y}\right] \mathbf{e}_{1} \\
& +h k\left[i e^{-i h k_{1}} \sin \left(h k_{2}\right) u_{4 x}+\left\{2-e^{i h k_{2}}-e^{-i h k_{1}} \cos \left(h k_{2}\right)\right\} u_{4 y}\right] \mathbf{e}_{2}
\end{aligned}
$$

7. Section 5.7: Momentum and stress: The sign of the momentum density wrong. The correct expression is

$$
\begin{aligned}
\mathbf{p} & =-\frac{i \omega}{4 c h}\left[c\left(e^{i h k_{2}}+1\right) \delta h u_{4 x}+\left(e^{i h k_{2}}-1\right)(\delta h-2 m) u_{4 y}\right] \mathbf{e}_{1} \\
& -\frac{i \omega}{4 h}\left[c\left(e^{i h k_{2}}-1\right)(\delta h-2 m) u_{4 x}+\left(e^{i h k_{2}}+1\right) \delta h u_{4 y}\right] \mathbf{e}_{2} .
\end{aligned}
$$

The same mistake is propagated in equation (5.115) and the reamining expressions for the momentum density. The correct expressions are:
(a) Equation (5.115):

$$
\mathbf{p}=-\frac{i \omega}{2 c}\left[\left(c \delta u_{1}-i k_{2} m u_{2}\right) \mathbf{e}_{1}+c^{2}\left(-i k_{2} m u_{1}+\frac{\delta}{c} u_{2}\right)\right] \mathbf{e}_{2} .
$$

(b) Expression in terms of displaceemnt gradients:

$$
\mathbf{p}=-\frac{i \omega}{2 c}\left[\left(c \delta u_{1}-m u_{2,2}\right) \mathbf{e}_{1}+c^{2}\left(-m u_{1,2}+\frac{\delta}{c} u_{2}\right)\right] \mathbf{e}_{2}
$$

(c) Equation (5.116):

$$
\mathbf{p}=-\frac{1}{2}\left(-\frac{i m \omega}{c} u_{2,2}-\delta v_{1}\right) \mathbf{e}_{1}+\frac{1}{2}\left(-i m \omega c u_{1,2}-\delta v_{2}\right) \mathbf{e}_{2} .
$$

(d) Matrix form of equation (5.116):

$$
\underline{\underline{\mathrm{p}}}=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccccc}
0 & 0 & 0 & \text { im }^{2} c^{-1} & \delta & 0 \\
0 & i m \omega c & 0 & 0 & 0 & \delta
\end{array}\right]\left[\begin{array}{l}
u_{1,1} \\
u_{1,2} \\
u_{2,1} \\
u_{2,2} \\
v_{1} \\
v_{2}
\end{array}\right] .
$$

This error shows that quick checks of correctness of results in metamaterial calculations can be difficult because of the possibility of negative mass. In this case, such a check is possible because the momentum and the velocity should have the same sign at low frequencies.
8. Section 5.7: Momentum and stress: At equation (5.118) and nearby the signs are wrong.
(a) The correct sentence is " $\ldots \mathbf{t}_{3}^{\text {inertial }}=\mathbf{t}_{1}^{\text {inertial }}=0$, we have $\sigma_{11}^{I}=0, \sigma_{12}^{I}=0, \sigma_{21}^{I}=m \omega^{2} c u_{4 y} / 2$, and $\sigma_{22}^{I}=m \omega^{2} u_{4 x} /(2 c) . "$
(b) The correct form of Equation (5.118) is:

$$
\boldsymbol{\sigma}^{I} \equiv[\sigma]^{I}=\frac{1}{2}\left[\begin{array}{cc}
0 & 0 \\
m \omega^{2} c u_{2} & m \omega^{2} u_{1} / c
\end{array}\right]
$$

(c) The correct form of the full matrix form of equation (5.118) is

$$
[\sigma]^{I}=\left[\begin{array}{l}
\sigma_{11}^{I} \\
\sigma_{12}^{I} \\
\sigma_{21}^{I} \\
\sigma_{22}^{E}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
0 \\
0 \\
m \omega^{2} c u_{2} \\
m \omega^{2} c^{-1} u_{1}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & i \omega m c \\
i \omega m c^{-1} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

9. Section 5.7: Momentum and stress: At equation (5.120) and nearby the signs are wrong.
(a) The correct form of the stress-(displacement gradient-velocity) relation is

$$
[\sigma]=\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{12} \\
\sigma_{21} \\
\sigma_{22}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccccc}
h k & 0 & 0 & h k & 0 & 0 \\
0 & h k & h k & 0 & 0 & 0 \\
0 & h k & h k & 0 & 0 & i \omega m c \\
h k & 0 & 0 & 3 h k & i \omega m c^{-1} & 0
\end{array}\right]\left[\begin{array}{c}
u_{1,1} \\
u_{1,2} \\
u_{2,1} \\
u_{2,2} \\
v_{1} \\
v_{2}
\end{array}\right]
$$

(b) The correct form of the (stress-momentum)-(displacement gradient-velocity) relation is

$$
\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{21} \\
\sigma_{12} \\
\sigma_{22} \\
p_{1} \\
p_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccccc}
h k & 0 & 0 & h k & 0 & 0 \\
0 & h k & h k & 0 & 0 & i \omega m c \\
0 & h k & h k & 0 & 0 & 0 \\
h k & 0 & 0 & 3 h k & i \omega m c^{-1} & 0 \\
0 & 0 & 0 & i m \omega c^{-1} & \delta & 0 \\
0 & i m \omega c & 0 & 0 & 0 & \delta
\end{array}\right]\left[\begin{array}{l}
u_{1,1} \\
u_{1,2} \\
u_{2,1} \\
u_{2,2} \\
v_{1} \\
v_{2}
\end{array}\right]
$$

10. Section 6.2.3: Examples of transformation-based cloaking and Problem 6.2: The Greenleaf-Lassas-Uhlman map should be read in the notation of the rest of the text as:

$$
\mathbf{x}(\mathbf{X})= \begin{cases}\left(\frac{\|\mathbf{X}\|}{2}+1\right) \frac{\mathbf{X}}{\|\mathbf{X}\|} & \text { if }\|\mathbf{X}\|<2 \\ \mathbf{X} & \text { if }\|\mathbf{X}\|>2\end{cases}
$$

11. Section 6.3: p. 229: The expressions for $\mathbf{g}_{1}, \mathbf{g}_{2}, \mathbf{g}_{3}$ in spherical coordinates should read

$$
\begin{aligned}
& \mathbf{g}_{1}=\frac{\partial \mathbf{x}}{\partial \theta^{1}}=\frac{\partial \mathbf{x}}{\partial r}=\ldots \\
& \mathbf{g}_{2}=\frac{\partial \mathbf{x}}{\partial \theta^{2}}=\frac{\partial \mathbf{x}}{\partial \theta}=\ldots \\
& \mathbf{g}_{3}=\frac{\partial \mathbf{x}}{\partial \theta^{3}}=\frac{\partial \mathbf{x}}{\partial \phi}=\ldots
\end{aligned}
$$

12. Section 6.3: p. 230: In the expression for the deformation gradient in spherical coordinates, \mathbf{x} has been assumed to be a general vector rather than a position vector. That is the reason for us writing $\mathbf{x}=x_{r} \mathbf{e}_{r}+x_{\theta} \mathbf{e}_{\theta}+x_{z} \mathbf{e}_{z}$ instead of the correct form $\mathbf{x}=x_{r} \mathbf{e}_{r}$. The general vector form has been shown so that the reader can apply the same idea to other coordinate systems.
13. Section 6.3: Equation (6.20): The first part of the equation should read

$$
\boldsymbol{F} \cdot \boldsymbol{F}^{T}=\left[\begin{array}{ccc}
t^{2} & 0 & 0 \\
0 & \left(\frac{R_{1}+t R}{R}\right)^{2} & 0 \\
0 & 0 & \left(\frac{R_{1}+t R}{R}\right)^{2}
\end{array}\right]=\ldots
$$

14. Section 6.4: Equation (6.27), p. 234 The expression for the transformed bulk modulus is confusing, i.e., is the $\kappa_{x}(\mathbf{x})$ on the left a tensor? The correct expression is

$$
\frac{1}{\kappa_{x}(\mathbf{x})}=\frac{1}{\kappa(\mathbf{X}) \operatorname{det}(\boldsymbol{F})}
$$

15. Section 6.4 p. 240 The expression $\kappa \mathbf{x}=\kappa(r) 1$ should be replaced with $\mathcal{K}(\mathbf{x})=\kappa(r)$. This quantity is a assumed to be a scalar in the rest of the book.
16. Problem 6.7: The $\cos \theta$ in the expression should be $\cos \phi$ for consistency with the rest of the book. Recall that θ is the azimuthal angle in our book and not the polar angle as implied in the paper.
17. Problem 6.8: The expression $\kappa(\mathbf{x})=\kappa(\mathbf{r})=\kappa(r) 1$ should be replaced with $\kappa(\mathbf{x})=\kappa(r)$. The bulk modulus is a scalar quantity. Also note that $\nabla_{\perp}^{2} p$ is only the angular part of the Laplace-Beltrami operator and not the full operator.
18. Problem 6.9: Replace $\boldsymbol{\Sigma}=\kappa_{X} \boldsymbol{\nabla}_{X} \cdot \mathbf{U}$ with $\boldsymbol{\Sigma}=\kappa_{X}\left(\boldsymbol{\nabla}_{X} \cdot \mathbf{U}\right) \mathbf{1}$. Note that the \boldsymbol{V} in this problem is not the same as the left stretch tensor in continuum mechanics.
19. Problem 7.2: The problem is worded incorrectly. It should read: "Verify that the matrix A defined by the action $A \cdot\left\langle\mathbf{e}_{0}\right\rangle:=\left(\mathbf{k} \cdot\left\langle\mathbf{e}_{0}\right\rangle\right) \mathbf{k}-(\mathbf{k} \cdot \mathbf{k})\left\langle\mathbf{e}_{0}\right\rangle$ can be expressed as $A=\mathbf{k} \otimes \mathbf{k}-(\mathbf{k} \cdot \mathbf{k}) \mathbf{1}$. Show that the eigenvalues of $-A$ are ..."
20. Section 8.1.1, p. 285: The solution to the Helmholtz equation given in equation (8.1) appears to be different from the one in equation (2.63). This is just a matter of convention as the solution of Problem 8.1 from the exercises indicates.
21. Section 8.1.1, p. 285: The requirement that if $\operatorname{Re}\left(k_{j}\right) \geq 0$ we must have $\operatorname{Im}\left(k_{j}\right) \leq 0$ is only valid if $x_{3}>0$. Treat Problem 8.1 accordingly.
22. Problem 8.4 The properties of the medium should be changed to

$$
\varepsilon(x)=\varepsilon_{0}\left[1+\left(x-x_{0}\right)^{3}\right], \mu(x)=\mu_{0}\left[1+\left(x-x_{0}\right)^{3}\right] .
$$

23. Section 8.6.1 Equation (8.123): The expression for $C_{2222}^{\text {eff }}=C_{3333}^{\mathrm{eff}}$ is wrong. The correct expression is

$$
C_{2222}^{\mathrm{eff}}=C_{3333}^{\mathrm{eff}}=\left\langle\frac{4 \mu(\lambda+\mu)}{(\lambda+2 \mu)}\right\rangle+\left\langle\frac{\lambda}{\lambda+2 \mu}\right\rangle^{2}\left\langle\frac{1}{\lambda+2 \mu}\right\rangle^{-1}
$$

The same applies to Problem 8.9.
24. Problem 8.7: Replace θ by θ_{t} in the expression.
25. Problem 8.8: The elastic property values in the problem are incorrect. The problem should read "... with Young's moduli $E_{x}=9 \mathrm{GPa}, E_{y}=E_{z}=140 \mathrm{GPa}$, Poisson's ratios $v_{x y}=0.1, v_{y z}=v_{x z}=0.3$, and shear moduli $G_{x z}=G_{y z}=7 \mathrm{GPa} .{ }^{\prime \prime}$
26. Chapter 8, p. 309: The quantity $S f C$ should read \mathbf{C}.
27. Chapter 8, p. 309: The quantities $a(y), f(y)$ should read $a(z), f(z)$.

