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Chapter 1

Solutions for Exercises in Chapter 1

Problem 1.1 The equation of balance of the flow of a physical quantity f(x, ) through a body € with surface T’
can be expressed in the form

i[/gf(x’t)dv} :/Ff(xi)[un(xi)—V(Xat)-n(x7t)]dA+/Fg(x,t)dA+/ h(x,t)dV. (1.1)

Q

where g(x,t) be sources on the surface of the body, h(x,t) are sources inside the body, n(x,t) is the
outward unit normal to the surface I, v(x, ) is the velocity of the physical particles that carry the physical
quantity that is flowing, and w,, is the speed at which the bounding surface I' is moving in the direction n.
Using the above balance relation show that the balance of linear momentum of a linear elastic body can be
expressed as

pv—V.o—pb=0 1.2)

where p(x, t) is the mass density, v(x, t) is the spatial velocity, o (x, t) is the Cauchy stress, and pb is the
body force density.

Solution 1.1: The general equation for the balance of a physical quantity is
d
7 / fx,t)dvV| = / T ) [un(x,t) —v(x, t) - n(x, t)] dA + / g(x,t)dA + / h(x,t)dV. (1.3)
Q r r Q

In this case the physical quantity of interest is the momentum density, i.e., f(x,t) = p(x,t) v(x,t). The
source of momentum flux at the surface is the surface traction, i.e., g(x,t) = t. The source of momentum
inside the body is the body force, i.e., h(x,t) = p(x,t) b(x,t). Therefore, we have

d
{/ pvdV] :/pv[un7v~n]dA+/tdA+/pde. 1.4)
dt [Jo r r Q

The surface tractions are related to the Cauchy stress by

t=0-n. (1.5)

Therefore,

d

{/ deV} :/pv[unfv'n]dAJr/a'-nquL/pde. (1.6)

dt | Jo r r Q
Let us assume that € is an arbitrary fixed control volume. Then,

0
/—(pv)dV:—/pv(v-n)dA+/a~ndA+/pde. (1.7
o Ot r r Q



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

Now, from the definition of the tensor product we have (for all vectors a)
(u®v)-a=(a-v)u.

Therefore,

0
/—(pv)dV:—/p(v®v)-ndA+/a~ndA+/pde.
o Ot r r Q

Using the divergence theorem
/V-VdV:/v-ndA
Q r
0

/Qa(pv)dvz—/QV~[p(v®v)}dV+/QV-adV+/Qpde

we have

or,

/Q [aat(pv)+v.[(pv)®v}—v-a—pb dv=0.

Since 2 is arbitrary, we have

g(pVHV-[(pv)@v]—V-a—pbzo.

ot
Using the identity
V- -(ugv)=(V-v)ju+(Vu)- v
we get
9] ov
—pv—i—pf—k(V-v)(pv)—&—V(pv)~V—V-a—pb:O
ot ot
or,
dp ov
awLpV-v v+pa+V(pv)-v7V-0'fpb_O
Using the identity
V(pv) =pVv+ve (Vy)
we get
op ov
a—FpV-v v+p§+[va+v®(Vp)]-V—V-a—pb:O
From the definition
(u®v)-a=(a-v)u
we have
Ve (Vp)]-v=I[v-(Vp)]v.
Hence,
dp ov
aerV-v v+pa+va~v+[v~(Vp)]v7V~0'fpb:O
or,
dp ov
E—i—V,o-v—i—pV-v v—i—pa—i—vav—V-a—pb:O.

The material time derivative of p is defined as

dp

pza-i-Vp-v.

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)
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Therefore,
. ov
[p+pV~v]v+pE+va~v7V-afpb:O. (1.24)
From the balance of mass, we have
p+pV-v=0. (1.25)
Therefore,
ov
pa+pVV-V—V~0'—pb:0. (1.26)
The material time derivative of v is defined as
AR 127
v = a—l— V-V. (1.27)
Hence,
pv—V.-0—pb=0. (1.28)
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Problem 1.2 Assume that there are no surface couples on I' or body couples in €2. Use the angular momentum
density as the conserved quantity in the general balance relation from Problem 2.1, i.e., f = x X (pVv), to
show that the balance of angular momentum can be expressed as:

oc=o". (1.29)
Solution 1.2: If the physical quantity to be conserved the angular momentum density, i.e., f = x X (pVv), the
angular momentum source at the surface is g = x x t and the angular momentum source inside the body is

h =x x (pb). The angular momentum and moments are calculated with respect to a fixed origin. Hence
we have

jt[/gxx(pv)dv} :/F[xx(pv)][un—v-n}dA—i—/FxxtdA—&—/Qxx(pb)dV. (130)

Assuming that €2 is a control volume, we have

0
/Qxx [at(pv)

Using the definition of a tensor product we can write

dV:—/F[xx(pv)][v-n]dA—!—/FxxtdA—F/Qxx(pb)dV. (1.31)

[xx (pv)][v-n]=[xx (pv)|®@V] -n. (1.32)

Also, t = o - n. Therefore we have

0
xx | =(pv)
([
Using the divergence theorem, we get

/Qxx L,i(pv)

To convert the surface integral in the above equation into a volume integral, it is convenient to use index
notation. Thus,

[/xx(a-n)dA} :/eijkxjaklnldA:/AigmdA:/A-ndA (1.35)
r i r r T

where [ ]; represents the i-th component of the vector. Using the divergence theorem

dV:—/F[[xx(pv)]®v]~ndA+/Fx><(o-~n)dA+/Qx><(pb)dV. (1.33)

dV:—/QV'[[xx(pv)]®v]dV+/Fx><(o'~n)dA+/Qx><(pb)dV. (1.34)

0A; 0
/A~ndA:/V~AdV: ’dvz/—(eijkxjakl)dv. (1.36)
r Q o Oz o 0z
Differentiating,
00k
A-ndA = €ijk 5jl Okl + €ijk Tj —— dv
r Q Oz
0ok | v (1.37)

— €iik Oki + €iik Ti ——
/Q [ ij J kT o0
= / [eijk Okj —+ €k Tj [V . O'h] dv.
Q
Expressed in direct tensor notation,

/FA~ndA:/Q[[5:aT},»+[x>< (V- o)l] av (138)



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

where £ is the third-order permutation tensor. Therefore,

[/F" x(o-n) dAL ==/Q [€ 2™ ]i + [xx (V- a)];] dV (1.39)
or, /Fxx(U'“)dA::/Q[giaT+x><(V-U)] dv. (1.40)

The balance of angular momentum can then be written as

0
/xx —(pv)| dV = —/ V-[[xx(pv)]@v]dV+/ (10" +x%x (Vo) dV+/ xx (pb)dV.
Q 375 (9] Q Q
(1.41)
Since {2 is an arbitrary volume, we have
9 T
X X a(pv) =-V . [xx(pv)]@v]+E&:0" +xx(V-0)+xx(pb) (1.42)
or,
0
X X lat(pv) —-V.o—- pb] = -V [xx(pv)]ov+&: 0. (1.43)
Using the identity,
V- -(u@v)=(V-viu+ (Vu)-v (1.44)
we get
V- [xx (pv)] @] = (V-v)x x (pv)] + (V[x x (pv)]) - v. (1.45)
The second term on the right can be further simplified using index notation as follows.
0
[(VDx (pv)]) - ] = [(Vip (x x v)I) - V] = = eagi 2 ve) v
B op Oz vy,
= €jjk o1y T; UV F P 92y Vg U+ P, BT Uy
(1.46)
dp v
= (eijejvn) | 5w | +p (e djuoev) + e es | oo o
=[(xxv)(Vp-v)+pvxv+xx(pVv-v)];
=[(xxv)(Vp-v)+xx (pVv-v)];.
Therefore we can write
Vi xx(pv)]@v]=(pV -v)(xx v)+ (Vp-v)(xxVv)+xx (pVv- V). (1.47)

The balance of angular momentum then takes the form
9 T
X X a(pv) —V.o—pb| =—(pV-v)(xx v)—(Vp-v)(xxVv)—xx (pVv-v)+E:0" (148)
or,

X X lgt(pv)—f—vav—V-a'—pb] =—(pV-V)(xx V)= (Vp-V)(xxv)+E:a” (1.49)
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or,

A
XX | p—+ —

Par ™ ot
The material time derivative of v is defined as

,_3V v
V—E—F V-V.

Therefore,

)
XX [p¥— V-0 —pbl= —xx Lvi (pV -v)(xx v) — (Vp-v)(xxv)+E:of.

ot

Also, from the conservation of linear momentum

pv—V.o—pb=0.

Hence,
Jp T
O:xxﬁv—l—(pv-v)(xx v)+ (Vp-v)xxv)—E:0
_ (9 T
= a+pV~v+Vp~v (xxv)=&:0".
The material time derivative of p is defined as
. Op
,Dfa‘FVp'V.

Hence,
(p+pV-V)xxv)—E:al =0.

From the balance of mass
p+pV-v=0.

Therefore,
0T =0.

In index notation,
€ijk Okj = 0.

Expanding out, we get

o012 — 021 =05 023 — 032 =0; 031 —013=0.

Hence,

0
pVerVV'VfV'U*pb =—(pV-v)(xx V)= (Vp-v)(xxv)+&:al (1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)
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Problem 1.3 Show thatif e =C : ¢
V.-o=V-(C:Vu). (1.62)

Solution 1.3: Let us express the tensors in terms of components with respect to an orthonormal basis. Then we
can write
0ij = Cijkl €kl (1.63)

The conservation of angular momentum implies that the stress tensor is symmetric,
P (1.64)

The strain tensor is, by definition, symmetric because it is a symmetrized gradient, i.e.,

Eij = Eji- (1.65)
These imply that Cy;x; = Cji and Cijir = Cijie. The strain energy density in the elastic material is
given by
W = 1 g . € = %O'ijaij = %Cijkg Vekl Veij . (1.66)
Since the strain energy density should not change if £l and ij are interchanged, we must have Cjji; =
Cklij- NOW,
[V -ol; =0y = [Cijuen] ;, = 2 [Cijr (uny + u )] ; (1.67)
Using the symmetries of C, we have C;;x; ur; = Cyjr w5 Hence
[V . O']j = [Cijkl ukJ]J = [V : (C : Vu)}j (1.68)
or
Vo=V -(C:Vu). (1.69)
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Problem 1.4 Show that for an isotropic, homogeneous, linear elastic material with stiffness tensor
C=)1®1+2ul (1.70)

the divergence of the stress can be expressed as

V-(C:Vu)=\+p)V(V-u)+pV-(Vul). (1.71)
Solution 1.4: Let us express the stiffness tensor in terms of components with respect to an orthonormal basis.
Then
Cijlcl = A0ij Ot + 1 (5ik5jl + 6ildjk) (1.72)
and
Cijri Ui = AU g 055 + (Wi j +uj5) . (1.73)
Therefore,

[V -(C: V)|, = [Cijrrura] ; = Ak ki ij + 11 (Ui gi + wjii) = (A4 1) Umgmj + K jnn  (1.74)

or,
V- (C:Vu)=A+p)V(V-u)+pV-(Vul). (1.75)
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Problem 1.5 Verify that the volumetric strain e is given by V - u and that the infinitesimal rotation vector is
given by V x u.

Solution 1.5: The volumetric strain is
e=tre (1.76)

where € is the infinitesimal strain tensor. In an orthonormal coordinate system
e=c¢c11+epmtezgg=u1+uz2+uzz=V-u (L77)
where u is the displacement. In general,
e=1[Vu+(Vu)'] = we=1i[eVu+u(Vu)']=V. u. (1.78)

Therefore,
e=V-u O (1.79)

The infinitesimal rotation vector is the axial vector that of the skew-symmetric part of Vu. The axial
vector w of a skew-symmetric tensor W satisfies the condition W - a = w x a for all vectors a. In index
notation (with respect to a rectangular Cartesian basis), we can write this relation as

Wip Qp = €k Wy G (180)
Since e, = —e;5, we have
Wipap = —€i1j Wj A = —€ipqWeap = Wiy = —€jpqwy . (1.81)

Therefore, the relation between the components of w = 1/2(Vu — Vu?) and 0 is

wij = —€ijk O . (1.82)
Multiplying both sides by e,;;, we get
Epij Wij = —€pij €ijk 9k = —€pij Ckij 9k . (183)
From the identity
eijk equ = 6ip 5jq — 51'(1 5]‘ (184)
we have
€ijk €Epjk = (Sip (5]‘3‘ — (Sij (Sjp = 3(5@ — (Sip = 2(52‘17 (185)
Using the above identity, we get
Epij Wij = 726pk Qk = 7291, . (186)
Rearranging,
1
Op = —35 epij wij (1.87)
Now, the components of the tensor w with respect to a Cartesian basis are given by
1 aul an
I _ 1.88
Wij 2 <61‘J 8:5, ) ( )
Therefore, we may write
1 Oou;  Ou;
0, = ——épij - 1.89
v= 1o (3r: ~ 5) 159
Since the curl of a vector v can be written in index notation as
8uk
V XV=¢—8 1.90
V = €ijik oz, (1.90)

10
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we have
8’11,]'

“rij 0x;
K

8UZ‘ 0ul
= [V X u}p and epij 87% = _epjiaixj = _[V X u]p (191)

where [],, indicates the p-th component of the vector inside the square brackets.

Hence,
1 1
ep:—z(—[qu]p—[qu]p)zi[qu]p. (1.92)
Therefore, 1
6= 5V X u O (1.93)

11
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Problem 1.6 Show that, in the absence of a body force, the displacement potentials ¢ and 1) satisfy the wave
equations

%6 5o P, T
Solution 1.6: A rigorous proof can be found outlined in the textbook by Aki and Richards. Here we only discuss
a sufficient condition.

Consider a Helmholtz decomposition of the displacement
u=Vep+Vxvy with V-¢p=0. (1.95)

Recall that the wave equation in a homogeneous, isotropic, and linear elastic body in the absence of body
forces can be written as

0%u

A+ )V(V-u) +uV - (Vu)” =PHa- (1.96)

Plugging the decomposition of u into the above equation gives

2
A+ u)VIV - (Vo +V x )| +uV - [V(Vo+V x9)]! = p@(ng +V x). (1.97)
Expanding out,
9%¢ 0?4
A+ W)VIV - V] + 4V - [V(V)]T + V- [V(V x )] = p¥ (m) +pV % (w) .

(1.98)

where we have used the fact that the divergence of the curl of a vector field is zero and the interchangeability
of the order of differentiation between space and time. Note that V - V¢ = V2¢,

93¢ B ( %0

Oz, (9]7]‘8.1‘]'

V- [V(Ve)" = ) =V(V%9). (1.99)

We can also see that

A\ [V(V X "p)]T = eijkwk’,jmm = 6ijk(v¢)k‘m,jm = 6ijk(v¢)fmk,m]’

(1.100)
= ek [V - (V) p; =V x [V - (V)T].
Therefore,
0? 2
A+ 2u)V(V29) +uV x [V - (V)] = pV <(“)tf> + pV X <a;b> (1.101)
or,
0? 9?

v (A+2,u)V2q§—paitf + V X [uV-(Vi/))T—pa];p] =0. (1.102)

If we take the divergence of the above equation, the curl term vanishes and if we take the curl of the
equation, the gradient term vanishes. Therefore,

0%¢ 0%
V-V ()\+2/L)V2¢—p@ =0 and V xV x #V-(W)T—pw =0.  (1.103)
We can write the first equation as
62
(A +21)VA(V*9) = p75(V26) = 0 (1.104)

12
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and the second equation as

2 2

V[V [0V - (V)] =55V (V)= V- [V (1 - (V)] +p5 V- (V)] = 0. (1.105)

The first two terms above are zero because V - ¢ = 0 (we can show that the first term has this form by
interchanging derivatives). Therefore, the second equation has the form

T o
v {u VIV (v)T]]" - patQ(W)T} =0. (1.106)
Also note that the dilatation is given by
e=V.-u=V.-V¢=V?%p (1.107)
and the infinitesimal rotation is given by
0=3iVxu=1iVxVxyp=-1IV (V)" (1.108)

where we have again used the identity V x V x u = V(V - u) — V - (Vu)?. Plugging these into the
two equations of interest gives us

(A+2u)v2e—p%:o (1.109)
ot?
and
;LV-(V@)T—p@ZO. (1.110)
ot2
If we make the new connections ¢ <> e and 1 < 0, we see that
0%¢ 0%

(A+2u)v2q§—pﬁ=0 and pV - (V)T =0 (1.111)

P om
which can also be derived as a special case without invoking any change of variables. Therefore, there
exist potentials ¢ and 1 such that
0%¢
ot?

=2 V? dazw—Zva O 1.112
—va¢ an W—Cs ( '(p) ( )

where ¢ = (A +2u)/pand ¢ = p/p.

13



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

Problem 1.7 Show, using spatial curvilinear coordinates, that the gradient of a vector field v can be expressed
in spherical coordinates as

ov, 1 Ov, g 10v, vy
or rsin ¢ o0 r r@qS_ r
Ovg 1 Ovgy wv. coto 10vg
Vv= | 2 — 4T 7 —_ 1.113
v or rsing 00  r + r ® r O¢ ( )
O0vg 1 0Ovy cotg 10vg vy
or rsin¢g 00 Ty % rdo r

where x1 = 0! cos 02 sin 03, 2o = 01 sin 62 sin 62, 3 = 0' cos #3 and (61,62, 03) = (r,0, ¢).
Solution 1.7: The relation between Cartesian and spherical coordinates is assumed to be
x=x(0",6%,0%) where (60',0%,0%) = (r,0,9¢). (1.114)

In explicit form,
1 =0 cos0?sin@?, zo =0'sinh?sinh>, x3 = 0 cosh>. (1.115)

If (e1, ez, e3) is a background Cartesian frame, the orthogonal basis vectors for the spherical coordinate
system are determined from

ox
g1 = 207 = cos0%sin 03 e; +sin 6% sin 6> ey + cos 0> e3 = e,
ox 102 3 1 2 093 : 16
g2:w:_9 sin0”sin0° e; + 0" cos§*sinf® ey = rsing ey (1.116)
ox 1 2 3 1o p2 3 1. p3
g3:%:9 cos 0 cosf” ey + 0" sinf“cosf’ ey — O sinf’ ez =rey.

We have normalized the covariant basis vectors to get the spherical basis vectors (e,, eg, es). Using g; -
g’ = &/ and solving for the components of g7, we have

g1 = cos#?sinf>e; +sinf?sinf3es + cosfe; = e,

2 1 sin6? N 1 cos #? 1
=—727 - 3¢ P —p——\
5 Ol sinh3 ' fL sing3 > rsin ¢ o (1.117)
3 1 2 3 L. » 3 1. 4 1
g :ﬁcosﬁ cos @ e1+ﬁsm9 cos @ 82—6—151119 e3=;e¢.

The covariant and contravariant components of the metric tensor are g;; = g; - g; and g = g’ - g/. In
matrix form

1 0 0 N 0 0
g= [0 (¢'sing?)? 0 and g= |0 1/(6'sin63)? 0 . (1.118)
-0 0 (612 - |0 0 (1/6%)?

The gradient of the vector field v is given by

ov; i ; m | O9mi  Ogmj  0gji
vv= [39;’_ jive| g @g' where T7; = 3g" [ o0 " og o0 (1119)
The non-zero Christoffel symbols are
I, =—0'sin?0%, I'ly = —0', T2, =1/0' =T%,, T2, =cot 6> =T?2
22 33 12 / 215 123 32 (1.120)

Fil)’:z = 1/91 = th F§2 = —cosf3sind>.

14
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Therefore, the gradient can be expressed in matrix form in the basis g' ® g’ as

9o v _ 2 v _ v
5 96! 5 86% o1 5 80° o1
Vv = 87;? — % 6—;;+ §1 sin2 63 vy + cos 62 sin 63 vg 8—:?,} — cot 63 vy (1.121)
0 1o} 0
a—;i’—g a—zg—cotﬁ?’w 87;34—011}1

In terms of (r, 8, ) and in the basis (e,, eg, e4), we have v = ngj = v,e, + vgey + vyey Where v, = vy,
vp = va/(rsing), vy = vs3/r, and e, = g', ey = rsin ¢g?, e; = rg>. Therefore we can write,

ov,. 1 Ov. 10v,  wg
or rsing 90 1 rop T
vy | L v v O 10vs (1.122)
Jr  rsing 00 r r r 0¢
0vg 1 Ovy cotg 10vy vy
- . - ——v ot
or rsing 00 r r 0¢ r

15
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Problem 1.8 The equation of state for an adiabatic, reversible, ideal gas is given by

d
p_op. &% 2 0P (1.123)

dp p’ Cy p

where ¢, is the specific heat at constant pressure, ¢, is the specific heat at constant volume, and c is the
wave speed. Find the value of v in air and water. Show that for small disturbances the balance of mass in
the gas can be expressed as

%erocgv.vzo (1.124)

where ¢y is the speed of sound in the medium.

Solution 1.8: The value of  is approximately 1.4 for air. For water at room temperature, ¢, = 75.3 J/mol-K and
¢y = 74.5 J/mol-K. Therefore, y for water is approximately 1.01.

For small disturbances

d _
—p%];; g% @; c2zcgzw. (1.125)
dpop p  (p) ()

Therefore,

D P dp  ,0p
T M R 1.126
PRI ot~ Vot (1.120)
The balance of mass can then be written as
10p -
—— V-v=0 1.127

Dropping the tildes and using py := (p) leads to the required equation.

16
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Problem 1.9 The total magnetic induction produced at a point x by a current density J located in a region 2 is

given by
Ho X—y
B(x) = —/ J(y) x —L_dy. (1.128)
Am Ja Ix =yl
Starting from the above equation show that
Ho Vv, -J(y)
VxB:,u]+—V/ —4 ) gyl . (1.129)
S l o < =yl ) <
Solution 1.9: We will first show that
v (1> S A (1.130)
x =yl Ix — vl
Let
f(21,20,23) = (22 + 22 4+ 22) V2 = (2424) V2 (1.131)
where z,, = 2z, (X). Then
of of Ozm
—= 1.132
Oxp,  Ozp Oxp ( )
Now,
of _. _
5= — 1 (229) (200 2r) = —(2429) " 2 2m . (1.133)
Also,ifz =x—y,1.e, 2m = Ty — Ym,
O0zm,
Em 5 1.134
Oz Omp (1.134)
Therefore,
of 3 Tp — Y
A =3/2, _— _ P _IP 1.135
TP A W (15
Since Vf = 0f/0x, and
I = yll = llzll = (zq24) "2 (1.136)
we have
0 _
fzv< L ):— i Ay (1.137)
Iy Ix =yl Ix -yl

Note that similar arguments can be used to show that

B _
fzvy( 1 ) =Xy o v, (1> - _v <1) S (1138)
Oy “\x =yl Ix — vl “\x =yl [x —yll

Therefore we can express the magnetic induction as

Ho 1
B(x) = _E/QKY) XV (|xy”> dy. (1.139)

Since the integration is over y, we will now try to take the gradient outside the integral. We can write the
quantity inside the integral as

0 0 0
J(y) x Vi f(x—y) = e”’“‘]j(Y)aai = €ijk 37%[%' (Y f] = —eir; Txk[‘]j () f] (1.140)
or,
J(y) x Vi f(x—y) = =V x J(y) f(x—y)]. (1.141)
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Therefore,
Jo J(y)
Bx:—VX/ dy. (1.142)
=Y Jo -y Y
Since the divergence of the curl of a vector field is zero, we have
V-B=0. (1.143)
Taking the curl of B gives
vxB- vy [ IO 4 (1.144)
4 a lx—yll
From the identity V X V x u = V(V - u) — V - (Vu)7, we have
o J(y) J(y) ’
VXxB=— V(V- dy) -V (V dy) . (1.145)
dm o lx—yll o lx—yll

Taking the gradient inside the integral, we have

v =i |V ([0 (typ) ) - LI () o] e

Using relation (1.138) gives

vro=2 v (1009 (gy) ) - [p0 9 () o] e

Let us now find the Laplacian of 1/ ||x — y||. Let » = ||x — y/||. If we integrate the quantity over a sphere
of radius R and volume V', we have

2
14 14

where S is the surface of the volume and n is the outward unit normal. This result indicates that the
Laplacian has the form

v <|><in> AV = —dro(x—y) (1.149)

where §(x) is the three-dimensional Dirac delta function because of the behavior as R — 0. Therefore,

V xB= [ (/] ( y) dy) +47T/] y)dy} . (1.150)

Using the identity ] - Vf =V - — f(V -]) and the divergence theorem, we have
/J(y)- < ) nd /L"J(Y) dy. (1.151)
0 Ix =yl r I —y|| o [x—yll
In the absence of current flux from the boundary, we have
/] ( ) dy = VLj(},)dy. (1.152)
[x =yl o Ix=yl

Therefore equation (1.150) can be written as
Lo v, -J(y) o v, -J(y)
VxB=— V/yid +4nJ(x)| = woJ+ —V ——d
17 [T v = 29 | [ () ay
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Problem 1.10 The relation between the electromotive force (emf) around a loop and the magnetic induction is
given by the integral form of Faraday’s law:

D
jéE-dlthUFB.ndA}. (1.154)

Derive the differential form of Faraday’s law,

V X E 98 _ 0 (1.155)
X B+ o .
Solution 1.10: The total derivative of a scalar field, ¢, is defined as
Dy ¢
_r_-r . 1.156
D o VY (1.156)
where v is the velocity with which the scalar is being convected. The equivalent relation for a vector field
uis
Du Ou
- - V. 1.1
Dt En +Vu-v (1.157)
Therefore,
DB 0B
— =—+VB.v. 1.158
ot ot VoY (1159)
Using the identity V x (a x b) = (V -b)a— (V -a)b+ (Va) - b — (VDb) - a, we have, for constant v,
VB-v=Vx (Bxv)+ (V- B)v. (1.159)
Hence,
DB 0B
ﬁ:a+VX(BXV)+(V'B)V. (1.160)

Therefore, using V - B = 0 and Stokes’ theorem, we have

ll))t[/FB-ndA}:/F

OB
+VX(BXV)+(V'B)V] -ndA

ot
(1.161)
OB
= —_ A B * 1-
r nd +7§C( xv)-d
Plugging these into Faraday’s law, we have
0B
%E-dl:—k /—-ndA—l—?{(va)-dl (1.162)
c r Ot c
or
0B
f[E—kvaLdl:—k/—mdA. (1.163)
C r Ot

For a body that is moving at small speeds relative to the speed of light in vacuum, we can use Galilean
covariance to work in a moving frame to eliminate v. We can also use the fact that k equals 1 under these
conditions in SI units, to get the relation

0B 0B
fE-dl:—/—-ndA = /(VxE)~ndA:—/—-ndA (1.164)

where E <— E — v x B and Stokes’ theorem has been used. Invoking the arbitrariness of I', we then get the
differential form of Faraday’s equation

OB
VxE+ =0 O (1.165)

19



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

Problem 1.11 Assume that the electric field, electric displacement, magnetic field, and magnetic inductions
depend harmonically of time, i.e.,

E(x,t) = Re{ﬁ(x) eTh . B(x,t) = Re{ﬁ(x) emiwty

~ ~ ) ~ , (1.166)
D(x,t) = Re{D(x) e ™*}; H(x,t) = Re{H(x)e "'}

where w has an infinitesimally small imaginary part. Show that Maxwell’s equations under these conditions

can be written as
V XE=iwp(x,w) -HXx); VxH=—iwe(x,w)-E(x)

V.-B=0; V-D=0.

Why does w need a small imaginary part? Compare these equations with the Fourier transformed form of
Maxwell’s equations.

(1.167)

Solution 1.11: If we plug in the assumed harmonic solutions into Maxwell’s equations we get

OB ot Sy it PN
VXE:fa = VXxEe ™ =iwB(x)e ™ = V xE=1iwB(x)
8]5 —jwt Py ¢ =5 Py
VXH:E = VxHe ™ =—iwD(x)e ™ = V xH=—iwD(x)
V- -B=0 = V-Be ™ =0 — V-B=0
V-D=0 = V.De ™' =0 — V.D=0
(1.168)
or, R R R R R R
VxE=iwB(x); VxH=—iwD(x); V-B=0; V.-D=0. (1.169)

Similarly, plugging the harmonic solutions into the constitutive equations we get (using 7 = ¢t — t')

H(x) e " = /_o; Kp(x,t—t)- [ﬁ(x) e_i“”"/} dt’ = {/_O:O Kp(x,7)e™™ dT:| B(x) et

= = (1.170)
D(x) e ™! = / Kp(x,t' —t)- [E(x) e_i“’t/] dt’ = { / Kp(x,7) eiwdr} E(x) et
or, N N N N
H(x) = [u(x,w)] " - B(x); D(x) = e(x,w) - E(x) (1.171)
where - -
(W)t = / Rp(x,m) e dr: e(x,w) = / Rp(x, 7)™ dr | (1.172)

In general p and € are complex, rank-2 tensor quantities. The integrals in the above equations converge
when the imaginary part of w is positive (since Kz = Kz = 0 when 7 > 0). To see this, observe that
exp(—iwt) = exp(Im(w) 7)[cos(Re(w) 7) — isin(Re(w) 7)]. Now, exp(—iwT) is an analytic function
of w. Since a sum of analytic functions is analytic and a convergent integral of analytic functions is
also analytic, the functions e(x,w) and p(x,w) are analytic functions of w in the upper half w-plane,
Im(w) > 0.

Substituting the constitutive equations into Maxwell’s equations and dropping the hats gives us

VXE=iwpxw) Hx); VxH=—iwe(x,w) -Ex); V-B=0; V-D=0. (1.173)

The frequency w needs a small imaginary part so that the fields are zero at t — —oo. To see this express w
in terms of its real and imaginary parts to get

Re [Ae_i“’t] =Re [Ae_i(“’""'i“”)t} =Re [Ae_i“’"t ewit}

(1.174)
= Re [A(coswyt — isinw,t) €] = A cos(wrt) et
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As t — —oo the cosine term lies between 0 and 1. Hence for the fields to go to zero we need a non-zero
value of w;.

In the Fourier transformed Maxwell equations the fields depend both on x and w whereas in the time
harmonic case they depend only on x.
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Problem 1.12 Show that the transverse electric (TE) wave equation for a material with anisotropic permeability
and permittivity

pir 0 0 en 0 0
n = [,L(.’I?Q,l‘g) = 0 M22 23 and €= E(.%‘Q, 333) = 0 €22 £923 (1175)
0 pa3z s 0 €23 €33
is given by o o
V- [(R.-M ' RY) VE]+w?e1 E1 =0 (1.176)

where V indicates the two-dimensional gradient, and

_ |M22  H23 10 1
LA% M33} + [—1 O] ( )
Solution 1.12: We know that
v XE:ELg 327E17293 :Zu}[,LH (1.178)
Now,
p-H=yp;Hje; = piHyey + (oo Ho + posHz)eg + (3o Ho + p3zHs)es . (1.179)
Therefore,
Hy =03 piooHo + piasHz = (iw) ' E1 33 psoHo + sz Hs = —(iw) "' Ey 5 (1.180)
or,
M2z p23| |Ha 1| Eis
= ’ . 1.181
[Msz Mgs] [HJ (iw) {—Em] ( )
Solving for Hy and Hj, and using the notation M for the two-dimensional permeability tensor, leads to
Hy = (iw) ' (M1 Ev 3 — M3 ' Er o) 3 Hs = (iw) " (My'Ey 3 — My Eq ) . (1.182)
At this stage recall that
V xH= (H3,2—H2,3)e1 = —iwe-E. (1183)
Since
E'E:é‘ijEjei :snElel (1184)
we have
Hg’g — H2}3 = —iw511E1 . (1185)

Plugging in the expressions for Hy and Hg results in
(Ma1' Evs — M3y Er) , — (M Ev — Mpy' Br ) 4 = w’en By (1.186)
or
(M2721E1,2 — M2711E113)72 + (-M{zlEl’Q + MﬁlElyg),S = —UJ2611E1 . (1187)
Notice that the quantities inside the bracket can be obtained by rotating the original tensor M by 90
degrees, i.e.,
| cosf sinf 0 1
R= [—sin@ cos&] ' {—1 O} (1.188)
in which case

M—RT M R= [Mml _M_ﬂl} .

O (1.189)
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Therefore,
M -VE, = M;;Ey je; = (My'Ey o — My, By 3)es + (=M By o + My ' Ers)es  (1.190)
and
V(M -VE) = (MyE1 ;) = (Myp'Era — My Ei3) o + (~M5' Ero + M Er13) 5. (1.191)
Comparison with equation (1.187) gives us

V. (M-VE)+wenE =0 O (1.192)
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Problem 1.13 Maxwell’s equations can be expressed in a form similar to the equations of elastodynamics at a

fixed frequency, i.e.,

w’e-E=V-(C:VE). (1.193)
Show that the tensor C has the symmetries
Cijre = —Chire = —Cijor = Chrpij - (1.194)
Solution 1.13: The components of the tensor C are given by
Cijre = €injerpe[t™ np - (1.195)
If we switch ¢5 and k¢ we have
Creij = €xneCipi [t np - (1.196)
Since n and p are dummy indices, we can switch them around to get
Creij = erpeCini [t pn - (1.197)
The energy density of a magnetic field is
W=1iB-H=1(p -H)-H=Ju;;H;H,. (1.198)
Since the energy density must remain unchanged if we switch the indices ¢ and j, we must have
pig =nji = [y = (1.199)
Therefore, equation (1.197) can be written as
Creij = expeCinj [t np = Cijki - (1.200)
Let us next switch the indices ¢j to j% in equation (1.195). Then we have
Ciire = €jnihpe[t™ Tnp - (1.201)
Now, e,;; = —e;jjn and hence Cj;r¢ = —Cjjre. The same argument can be used to show that Cjj =

—Clijer. O
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Solutions for Exercises in Chapter 2

Problem 2.1 Show that for time harmonic plane waves of the form
u(x, t) = aewExt 2.1

the governing equations for the dynamics of an isotropic and homogeneous linear elastic body decouple

into the equations
n N A+2u)
(p—02> (uxs)=0 and (p— 2 )(u-s):O. (2.2)

Solution 2.1: The elastodynamic wave equation for an isotropic, homogeneous body is

A+ V(V-u)+u V- (Vu)! =pi. (2.3)

Let us solve this problem in rectangular Cartesian coordinates and note that the results translate over to
other coordinate systems. For a plane wave solution

u; = e’ Emen =t (2.4)
we have _
Vu=u,;; = iwsmémjaww(s"ﬁm%) = {Ws;U; 2.5)
and
(vu)' = Uj; = lws;u; . (2.6)
Therefore,
V- (Vu)T =Uj = WSUj,; = (iw)Qsisiuj = —wgsisiuj = —wQ(s ‘s)u. 2.7)
Also,
V. u=u,; =iwsu; . (2.8)
Hence,
V(V -u) = w5 = iws;u; j = (Z.W)QSiSjUi = —wi(s®s) u. 2.9)
Finally .
a=1; = —iwt;eCmTm =t = iy, (2.10)
and
i =iy = —iwi; = (iw)u; = —wu. @2.11)
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Therefore, if we plug in the plane wave solution into the governing equations we get

A+p)(s®s)-u+pu(s-s)u

pu.
Now
[(s®s) U] Xs=egijsispps; = (s xs)(s-u)=0

and
(s@8) 0] -5 = s;5;0;5: = (s 5)(u-s).

Therefore, taking the cross product of the governing equation with s gives
A+t p)((s®s)-ulxs+pu(s-s)(Uxs)=pxs)

or,
[p—p(s-s)](uxs)=0.

Using the definition of s we have s - s = 1/c?, which leads to the first decoupled equation

w o~
[—CQ](uxs)zo. O
Similarly, taking the dot product of the governing equation with s, we have

A+ ) [(s@s) -] -5+ pu(s-s)(G-5) = p(@-s)

’ (A 12) (s8) (G- 8) + i (s5) (- 5) = p (- 5)

Replacing s - s with 1/c? gives us our second decoupled equation

(u-s)=0. O

[ A+ 2u
P73
c
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Problem 2.2 Derive the relations

4cta?p? — Z,74(1 — 2c2a?)? 4ctapZs(1 — 2c2a?)

Ryp = ; Rps = .
PP dcta?p? + Z,Z5(1 — 2c2a2)2” TP dcta?p? + Z,Z5(1 — 2c2a?)2

starting from
Ko sin(20;,)(1 — Ryp) = K2 cos(20,5) Rps

(k2 — 262 8in° 0;) (1 4 Ryp) = K2 sin(260,) Rys -
Solution 2.2: From the first equation we have
2

K
2;’2’sm 0ip cos 0ip(1 — Rpp) = (1 — 25in® 0,.5) Rps

S

or,
2
CS . .
2%&11 0ip cos 0 (1 — Rpyp) = (1 — 25in? 0,.5) Ry
or,
2c§a£(1 —R,p) = (1 —-2c2a*)R,, .
Zp
or,

2c¢2ap(1 — Ryp) = Zp(1 — 2c2a*) Ry -

From the second equation,

(2
(1 — 2/{—2 sin? Oip | (1+ Rpp) = 28in6,5cosbrsRps
or,
2 5 o 8in 6. cos ;.
1- 2¥sm Oip | 1+ Ryp) = 2¢; - - Ry
or,
(1—2c20%) (14 Ryy) = 2c§aZ£Rp5
S
or,

Zs (1—2c20®) (1+ Ryp) = 2c2apR,s .

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

The required relations are obtained in a straightforward manner by solving equations (2.26) and (2.30) for

Ry, and Ry,.
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Problem 2.3 Verify the reflection coefficient relations given in the equations for a P-wave incident upond th
einterface between two solids using a symbolic computation tool if needed. Solve these equations numer-
ically and plot the magnitude and phase of the reflection and transmission coefficients as a function of the
angle of incidence for the interface between two materials with p; = 820, ¢, = 1320, ¢y = 1.0e — 4,
p2 =1000, cp2 =1500, cs2 = 1.0e — 4.

Solution 2.3: A Mathematica script that shows that the calculation is given below.

In[1]:= Phr := RpxPhi
Pht := TpxPhi
Psr := RsxPhi

Pst := TsPhi

pi = Phi+Exp[I* kpl *(xlssti — x2xcti)]
pr = Phr*Exp[I* kpl *(xl+str + x2«ctr)]
pt = Pht+Exp[I* kp2 (xlxstt — x2ctt)]
sr = Psr*Exp[Ix ksl (xlxstrs + x2+ctrs)]
st = Pst*Exp[I* ks2 »(xlsstts - x2«ctts)]

Disr,x2]
-D[sr,x1]
D[st,x2]
-D[st,x1]
2»mul«D[D[pi, x1],x2]
2#mul«D[D[pr,x1],x2]
[
[

2%mu2+D[D[pt,x1],x2]

mul(D[D[sr,x2],x2]-D[D[sr,x1],x1])

mu2+ (D[D[st,x2],x2]-D[D[st,x1],x1])

$22i := lambdals (D[D[pi,x1],x1]1+D[D[pi,x2],x2])+2*mulD[D[pi,x2],x2]

lambdals (D[D[pxr,x1],x1]+D[D[pxr,x2],x2])+2+mul+D[D[pr,x2],x2]

lambda2# (D[D[pt,x1],x1]+D[D[pt,x2],x2])+2+mu2+D[D[pt,x2],x2]

-2+mul+D[D[sr,x1],x2]

-2#mu2+D [D[st, x1],x2]

= FullSimplify[sl2i + sl2r + sl2rs/. x2->0]

= FullSimplify[sl2t + s12ts/. x2->0]

s12diff = Collect [FullSimplify[(sl2bot - sl2top)/(PhixExp[I kpl sti x11)],
{Rp, Rs, Tp, Ts}]

s22top := FullSimplify[s22i + s22r + s22rs/. x2->0]

s22bot := FullSimplify[s22t + s22ts/. x2->0]

$22diff = Collect[FullSimplify[(s22bot - s22top)/(Phi*Exp[I kpl sti x1])1,

{Rp, Rs, Tp, Ts}]

ultop := FullSimplify[uil + url + ursl/. x2->0]
ulbot FullSimplify[utl + utsl/. x2->0]
uldiff = Collect[FullSimplify[ (ulbot - ultop)/(PhixExp[I kpl sti x1])],

{Rp, Rs, Tp, Ts}]

u2top := FullSimplify[ui2 + ur2 + urs2/. x2->0]

uZbot FullSimplify[ut2 + uts2/. x2->0]

u2diff = Collect[FullSimplify[ (u2bot - u2top)/(Phi*Exp[I kpl sti x11)1,
{Rp, Rs, Tp, Ts}]

s12diffa = s12diff /. {ctr -> cti, str -> sti, stt -> kplwxsti/kp2,
strs -> kpl«sti/ksl, stts —> kpl«sti/ks2}

s22diffa = s22diff /. {ctr -> cti, str -> sti, stt -> kplxsti/kp2,
strs -> kplssti/ksl, stts —-> kplssti/ks2}

uldiffa = uldiff /. {ctr -> cti, str -> sti, stt —> kpl#sti/kp2,
strs -> kplssti/ksl, stts -> kplssti/ks2}

u2diffa = u2diff /. {ctr -> cti, str -> sti, stt -> kplssti/kp2,
strs -> kplxsti/ksl, stts -> kplxsti/ks2}

s12diffb := sl2diffa /. (kpl ->omega/cpl, kp2 ->omega/cp2, ksl->omega/csl,
ks2->omega/cs2, mul->csl”2 rhol, mu2->cs2°2 rho2,
lambdal->rhol cpl”2 - 2 mul, lambda2->rho2 cp2°2 - 2 mu2}

s22diffb := s22diffa /. {kpl ->omega/cpl, kp2 ->omega/cp2, ksl->omega/csl,
ks2->omega/cs2, mul->csl”2 rhol, mu2->cs2°2 rho2,
lambdal->rhol cpl”2 - 2 mul, lambda2->rho2 cp2°2 - 2 mu2}

uldiffb := uldiffa /. {kpl ->omega/cpl, kp2 ->omega/cp2, ksl->omega/csl,
ks2->omega/cs2, mul->csl®2 rhol, mu2->cs2°2 rho2,
lambdal->rhol cpl”2 - 2 mul, lambda2->rho2 cp2°2 - 2 mu2}

u2diffb := u2diffa /. (kpl ->omega/cpl, kp2 ->omega/cp2, ksl->omega/csl,
ks2->omega/cs2, mul->csl”2 rhol, mu2->cs2"2 rho2,
lambdal->rhol cpl”2 - 2 mul, lambda2->rho2 cp2°2 - 2 mu2}

s12diffc = s12diffb /. {sti -> alpha+cpl, strs -> alphascsl, stt -> alphaxcp2,
stts -> alpha*cs2, cti -> rholxcpl/Zpl, ctt -> rho2xcp2/Zp2,
ctrs -> rholxcsl/Zsl, ctts -> rho2xcs2/Zs2}

s22diffc = s22diffb /. { sti -> alpha+cpl, strs —-> alphaxcsl, stt -> alphaxcp2,
stts -> alphascs2, cti -> rholscpl/Zpl, ctt -> rho2+cp2/Zp2,
ctrs -> rhol*csl/Zsl, ctts -> rho2xcs2/Zs2}

uldiffc = uldiffb /. {sti -> alphascpl, strs -> alphascsl, stt -> alphascp2,
stts -> alpha*cs2, cti -> rhol«cpl/Zpl, ctt -> rho2+cp2/Zp2,
ctrs -> rholxcsl/Zsl, ctts -> rho2xcs2/Zs2}

u2diffc = u2diffb /. {sti -> alphascpl, strs -> alphascsl, stt -> alphascp2,
stts -> alphaxcs2, cti -> rhol«cpl/Zpl, ctt -> rho2+cp2/Zp2,
ctrs —-> rholxcsl/Zsl, ctts -> rho2xcs2/Zs2}

sl2diffd -sl2diffc /. {mul->cs1”2 rhol, mu2->cs2°2 rho2}
s22diffd := -s22diffc /. {mul->csl”2 rhol, mu2->cs2°2 rho2}
uldiffd := -uldiffc /. {mul->csl”2 rhol, mu2->cs2°2 rho2}

u2diffd := -u2diffc /. {mul->csl”2 rhol, mu2->cs2°2 rho2}

sl2diffe = Collect [FullSimplify[sl12diffd« (Zpl«Zp2+2sl”2+%s2°2/omega”2)],
{Rp, Rs, Tp, Ts}, Simplify]

s22diffe = Collect [FullSimplify[s22diffds (Zpl°2+Zp2°2+Zsl+Zs2/omega"2)],
{Rp, Rs, Tp, Ts}, Simplify]

uldiffe = Collect [FullSimplify[uldiffds(Zs1+2s2/(Ixomega))],
{Rp, Rs, Tp, Ts}, Simplify]

u2diffe = Collect[FullSimplify[u2diffdx (Zpl+Zp2/ (Ixomega))],
{Rp, Rs, Tp, Ts}, Simplify]

Out[5]= E* (I kpl (sti xl-cti x2)) Phi
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Out[6]= E" (I kpl (str xl+ctr x2)) Phi Rp
out[7]= E° (T kp2 (stt xl-ctt x2)) Phi Tp
Out [8]= E" (I ksl (strs xl+ctrs x2)) Phi Rs
Out[9]= E" (I ks2 (stts xl-ctts x2)) Phi Ts
Oout [32]= -2 cti kpl®2 mul sti+2 ctr E"(-I kpl sti x1+I kpl str x1) kpl“2 mul Rp str
+E7(-I kpl sti x1) Rs (ctrs”2 E" (I ksl strs x1) ksl”2 mul
-E" (I ksl strs x1) ksl1"2 mul strs”2)
+2 ctt E° (-1 kpl sti x1+I kp2 stt x1) kp2°2 mu2 stt Tp
+E” (-I kpl sti x1+4I ks2 stts x1) ks2°2 mu2 (-ctts"2+stts”2) Ts
out[35]= kpl®2 (cti®2 (lambdal+2 mul)+lambdal sti“2)+
E" (-1 kpl sti x1+4I kpl str x1) kpl"2 Rp (ctr 2 (lambdal+2 mul)+lambdal str2)
-2 ctrs E" (-I kpl sti x1+I ksl strs x1) ksl"2 mul Rs strs
-E" (-I kpl sti x1+I kp2 stt x1) kp2"2 (ctt"2 (lambda2+2 mu2)+lambda2 stt"2) Tp
-2 ctts E”(-I kpl sti x1+I ks2 stts x1) ks2°2 mu2 stts Ts
Out[38]= -I ctrs E"(-I kpl sti x1+I ksl strs x1) ksl Rs
~T kpl sti-T E* (-1 kpl sti x1+I kpl str x1) kpl Rp str
+I E° (-1 kpl sti x1+I kp2 stt x1) kp2 stt Tp
-I ctts E"(-I kpl sti x1+I ks2 stts x1) ks2 Ts
Oout [41]= I cti kpl-I ctr E"(-I kpl sti x1+I kpl str x1) kpl Rp
41 E°(-I kpl sti x1+I ksl strs x1) ksl Rs strs
-I ctt E”(-I kpl sti x1+I kp2 stt x1) kp2 Tp
-I E"(-T kpl sti x1+I ks2 stts x1) ks2 stts Ts
out[42]= -2 cti kpl"2 mul sti+2 cti kpl®2 mul Rp sti
+E° (-T kpl sti x1) Rs (ctrs"2 E° (I kpl sti x1) ksl°2 mul
-E" (I kpl sti x1) kpl“2 mul sti’2)
+2 ctt kpl kp2 mu2 sti Tp+ks2°2 mu2 (-ctts 2+ (kpl 2 sti’2)/ks2°2) Ts
Out [43]= -2 ctrs kpl ksl mul Rs sti+kpl”2 (cti”2 (lambdal+2 mul)+lambdal sti”2)
+kpl®2 Rp (cti®2 (lambdal+2 mul)+lambdal sti”2)
—kp2°2 (ctt"2 (lambda2+2 mu2)+(kpl 2 lambda2 sti“2)/kp2°2) Tp
-2 ctts kpl ks2 mu2 sti Ts

Out(44]= -1 ctrs ksl Rs-I kpl sti-I kpl Rp sti+I kpl sti Tp-I ctts ks2 Ts
Out[45]= I cti kpl-I cti kpl Rp+I kpl Rs sti-I ctt kp2 Tp-I kpl sti Ts
Out [50]= - ((2 alpha csl”2 omega“2 rhol“2)/Zpl)+(2 alpha csl®2 omega“2 rhol“2 Rp)/zpl

+(2 alpha cs2°2 omega"2 rho2°2 Tp)/Zp2
+E” (-I alpha omega x1) Rs (-alpha”2 csl”2 E"(I alpha omega x1) omega”2 rhol
+(cs1”2 E" (I alpha omega x1) omega”2 rhol”3)/zsl"2)
+omega”2 rho2 Ts (alpha”2 cs272-(cs272 rho272)/2s2°2)
Out [51]= (omega”2 (alpha”2 cpl®2 (-2 mul+cpl”2 rhol)
+(cpl”2 rhol"2 (-2 mul+cpl”2 rhol+2 csl”2 rhol))/Zpl~2))/cpl”2
+(1/(cpl”2))omega”2 Rp (alpha“2 cpl”2 (-2 mul+cpl”2 rhol)
+(cpl”2 rhol”2 (-2 mul+cpl”2 rhol+2 csl”2 rhol))/2Zpl~2)
~(1/(cp2°2))omega”2 Tp (alpha"2 cp2°2 (-2 mu2+cp2°2 rho2)
+(cp2”2 rho272 (-2 mu2+cp2”2 rho2+2 cs2"2 rho2))/2p2°2)
-(2 alpha csl1”2 omega”2 rhol”2 Rs)/Zsl-(2 alpha cs2"2 omega”2 rho2°2 Ts)/Zs2
out[52]= -1 alpha omega-I alpha omega Rp+I alpha omega Tp
- (I omega rhol Rs)/Zsl-(I omega rho2 Ts)/Zs2
Out [53]= I alpha omega Rs-I alpha omega Ts+ (I omega rhol)/Zpl
- (I omega rhol Rp)/Zpl-(I omega rho2 Tp)/Zp2
Out [58]= -2 alpha cs2°2 rho2°2 Tp Zpl Zsl”2 7Zs272
+2 alpha cs1°2 rhol”2 2Zp2 2s1°2 2s2°2-2 alpha csl1"2 rhol"2 Rp Zp2 2Zsl"2 2s2°2
+cs1°2 rhol Rs Zpl Zp2 (-rhol”2+alpha’2 2Zsl’2) 2s2°2
+cs2°2 rho2 Ts Zpl Zp2 Zs1°2 (rho2"2-alpha”2 Zs2°2)
Out [59]= 2 alpha cs2°2 rho2"2 Ts Zpl~2 Zp2"2 Zsl
+2 alpha csl"2 rhol”2 Rs Zpl°2 Zp2°2 Zs2
+rhol (2 alpha"2 csl1°2 Zpl°2-cpl”2 (rhol"2+alpha”2 zpl°2)) 2Zp2°2 Zsl Zs2
+rhol Rp (2 alpha"2 csl1°2 Zpl“2-cpl”2 (rhol"2+alpha”2 zpl°2)) Zp2°2 Zsl Zs2
+rho2 Tp Zpl°2 (cp2°2 rho2"2+alpha”2 (cp2°2-2 cs2°2) Zp2°2) Zsl Zs2
Out[60]= rho2 Ts Zsl+rhol Rs Zs2+alpha Zsl Zs2+alpha Rp Zsl Zs2-alpha Tp Zsl Zs2
Out [61]= rho2 Tp Zpl-rhol Zp2+rhol Rp Zp2-alpha Rs Zpl Zp2+alpha Ts Zpl Zp2

Plots of the magnitude and phase for the reflection and transmission coefficients are given below.
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Problem 2.4 Consider a plane acoustic wave propagating from kerosene into water (at room temperature).
Kerosene has a density of 820 kg/m? and a sound speed of 1320 m/s while water has a density of 1000
kg/m? and s sound speed of 1500 m/s. Plot the magnitude and phase of the reflection coefficient (R) as a
function of the angle of incidence. Is there any angle at which the entire energy of the wave is transmitted
through the interface? At what angle does total internal reflection occur (i.e., the transmission coefficient
becomes zero)? What happens as the angle of incidence is increased beyond the angle at which total
internal reflection first occurs?

Now consider the case where the materials absorb a small fraction of the energy of the acoustic wave. In
that case we can add a damping factor () to the refractive index n, i.e, n — n(1+ia). Plot the magnitude
and phase and a function of incidence angle for o = 0.01. Is there total internal reflection in this situation?

Solution 2.4: See the plot below (the phases have been multiplied by -1).

Kerosene to water

1 200
(]
e]
2 %
‘€ 0.5 100
g T
=

0) 0

0

40
Angle of incidence

There is no angle at which there is no reflection. Total internal reflection occurs at approximately 62°. At
incidence angles greater than 62° R = 1 but the phase of the reflected wave changes. There is no total
internal reflection for absorbing media and there is a phase lag between incident and reflected waves.
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Problem 2.5 We have defined the refractive index for acoustic waves propagating from a medium with phase
velocity ¢; into a medium with phase velocity co as n = ¢1/co. If we choose a reference medium, e.g.,
air with a sound speed of cg, the we can have an alternative definition of the refractive indexes n; and ng
of the two media given by n; = ¢o/cy and ng = ¢/c2 in which case n = ny/n;. We have mentioned
earlier that waves cannot propagate in the medium if the phase velocity is imaginary. How then can waves
propagate in a medium with a complex refractive index?

Solution 2.5: The phase velocity is related to the wave number (k¥ = ||k||) by k = w/c. Therefore, for a medium
with phase velocity ¢1, we have k = w/c; = wny/cy. So we can write a plane wave solution in the form

p= poez(wnlaz/cofwt) ) (2.31)

If ny = n1(1 4 ia) we have

ilwny (1+ia)z/co—wt] _ poei[wnlm/co—wt]—wnl azx/co (2.32)

D = Po€

or ‘
p= poefwnlam/coez(wnlm/mfwt) ) (2.33)

Hence the phase speed remains real and only the amplitude decreases because of the imaginary part of the
refractive index.
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Problem 2.6 Maxwell’s equations for an isotropic material at fixed frequency may be expressed as
VxE=iwuH; V-H=0; V-E=0. (2.34)

Show that for a plane wave electric field E(x) = Eg exp(ik - x) the wavenumber vector is perpendicular to
the fields, i.e., k - Eg = 0. Then show that this implies that the magnetic field is also a plane wave of the
form H(x) = Hy exp(ik - x) where

H, = _wlu(k x Ep) and k-Hog=0. (2.35)
Recall also that for fixed frequency
V°H + %QH =0. (2.36)
Show that the above equation implies that for a plane wave

2
(el = = @37

Solution 2.6: It is convenient to work out this exercise in rectangular Cartesian coordinates.

First, from the relation V - E = 0 we have

0 . ) )
V-E= o (EBore™®m) = iBorkmbmre™™ = iEo kye™™ (2.38)
or, ,
V -E=i(k-Ey)ekotx =0, (2.39)
Therefore,
k-Ey=0. O (2.40)
Recall that for a vector field v(x)
V XV = €pgrtr q€p - (2.41)
So we have
V xE= epqrEr,qep = equ‘EOTai (eikmxm) €, = iequEOTkm(queik'xep = 'L'(epquinorep)eik'X
Lq
(2.42)
or ‘
V x E = (k x Eg)e™®™ = jwuH . (2.43)
Hence,
H = ——(k x Eg)e'® = Hoe'*™ (2.44)
wpt
where
1
Hy:= —(k x Eg) . (2.45)
Wi

Hence the magnetic field also has the form of a plane wave. This field has to satisfy the relation V-H = 0,
ie,

0 , , .
VH = o (Hope™ ") = iHorkdpre™™ = iHo ke = i(k - Ho)e*™ = 0. (2.46)
s

Therefore,
k-Hy=0. O (2.47)
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The Laplacian of the magnetic field is

VH=H, o= 010
- 2,77 e = Wez
o | o : d : 9 .. i
= a—x] |f9xa (HOi elkmzm)] e, = 8—% [ZH()ikm(sijkamm] e, = 37% [ZHoikje km m] e;
= —Hol'kjkm(;mjeikmwmei = —Hoikjkjeikmmmei == _(k : k)HOeik.x .
(2.48)
Therefore
w2 . w2 .
VPH+ — H = — (k- k)Hoe™™ + —Hpe™** =0 (2.49)
c c
which implies that
2
w
k-k= (||k||)2 = = O (2.50)
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Problem 2.7 Express Fresnel’s equations for perpendicular incidence in terms of electromagnetic impedances
and then calculate the reflection and transmission coefficients for a medium that is impedance matched
with a silicone rubber dielectric material.

Solution 2.7: Fresnel’s equations, for a E wave polarized perpendicular to the plane of incidence, are

2 cosf; — 22 cos b,
1 H2

R=1% 251
%cos@i + %cos@t ( )
and ,
22 cos6;
T=— b (2.52)

ni . na :
oy oS 0; + 2 cos 0,

For the situation where the incident E wave is polarized perpendicular to the plane of incidence, the elec-
trical impedance is defined as

1 . I .
Z; = Hi _ _CoHi (2.53)
cosf; \ ; n; cos 0;
Since the polarization does not change when we move from medium 1 to medium 2 or vice versa, we can
write ‘ ‘
Zy = g oz, = S0F2 2.54)
nq cos b; Ny cos by

Plugging these into the expressions for R and 7" gives us
R=——— and T=—-——7 ] (2.55)
Let us assume that medium 2 is a silicone rubber. We want to find a medium 1 that is impedance matched

with medium 2, i.e., Z1 = Zs, R = 0, and T' = 1. Then we must find a medium that satisfies

e __H2 (2.56)
nipcosf;  nocosb,

From Snell’s law,

1
sin 6, = % sinf; = cosfy = —y/n2 —n?sin?0; . (2.57)

2 n2
Plugging the first form of Snell’s law into (2.56) gives us

tan6, M1

= ) 2.58
tan®;  po ( )
Since 6; = 6; in impedance-matched media, we must have p1; = uo. If we plug the second form of Snell’s
law into (2.56) and rearrange, we have
2

2 2
n—; = 7”% sin? 6, + n—; cos? 0, . (2.59)
My 251

Since impedance matching requires that p1 = o, we must have n; = no (for ordinary materials) and
therefore £; = 5. Therefore, we will have to find a material that has exactly the same electrical properties
as silicone rubber for impedance matching.

35



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

Problem 2.8 Consider a slab of material in an impedance tube. The bulk modulus and density of air on both
sides of the slab are 1.42x10° Pa and 1.20 kg/m?, respectively. The Young’s modulus (E), Poisson’s ratio
(v), and density (p) of aluminum are 70 GPa, 0.33, and 2700 kg/m3, respectively. Assume that the phase
velocity in aluminum can be obtained from the relation ¢ = /k/p where k = E/(3(1 — 2v)) is the bulk
modulus.

1. The transmission loss due to the slab is calculated using the relation

1
TL (dB) = 10log,, (T2> (2.60)

where T is the transmission coefficient. Plot the transmission loss for a 10 cm thick aluminum
slab. Compare the transmission loss due to the solid slab with that for a similar slab made of alu-
minum foam with an aluminum volume fraction (f) of 10%. Assume that the effective foam den-
sity is given by pesr = fp1 + (1 — f)p2 and that the effective foam Young’s modulus is given by
Eeir = E(pefr/ rho)2. The Poisson’s ratio of the foam is 0.33. What does the imaginary part of the
transmission coefficient indicate? What is the effect of slab density on the transmission loss?

2. Next plot the transmission losses for aluminum and aluminum slabs for a fixed frequency as a function
of slab thickness. Assume a frequency of 100 Hz and keep in mind that w has units of radians/s and
not cycles/s. Such a plot is called a mass law plot in acoustics. What would the mass law effect be if
petf Were a function of frequency and the system had a resonance frequency of 100 Hz?

Solution 2.8: 1) Assume normal incidence. The quantities that we need to calculate the transmission coefficient
for the foam are E = 0.7 GPa, p = 271 kg/m3. The transmission loss plots is below.
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A plot of the phase of the transmission loss is shown below.
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2) For a frequency of w = (27)(100) radians/s the transmission loss plot is as shown in the plot below.
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Problem 2.9 Show that the transmission coefficient for an slab with incident TE-waves can be expressed as

T15 Tz e'k=2(d2=d1)

T3 = TR, Ry c¥ha(@ad) (2.61)
Also verify that the series expansion of the above equation is
Tis = T1oTos €' + T1oTo3Roy Ros € + T1oTos R Ry ™% + .. (2.62)

Solution 2.9: The process of finding the transmission coefficient is identical to that used to find the generalized
reflection coefficient.

As before, we superpose solutions of the form
E,(Z) = Eyexp(+ik,Z) (2.63)

where Z = 0 at the interface. To make sure that the above form can be used in all the layers, we will
express all equations in a single coordinate system with z = —d; at interface 1 — 2 and z = —ds at
interface 2 — 3.

In medium 1, the electric field consists of a incident part and a reflected part,

Ey(Z) = E; + E, = Eyexp(—ik.1Z) + Ri2Eo exp(ikz1 Z)
~ (2.64)
= Eyexp(—ik.1 2) [1 + Ris exp(2ik‘21Z)}

where Ry is the generalized reflection coefficient at the interface 1 — 2. Let us now change the variable
so that interface 1 — 2 with Z = Ois at z = —dy, i.e, we set Z = z + d;. Then we can write the above
equation as

By1(2) = Eyexp[—ikz (2 + di)] |1+ Rz exp[2ikay (= + d )]
= Eyexp(—ik,1d;) [exp(—ikzlz) + Rygexplik.1(z + 2d1)]} (2.65)
=A; [exp(fikzlz) + }?12 explik.1(z + 2d1)]}
where Ay := Egyexp(—ik,1d;). Similarly, in medium 2, we have
Ey(Z) = E; + B, = Aexp(—ik.2Z) + RosAexp(ik.22) (2.66)

where A is the amplitude of the incident wave in medium 2 and Egg is the generalized reflection coefficient
at interface 2 — 3. A change of variables, Z = z + ds, gives us

Eys(z) = Aexp[—ik.o(z + d2)] + RosAexplik.z(z + ds)]
= Aexp(—ik,ads) [exp(fikzgz) + Rogexplik.o(z + 2d2)]} (2.67)
= A [GXP(—“%QZ) + Rog explik.a(z + 20{2)]}
where Ay := Aexp(—ik,2ds). There is no reflected wave in medium 3 and we have
E,3(Z) = E; = Bexp(—ik,32) (2.68)

where B is the amplitude of the transmitted wave in medium 3. With a change of variables Z = z + d; we
have
Ey3(z) = Bexp[—ik,3(z + d2)] = Az exp(—ik,32) (2.69)

where As := Bexp(—ik.3ds).
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The electric field in the three layers, expressed in a single coordinate system with z = —d; at interface
1 — 2 and z = —d> at interface 2 — 3, are therefore

Eyi(z) = A [exp(fikzlz) + Rugexplika (2 + 2d1)]]

E(z) = As [exp(—ikzgz) + Egg explik.2(z + 2d2)]} (2.70)
Ey3(z) = Az exp(—ik,3z2).

Let us now examine the fields above and below interface 1 — 2 at z = —d;. From the above equations we
have _
Eyl(—dl) = A [exp(ikzldl) + Ris exp[ikzldl]}
_ 2.71)
Eyg(—dl) = Ay [exp(ikzgdl) + Rog eXp[ikzg(—dl + 2d2)]:| .
Similarly, at interface 2 — 3, we have
Eyg(—dg) = Ay [eXp(ikzde) + Rgg eXp[Z'kZQdQ]:| 2.72)
Ey3(—d2) = A3 exp(iszgdg) .
Consider medium 2 below interface 1 — 2. Then the transmitted wave from medium 1 has the form
Et = T12A1 exp(ik:zldl) (273)

where 775 is the transmission coefficient going from medium 1 to medium 2. The reflected wave from
interface 2 — 3 is also reflected at interface 1 — 2 and adds to the transmitted wave from medium 1 to
medium 2. This reflected wave has the form

E, = R21A2é23 exp[ikzg(—dl + 2d2)] (2.74)

where Ro is the reflection coefficient going from medium 2 to medium 1. These two waves sum to the
downgoing wave in medium 2,

Et + ET = Ez = A2 exp(ikzgdl) . (275)

Plugging in the expressions for E; and E,,

Az exp(ikzady) = Ti2 Ay exp(ikz1dy) + Roy As Ros explikzo(—dy + 2d)] (2.76)
or 5
Ay = Tyo Ay expli(kar — kao)di] + Ror Ao Ros exp|2ik.s(—dy + do)] (2.77)
or ;
Ay _ Tio eXp[Z(kzl - kz2)d1] (2.78)

Il B 1-— R21§23 eXp[Qikzg(dQ — dl)} -

Now consider the transmitted wave going from medium 1 to medium 3. In medium 1, the downgoing wave
at interface 1 — 2 is,
Ei = A1 exp(ikzldl) . (279)

In medium 3, the downgoing wave at interface 2 — 3 is
Et = Ag exp(ikzgdg) . (280)
If T15 is the transmission coefficient for waves going from medium 1 to medium 3, we have

Et = T13Ei — A3 eXp(ikZ3d2) = T13A1 exp(ik‘zldl) . (281)
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Therefore,
As ) .
—— = Tigexp(ik.1dy — ik.3ds) .
Ay

Similarly, if we consider only the downgoing wave is from medium 2 to medium 3, we have
Ei = AQ eXp(’ikzzdg) .
If T3 is the transmission coefficient for waves going from medium 2 to medium 3, we have
Et = T23Ei — A3 eXp(ikZ3d2) = T23A2 eXp(ikzgdg) .
Therefore, n
Tos =2 = exp(—ik,ody + ik.sds) .
As
Multiply (2.82) and (2.85) to get

A . :
T23A73 = T13 eXp('Lkzldl - Zkz2d2) .

Substitute (2.78) to get

To3Tig expli(ks1 — kz2)di]

Tz exp(ik,1dy — ikzods) = = -
1-— R21R23 exp[2zkzg(d2 — dl)]

or,
To3T12 explik.o(da — d1)]

Ty = = -
1-— R21R23 EXp[2Zkz2(d2 — dl)]

O

If we consider only one reflection at interface 2 — 3, we have Egg = Ros.

To expand in series, we observe that 0 < 1 — Roj Roz exp|2ik,2(da — di)] < 1 and recall that

1 1l [ f-a\"
1—f’f—a_1—az<l—a) ’

n=0

If we expand around f = 0, we have

1 _ 2 3
ﬁ’f:O_Herf +

If f = Ro1Ros3 exp[2ikzg (dg — dl)] = Rs1Ra3 exp(2i9), we can write (2.88) as
T3 = To3Th2 exp(if) [1 + RoiRos exp(2i0) + B3, R3; exp(4i0) +...] .
Expanded out,

Tis = T53T42 exp(i@) + T53T12Ro1 Ros exp(3i9) + T23T12R§1R%3 exp(5i9) +... O

40

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

2.91)

(2.92)



Chapter 3

Solutions for Exercises in Chapter 3

Problem 3.1 The acoustic potential satisfies Helmholtz equation
Vo +kp=0 (3.1

Show that for the problem of the acoustic spherical lens the solutions of this equation for outgoing waves
can be expressed in the form

= Z Ay hy (kr) P, (cos ) (3.2)

n=0

and those for incoming waves can be expressed in the form

p= ZBan kr)P,(cosb) . (3.3)

n=0

Solution 3.1: Because of the symmetry in ¢ we can express the Helmholtz equation in in spherical coordinates

as
Lo (200 1 00 999) i k2p—0 3.4)
Zor\" o) T rzsmeae \ "% @.

We use separation of variables to solve this equation,

¢ = R(r)T(0) (3.5
Plug this solution into the equation to get
L4 (20R) L d 9 R+ k*RT =0 3.6
r2dr \| dr + r2sin 6 do sin 0)
Divide by RT and multiply by 2 to get
1d{ ,dR 1 9 1202 (3.7
Rar\" dar +Tsm€)d9 sin + 7
Therefore,
1d dR 2R CR
r2dr dr o2

3.8)
1 d 'GdT __oT
sin 6do St a9
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Let us first solve the 6 equation. Make the substitution 7 = cos €, which means that dnp = — sin 6d6f and
sinf = /1 —n2. Then
2—2: C;szz —sinﬁili(n) (3.9
which leads to
d .o dT
—d—n (— sin 9(177) =-CT (3.10)
or
d 0, dT
dn[(l—n )d— +CT = (3.11)
or,
(1-— ng—T—zg CT=0 3.12
”)an gy TET=0. (3.12)
This equation has solutions for C' = m(m+1) where m = 0, 1,2, 3, ... and its solutions are the Legendre
functions, that is
T = P,,(cos@) . (3.13)
For the radial the part of the equation we now have
4 (TQdR> + k2R —m(m+1)R=0 (3.14)
dr dr

Let p = kr. Then dp/dr = k and

d() d()dp  d()
T has k% (3.15)

which leads to

d (5, dR 9 9
k—|rk— ] +k*r*"R—m(m+1)R=0 (3.16)
dp dp
or
5 deR dr 5 5
k*r®—+2rk—+k*r*R—m(m+1)R=0 (3.17)
dp? dp
or
d2R+2dR+[2R ( +1)}R—0 (3.18)
dp? " pdp TR '
This is similar to Bessel’s equations and has solutions
R = 1/\/5Jm+1/2(p) = .jm(p) (3.19)
and
R =1/v/pYimi1/2(p) = ym(p) (3.20)

Therefore, the solution of the problem of the form
o0
0= amjm(kr)Pp(cost) O (3.21)
m=0

is bounded at » = 0 and hence is suitable for the interior of the sphere.

For outgoing waves we are not concerned with boundedness at » = 0 and we recall that spherical waves

from a source have the form exp(ikr)/r. We know that WY = Jm + 1y has this behavior and hence the
solution suitable for outgoing waves is

oo

= amhm(kr)Pp(cost) O (3.22)

m=0
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Problem 3.2 A classic problem in scattering is that of acoustic waves from an infinitely long fluid cylinder of
circular cross-section. Show that, for harmonic waves, the solutions of the governing equation V2p-+k?p =
0 have the form

In(kr)
= A, cos(nb) (3.23)
" Z { 2 (e )]

where J,,(z) is a Bessel function of the first kind and H,(Ll) is a Hankel function of the first kind. Then
follow the standard procedure of matching boundary conditions at the surface of the cylinder to show for
an incident plane wave of unit amplitude p* = exp(ikix) and a scattered wave given by

p® = Z B, cos(n@)HV (kyr) (3.24)
n=0
that coefficient B,, has the form
Jn (]CQ(I) ( 1(1) gnY",(kla)

T !/

By = ——"" with = (’“2“) (kra In (k10) (3.25)
1+4iC, o' (k2a)Jp (kia) ¢
To(kza) T (ra) "

where Y,,(2) is a Bessel function of the second kind, £ = p3/p1, and n = ¢o/cy.

Solution 3.2: Since the cylinder is infinitely long, we can ignore dependence on the z coordinate and express
the governing equation in cylindrical coordinates, (r, 8, z), as

o?*p 10p 10%
i TEap TR0 (3.26)

Using separation of variables, p(r,§) = R(r)T(0), we get

P PR rdR L, 1PT

= =——=—==m". 3.27
Rz "Rar "7 T TagE ™ 27
Solving
d*T 9
gives us solutions of the form
T(0) = C1 exp(imB) + Cz exp(—imb) . (3.29)

Periodicity in 0, i.e., the requirement that 7'(6) = T (27 4 ), means that m is an integer. Since only the
real part of the pressure is of interest, we can write the solution as

T(6) = C,y, cos(mb) . (3.30)
Also, the equation for R(r) is
d*R dR
2 2,2 2\p _
r— +rd7" + (K*r* —=m*)R=0 (3.31)

If we use a change of variables, z — kr, we have dR/dr = dR/dx dx/dr = kdR/dz and d*R/dr? =
d/dr(dR/dr) = d/dz(dR/dr) dz/dr = k*d* R/dx?. Therefore we have

,?R  dR ., ,
ﬁ+$dx+(x —-m“)R=0 with x=kr (3.32)
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which is Bessel’s equations with solutions of the form
R(r) = CsJm(kr) + C4Ym (kr) . (3.33)

For the incident wave, we take only the regular part of the solution (which is not singular at » = 0), and
we have
Ri(r) = CamJm (kr). (3.34)

For the scattered wave, we also include the irregular part of the solution because it has the correct asymp-
totic behavior as r — oo, and we can write

Ry(r) = Capn HLV (K1) (3.35)

where H, ,(,1 ) is a Hankel function of the first kind. Therefore, a solution of the wave equation has the form

Im (K
p(r,0) = Ay, cos(mb) |:H*£r})((;2):| (3.36)
To get the general solution, we superpose the solutions for particular values of m to get
kr
Z Ay, cos(mb) { H(”( (; )J O (3.37)
Now let us consider an incident plane wave of the form
pi(r,0) = exp(ik1z) = exp(ikir cos 0) Z emi™ cos(mb)Jp, (kir) (3.38)
where
1 form =0
= . 3.39
em {2 form >0 (539
The scattered wave has the form
0) = > By, cos(m0)H{) (kyr). (3.40)
m=0
The waves reflected and refracted inside the sphere have the form
= > Dy cos(mb) Iy, (kar) . (3.41)

m=0

Let the density and sound speed of the incident medium be (p1,c;1) and that of the fluid cylinder be
(p2, c2). The boundary conditions at the surface of the cylinder, r = a, are the continuity of pressure, p,
and the radial component of the displacement, [u], = 1/(pw?)[Vp], = (pw?)0p/dr with w = ke. Taking
derivatives with respect to r of (3.38), (3.40), and (3.41), we have

Op; = .m ’

5 = k1 mzzo emi™ cos(mb)J,, (kir)

aps s ’ !

o= mZOBm cos(mf) | J,, (ki) + iV, (kir) (3.42)
Opq

B = = ko n;) D, cos(m8)J, (k:gr)
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Atr = a,
— Z emt" cos(ml)Jp, (kra), ps(a,d) Z B, cos(mb) [, (k1a) + 1Y, (k1a))
mo (3.43)
Z D, cos(mB)J,, (kaa) .
m=0
and
upi(a, d) p1w2 Z emi™ cos(mb)J, (kla)
Ups(a, d) ple Z By, cos(mb) [ o (k1a) —l—zY (kla)} (3.44)
ky ,
Urg(a,0) = —=5 Y Dy, cos(mb)J,, (ka) .
paw m=0
Superposing the solutions, using the boundary conditions at » = a, and equating terms we have
emi™ cos(mb)Jm (k1a) + By cos(mB) [T (k1a) + 1Yo, (k1a)] = Dy, cos(m8)J,, (kaa)
. , orks (3.45)
emi™ cos(m@)J., (kra) + Bu, cos(m) [Jm(kla) + zym(kla)} = oD cos(m)J., (ksa) .
2K1
Eliminating the dependence on 6 and using £ = pa/p1,n = ca/c1 = k1/k2 gives us
emi™ Jm(k1a) + B, [Im(k1a) + Y (k1a)] = Dy Jm (k2a)
o / - 1 , (3.46)
emi™ T, (k10) + B [T, (k1) + Y, (k1) | = & DT (20).
Solving for B,,, we get
B emi™ [—Jm(kla)J,’n(kQa) + Jm(kga)J;n(kla)fn}
" (k1) J), (kaa) + T (kaa)J), (kia)en — id), (k2a) Y (k1a) + iJm (k2a)Y,, (k1a)én
(3.47)
or
sy s
B, — / Cm? : =0 (3.48)
i | Ik Y (ia) £ T (ko) Yy (kna)gn] 1 iC
Z ’ ’
—Jm(kra)J,, (kaa) + Ty (k2a)J,, (k1a)én
where , ,
o T (Ea)Yin(510) £ T (20)Y (s 40
" —dm(kia) Ty, (kea) + T (k2a) Ty, (kra)én '
Divide the numerator and denominator by .J,,, (kaa).J,,, (k1 a) to get
J, (kaa) Yy, (kra) Y;n(kla)cn
7 - ’ S
Cm _ Jm(kga)Jm(klla) Jm(kla) 0. (350)
Jm(kla)Jm(kga) 5
T (kpa) T, (kra) >
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Problem 3.3 If a is the radius of the sphere and the wavelength of the incident plane wave is much larger than a

we have the condition ka < 1. Find the asymptotic solutions for the acoustic lens problem for this case.
What are the asymptotic solutions when ka > 1?

Solution 3.3: The scattered and internal pressure wave fields for a spherical acoustic lens are

271 + 1 (klr) (COS ¢) [n]n (k1a>.7n (k2a) g]n/(kla).]n(k?a)]
o z

(3.51)
nhn(kla)]n (/{2@) - fhn (kla)]n(k2a)
wpo 1" (2n + 1)j, (kar) P, (cos @)
DPqg = e (3.52)
1a® “= nhy(kia)jn’ (k2a) — Ehy' (kra)jn(kea)
where h,, (kr) = jn(kr) + iy, (kr). For small arguments, ka < 1,
, 2™n]! n_ (ka)”
dnlke) = G *a)" = G
(2n)! 1 (2n — )N (353)
1 . . — o
Pnlka) = (O Gl Thay#t = " (hay
Therefore, ) )
v L n . (ka)™™ n(ka)™~
Jn(ke) = =ner (k) + 20 gn(ke) = =5 g5+ ot 10
n (2n + 1! (2n — 1! >4
h,(ka) = —hpi1(ka) + Ta hn(ka) — i Gz in (a2
We can now calculate the products,
) o, - (kla)n B (k2a)n+1 n<k2a)n—1
Jn(k1a)jn’ (k2a) = (2n + 1) [ 2n+3)! T 2n+ 1)
, ] [ (kla)n+1 n(kla)n—l (k2a)n
Jn' (k1a)jn(kea) = 2n+3) " 2n+ )] (2n+ D .
o, B __(2n - ! B (kea)" 1 n(kga)"~? '
hi(k1a)jn' (k2a) = (kra)n+1 @n+3)1 " (2n+ )
, ) _[Cn+ DN 20 =D (Kk2a)”
by (k1a)jn(kea) = _’ (kra)n+2 m (kra)"2 | (2n+ 1)1
Therefore, using Mathematica, we can calculate the ratio needed to find the scattered field:
Nin(k10)jn’ (k2a) — Ejn’ (k1a)jn (k2a)
nhn(k1a)jn’ (k2a) — Ehy' (k1a)jn (ko)
]{?1/{2@2(5/{?1 — 77k2) n(nk‘l — fk‘g) (356)

i(k1a)?>" 1 (2n + 1)(2n + 3)

@Cn+DNE2n+3)! (2n+ 1HI(2n + D!
nkik3a? — (2n + 3)[nnki + (1 + n)&ko]

We can verify that this ratio rapidly drops off as n increases. We therefore retain only the first term, n = 0,
and have

ann<k1a>jn’< 20) — & (k1a)ju(kea) _ ik3a® (nka — Ekr)

- ~ (3.57)
2 b (kra)ja (k2a) — €hy (k1a)jn(kaa) — mkikza® — 3¢
Using the definitions = ko /k1 and £ = po/p1, the scattered field may then be written as
kia®(p1k3 — pok?
ps & —wprho (k1) Po(cos ¢) (p1ks ) . (3.58)

p1k3a? — 3ps
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Now,

w=kicr, ho(kir)= —ﬁe“ﬁr and Pp(cosg)=1.

Hence,

Ds =~ —

LTI L Sl 1) RS
4y p1k3a? — 3ps

(3.59)

(3.60)

Further simplification is possible, but the above result shows that the solution is equivalent to that for a

simple point source.

For the field inside the sphere, we calculate the quantity in the denominator after substituting for 7 and ¢

to get

nhn(kla)jn/(k2a) - ghn/(kla)jn(k?a) =

i(kya) "> " (kea)™[p1k3a® — (2n + 3)(p2 + (p1 + p2)n)] .

p1[3 +4n(n + 2)]

(3.61)

Compared to n = 0, the contribution of the inverse of this quantity is quite small an can be ignored.

Therefore we have

i 1 . 3Bipikia®
i—0 nhn (k1a)jn' (kaa) — Ehy' (k1a)jn(kea) — 3p2 — prk3a?

and we can express the internal pressure field as

o . 3p1
pq = —ikacaps jo(kaor) Po(cos ¢) {W}
Now, ink
Jo(kar) = i :T and  Py(cos¢) =1.
2
Hence,

. sin kor 3p1
Pg ~ —ikacap2

kor | 3p2 — p1k3a?
Once again, further simplification is possible.

For large arguments, ka > 1,

Jn(ka) = i sin (ka - @)

2
1 1 nmw
~ g1 7 ; - _ ; _
hp(ka) =i " exp(ika) a P [z (kza 5 )} .
Therefore, ignoring terms containing 1/(ka)?,
p o n . 1 . (n+1)m
Jnlba) = ~dusa(ba) 4 - (k) = sin (o - 5T

, B n i _ (n+1)m
h,(ka) = —hpi1(ka) + a hn(ka) = a P {z (ka - )] .

The products that we need are,

. . . nmw\ . n+ 1w
Nin(k1a)jn’ (k2a) = fﬁ sin (kla - ?) sin <k2a - (2))
_ ) 13 . nTy . (n+ 1)m
f]nl(kla)h(@a) = _W Si (k2a - 7) sin | kja — Yy
o _n ) _nm ) (n+Dm
nhp(k1a)jn' (kea) = T exp {z (kzla 5 )} sin (kga —

£hy (k1a)jn(k2a) = —° sin (kQa - %) exp {z (kla - ("Zl)ﬁﬂ .

k1k2a2
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Therefore,
njn(kla)jn/(k2a) B gjn/(kla)Jn (k2a)
nhn(k1a)jn’ (k2a) — Ehy' (k1a)jn (ko)
&sin (kga - M) sin (kla - W) — 7 sin (kla - ”—’T) sin (kga - @)

2 2

= in exp [z (kla — ”—2”)] sin <k2a — w> — i€ sin (kga — ”—2”) exp [z (kla — @)]

e[i(fklaJr%)] 7 COS (kQa — %) sin (kla — %) — £ cos (kla — %) sin (k‘ga — "—2”) .

incos (kia — %) + Esin (kea — 2F)

(3.69)
This series is divergent, but more can be said about the behavior of acoustic waves in this “geometrical
acoustics” limit. See Morse and Ingard, p. 340, p. 426.
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Problem 3.4 From the following equations
— iwp Z " (20 4 1)y (k17) Py (cos @) [1njn (k1a) jin (kea) — €/ (k1a)jn(k2a)]
1
nhn(kla).]n (]4)2(1) - fhn (kla)]n(k2a)

_ wp i"(2n + 1), (kar) Py (cos §)
PT T2 2 (ki) (kza) — vy (kra)ja(kea)

(3.70)

identify the conditions under which there can be resonance within the system. Plot the scattered pressure
as a function of the frequency when the sphere in the figure below is made of air.

Solution 3.4: We can express the above equations in terms of the frequency w by using the relations k1 = w/¢;
and ko = w/cy. Then we have

Zme 721 4 1)hn(£2) Pa(c05 6) [njn (22)ju’ (£2) — €’ (22)ju (22)]
T (22) 7,7 (22) — £, (22)7,(22)

_p2c% (204 1)ja(2) Pa(cos 9)

wa? 2 i (251, (22) — gh, (25, (22)°

Clearly, we will have resonances when

o, (Ca)jn/<c> €hy’ <1>]n<('zg>:0 forn=0...00 0 (3.72)

For n = 0, the condition for resonance is

3.71)

Pq =

pici (sincwa — cos wa) — pa(er — iwa)sincﬂ =0 (3.73)
C2 C2 C2

where sinc(z) = sin(nz)/(mx) is the sinc function. For wa/ce < 1, a series expansion around wa/ca = 0
gives

2
picy (o:a) — 3pa2(c1 —iwa) =0 (3.74)
2

which is a quadratic equation that can be solved for w.

We can plot the scattered wave at r = 1.2a and ¢ = 7/2 using Mathematica. A version of the script is
given below.

hn = SphericalHankelHl[n, x]
hnp = D[hn, x]
jn = SphericalBesselJ[n, x]
jnp = D[Jn, x]
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hncl = hn /. (x -> omega a/cl)
hnpcl = hnp /. (x —> omega a/cl)
jncl = jn /. (x —> omega a/cl)
jnpcl = jnp /. (x —> omega a/cl)
jnc2 = jn /. (x —-> omega a/c2)
jnpc2 = jnp /. (x —> omega a/c2
hnr = hn /. (x —-> omega r /cl);

Pn = LegendreP[n, Cos[phil];
ttl = eta jncl jnpc2 - xi Jnpcl jnc2 /. {eta -> cl/c2,
xi —> rho2/rhol};
tt2 = eta hncl jnpc2 - xi hnpcl jnc2 /. {eta -> cl/c2,
xi -> rho2/rhol};
val = I"n (2 n + 1) hnr Pn ttl/tt2;
ps = Sum[I omega rhol val, {n, 0, 10}];
pswaterair = ps /. {cl -> 1500, c2 -> 346, rhol -> 1000, rho2 -> 1.18};
psairphi = pswaterair /. {phi -> Pi/2, r -> 1.2 a};
pssimple = psairphi /. {a -> 0.11};
Plot [Re[pssimple] /1076, {omega, 0, 1000},
PlotRange -> {{0, 1000}, {-0.01, 0.1}}, PlotStyle -> Thick,
PlotLabel -> Style["p_s (omega) (MPa)", FontSize —-> 18]]

A plot of pg vs. w is shown below.

p_siomega) (MPa)

0.08r

0.06

004

002

0.0 L 1 L L L L L 1 L L L 1 L L L |
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Problem 3.5 Consider a plane harmonic acoustic wave incident from a medium with bulk modulus x; and
density p; upon a sphere with bulk modulus «2 and density p». Let the radius of the sphere be a. The
sphere is coated with a fluid layer of density ps = po, radius b, and a bulk modulus given by

bS aS bd _ a3

=—+ . (3.75)
K3 K1 K9

Find the scattering cross-section of the coated sphere.

Solution 3.5: Let the incident pressure wave have unit amplitude. Then,

o0

p; = exp(ikyr cos @) = Z i"(2n + 1)jn (k17) Py (cos @) . (3.76)

n=0

The scattered pressure field in medium 1 has the form
ps = Y i"(2n + 1) Aphy (k1r) Py (cos ¢) (3.77)
n=0
Therefore the total field in medium 1 is p; = p; + ps. The pressure field in the core medium 2 has the form
(o)
p2 =Y i"(2n+ 1) Dyjn(kor)Pp(cos ¢) . (3.78)
n=0

The pressure field in the coating medium 3 has the form

o0

p3 = Z iTL(2n + 1) [ann(ki%r) + Cnyn(kST)] Pn(COS ¢) : (379)

n=0

The corresponding radial displacements are given by u = pw?dp/0r. Hence,

up = prw? Z i"(2n + 1)ky [j;l(klr) + Anh;(klr)] P, (cos ¢)

n=0
_ 2 - N ./
uy = pow?® > i"(2n + 1)ky Dy, (kor) P (cos ) (3.80)
n=0
N 2 i n o ’
Uz = paw Z i"(2n + 1)ks |:Bn]n(k‘37“) + C’nyn(k:gr)} P, (cos ).
n=0

The boundary conditions at r = a are ps = p3 and uy = uz. Atr = b, p1 = p3, u1 = usz. Applying these
BCs we have, at r = q,

Dnjn(kQCI/) - ann (k?)a) + Cnyn(k?)af)

y ¥ / (3.81)
p2kaDyj, (k2a) = psks [Bn]n(k?)a) + Cnyn(kBQ):|
and atr = b,
) , , , (3.82)
prky [ (kab) + Auhi, (kb)| = paks | B (kab) + Cuy(kab)| -
Solving for A,,, B,, Cy,, and D,, gives
A = —— B = — = 7D = — .
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where the numerators are
= &6 (k1D) i, (ko) [n (k3b)yn (ksa) — jn(ksa)yn (kb))
: [J; ksa)yn (k3b) = jn kab)y;(ksa)}
)

)

+ &1m2Jy, (k10) jin (k2a) (
) [in sy, (ksb) = 5, sb)yn (ksa
) (

’

+ &amijn (k10) 3, (k2a

’

+ mn2jn(k1b)jn (k2a [ (k3b)y,, (ksa) — i, ksa)yn(k:ab)} ;

it (3.84)
1 N . ’
b = (€2 ka)un (kaa) = ooy (hsa)
i§1 Y Y .
Tn = 20 [ﬂ2jn(k2a)]n(k3a) - 52]n(k2a)]n(k3a):| ,
6 — 8112
" T T RkIa
the denominator is
Ay = E1&ahy, (k1b)j, (koa) [jn (kab)yn (ksa) — G (kya)yn (ksb)]
o+ €umahy, (kb)jn (k20) [, (kaa)yn (sb) — jn (kab)y, (ks
/ / (3.85)
o+ om b (10), (aa) [ n (k) (sb) = 7, (ksb)yn ()|
+ min2hn (k16) jn (k2a) {J; (ksb)y,, (kaa) — 5, (ksa)y,, (ks )} :
and
P p k c k c
==, =", m=r=—, p=r=—. (3.86)
p3 P3 ki e ko e
If p3 = p2, we have & = 1. Also, since
b3 (13 b3 _ CL3
— = (3.87)
K3 K1 K2
and
=12, o=/ 2 ad q=¢2 = I, E2 (3.88)
P3 P2 P1 2 k2p1
we have
m = 1 [b*k1 ag(@ K1) P2 and 7 = €2 _ b7k ag(ﬁz ’fl)]. (3.89)
c3 b3 ko p1 c3 b3k
Therefore,
b3k1 + a3(ko — K1)] p2
il =6 = *751772 Gl 3 2 1]%
b’ky P2
(3.90)
[b3k1 + a3 (ky — K1)] po [b3k1 + a® (ke — K1)] 1 p2
Som =m = 3 —, Mz = 3 —.
b3 ko 01 b K1K2 p1
Also,
By Lo VP @ eV g e eV (391)
C3 VK3 Co VE2 c1 VEL
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In terms of media 1 and 2,

a’ b —a?
k’3 = w\/p? leil + W (392)

The scattered wave therefore has the form
©i"(2n + Dayhy, (ki7) P, (cos
ps = Z ( ) nAL( 1 ) L( ¢) (3.93)

n=0

where all quantities have been expressed in terms of p1, p2, K1, Ko.

Following the approach discussed in the text, the scattering cross-section is given by

dr X1
(=P D

We can plot the scattering cross-section for particular choices of geometry and material properties. For
example,ifa =1m,b=12m, p; = 1.2 kg/m3, p2 = 1000 kg/m3, k1 = 1.42 x 10° Pa, ky = 2.2 GPa,
we get the cross-section as a function of frequency shown in the plot below.

2
(3.94)

o
An

50(-

Scattering cross section asa
function of frequency

40CH
30CH
200+

10CH

50C 100¢ 150C 200C
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Problem 3.6 A vector displacement potential for shear waves can be expressed in terms of scalar Debye poten-

tials (II, y) as
P =V x (llre,) + V x (V x (xre;)) (3.93)

Express the displacement and stress components for an elastic material in terms of these potentials. What
are the forms of the potential that can be used to represent an incident plane SV-wave and a plane SH-wave?
What are the appropriate forms of the expansions for the scattered fields.

Solution 3.6: The Debye potentials are applicable to problems involving spherical symmetry. The displacement
field in an isotropic and linear elastic material can be expressed as

u=u,+u,=Vp+Vxy with V.-¢p=0 (3.96)
where ¢ = ¢(r,0, ¢) and ¥ = P (r, 0, ¢). The elastic wave equation
A+2u)V(V -u) — puV x (V xu) = —w?pu (3.97)

is satisfied if the potentials satisfy the Helmholtz equations

2 w? 2 w? 2 w?
Vie+ —S¢=0, VII+—SIl=0, Vx+-—5x=0 (3.98)
ca c2 c2

where II = II(r, 0, ¢) and x = x(r, 0, ¢).

Let us find the components of the displacement field term by term. In spherical coordinates

Y x (II 1 0OIl1 oIl i v 1 Jx ox 3.99
X = — — — — X = — _ .
(Mrer) = 50590 ~ 35 & (xrer) = 505 90% ~ 96° (399
Also,
V %V x (Tlre,) 1 1 0% N 8H+82H . 16H 011
x V x =—- —t —
rer sin?o 92 T %5 T g r 06 " 9r0é
1 aH 011
+ rsin ¢ + arob
1 1 02 0? 10 9?2 (G-100
N B e X 19x X
VX Vox(xrer) = =7 (sin2¢ 262+ (b@qﬁ a¢2> rt ( 96 or a¢>
1 ox %x
Jrrsm¢< tr aro0 ) &
and
V XV xV x(xre,) =
1 0?x Px 1 9y Px ., Px
T 2sing <C°t¢aea¢ t 90052 T snZo 000 oo T o000
1 Py Py 1 Ox 83 0%x &3y
T2 |52t a5 T e\ de %92 50200 | "\ 28ra0 " 5700
(3.101)
Now,
Op 10¢ 1 Oy
u, V(p = Ee, + ;%qu + m%ea (3102)
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and
U, =Vx¢p=VxVx((Ilre,) + V x V x (V x (xre,)) (3.103)

Plugging in the expressions for the two terms, we have

101 82H+ t¢an+a2n
s =5 sin® ¢ 062 0 er

10  8°11 1 0%y 2y 1 3y ?x  , x
<ra¢+ 67“8¢> T Psing (COt 5006 " 90067 " snZe 05 > oroe " aroan ) |

N 1 8H+ %11 +1 t¢82x+83><+ 1 Ox ) t¢5‘2x+ 3
rsing \ 00 0ro0) T 12| %062 T 963 T s\ 96~ P02 T 99204
0%y 3y
+T<267"8¢+T67"28¢ eg.

(3.104)
Combining u, and u, to get u = u,e, + ugyeys + ugeq, we have
e 1 1 8211+ td)aH oI
T T \sing 002 T P9 T 9g2
B 18<p+ 181'[+ 011
Y= 0 T \roe  ordg
1 0 1 0%y ox 0%x 195% 0%x
_ _ 2 REATEEA NI, P 2”4~
r2 sin ¢ 96 (sin2 ¢ 002 + COtd)(“)(b + 02 + "or T or?
(3.105)
1 9y N 1 on N %1
u = rsing 00 rsing \ 00 raraa
1 %x 03y 1 ox 0%y %
— |cot p=—s 4 ==+ —5— [ —== — 2cot == 4 =
T2 |0 T e T ane \ e 2 Yare T 96204
0%y 3y
2
r ( o6 artog
We can simplify these further using the Helmholtz equations satisfied by the potentials. Thus,
0%l 2010 1 O’ cotpdll 1 611 w?
M= —+-— —F -=—==—-——=1I 3.106
V=t o T o T 2 9s T e (3.106)
or
oIl 2011 Lt 1 om 8H+82H 3107
oz trar ) tE T T \Gesee T o) ©
Therefore we can express the radial displacement as
dp  0? w?
ur(r,0,0) = 5o+ alrI) + () O (3.108)
Similarly, using
1 82x+ t¢8x+ FPx 82X+ 2 Ox r2w? (3.109)
sin? ¢ 002 0 0 092 "oz TV or c2 '
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we have
B 18<p+ 18H+ %11
=506 T \roe " orog
(3.110)
1 0 262)( ox riw? 5 ox 82)(
 r2sin¢ 0 o o c2 x+ r(’? +r or?
or 2 2
10p 1011 0o°1I 1 w?0x
e = r8¢+r8¢+8ra¢+sm¢ 2 00 (3.11D)
or
10 0 1 w?0x
U= 90 vty ( H)] + o2 06 O (3.112)
For ug, we reorganize the expression to get
1 0y 1 oIl %11
u = rsin ¢ 00 + rsing \ 00 +T87"89
110 1 0%y dx 0%x 2 cot ¢ O%x 1 Ox
— | = ot — — 3.113
[8@5 (sm2 5002 ¢a¢ a¢2> Sn’ g 002 | smZ ¢ 06 (3.113)
1 ’X 9*x x
e < 96 2C0t¢802> r <2ara¢”ar2a¢
or
1 0y 1 oIl %11
o= rsin¢ 00 + rsing \ 00 +r67"89
, . , (3.114)
0 (0°x 20x w 0 (20x 0°x
"9 (arﬁ ror X) "0 <rar+ a)
or
1 Op OII 011 w? Ox
v = rsin ¢ < 00 +T87’39> B E@Tﬁ (3-115)
or
1 0 0 w? dx
= rsmoad ¥ 6,T(vﬂﬂ)] ~Zas U (3.116)

Now that we have expressions for the displacements, we can find the stresses using the stress-strain and
strain-displacement relations. Using

= ANV )1+ pu[Vu+ (Vu)T] (3.117)
with
Ou,  Ou, . Ou,
ar T 9y TSN 90
vu= [Qo Qe O
or r a¢ rsin o0
Qug | Oug . Oug (3.118)
or T o Tsnd g
10 9 1 0 1 Ouy
v “_725(7" T>+rsm¢8¢< sin ug) + rsinqﬁ%
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gives
A Oug 1 Oug ou,
o= <Cot¢’“¢ 2t Gt sinqS@&) A2
(L0 O (3.119)
Tre =B\ % 0¢ or ’

- 1 8ur I 8ug
aro =1 rsing 00  Or |’

Plugging in the relations for the displacements, and following a similar procedure as before, gives the
expressions for the stresses:

2

w
Orr = =Mz 9 +2p O (3.120)
P

0? 0 w? 0

d 10 o) w2 formr 1 0 (ox x
0'7»¢—,u [QW{T%<@+W(TH)>}+CE {%—F sinqﬁ@ﬁ(c‘?r_r)} O (3121)
and
2 010 0 w? 1 0l O [Jx x
Ura_ﬂ[sin¢8r{ro”’9<w+6r(rn)>}+c§{sinqbae_a(ﬁ(ar_r)} 0oem

For an SV-wave, the direction of polarization can be taken to be the z-direction and the direction of
propagation the z-direction. The out-of-plane displacements are zero, i.e., u, = 0 and the displacement
in the direction of propagation is also zero, i.e., u, = 0. Therefore the displacement vector in Cartesian
coordinates has the form u = u, e,. This form of the displacement vector can be derived from a vector
potential of the form

=F =V = oF oF 3.123
Y =F(z,y,2)e, = u= X‘P**Eeer%ez- (3.123)

Therefore, the potential v/ for an incident SV-wave of unit amplitude will have the form
Psy = exp(iksz)e, O (3.124)

where ks = w/cs. Now, the transformation of coordinates from a Cartesian to a spherical basis is

e, [cosfsing sinfsing coso e,
e;| = |cosfcosgp sinfcos¢p —sing| |e,| . (3.125)
| €0 | | —sin 0 cos 0 L€ |
The inverse relationship is
(e, ] [cosfsing cosfcos¢p —sind]| [e,]
e,| = |sinfsing sinfcos¢ cosd es| . (3.126)
e | | coso —sin ¢ 0 L e |

We can use z = r cos ¢ and the above relationship to write
sy = exp(iksrcos ) [sinfsin @ e, + sinf cos p ey + cos b eq) . (3.127)

Using the series expansion

exp(iz cosa) = Z i"(2n + 1) 4, (2) Py(cos @) (3.128)
n=0
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we can write
Ygy = Z i"(2n + 1) 5 (ksr) Py (cos ¢) [sin @ sin ¢ e, + sin 6 cos ¢ e, + cos 6 eg] (3.129)

n=0

or,

Psy = Zl (2n 4+ 1) (ksr) Pp(cos ¢) cos b eg

n=0 (3.130)

+ Z (2n 4+ 1)j, (ksT) P, (cos @) [sin g e, + cos pey]sinb.

In the case of an SV-wave the incident wave has the form
¢ =0, P, = Vx(Ilyre,)+V x (V x (xire,;)) = (Freg+Grey)+ (Fye,+Gyeg+ Hyey) (3.131)

For equations (3.130) and (3.131) to match, the potentials IT; and x; may have the forms

= -1, Z 221 B (k) PL(cos ¢) cos 0
= on+1) O (3.132)
Xi = _Xok‘% ;::1( )" ﬁ Gn(ksT) P} (cos ¢) sin @

Other forms can also be found.

For an SH-wave, the only allowable displacements are out-of-plane, i.e., u, = u, = 0 and the displace-
ment vector has the form u = wuye,. In this case, we can choose a potential of the form

oG
P =G(z,2)e, = u=Vxey= 8—ey. (3.133)
z
Therefore the potential ¢/ for an incident SH-wave of unit amplitude will have the form
Psu = exp(iksz)e, O (3.134)

We can follow the procedure used for SV-waves to find expressions for the potentials for SH-waves.
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Problem 3.7 Consider three identical infinitely long rigid circular cylinders arranged in an equilateral triangle.
Assume that a plane wave with wavenumber k is incident on the system along the line joining two of the
cylinders and that ka = 2 where a is the radius of the cylinder. Assume that the cylinders are separated by
a distance b = ma. Calculate the effective potential field (¢) around a cylinder at a distance » = 0.5b as a
function of angle.

Solution 3.7: Let us define the origin of the global coordinate system at the center of one of the cylinders. Then
the centers of the three cylinders are, in cylindrical coordinates, at

by = (0,0), by = (7a,0), bs = (wa,27/3). (3.135)

Let as also define local coordinate systems, (r;,6;),% = 1,2, 3, at the center of each cylinder. The the
coordinates of a point in the plane with respect to the origin is

r:b1+r1:b2+r2:b3+r3. (3136)

Let the regular part of the solution be composed of terms t,,, (r;) and let the general solution be composed
of terms X, (r;). The total field outside the first cylinder is

Z At (1) Z BimXm(11) Z Ban Xom (12) Z Bpxm(rs) . (3.137)

m=—0oo m=—0o0 m=—0o0 m=—0oo

The solutions X, (r;) may be singular at the location r; = (0, ) but not at locations r, = (0,6) where
p # j. Then, Graf’s addition theorem implies that

Xm(t2) = Y Spn(b2 —b1)¥n(r1) for 71 < [by—by|

n=—oo

oo (3.138)
Xm(t3) = D> Smn(bs —b1)t(r1) for 11 <|bg—bill .

where, for cylindrical scatterers,
Gu(r) = Ju(k x]) €™ xn(r) = HO(k[|r]) €™ Spm(b) = HY,, (kb)) ™7 (3.139)
and

b-e,
b] -

0s =

(3.140)

Therefore we can write

¢1 = Z |:BlrnXm(l'1) + (Alm + Z Snm(b2 *bl)BQn + Z Snm(bg — bl)BBn> 1[)m(1‘1):| . (3.141)

m=—00 n=—oo n=—oo

Applying boundary conditions 0¢;/0r; = 0 and r; = a gives us

oo [eS)
BlmH;n(ka) + Z Snm(bl - b2)BQH + Z S’nm(bl - bS)B3n J;n(k(l) = Al'm'] (k)CL)

n=-—oo n=-—oo

BgmH,:n(ka) + Z Snm(b2 - bl)Bln + Z Snm(b2 - bS)BBn J;n(ka) = _AQWJ;n(ka)

n=-—oo n=-—0o0

BgmH,:n(ka) + Z Snm(bS - bl)Bln + Z Snm(bS - b2)B2n J77L(ka) _A3m‘]7n(ka)

n=-—oo n=-—oo

An example solution for incident waves of unit amplitude with m,n,—1,0,1 is shown below. Better
solutions can be obtained for larger ranges of m, n.
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psin = Bessell[n, kr]/k;

chim = HankelH1|m, kr]/k;

Smn = HankelH1[n — m, kb]Exp[I(n — m)beta];

chimrl = chim/.{r — r1};

psimrl = psin/.{n — m,r — rl};

Smnb12 = Smn/.{b — b12, beta — betal2};

Smnb13 = Smn/.{b — b13, beta — betal3};

SumB2 = Sum[Smnb12B2[n], {n, —p, p};

SumB3 = Sum[Smnb13B3[n], {n, —p, p}|;

phil = B1{m]chimrl + (Al[m] + SumB2 + SumB3)psimrl;
DphilDr = Diphil, rl];

DphilDra =

DphilDr/.{rl — a,b12 — Pia,b13 — Pia,betal3 — 2Pi/3, betal2 — 0};
DphilDrb = DphilDra/.{k — 2/a};

DphilDrc = DphilDrb/.{p — 1};

eql1 = DphilDrc/.{m-> — 1};

eq12 = DphilDrc/.{m->0};

eql3 = DphilDrc/.{m->1};

chimr2 = chim/.{r — r2};

psimr2 = psin/.{n — m,r — 12};

Smnb21 = Smn/.{b — b21, beta — beta21};

Smnb23 = Smn/.{b — b23, beta — beta23};

SumB21 = Sum[Smnb21B1[n], {n, —p, p}];

SumB23 = Sum[Smnb23B3[n], {n, —p, p}|;

phi2 = B2[m]chimr2 + (A2[m] + SumB21 + SumB23)psimr2;
Dphi2Dr = D[phi2, r2];

Dphi2Dra =

Dphi2Dr/.{r2 — a,b21 — Pia,b23 — Pia,beta21 — —Pi, beta23 — 5Pi/6};
Dphi2Drb = Dphi2Dra/.{k — 2/a};

Dphi2Drc = Dphi2Drb/.{p — 1};

€q21 = Dphi2Dre/.{m-> — 1};

€q22 = Dphi2Drc/.{m->0};

€q23 = Dphi2Drc/.{m->1};

chimr3 = chim/.{r — r3};

psimr3 = psin/.{n — m,r — 13};

Smnb31 = Smn/.{b — b31, beta — beta31};

Smnb32 = Smn/.{b — b32, beta — beta32};

SumB31 = Sum[Smnb31B1[n], {n, —p, p}|;
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SumB32 = Sum[Smnb32B2[n], {n, —p, p}];

phi3 = B3[m]chimr3 + (A3[m] + SumB31 + SumB32)psimr3;

Dphi3Dr = D[phi3, 13)];

Dphi3Dra =

Dphi3Dr/.{r3 — a,b31 — Pia, b32 — Pia, beta31 — 5Pi/3, beta32 — —2Pi/3};
Dphi3Drb = Dphi3Dra/.{k — 2/a};

Dphi3Drc = Dphi3Drb/.{p — 1};

eq31 = Dphi3Dre/.{m-> — 1};

€q32 = Dphi3Drc/.{m->0};

eq33 = Dphi3Drc/.{m->1};

neqll =

eql1/{A1[0] — 1,Al[-1] — 1,Al[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[-1] — B311,B1[0] — B10,B2[0] — B20,B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

neql2 =

eql2/.{A1[0] — 1,Al[-1] — 1,Al[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[-1] — B311,B1[0] — B10,B2[0] — B20,B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

neql3 =

eql3/.{A1[0] — 1,Al[-1] — 1,Al[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[—1] — B311,B1{0] — B10, B2[0] — B20, B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

neq2l =

eq21/.{A2[0] — 1,A2[-1] — 1, A2[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[-1] — B311,B1[0] — B10,B2[0] — B20,B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

neq22 =

eq22/.{A2[0] — 1,A2[-1] — 1,A2[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[-1] — B311,B1[0] — B10,B2[0] — B20,B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

neq23 =

eq23/.{A2[0] — 1,A2[-1] — 1,A2[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[-1] — B311,B1{0] — B10, B2[0] — B20, B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

neq3l =

eq31/.{A3[0] — 1,A3[-1] — 1,A3[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[-1] — B311,B1[0] — B10,B2[0] — B20,B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

neq32 =

eq32/.{A3[0] — 1,A3[-1] — 1,A3[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[-1] — B311,B1[0] — B10,B2[0] — B20,B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

neq33 =

eq33/.{A3[0] — 1,A3[-1] — 1,A3[1] — 1,B1[-1] — B111,B2[-1] — B211,

B3[-1] — B311,B1{0] — B10, B2[0] — B20,B3[0] — B30,B1[1] — B11,

B2[1] — B21,B3[1] — B31}

%Blll(—HankelHl [0, 2] + HankelH1[2, 2]) + %(—BesselJ[O7 2] + Bessell[2, 2])
(1 + B211HankelH1[0, 27] + B311HankelH1[0, 27r] + B20HankelH1[1, 27]+

B30e “5" HankelH1[1, 271] + B21HankelH1[2, 27r] + B31e™ *5" HankelH12, 2771)

—B10HankelH1[1, 2]—
BesselJ[1, 2](1 + B20HankelH1[0, 27] + B30HankelH1[0, 2] + B21HankelH1[1, 27| —

B211HankelH1[1, 27] — B311@7%HankelHl[1, 2m] + B3le 5 HankelH1[1, 27r])
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1 1

§B11(HankelH1[0, 2] — HankelH1[2, 2]) + §(BesselJ[0, 2] — BesselJ[2, 2])

(1 + B21HankelH1[0, 27] + B31HankelH1[0, 27r] — B20HankelH1[1, 27]—
B30e ™ “%" HankelH1[1, 27r] + B211HankelH1[2, 271] + B311e 5" HankelH1[2, 27r])

%BZII(—HankelHl[O, 2] 4+ HankelH1[2, 2]) + %(—BesselJ[O7 2] + Bessell[2, 2])

(1 4+ B111HankelH1[0, 27] + B311HankelH1[0, 27r] — B10HankelH1[1, 27]+

B30e *s" HankelH1[1, 27r] + B11HankelH1[2, 27] + B3le™ 5 HankelH1[2, zﬂ)
—B20HankelH1[1, 2]—
BesselJ[1, 2](1 + B10HankelH1[0, 27] + B30HankelH1[0, 27r] — B11HankelH1[1, 27|+
B111HankelH1[1, 27] — B311e™ & HankelH1[1, 2] + B3le 6" HankelHI[L, 27r])

%BZI(HankelHl[O, 2] — HankelH1[2, 2]) + %(Bessel][o, 2] — BesselJ[2,2])

(1 + B11HankelH1[0, 27r] + B31HankelH1[0, 2] + B10HankelH1[1, 27]—
B30e™ 6" HankelH1[1, 27r] + B111HankelH1[2, 2] + B311e & HankelH1[2, 27r])
%B311(—HankelH1 [0, 2] + HankelH1[2, 2])+

(—BesselJ[0, 2] + Bessell[2, 2])(1 + B111HankelH1[0, 27]+

N |

B211HankelH1[0, 271] + B10e™ ' HankelH1[1, 27] + B20e™ “5" HankelH1[1, 27]+

Blle “5" HankelH1[2, 27] + B2le 5" HankelH1[2, zﬂ)

—B30HankelH1[1, 2] — BesselJ[1, 2]
(1 + B10HankelH1[0, 2] + B20HankelH1[0, 27r] + B1 le™ 3 HankelH1 [1,27] — BI11

i

¢S HankelH1[1, 27] + B21e™ 5" HankelH1[1, 2] — B211e 5" HankelH1[1, 27@)

%B31(HankelH1 [0, 2] — HankelH1[2,2])+

1
§(BesselJ[07 2] — BesselJ[2, 2])(1 + B11HankelH1[0, 2]+

i

B21HankelH1[0, 27] — BlOe%ﬂHankelHl[l7 2] — BZOe%HankelHl[l, 2w+

B211e™ 5" HankelH1[2, 2] + B111e 5" HankelH1[2, 27r]>

Neqll = Nneqll];
Neq12 = N[neq12];
Neql3 = N[neql3];
Neq21 = Nneq21];
Neq22 = N[neq22];
Neq23 = N[neq23];
Neq31 = NJneq31];
Neq32 = N[neq32];
Neq33 = N[neq33];

sol = Solve[{Neql1 == 0, Neq12 == 0, Neq13 == 0, Neq21 == 0, Neq22 == 0,
Neq23 == 0,Neq31 == 0, Neq32 == 0, Neq33 == 0},
{B111,B10,B11, B211,B20, B21, B311, B30, B31}]
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{{B111 — —0.00104653 — 0.0877363:,

B10 — —0.471547 — 0.1879027,B11 — —0.011804 — 0.07762431,
B211 — —0.0503947 — 0.08190517, B20 — —0.535029 — 0.2256891,
B21 — 0.0362463@ — 0.110834¢,B311 — —0.0351225 — 0.1339284,
B30 — —0.70556 — 0.3471274,B31 — —0.0345999 — 0.135592:} }

Bllla = (B111/.sol)[[1]];
B10a = (B10/.sol)([1]];
Blla = (B1l/.sol)[[1]];
B211a = (B211/.s0l)[[1]];
B20a = (B20/.sol)([1]];
B2la = (B21/.s0l)[[1]];
B311a = (B311/.s0l)[[1]];
B30a = (B30/.sol)([1]];
B31a = (B31/.s0l)[[1]];

fieldPhil = Sum|phil (kExp[Imtheta]), {m, —p, p}];

fPhila =

fieldPhil/.{r1 — 0.5Pia,b12 — Pia,b13 — Pia,betal3 — 2Pi/3,

betal2 — 0,k — 2/a,p — 1};

fPhilb =

fPhila/.{A1[0] — 1,A1[—1] — 1,A1[1] — 1,B1[—1] — B111a,B2[—1] — B211a,
B3[—1] — B311a, B1[0] — B10a, B2[0] — B20a, B3[0] — B30a, B1[1] — Bl1a,
B2[1] — B21a,B3[1] — B31a}

(0.051091@ — 0.1282154) — (0.249892@ — 0.00298075i)e "™ + (0.221091@ — 0.03362057)¢" ™"

fPhilc = Re[fPhilb];
Plot[Re[—IfPhilb], {theta, 0, 2Pi}]
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Chapter 4

Solutions for Exercises in Chapter 4

Problem 4.1 Show that the effective permittivity of an array of thin wires with finite conductivity can be ex-
pressed in the form

Q2 €0b292
= 1]——P° ith .= L. 4.1
e(w) =0 < w? + iFw) W Talo @D
Solution 4.1 The Drude model for the effective permittivity has the form
= 4.2
=t Z wd — w2 iwy 4.2)

For high frequencies, w >> wg, we can write the above equation as

W =eo— Y 5t —. (43)
J

w? + dwy

: 2._ 1 . :
Using the plasma frequency wy, := = > ; G5, We can write

w2
= 11— 2. 4.4
fw) =20 w? + iwy @4
For an array of thin wires, we seek a similar equation for the effective permittivity e(w) of the form
QQ
= 1—-—2—1. 4.5
elw) =<0 w? + iwl “-5)

where the effective plasma frequency is w,, and the effective damping coefficient is I'.
We have already see that the effective plasma frequency for an square array of thin wires is given by

2
9 2me

= o

where c the speed of light in vacuum, a is the radius of the wires, and b is the spacing between the wires.
Alternative expressions are possible.

We now want to find the effective damping constant I" for wires with finite conductivity.

The electric field, E., along the wires is related to the current induced, I, and the total inductance, L, per
unit length by the relation

E —LdI— w1 4.7)
s =L =—wll. 4.
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If the wires have finite conductivity, o, we have

1 / /
E, = —iwLl + 5 = —iw (L — 2) I =—iwL I where L := (L — - 2) I. (4.8)
oma woma woma
The axial component of the magnetic potential, A, around each wire is given by
1 b
A, (r) = Ho, () where I = ma?Nve. 4.9)
27 r

We can estimate the inductance, L, from the magnetic flux per unit length passing though a representative
volume element of the composite,

@:L[:MO/ CH@(T)dr:AZ(a) —  L=Hy (Z) = In(b/a) =27L/uo .

2
(4.10)

Therefore,
o c? 1 1

Q2 = £ L=—.
PTRL T L £0b?2

@.11)

Now, the polarization per unit volume in the homogenized medium, with wires of finite conductivity, is

E.
or
1
E=¢&pg — (413)
202 1 B 1
g0b?Q22  iwoma?
Therefore,
Q2
5(0&)) =& 1-— m (414)
where
b2€0912)
.= — O 4.15)
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Problem 4.2 Derive the effective permittivity relation

27 fc?
efi(w) = €0 |1 — : — (4.16)
w? + 2iwn fc2eg (o)

using the approach in Felbacq and Bouchitté (2005).

Solution 4.2: The composite studied by Felbacq and Bouchitté in their paper on left-handed media is a volume
of isotropic and homogeneous electromagnetic material containing a periodic array of thin wires. The
region outside the volume is vacuum.

The starting point of the approach is the determination of a polarization field due to the current induced in
each wire by an external TE-wave (s-polarized) field. If the wires are oriented in the z-direction, then the
incident wave has a non-zero component F, (z, y).

We assume the correctness of the scattering calculations of Felbacq and Bouchitté that lead to a polariza-
tion, in the volume element around the j-th wire, of

2
P~ 4i [—% 1n(1m)} (1-S)E. = —2rln (T) (1-S)E. 4.17)

where k = 27/ = w/c is the wave number, S is the scattering amplitude inside the unit cell (which can
be imagined as a cylinder of diameter b in the z — y plane with a circular wire of radius a at the center)
due to the wire. For a unit cell that is small relative to the wavelength, i.e., a < b < A, we can write

2
P~ —2rln <Z“) (1- S)E.. (4.18)
Define ) ) .
v = —? In (T) where n:= Y (4.19)
Then we can write the polarization as
P~ 2nyn*(E, — SE.). (4.20)

Let us define the average electric field in the unit cell, €2, as

1

(E.) = V/QEZdV 421

where V is the volume of the unit cell. Only the polarization, SE, contributes a non-zero amount to the
volume average and we can write
P = 2myn* (B, — (E.)) . (4.22)
The wave equation for a TE wave in an isotropic and homogeneous medium in the absence of sources is
w2
V2E, +k*E, =0  where k*=w’cpu=— (4.23)

c2

and € and p are the permittivity and magnetic permeability of the medium. If we add a source term due to
the polarization P, we can write, in the limit  — 0,
P 2ny
V2E, + K*E, = 7= oz (B~ (E) (4.24)

We want to express (F,) in terms of E, so that we can get an equation of the form

V2E, +k3E. =0. (4.25)
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We can calculate the required effective properties from keg.
To find the average field in the unit cell, we can examine the fields in the individual components. In the
“matrix” outside the wires, the electric field satisfies

V2E, +k3LE, =0  with k2, =w’ e pim (4.26)
where ¢€,,, 4, are the permittivity and magnetic permeability of the medium. The wave equation in the
wire is

V2E, +k2E, =0  with k2 =w?eyfiy (4.27)

where €,,, 1, are the permittivity and magnetic permeability of the wire. We can write the above equation
as

V2E, + w?eq (1 + w) pwE. =0 (4.28)
Eow
where € is a reference permittivity. Define the relative electric displacement inside the wires as
D.=2FE.. (4.29)
Eow
Then,
V2E, + wieopwE. = —w’eopiw D, (4.30)
The average electrical conductivity of the wires is assumed to be
1 ma?
<G>ZV/QUdV:bTa:: bo . (4.31)
Then we can write,
) E.
p, = o) B (4.32)
Eow 0

Felbacq and Bouchitté assume that (F,) = E. /6, and express the wave equation in the form

V2E. + w?copE. + “250’““”25%) (E,)=0. (4.33)
0

Defining k2 := w?eq 1, we have

i (o)

V2E, + k3E, + k]
Eow

(B.)=0. (4.34)

The authors combine equations (4.26) and (4.34) into a single equation of the form

i{o)

V2E, + k2E, = —xnki
Eow

(E,) (4.35)

where X, is an indicator function (1 inside the wires and 0 outside) with n = 0 inside the wires and n = m
in the matrix. Comparing equations (4.24) and (4.35), we have

2my 21(0)
—- (E, — (F,)) = -k E,) . 4.36
e (Be — (E:) il L (4.36)
Solving for (E.) gives
2meqwry
E,)=— 4.37
(E:) —ikg)2 (o) + 2meqwy (4-37)
Plugging the above expression into equation (4.24) gives us
27 (o) k3
V’E, + (k2 — y E.=0. 4.38
+ ( " 2iggyw + (o) k32 (438)
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Therefore, the effective wave vector is

27 (o) k3
k2 = k2 — 0. 4.39
e 2iegyw + (o) k2N (4.39)
Substituting kZ; = w?eetrpto, k2 = wlep o, ki = w?eopio, and pg = 1/(g0c?), we get
2meocty (o)
2 2 o™
= m— - 4.40
Weetrpto = W Ho |Em — — (o) N2 1 2iwneecy (4.40)
or
27yeqC?
2
ot = € — ———2 . (4.41)
) 2iwTegcy
TN
Define v
f=135- (4.42)
Then )
2mfce
Eeff = Em — : ikl — . (4.43)
w? 4 2iwn fegc? (o)
Let us now take the reference permittivity to be €9 = €,,. Then,
27 fc?
Eeti = €0 |1 — O (4.44)

w? + 2iwn fegc? (o)

68



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

Problem 4.3 Derive the effective magnetic permeability for the single split-ring resonator array using the ap-

proach used for the array of cylinders.

Solution 4.3: For an array of single split-ring resonators, we have
. 1 . 2
2ra | —iwlL — — 4+ R | I = iwpoma® (Ho — fI) .
wC

Using

2 4w? 4
L:47T(J,ILL01I1 <m) s C= QL s R= T ; €m :gring/go
w gc? g CWA/Em,

and solving for I gives,

7= 2w?aw?c\/EmmoHo

16imwaw — c\/Empo(g9c + 2aw? fw?) 4 16rwaw?e/Em o In(2ma/w)

Using the relation

— LI—IO
Hett Hy — fI
and plugging in the expression for I leads to
B ) 2wlaw?e\/Empio f
fett = 0 w?[16maw? In(2wa/w)|(c\/Emiio) + iw(16Taw) — g3\ /Em o
or
1 W
Meft = MO -
2ma . 8 gc?
w28rIn | — | +iw —
w We\/Emplo  2aw?
or
14+ w2F
flett = fl0 wi —w? —iwl
where
f 9 1 gc? 1 1

Fi=_— = I':= :
8t In(2ra/w) ’ “o 8 In(2ra/w) 2aw? ’ In(2ma/w) wey/Empo
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Problem 4.4 Show that

Melcf = Mo

Hgfw?]

wi —w? — Wl
for the double split cylinder geometry using the assumptions in Pendry et al. (1999).

Solution 4.4: In Pendry’s approach, the equation for the balance of emf takes the form

—iwLI — % +27aRI = iwpo(Ho — fI)(ma?).

w

Following the procedure from the previous problem we get

2
w
pet = o |1+ ) !
w
— (i2raR L
ma?peC 7r0L2,uO\Z maR +wl)
or,
2
off fw
= 14—
K po | L+ wi —w? — in]
where 1 9R
2 2
= — = — L = .
Wo 7T(12/4L()C ) ajo ) ™A o
The gap capacitance is assumed to be approximately
Tae Ta
C=—F=——.
3d  3dugc?
Then, we have
w2:37d in L = ma’u
07 n2a3pe ajgo’ '
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Problem 4.5 Show that for evanescent TM-waves incident on a slab lens in vacuum with axis along the z-
direction, the effective transmision coefficient is

lim T = e = (4.60)
pr—r—1
er——1

where d is the thickness of the slab and k.; is the the z-component of the wave vector in the medium of
incidence.

Solution 4.5: The procedure is identical to that for TE waves.

The TM wave equation has the form

_ 1 —
| =—=VH, *u(z)H, = 0. 4.61
v (5(z)v y>—|—w w(z)Hy =0 (4.61)
Now,
v, = M, 4 Oy (4.62)
Y ox e 0z e )
and
v.p= 2 OF 4.63
= T (463)
Therefore, the TM wave equation can be written as
— 1 0H, 1 0H, 9
V- <5(z)3x e, + @732 ez> +w n(z)Hy =0 (4.64)
or
0 1 0H, 0 1 0H, 9
i _ [ = H, = 4.
oz (5 2) 8x>+8z (s(z) az>+wu(z) v =0 (4.65)
or
1 0°H, 0 ( 1 0H, )
= — | = H, = 4.
e(z) Ox? + 0z (5(,2) 0z Twiu(z)H, =0 (4.66)
or
0’H, 0 1 0H, 9
52 + E(Z)E <s(z) P +we(2)pu(z)Hy =0. (4.67)
With solutions of the form B
Hy(z,z) = Hy(z) exp(Likyx) (4.68)
we can write the wave equation as
d2ﬁy 277 2 2 2
7 +kiH, =0 where kI =we(2)u(z)—k;. (4.69)

Continuity of the tangential components of the magnetic and electric field at the interface can then be used
to find equations that are identical in form to the TE fields with

ik — p2keo

2
= and T = Pk
pika + pok.o

= (4.70)
pika1 + pok.o

The result follows in a manner identical to that for TE waves.
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Problem 4.6 Show that evanescent pressure waves in an acoustic medium can also be amplified by a negative
refractive index acoustic slab lens.

Solution 4.6: The procedure is identical to that for TE and TM waves once we see that the wave equation can
be expressed as

V,<1V>+W2 -0 4.71)
o) ") TR '
Expanded out,

0%p 0 1 9p 2p(2)

W+p(z)£ <p(z)(“)z> +w KJ(Z)p_ 0. (472)

With solutions of the form
p(x, 2) = p(2) exp(Lik,x) (4.73)

we can write the acoustic wave equation for each layer as
d*p
dz?

R0 where 2= w2l g2 (4.74)
K(2)

Continuity of the pressure and the normal component of the displacement can then be used to find the
refelection and transmission coefficients is terms of k. for each layer. Using the evanescent solutions

k., =ivVk2 —w?p/k 4.75)

in the reflection and transmission coefficients and taking the limit as p — —1 and kK — —1 gives us the
required amplification behavior.
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Chapter 5

Solutions for Exercises in Chapter 5

Problem 5.1 Plot the effective mass and transmission loss for a bar of mass M, = 2 kg with a cavity containing
amass m; = 2 kg and two springs with k; = ko = 10°(1 + 0.5¢) N/m. Compare the transmission loss
with the mass law for the system. The impedance used to calculate the mass law is Z = i w (My + my).

What happens when the mass m; in the system is also frequency-dependent and has the form

OJS mao

my =myo+ ——-75;
wg —w?’

withm; =me = 1kgand G = 10* N/m?

W ‘=
ma

5.1

Solution 5.1 For the first part of the problem, we get the plots shown below. These are typical of what we

observe in impedance tubes.

5
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Transmission loss (db)
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0 .
2000 0 500

1000 1500

Frequency

When the mass m; in the system is also frequency-dependent and has the form

w%mg
my=mo+ ———3;
wo—w

;W =

and m; = my = 1kgand G = 10* N/m we get the curves shown below.
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Problem 5.2 Consider the modified rigid bar with voids shown in the figure below.

F(1)

_®
_®
:@

7 \' il w
Hidden

Each ball is attached to the bar by a massless beam with a circular cross section and radius h. Calculate
the effective dynamic mass of the system. Plot the effective mass as a function of frequency. Are there
regions where the effective mass is negative?

Solution 5.2: The equation of motion for each isotropic, homogeneous, linear elastic beam of constant cross-

section is () 2 ()
0*u(y,t 0*u(y,t
EI A =0 53
a1t +p 92 (5.3)
where F is the Young’s modulus, p is the mass density, I is the area moment of inertia, A is the cross-
sectional area, and u(y) is the displacement. For a beam with negligible mass compared to the mass at the

end, the governing equation reduces to

134U(y, t)

E
oyt

—0. 5.4)

The boundary conditions at the point of attachment to the rigid bar are

u(0) =U(X) and Ou

5 = 0. (5.5)

y=0

At the free end of the beam, y = L, the bending moment and shear force is equal to the inertial load due
to the mass m, i.e.,

0%u u 0%u
y=L y=L y=L
If we assume a time harmonic displacement
u(X,y,t) = Re[u(X, y) exp(—iwt)] (5.7
then we need to find u(X, y) such that
ey 538)
oyt ’
with
ou 0u Bu 5
u(X,0)=U(X), — =0, — =0 and EI— = —mw-u(L). (5.9)
dy dy? oy?
y=0 y=L y=L
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The solution to the above equation can be found by direct integration and has the form

6ET — mw?(2L3 — 3Ly? + y3)

w(X,y) =U(X) SET —2mi L’ (5.10)
The displacement of the beam-tip mass is
6ET

To find the effective mass of the system we can equate the total momentum to the effective momentum,

MoU(X) +mu(X, L) = MU (X) . (5.12)
Therefore, A
6E1 mh
Meff = M() + m where I = T O (513)

The resonance frequency is

[3ET

A plot of the effective mass as a function of frequency is shown below. The effective mass is negative for
a small range of frequencies close to resonance.

2

15

Mef/(M0+m)
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Problem 5.3 Consider the model of an elastic bar containing hidden springs and masses. Plot the effective mass
of the bar as a function of frequency and compare the result to the rigid case. Can you think of other
representations of an elastic bar with hidden springs and masses?

Extend the the model of the elastic bar containing springs and masses to two-dimensions and plot the
effective mass of the system in polar coordinates as a function of angle.

Solution 5.3: The equation of motion of an elastic bar with internal mass-spring systems can be written as
(K—w*M)u=f. (5.15)

This system of equations can be solved for u. The effective mass of the system may then be calculated
using

M = Mo + Y myu; /U (5.16)
i=1
where U = u,+1 — ug is the displacement of the elastic body. For the model in Figure 5.9, if we look at
the situation where there is only one internal mass, we have

2Ko+k —k —Kj M0/2 0 0 Ug Kou,
K=| -k 2k ~k | ;M= 0 m 0 |;u=|u|;f=| 0 | 517
_KO —k 2K0 +k 0 0 M0/2 (5] K()ub

where u, and u; are the displacements at locations where physical measurements can be made. Solving
the system of equations gives us an effective mass

Moy ug + ug U1 2K0[2k(m + M()) — mM()CUQ] Uq + Up
Meff = — m-— = (518)
2 U U 4k Ko — Q[Kom + k:(m + Mo)](ﬂQ + mMoywt U
or ( 2)
4km + 2My(2k — mw Ug + Up
M = : - (5.19)
th—2 |ma k(m+ Mo)| N mMow U
m e w e

Note that if we do not include the spatial variation of the phase of the wave, M. — 0 as w — oo, which
is unphysical. Also note that in the limit Ky — oo, u, = up = U and we have

4km + 2Mo(2k — mw?) 2km
Mg = =My+—7— 5.20
off 4k — 2mw? ot 2k — mw? (5-20)
This is identical to the expression that we had derived for the equivalent rigid bar,
2km
Meg = Mo+ — . 5.21
eff [y A—— (5.21)

Going back to the unphysical nature of the expression for M. for the elastic bar, we are clearly missing
an important factor. We have tacitly assumed that the phase velocity of the system remains unchanged as
the frequency changes. This assumption is not valid for elastic bodies.

For a elastic body with a periodic distribution of hidden masses, we can use Bloch wave solutions of the

form
U = up = ug exp(icL) (5.22)
where k = f(w) is the phase speed in the elastic bar and L is the distance between points @ and b. Then
we have
4km + 2Mo(2k — mw?)
Meygs = [coskL +1] . (5.23)
42 |m+ k(m+ Mo)| N mMow*
-2 |m w
Ko Ko
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We now have to find the function x(w). If the internal mass is hidden, the effective dispersion relation for
the elastic bar is

2 _ 2Ko
M, eff

Expressing cos kL in terms of w and M.¢, plugging into the expression for Mg, and solving for Mg gives

w (1 —coskL). (5.24)

8km + 4 My (2k — mw?)
k(m + M) mMow*
TR | T TR

Mg =

(5.25)
8k — 2

2m + w?

This expression has the same form as (5.23) and hence also the same unphysical behavior as w — co.
An alternative approach is to match the actual and effective dispersion relations directly. The equations of
motion of the two masses can be expressed as

K0(2U0 — U,L - UL) + k‘(2UO —U_1 — ’LL()) - w2M0U0 =0

) (5.26)
k(2ug — Up — UL) — w*mug = 0

where
Uy :=Uexplik(z +«)] and wu, = uexplic(z + a)]. (5.27)

If we match the dispersion relations from the above equations with those of an effective medium with mass
Mg and stiffness Ko = Ko + k/2, we get

_ 2km + My(2k — mw?)

off T4 (5.28)
2k — o rE mw?
This model reduces to the rigid bar model as Ky — oo. If the limit w — 0, we have
Meff =m + MQO. (529)

In the limit w — oo, we have Megr = My(1 + k/(2Ky)). This expression using a dispersion-based
approach for the effective mass, while not ideal, is better than that from the previous momentum-based
approach. The dependence on k and K as w — oo indicates that the model we have used may not be
an accurate representation of an elastic bar with hidden masses. A script showing the calculation is given
below.

UUal[n_] := BB Exp[I (kappa (x + n L ) - omega t)]

uua [n_] = bb Expl[I (kappa (x +n L) - omega t)]

Uaegl = MO D[D[UUa[0O], t], t] + KO (2 UUa[0O] - UUa[ -1] - UUa[l]) +
k (2 UUa[0] - uual[-1] - uual0])

Uaeg2 = m D[D[uual0], t], t] + k (2 uwual[0] - UUa[0] - UUalll])

Ball = Coefficient[Uaeqgl, BB]
Bal2 Coefficient [Uaeqgl, bb]
1
1

Ba21l Coefficient [Uaeqg2, BB

Ba22 = Coefficient[Uaeqg2, bb

Bamat = {{Ball, Bal2}, {Ba2l, Ba22}}

detBa = Det[Bamat] /E" (-2 I (omega t - kappa x)) // FullSimplify
detBaa = ComplexExpand[Re[detBa]] // FullSimplify

Collect [detBaa, {omega, k, KO, m}]

Keff = KO + k/2

Bacosgl = (2 Keff — meff omega”2)/ (2 Keff)

Bacosgl2 = 2 Bacosqgl™2 - 1

Bameffeqg =

detBaa /. {Cos[kappa L] -> acosgl, Cos[2 kappa L] -> Bacosql2} //
FullSimplify
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Basol = Solve[Bameffeq == 0, meff] // FullSimplify
BaMeff = (meff /. Basol)[[1l]]

Limit [BaMeff, omega -> 0]

Limit [BaMeff, omega —-> Infinity]

Limit [BaMeff, KO -> Infinity] // FullSimplify

A representative plot of the effective mass versus frequency is shown below. Note that the two resonance
peaks due to the two spring stiffnesses is observed in an actual experiments. However, the effective behav-
ior at large enough wavelengths identifies only the first (local) resonance peak.

— Elastic (Momentu
....|=—=Elastic (Dispersion
—Rigid

Meﬁj(M0+m)

M_O, k |—>k rk k X rk Yavl
o | —W@W@W@W@W@W—I

A two dimensional model can be created by superposing the z- and y-direction responses, assuming they

are uncoupled. In matrix form,
M0 U,
MU = { 0 Msﬁ} [Uy . (5.30)
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where
AT — 2k,m + Mo(2k, — mw?)
! 2k, + % — mw?
(5.31)
At — 2kym + Mo(2ky — mw?)
y k2 :
2ky + £ — mw?
We can rotate the mass matrix using
M0 T cosf  sind
M =R { 0 M;ff R® where R=| " sinf cosd (5.32)

A plot of the components M, (red) and M,, (blue) of the effective mass matrix is shown in the figure
below.

180

270
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Problem 5.4 Show that the effective Young’s modulus function for a one-dimensional lossy material is analytic
in the entire complex plane except for isolated singularities in the negative Im(w) part of the plane. Draw
a schematic of the locations of the singularities. Also show that E(w) = E(—) for this model, where (e)
indicates the complex conjugate.

Solution 5.4: The effective Young’s modulus is given by

-1
aiw?
= E 1——27 . 5.33
0;( w2—w]2-+iw’yj ( )
If we expand this function in terms of w = w, + w;, we get

Wy

= 1 _—
E(w) = Ey ; (aj + wj)w; + (Wi — iwr) (v + wi — iwy)

(5.34)

Ifw = w, — iw;, we have

— B, Z W + (Wi + Lwy ) (v; + wi + Twr)

5.35
@+ o0y + @r & Tn) (7 1 + T 6-3)

J
The real and imaginary parts of E(w) = E,(w) + iE;(w) are

B [wilyy +wi) +willwi(yy + wi) +wjloy +wi)] + 107 + 295w + 20 — wj(ay + 2w))w; +w;

By [wi(v; +wi) + wiay +wj)]? + [v7 + 2750 + 2w] — 2wi(a; + w))lw? + w}
Ei (75 + 2wi)wjwr
By [wi(y; +wi) +wjay +w)]2+ [vF 4 29w + 207 — 2wj (0 + wj)lw? + wi
(5.36)
Therefore,
_ w? + (w; + iw, P+ w; Foiw,
B(w) = By () — i) = By | Y T @itionlOstwitio) g s,
- (0 + wj)wj + (wi + iwy) (5 + w;i + twy)
This shows that E(w) = E(—®) for this model.
To show analyticity, we can use the Cauchy-Riemann equations,
OE, 90E . . 0B 0B s
i e ekl e

Detailed calculations show that these equations indeed hold and hence the function is analytic in the com-
plex w-plane. To locate the poles, we try to find the conditions under which the denominator in the
expression for F(w) is zero, i.e.,

Yjw;i + wf + ojw; + wJQ» —w,=0 and —yw, —2ww, =0. (5.39)
From the second equation, we have
i
= ——. 5.40
wi = =2 (5.40)
Plugging this into the first equation gives,
Wy ::I:\/—Pyjz/él—&—ajwj —&—w?-. 541

The poles are therefore on the negative part of the w plane below the real w axis and are spaced equally on
both sides of the imaginary w axis.
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Problem 5.5 Examine the effective mass as a function of frequency when there is dissipation in the system.
What is the predominant effect that you observe as the amount of dissipation increases?

Solution 5.5: We can include dissipation in a spring-mass system by adding an imaginary part to the spring
stiffness. For the elastic bar, if we define

k—k+ia and Ko— Ko+ i (5.42)

we get a plot of the form shown below. The effect of damping is to smooth out the resonance peak.

3
—a =0.25
of. a=05] |
a=0.75
T a=1
£
+
o
>3 1
=
[}
=
0.5
0.“
-0.5
-1 .
0 0.5
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Problem 5.6 Starting from

p(t) = / H({t—71)-v(r)dr. (5.43)
show that R R
P(w) = M(w) - V(w) (5.44)
where -
M(w) = H(w) = / H(s) " ds . (5.45)
Solution 5.6: Assume R R
p(t) = P exp(—iwt) and v(t) =V exp(—iwt). (5.46)
Then, -
Pexp(—iwt) = / H(t— 1)V exp(—iwr) dr . (5.47)
Define
s:=t—717 = dr=-ds (5.48)
which gives
Pexp(—iwt) = / H(s)-V exp[—iw(t — s)] ds = [/ H (s) exp(iws)ds| - V exp(—iwt) (5.49)
or R R
P=Mw)-V (5.50)
where -
M (w) ::/ H (s) exp(iws) ds O (3.51)
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Problem 5.7 Starting from the relation

q(t) = / " %0 1) x dpilp. )

show that the angular momentum of the ring can be expressed in the form
—iwt)

q:(t) = qo +Re(qre

where

2 w

9 - smrg 2iwrﬁg ~ inr(Ah ~
qo = —mrywres and qr = — + 30 | e] + " — 305 | ea] .

Solution 5.7: The angular momentum of the ring is given by

a(t) = / " %0 1) x dpilp. )

where
X:(p,1) = uo(t) + R(t) - Xi(p)

dpr(‘Pvt) = (Tnd(p> %[ir(goat)] :

and

21

‘We know that

u,(t) = eRe(lpe ™) and R(t) = Q(t)+ B(t)- Q(t) where B(t)=cRe(Be ™).

Therefore,
dx; du, dR du, dQ dB dQ
- = —Xi(p) = L AT B(t) - =2 - X.(0).
dt dt + dt X:(p) i ( gt + 7 Q(t) + B(t) dt) X: ()
Now,
du, N ) dB ~ .
0 eRe(—iwl, e~ ™) = v,(t) and T eRe(—iwBe ™).
Also, since
cos(wpt)  sin(w,t) 0
Q(t) = | —sin(w,t) cos(wyt) 0
0 0 cos(0)
we have
dQ —sin(w,t)  cos(wyt) 0 N
o T W [T COS(th) - Sin(o‘)rt) 0| =wr Q(wr + 77/2) = Wr Q(t) .
di 0 0 0

Therefore we can write

dX; ~ aB ~
— = Vo) + (w,.Q(t) + 7 Q) +w,.B(t)- Q(ﬂ) Xi(p) -

So, the cross product inside the integral can be expressed as
Xi(p,t) x dpi(ip, 1) = da [uo(t) + Q(t) - Xe(0) + {B(t) - Q(t)} - X: ()]

X
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vo(t) + {wr 1+ BO]- Q1) } - Xe(e) + {dB - Q(t)} Xi(p)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)
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where da := (m/27)dp. Multiplying terms by term and eliminating terms that are O(£2), we get

X: (0, t)xdpi(p,t) = da [ {Q - X ()} X Vo + wrtty X [é X ()]
+w{Q - Xe(0)} x {1+ B) - Q} - Xe(@)] + w,[(B- Q) - Xe(9)] ¥ [Q - Xe(g)]  (5.65)

QX)) (B Q) -xrw]

Integrating term by term gives

/0% X: (0, t) xdpr(ip, t)dp = %[(Q : /O% Xr(so)dso) X Vo + wrtlo X (Q : /027r Xr(w)d@)

27 . 2m ~
+wr /0 (Q - Xe(0)] % [Q - Xe(0)]de + wrr /O [Q - Xe(©)] X [(B- Q) - Xe(0)]dep (5.66)
27 - 27
o [T1B- @) x] x1@ X(oe + [ 1% X (B Q) Xl a]
Since X;(¢) = 7 cos pe; + 1 sin pes, the first two terms are zero. Also,

., dB o |
B = = = eRe(—iwB e ") = Re(—iwB) . (5.67)

If we define A := B - Q and A—RB. CNQ we have
2
/ X (0, t) xdpr(¢p, t)dep = ;’H
0
27 B o )
W'r/ Q- Xi(p)] x [Q - Xi(¢)]dep +wr/ Q- X:(0)] % [A - X.()]de 5:68
’ 0

271 _ 27
T / A-X ()] x [3-X.(¢)]dg — i / [Q~xr<so>1x[A-xr<sa>dw]

Let us look at each term in the above expression separately. The first term is

27

27 - ~
/0 QX)) % @ X,()]dp = / 136Qip X (0)Ora Xy (P)esds

o (5.69)
— Qi | [ X)X, (0)00] e
0
Similarly, the other three terms can be written as,
27 - - r pr2m b
/ [Q - Xi()] x [A-Xi(p)]dep = €ijkQjpAkg / Xp(p)Xq(p)dp| €
0 LJo i
27 r pr2m b
/ [A - X:(0)] % [Q - Xi(p)]dp = eijiAjpQrq / Xp(0)Xq(p)de | e (5.70)
0 ) i
27 r pr2mw b
/ [Q - Xi(p)] x [A-Xi(p)]dp = €ijkQjpAkq Xp(p) Xq(p)dp| e .
0 LJo i
Now,
2 = 0 0
/ X)Xy (p)dp =73 |0 m O =757(5pg — 0p3043) - (5.71)
0 0 0 0
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Therefore,
27

Q- Xe(9)] % [Q - Xe(0)ldy = 7rdesn(QipQup — QysQus)es

2

3

[Q - Xi()] % [A - Xc(9)ldp = mrdein(QipArp — Qi3 Ars)e;
o (5.72)
[A-X:(9)] % [Q - Xe(9)|de = mrdeijn(AjpQrp — Aj3Qrs)e;

27
[Q - X:(9)] x [A-Xe(p)lde = mrdeiji(QjpArp — Qi3 Ars)e; -

o— — S— >—

Because Q33 = 1 and all other Q;3 = @ig = 0, the above relations simplify to
27 _ _
|10 X400 % Q- Xe)ldp = mrieis @i Qe

0
27
/ Xe()] X [A - Xe(p)ldp = mriein(QipArp — 0j3Ar3)e;

[@Q - X:(¢)]
Ozw (5.73)
| A% % 1@ Xeldp = mrfeis @i
2
/ [Q - Xi(p)] % [A - Xc(p)ldp = mrgeijn(QipAkp — Sj3Akz)e; -
0
Therefore,
27r7 mr% - - - -
| 00) % dputi o =" iz (Quuay + (@i — G Aka) + A3y
0 (5.74)
— iw(ijAkp — (5j3Ak3):| e; .
Recall that A = B - Q and A=B- Q Substituting these into the above expression gives
27r7 mr2 _
/ xr(@a t) X dPr(‘P: t)d(p :Toeijk |:w7> (ijQkp
0
+ (ijBk:m@mp - 5j33km@m3) + Bijmp@kp) (5.75)
- iw(ijBkamp - 6j3kaQp3) €; .
Now émg = 0 and QQp3 = Op3. Therefore,
2777 m,r2 -
| 560 x dpidiotido =" i [ (s sy
0
+ Bkajpémp + Bijmp@kp) (576)
— iW(BrmQjpQmp — 93 Br3) | €; -
We also have,
B B 0 -1 0 1 0 0
Q-Q"=Q;,Qi,=|1 0 0| and Q- Q" =Q;,Qr,=1[0 1 0 (5.77)
0 0 0 0 0 1
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and
0 bs —by
BEBijE —b3 0 b1 . (578)
by —b; 0
Therefore,
_ _ —bs 0 by
BimQipQmp = (Q-Q")-BT"=| 0 —by by, (5.79)
0 0 0
_ _ b3 0 0
BimQupQrpy =B-(Q-Q")=| 0 b3 0|, (5.80)
—-b; —by O
0 —bg b2
BimQipQmp=(Q-Q")-BT = | by 0  —bi|, (5.81)
—by b 0
and
0 0 0
0;3Br3 = | 0 0 0 (5.82)
bo —b; O
Hence,
B B B 0 -1 b
W (ijQkp + Bkaijmp + Bijmekp)E Wy 1 0 b2 (583)
—b; —by O
and
0 —bs by
iw(Bkaijmp — §j3Bk3) =w b3 0 —bl (584)
—2by  2bq 0
Therefore,
_ _ _ 2bo
Wr€ijk (ijQkp + Bkaijmp + Bijmekp)E wr | —2by (5.85)
-2
and
—3by
iweijk(Bkaijmp—dngkg,)Ez’w *31)2 (586)
—2bs

Hence the angular momentum vector has the form

2
mro

2m
/ ir((pa t) X dPr(<P: t)d(p = 2 Cijk |Wr (ijQkp + Bk’mijQmp + Bj’mQ?ankp)
0

- iw(Bkaijmp - 6jSBk:3> €; (587)
b2 3iwb1 /2
=mriw, |—by | +mrd |3iwby/2
-1 iwbg
Recall that o R _ R _
b =cRe(be ') =0, = cRe(0, e ") = eRe(iQ /we ™). (5.88)
Therefore, if there is no friction between the spindle and the cavity,
~ i iy ~ o~ ~
bl = —; b2 = — b3 =0 and wbl = ZQl ] wbg = ZQQ ] (589)
w w
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We can then write

2T
/ (. 1) % dpy(ip, t)dp = emriew,
0

or,

2
/ X:(i0, ) x dpi(ip, t)dp = —emrw,
0

Reorganization leads to

27
/ ir(%t) X dpr(@,t)dﬁp = —mr%
0

o~

Re(b2 Biiwt)

o~

—Re(by e )| +
—1/e

Re(—if)y /w e~ ")
Re(iQ /we™t) | +

1
0 Emr%
wr |0 + Re
1

Therefore, the angular momentum is given by

where

Qo = —mriw,e3 and q; =

2

emrg

emrg

2

0

— 2w,y Jw — 30
2iwrQl/w - SQQ

q:(t) = qo + Re(qre™ ™)

2
emry

2iwr§2

2

y

w
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0

2 3Re(iw§1 e~ wt)
3Re(iwby e~ tt)

5 [3Re(—0y e—it)
3Re(—y eit)
0

e—iwt

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)
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Problem 5.8 Using the Helmholtz model as an analogy, come up with another model system that can have a
negative effective elastic modulus.

Solution 5.8: Several examples can be found in Shu Zhang’s doctoral dissertation. The model below is the unit
cell of a periodic structure has a negative effective elastic bulk modulus for acoustic waves.

<

B Y
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Problem 5.9 Verify that the ensemble averaged equations

() =9 — Sz * (S) — M, « (m)
. . (5.95)
() =19 — S, *(S) — M (m) .
are correct, i.e., the quantities C,, M., Sy, and M, can be taken outside the integrals during averaging.
Solution 5.9: Let us start with the solution for the displacement

u(x,t) = up(x,t) + [G* (V-8 —m)|(x,t). (5.96)

The first thing to note is that the convolution is over both space and time, i.e., the * notation indicates both
convolution in space-time and convolution in space,

G*(V-S—Ih):/de’[G(x’—x,t)*(V-S—Ih)(x’,t)]

: (5.97)
= / dx’ [/ drG(X' —x,t —7) - (V-S—m)(x,7)
Q —00
Consider the term containing the divergence of S. We have
; -
G*(V~S)/dx/{/ G- (V-S)dr| . (5.98)
Q —00 J
Switching the order of integration gives
. -
G*(V~S):/ dTl:/G'(V'S)dX/ . (5.99)
—00 Q J
The formula for integration by parts is
/F-(V~G)dQ:/n-(G-FT)dF—/VF:GTdQ. (5.100)
Q r Q
With the appropriate choice of boundary conditions, we have
/F~(V«G)dQ:7/VF:GTdQ. (5.101)
Q Q
Therefore, from (5.99) and (5.101), and using the symmetry of S, we have
t
G*(V~S):—/ dT[/VGZSdX/:|. (5.102)
—o00 Q
Since we are dealing with time derivatives of displacement, we need the quantity
d d ! / / /
Y (v-8)=-2 / dr / VG —xt—7): S, )X )| . (5.103)
dt dt | J_o Q
Ignoring the spatial dependence for now, define
t t
F(t) ::/ dr (/ VG(X —x,t—71): S(X,7) dx’) =: / dr f(t,7) (5.104)
—o0 Q —o0
where
F(t7) = / VG —xt—7): S(K,7)dxX . (5.105)
Q
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Then from the generalized Leibniz rule, we have
t

HFO1= 00+ [ ar i), (5106

With the assumption that VG(x’ — x,0) = 0, we then have

t
i[G* (V-9)= —/ dTg (/ VGX —x,t—71): SKX,7) dx’) . (5.107)
dt o at\ U,

Now we can use Reynold’s transport theorem to take the time derivative inside the integral over space
(noting that the boundary term is zero for linear elastic deformations). Then we have

d ¢ 0
—[G*(V-8)] = —/ dr / —(VG(X' —x,t —7): S(X,7)dx)| . (5.108)
dt . o Ot
Since S is not a function of ¢, we have
d ‘ 8 / / /
LIG* (V- 9)] :-/ dr /ﬁva(x Cxt—m)] S| . (5.109)
—00 Q

Switching back the order of integration,

d T oo
%[G*(V-S)]:—/de/ (V@) : Sdr (5.110)

We can define

S‘*aVG 5.111
t-*&( ) (5.11D)

Alternatively, to make sure that the correct gradient of G is used when (5.110) is written in index notation,
it is useful to take advantage of the symmetry of S to define

Si=3 [;)t(VG + VGT)] (5.112)

where some care is needed in the definition of the transpose of a third order tensor. Then can write (5.110)
as

d t
a[G*(V.S)]:—/dx’ [/ Si(xX' —x,t—71) ZS(X/,T)dT:| : (5.113)
Q —00
Reverting back to convolution notation, with the slight inconsistency of notation mentioned above,
d /! /
&[G*(V-S)] =— [ Si(xX' —x,t) x S(x,t)dx' = -8 % S.. (5.114)
Q

Recall that G is the Green’s function for a domain with reference stiffness tensor Cy and reference density
po- Therefore, the ensemble average of S; is independent of the material properties of the domain and we
have

d
<dt[G*(V~S)]>——St*<S> O

A similar process can be used to show that the quantities C,,, M, and M, can be also taken outside the
integrals during averaging.
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Problem 5.10 Given what you know about the Willis equations, develop a simple model that exhibits coupling
between the elastic response and density.

Solution 5.10: Clearly, any translation-invariant periodic structure will show the required coupling. See, for
example, Ankit Srivastava and Sia Nemat-Nasser, (2011), “Overall Dynamic Properties of 3-D periodic
elastic composites” and Shuvalov, AL and Kutsenko, AA and Norris, AN and Poncelet, O. (2011), “Effec-
tive Willis constitutive equations for periodically stratified anisotropic elastic media”.
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Problem 5.11 Find the relation between the stress-momentum vector and the displacement gradient-velocity
vector for the Milton model for the case where ¢ = 1/2 and d = 1/4. Comment on your findings.

Solution 5.11: Recall that

1 le(l4+d) —(1—d?) c(1—d) (1d2)} (5.115)

95 T 2| - c(l—d) c? c(1+d)

|
o
{los)
-

L—
e lic

= [}

| I

Recall also that
=h(A1+A7" + A+ Ay + Az + A5 —6)

Bi=AB,+By—1, Bo=A;'"By+B;—1 (5.116)
Bs=AsBy+ By —1, Bs=A'"Bi+By—1

where
Ay = e hlatka) g, — gihke gy — omih(ki—ka) (5.117)

The dispersion relation for the system is

det [kad —w? {ms (8] - B1+ B3 - B2) +me (85 -Bs+ 8] -Ba)}] =0. (5.118)

We can use Mathematica to compute the determinant above. The resulting expression, for ms = hm and
me = —hm + 6h%, c=1/2,andd = 1/4 is

1280k2 -+ cos(hks) [256k2{—3 + 2cos(hky) [-3 + {1 + cos(hky)} cos(hkg)]}

_ 377(5hw2{6k‘ — [Qk + 0hw? + 4k cos(hk:l)} cos(hks) + Shw? COSQ(th)} sin® (h?)}

2 [—64k2 + 377(5h — 2m)2w* sin* (hl;Qﬂ sin?(hkz) = 0

(5.119)
The inertial force at node 4 is
- msw?
fipertial — 45 (A2C1x5 @ ¢1 + Ca X5 @ ¢2) - U
c? ) (5.120)
mew
a1 (C3xg®@c1 + AC1 X @ €2) - 1
where
Ci=+d>—1, Co=c2+(1-d)?, C3=c*+(1+4d)?, (5.121)
and
= —che; — (1+d)hesy, =che; — (1 —d)hes,
X5 chey —( Jhea, x¢ =che; — ( Jh ey (5.122)
cg=-—ce+(l—d)ey, co=ce;+(1+d)ey
Therefore,
_ ch —c(1—d)h _ —c2h —c(14+d)h
X5 @ €1 = L(Hd)h -] BT | i+ dh —(1+d)2h (5.123)
_ —c%h —c(=1+4+d)h _ c2h c(l+d)h
Xg ® €1 = |:—C(—1—|-d)h —(~1+d)%h Xg @ o = (~1+dh (—1+d2 )h (5.124)
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Plugging these, and the previously defined value of A, into the expression for the inertial force gives us

(? +d? — 1)e" 2mgcug, — (1 — d) Uy
—[c? + (1 + d)?)mg[cusy — (1 — d)uay]
—[c*+ (1 - d)?]m5[cu4$ + (14 d)uay]

+(c + d? — Ve 2mgcusy + (1 + d)uay)
2

fiilertial _ wf
4c

Atk — D[(1+ d)yms — (1 — d)mg|uae

+(1 = d*)?(=1 + e*2) (mg + me)uay

In the limit & — 0, with w1 = U4y, U2 = uay, ms = hm, and mg = —hm + 5h?, we have

cug — dug
mw?

2 | (1—d?)uy + cdus
c

tinertial _ 1 finertial
4 - 4

2h

+e(d? — 1) [(1 —d)yms — (1 4+ d)mg + e 2[(1 + d)ms — (1 — d)mg]] Usg

+c2 [—=(1 4 d)?ms5 — (=1 + d)*me + (=1 + d*)e™ 2 (ms5 + me)| uay

. (5.125)

(5.126)

The effective stress in the structure due to these tractions is related to the traction components by

M 12
21d

tinertial _ |:0'21
gl =

—du + cu
m 2 1 2
022

uy + dus

The components 017 and ;5 are zero. Then, we can write the stress tensor as

ol 0 0 0
I ok mw? —cduy + cPug mw? —cd c?
g = T = =
J19 2c 0 2c 0 0
aly (1 — d®)uy + cdus (1—d?) cd
Noting that v; = —iwu; and vo = —iwus, we have
ol 0 0
I ok iwm | —ed 2| [
g = T = - .
012 20 0 0 (%)
oty (1-d?) cd

Let us now examine the force at node 4 due to the elastic springs, given by

531 — pf[(1— As)1+ (A3 — A1) Dyy + (1 — A3)Dyo) - uy

where, with 847 = 57/4 and 645 = 37/2, we have

Dar — cos? 043 cosfysinfy|  [1/2 1/2
4 08047 sin 04 sin® 04, 12 1/2
cos? 09 c0s 045 sin O49 0 0
D42 = . .92 = .
[¢0)] 942 S 942 S 942 0 1

The elastic force is independent of ¢ and d and has the form

{1 — e cos(hka) buae + i e k1 sin(hka)ug,

filastic — hk

ie~ k1 sin(hks )ugy + {2 _ gihka _ o—ihk: COS(th)} Usy
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The traction due to the elastic force is

1 {1 — e~k cos(hkg) Yua, + i e~ thh sin(hks)ua,

tilastic _ ﬁfilastic — g - (5133)
ie "R sin(hkg ) ug, + {2 — gihk2 _ o—ihk: COS(th)} Uay
Following the approach in the text, we have
o 1 0 0 1 |ui
& hklo 1 1 0
E _ |021| _ ™" Uu1,2
o” = Bl =20 1 1 0 usa]| (5.134)
ok, 1 0 0 3| [ugpo
Combining the inertial and elastic components of the stress,
; bk 0 0 hk 0 0 7 [
ol 4|0 Bk Bk o0 —iwmd iwme| |
o= 021 =5 |0 Bk Bk 0 0 0 u2’1 . (5.135)
12 iwm(l —d?) 22
022 hk 0 0 3hk —— iwmd U1
c -
The linear momentum density in the unit cell is
iw
p= _W[mE)(AZBl + Bg) “uy + mG(AQBQ + Bl) . u4] . (5.136)
In matrix form, with ms = hm and mg = —hm + 6h?,

(14 d)6h — 2dm + e*2 {§(1 — d)h + 2dm}] sz + %(eihk2 —1)(dh — 2m) ugy

W
pP=—7
AL ceimks 1) (6 — 2m) wap + [(1 — d)Sh + 2dm + €2 (5(1 + d)h — 2dm}] ua,
(5.137)
In the limit A — 0, with {w4,, uay} = {u1, uz}, we have

. [e(6 +idkom)uy —i(1 — d?)komus
—iw
P=—— . (5.138)
S — [ickamuy + (=0 + idkam)us)]

Recall that for plane waves, u1 2 = tkou; and ug o = ikouo. Then we can write,

_ C5U1 + dmul,g — (1 — d2)m’UJ2,2
¢ —c[emug g — dug + dmug o]

Now, v; = —iwu; and v = —iwus. Therefore

1 cdvy — iwedmuy o +iw(1 — d*)musg o
p=1 . (5.140)
¢ liwemug o + dvg + twdmusg o

In the matrix form we seek,

U1,1
Uy,2
1[0 —iwedm 0 iw(l—d*)m 5 0] |uz;1
p—% 0 iwc*m 0 twedm 0 ¢ |uae
U1
U2

(5.141)
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Combining (5.135) and (5.141), we have

For the situation where ¢ = 1/2 and d = 1/4,

[hk
0
0

hk

0

L 0

N —

0 0
hk hk
hk hk

0 0

—iwmd
wwmce 0

[k 0

hk
hk

hk 0

wm

wwm

hk
0
0
3hk
iwm(1 — d?)
c
iwmd
0 hk
hk 0
hk 0
0 3hk
15iwm
8
0 wm
4

96

0
—iwmd
0
iwm(1 — d?)
c
1)
0
0 0
wm  twm
4 2
0 0
15iwm  wwm
8 4
0
0 1)

0 1
wwmce

0

wwmd

Ui,
U1,2
U211
u2,2
U1
V2

Uil
Uy, 2
U2,1
U2,2
U1
V2

(5.142)

(5.143)
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Problem 5.12 Show that the wave equation for pentamode materials can be expressed as
KS:V[p - (S -Vp)]-p=0. (5.144)

For a plane harmonic wave with wave vector k incident upon a pentamode material, show that

2

[(S~k)®(S-k)]-u—%p-u:0. (5.145)

Solution 5.12: Recall that the balance of momentum for a material with anisotropic density can be written as
V.o=p-v. (5.146)

For a pentamode material
o=-pS (5.147)

where p is the pseudo-pressure which satisfies the relation
p=—-K(S:Vv) with V.S§=0. (5.148)

If we plug in the expression for o for a pentamode material into the momentum balance equation we have

-V -pS=p-v. (5.149)
In index notation
0
—5—(PSjk) = preve - (5.150)
8xj J
Expanded out
6]) 8Sjk
— Sk = e . 5.151
oz, ik +Dp oz, PreVe ( )
In direct notation
—[Vp-S+pV-S|=p-v. (5.152)
Since V - S = 0, the above simplifies to
—-Vp-S=p-v. (5.153)

Assuming that the density tensor is invertible, we can write
—p - (Vp-8)=v. (5.154)

From the symmetry of .S we have
—p - (8-Vp)=v. (5.155)

Taking the time derivative of the relation for the pseudo-pressure gives
p=—-K(S:Vv). (5.156)
Plug in the expression for v to get the required relation
P=KS:V[p ' (S Vp)] O (5.157)
For the plane wave equations, we once again start with the momentum balance equation

V.o=p-v where o =K(S:Vu)S. (5.158)
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If the material is homogeneous, K and S are constant, and we have
V.o=KV . -[(§:Vu)S]|=K[S:V(Vu)]-S.

In index notation,
0 V= KS 0%u,,
T%(ij = mn m ik -
For plane waves with
u=1u expli(k-x — wt)]

we have

v=1i=—wdexpli(k-x—wt)], Vu=iu®kexpli(k x—wt).
and

V(Vu) = -u® (k®k) expli(k - x — wt)].

In index notation
0%uy,

al’nan

= —Umknk; expli(kexe — wt)].

Therefore

0 ~ ‘
%(Ujk) = —K Spn (Umknk;) Sjr expli(keze — wt)].
j

Plugging into the momentum equation gives
—K Sy (mknk;) Sjr expli(keze — wt)] = —w? prptiy, expli(keze — wt)]

or
K (Sink;) (Smnkn)Um = w2 prply

In direct notation, using the symmetry of S, we have

(V]

[(S-k)@(s-k)}ﬁ—%p-ﬁzo O
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(5.166)
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Chapter 6

Solutions for Exercises in Chapter 6

Problem 6.1 Use curvilinear coordinates to derive the transformation rules for electrical conductivity and the
current:

1% = Gt

Solution - 6.1 : Let the natural basis for the reference state, X, be (G1, G2, G3) and let the coordinate curves be
(©',02,03). For the transformed state, x, the natural basis is (81,82, g3) and the coordinate curves are
(6%, 02,6%). Assuming a sufficient degree of smoothness in the transformation, we have

_ox 00X 8®j_8@jG ©.1)
8= 90° ~ 067 90" ~ 96" - '
The inverse process can be used to get the relationship

007
BECE
The transformation rule for general vectors can be derived from the above relation between the basis
vectors. Let,

G, 6.2)

u=U'G; =ug;. (6.3)
Then, _
i ; 0%’ i
UGiZU’BGig]« = ulg;. (6.4)
Therefore, )
. 067 .
uw = -U*. (6.5)
00"
For a second order tensor, X2, we can write
S=S"G,®G =0"g,®g;. (6.6)
Using the transformation rule for G;, we have
Y G; ©Gj =5 00" ® 00 ) = 2 x4 09" ® (6.7)
1R 2 et B 0678 ) T 9917 9ol BF B '

Therefore,

)

S 0077 90"

00t 96"
okt = (6.8)
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Let us now consider the gradient of a scalar function ®. Then, from the definition of the gradient in

curvilinear coordinates

9b 9D . dp 9O

V= o= G = o GGy
where G’ = GJ - G*. Then
a6 90™ . 96" o 96™ . 96"
Vx® = -Gk = -Gk ng".
X¥ T 00 9ei T 00F8' T 9o gl . ok I8

We can now examine the expression for the power dissipated,

W= [ Vx® -X.Vx®dQ.
Q

The transformation rule for infinitesimal volumes is given by
dQ = VG de'de?de?® = /gds' do* dv®

where G = det(G;;) and g = det(g;;). Recall that, G;; = G, - G, and ¢;; = g; - g;. Therefore,
W=/ @Vx@-ﬁ-vx@dﬁx
Q. V9
= R an o « . 721] i
/QJD \/g a0™ 9™ o0er Yaa 8 PRy 90" 8k © 8¢

op 00" ., 00"
s ae° ¢ ger9s8 |

or,

(6.9)

(6.10)

(6.11)

(6.12)

VG [ 8¢ 96™ 967 a0t . o6* dp 90" oot
— v n 7_2” _ —r st — 7 : Q 1
v /szx Vi \aomaem " gert ) \ 567> sei | \ a0 067 @ e ) 4 (01D

where we have used
g (gr®80) 8" = (8" gr)(ge-8") =07 0).

The transformation has the map

F = %: 8x4® i %Iié@(;i: aek,gk@)(;i
X 00’ 00" 0g* 00"
_ 9 i o O i 00
T o BT a1 Y 5gi 8k P Em:
Therefore,
Fr =9 G o 8k © 8 -
00"~ 907

Using these relations, we have

(00" ., 907 00" ., 00" 0" ., 00"
F-2-F =\ 56n 0" grsn ©8: ) | 55" 5oi8 @8 | | 5e7 ¢ pors O 8

— 90™ anp 061 09* Tij 06" 00" Gt 90" o
=207 07 ) 367> 567 ) \ a7 ¢ aat | ok 9u8m ©8r-
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Furthermore,

o)
Vi¢-(F-Z-FT).V, 6= (a;iga)

0™ iy 09" 90"* 53 oo™\ [ o6 o 9"
o607 o7 ) \aei” o) \aer " pet ) Jar I Bm O 8r
%
o oo™ 807\ [ 06° .. 00F\ (007 . 90" D¢
np i 2 st 7 5B
(aaa 5’”) (a@"G aep> (a@J a@1> (aesG 96" ) Jak g‘“] (aeﬁ &
96 | (09" oy 00 90" - 0%\ ([ 00" at 99 d¢
o0m "~ oer) \ae’ " a0’ ) \ 967 et ) kI Hor

~ 0"
Comparing the above with (6.13), we see that

W = /—qub (F-Z-F7).-V,0dQ,. (6.14)

Therefore, in the transformed coordinates, the functional W (¢) takes the form

W:/ Vx¢- o -VypdQ, (6.15)
Qz
with
cr:@F-z.FT. (6.16)
N{
Noting that
g = F . GZ y Gij = 8 'gj y Gij = G2 . Gj , g—= det[gij] s G = det[Gij] (617)
we can show that
(detFT)(detF):JQZ% — J:\/%. 6.18)
Therefore, .
:jF-ZLFT O (6.19)

The transformation rule for currents can be obtained using a similar process.
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Problem 6.2 The Greenleaf-Lassas-Uhlman map has the form

XL ) X X <2
x(X) = 2 IX|
X if |IX] > 2.

Find the expression for the electrical conductivity as a function of location for this map.
Solution - 6.2 : THE GLU map expressed in index notation w.r.t. a Cartesian basis is
vV Xp X, X; )
—t 1| = if /X, X, <2
€Xr; =

2 V XPXP
X; if /X, X, > 2.

Let us first find the quantity F'. In index notation

0 | X; X;
— | =+ —| if /X, X, <2
= Ox; _ anlQ ‘/prj pep
0X; 0X; :
X, it /X, X, > 2.
Now,
0X;
kL
0X; J
Also,
0 X; 1
= 5 + X (—l X, X —3/2) 2X;
an (\/Xpo> \/Xpo J 2( P P) ( J)
Therefore,

3
1 1
1 .
. 5+ ———| 0 — () X X; if \/Xp X, <2
By = <2 Xpo) XpXp
(Sij if Xpo > 2.
Reverting back to direct notation,

1 1
1 .
p —)1- —X®X if X <2
F = (2 IIX) BYR

1 if [X] > 2.

Therefore,

[1X]]
1 if |X|| > 2.

3
1 1
l - o .
7 = det(F) = <2 + |X”> s det(X®@X) if [|[X]| < 2

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

We can use these to find the expression for o in terms of 3. The expression simplifies considerably if 3

is isotropic. A plot of the deformed configuration can easily be drawn in 2D. g
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Problem 6.3 The space folding map of Leonhardt and Pendry can be expressed as

X if X7 <0
X = (—X17X2,X3) if d>X;>0
X - (2d,0,0) if X;>d.

Find the expression for the electrical conductivity as a function of location for this map.

Solution - 6.3 : Expressed in index notation, the space folding map is

XE; if X7 <0
zie; = ¢ — X 1E1 + XoEs + X3E;3 if d>X; >0
(X172d)E1 + XoEs + X3E3 if Xy >d.

The deformation gradient F is given by

o0x;
FZFiJ(’-i@EJ:TX]ei@EJ
Therefore,
%EI(EQE] if X1 <0
0X ‘
F=F;e®E;= —Qg;(iEl@El—i-g))gE[@EJ ifd>X;>0
—2d%E1®E1+%EI®EJ if X3>4d
00X 0X
or,
or7Er ®Ey if X;<0
F=¢-2E QE +6;E;®E; ifd>X;>0
—2dE1 ®E  +6;;E;®E; if X1 >d
or,
E; ®E; if X7 <0
F={-2E QE +E;®E; ifd>X;>0

—2dE; QE; +E;®E; if X; >d.
Therefore, J = det F' is given by
1 it X3 <0

J=<-1 if d>X;>0
1-2d if X;>d.

The transformation equation for the conductivity is

o= 1P 5. F"
J
If we express X in matrix form as
011 012 013
Y = |021 022 023
031 032 033
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we have, using the above expressions for F',

o if X7 <0
-—011 012 013
021 —023 —0923 if d>X;>0
o = | 031 —032 —033 (6.35)
[(1 - 2d)oy, o12 013
o21 o92/(1 —2d) o23/(1—2d)| if X1 >d.
T o32/(1 —2d) o33/(1 —2d)
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Problem 6.4 Use curvilinear coodinates to verify the transformation rules for the magnetic permeability and the
permittivity:
. .FT . .FT
W (x) = F-uX)-F ) = F-eX)-F
det(F) det(F)
Then show that Maxwell’s equations are invariant under these transformations.

Solution - 6.4 : The proof in spatial curvilinear coordinates is quite tedious (even for the situation where time
is not dealt with explicitly). However, proofs can be found in older textbooks on electromagnetism. The
expressions for the curl given in Chapter 1 along with the approach used in Problem 1.2 can be used to
verify the above relations. Showing that Maxwell’s equations are invariant is a bit more involved.
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Problem 6.5 Consider a cloak in the shape of an annulus of a circular cylinder with inner radius R; and outer

radius Ry. Assume that the material properties of the cloak are derived from the transformation

Ry — Ry

r=Ri+tR, =0, z=7 where t:=
Ry

Find the permittivity and magnetic permeability of the cloak as a function of r.

Solution - 6.5 : In cylindrical coordinates

x=x(r,0,z) = xz;(r,0,2) e; (6.36)

where
1 =rcosf, xo =7rsinf, r3=z. (6.37)

The orthogonal basis vectors for the cylindrical coordinate system are

ox

g1 = B—:COSGel +sinfey; = e,
"
ox )
2= 5= " sinfe; 4+ rcosfey, = rey (6.38)
ox
g3 = &: es=e,.

The reciprocal basis vectors are given by

g =cosfe; +sinfe; =e,

g? = _ sinf eyt cosf ey = 189 (6.39)
r r T

g'=e3=e,.
From the above we see that

Oe, B Oe, B Oey B Oey B Oe, B Oe, B Oe,

oo o 9 o o0 o (640)
Also,
% g Ges—eo, 22— _coster —simfes — 6.41
89__Sm e; +cosfey; =eg, %——cos e; —sinfey; = —e,.. (6.41)
The gradient of a scalar function in cylindrical coordinates is
8f of 10f 8f
_ — 6.42
VI= 508 ot T e gt (642)
We can now calculate the gradient, F":
X g = X ment s @eot ame 6.43)
ToX 00 8 TOrRVRT R0V 9z (©.

where x = x,.e, + xypey + x,e,. For the situation where e, = eg, €9 = eg, and e, = ey, we have

ox B 0 0 0 ox, Oxg ox,

aR~ aR\re) T gplteee) T gp(ve:) = Gpert gpent o

ox 0 0 0 ox Oxg ox

x> _ 9 _ 9 0% oy — Ce. (6.44)
90— 90\ rer) t gglees) + 5l-e:) = Faer + e+ Soe —zoer + Foes

ox B 0 0 0 ox, O0xg o0x,

97~ 97\ rer) T gpleee) + glw-e:) = Frrer 4 Hrren + Hore.
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Note that X has been assumed to a general vector in the above representation. The mapping considered in
this problem has the form,

X=Re.+ Ze., x= f(R)e, + Ze,. (6.45)
Therefore,
ox df
R dR"
ox
ox (6.46)
00 f(R)eg
ox _
oz~
and we have
_df f(R)
FfﬁeRQQeRnL eoVeg +ezRez. (6.47)

In this case, f(R) = Ry + tR. Therefore,

Ry +tR
theR®eR+Te@®e@+ez®ez. (6.48)
In matrix form
t 0 0
F=lo Ry +tR 0 (6.49)
R
0 0
and
Ryt
J:dethwat . (6.50)

If the reference material is isotropic and homogeneous with permittivity € and permeability y, the trans-
formed material has properties

, F.FT F.FT
e'(r,0,z)=¢ ; w(r0,2)=p (6.51)
J J
with
tR
_— 0
F.FT R +tR R -
: +
T — - ! O 6.52
7 0 R 0 (6.52)
0 0 R
t(R1 +tR)

The inverse transformation can also be used to find the properties of the cloak. This has been used widely
in the literature.

Ri+1tR
_ 0 0

tR R

T = o (6.53)
1
#(Ry + TR)
0 0
R
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Problem 6.6 The electrical conductivity equation in the presence of a current source can be expressed as

V- J(X) = 5(X)  with J(X) = Z(X) - V§(X)

where 3(X) is the electrical conductivity tensor, ¢(X) is a scalar potential, and S(X) is the source term.
Use the approach used to derive the transformed equations of elastodynamics to show that the conductivity
equation is invariant under transformations x = F - X, F;; = 0x;/0X; with

1 1
o(x) = jF(X)-E(X)~FT(X) and s(x):jS(X).

Verify that Vy - j(x) = s(x) where j(x) = o(x) - Vi ¢.

Solution - 6.6 : In the elastodynamic situation we had tested the governing equations against a vector valued
function. For electrical conductivity we can use a scalar value function, i.e.,

W= [ (7300 - S00)wa.
Using the identity v V - J = V - (¢]) — J - V) we have
W = / —J- V¢ — S¢]dQ
From the divergence theorem,

W:/sz].ndr—/Q[J-varsmdQ

Since 1/ has compact support, i.e., it is zero on the boundary I,

W:—/[]-VerSw]dQ. (6.54)
Q

Plugging in the expression for J gives

W:—/[(z-v¢)-vw+s¢]d9
Q

In Cartesian components,

B 96 I
W——/Q[ZijanaXi—l—Sw]dQ

Transforming variables with J = det(F'),

+ Sy

<=

5 0¢p Oxp, OY Oxp
* afEm 3XJ &rp 8XZ

= o9 O
amamp

—_

(szEUFmJ Sw

W:_/ %H(F-E-FT).vx¢}-vxw+5w}dﬂx~ (6.55)
Q

Back to direct notation,
Compare (6.54) and (6.55) to see that the transformed quantities are
1
o(x) = jF(X) “B(X)-FT'(X) and s(x)=-S(X) O

Verification of the divergence equation is straightforward.
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Problem 6.7 Chen, H. and Chan, C. T. (2007) use a separation of variables approach to show that for a cloak
based on a transformation F' with

t? 0 0 5
F.FT=|0 ¢ty 0 and J = det(F)= —
0 0 t2r? (7’ - Rl)
(T—R1)2

the pressure inside the cloak is

i(r — Rq) cos w?p
p(r,0,9) =Re |pgexp %MVT

where py is the amplitude of the incident plane wave. Verify this result.

Solution - 6.7 : Let us use a transformation of the form given in equation (6.29), i.e.,
po(x) = p—J()F FT and  ky(x) = J k(X).

Plugging in the expressions for F'- FT and .J, we have

1
p! (T_T% 0 0 Py (r) ? 0 1243
P, (x) = ; 0 1 ol=1] O w0 and /@I(x):ﬁ(__R)Q.
0 0 1 0 0 5 -

Recall that the fixed-frequency acoustic wave equation has the form

1 w?
Volps - Vp)+ —p=0.

Since we are solving a spherically symmetric problem, the gradient and divergence operators have the form

dp 1 dp 1 Op
Vp= te,t - eyt ——
b 6re +r8¢e¢+rs1n¢ 69e0
and 5 5 5
1 1 1 Vg
Vov=— —(r?v,) + —— —(si =
Ve 87”(T vr) + rsin ¢ 8¢>(bm¢v¢) + rsing 00
Therefore, in matrix notation,
dp . Op
1 a_ () o
— Ty 0 0 37" Pz ('r) 8T
Py (r) (%3
“l.yp=| 0 0 L Op) _ I .
Py Vp pg? 1 rsing 9o rsin ¢p2? o0 C|ve
R I R o "
T o 2% Q¢

The divergence term may then be expressed as

ey 12 ()0 1w\, 1 0 fsmen
Vlpz - Vp) = r2 9r \ pir(r) Or + rsing 96 \ rsingpl? 060 + rsing 9¢ \ rps? 0¢
10 r2  Op N 1 82p+ 1 o (. op
2 9r \ prr(r) Or r2sin® gpff 902 p2sin gpl? 0¢ sin ¢ ap) -
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The transformed wave equation for p(r, 8, ¢) may now be written as

1 0 r2  Op n 1 87217_'_ 1 E sinqﬁ@ + w? =0
r2 ar \ prr(r) or r2sin® ¢pf? 002 r2sin ¢p%? 9¢ o ’fx(T)p_ .

If we assume a solution of the form

p(r,8,¢) = R(r) ©(0) ®(¢)

we get

0o d r2 dR RO d*e RO d dod w? ROG — 0.
r2 dr\ ptr(r) dr + r2sin’ ¢pff db? - 72 sin ¢ps? d¢ "0 d¢ Kz (1) -

Division by RO® and multiplication by 2 sin? ¢ leads to

sin?¢ d ( r? dR) 1 d’©  sing d ( (bd(b) 72 sin? ¢gw? _0

R dr\prr(r) dr) " pfP0 do? " ;%9 do do Kia (1)

We now have a system of two ODEs, each of which evaluates to a constant m? (which usually also an
integer squared but not in this case), i.e.,

1 e

P90 do?

sin2qﬁi r* dR sing d ¢d£ +r281n2¢w2_ 5
R dr\ prr(r) dr W(I) do do K (T) -

Division of the second equation above by sin? ¢ leads to

1 d r2 dR N 1 d (. (bd(l) N r2w? m?
= 5 — ————— — | sing — =
R dr \ prr(r) dr sin ¢pd?® do d¢ ke (r)  sin? ¢

This equation can also be separated into two uncoupled ODEs,
d ’1"2 dR 7"2OJ2
— = ———-C1|R=0
dr (pmr) dr) i (m(r) )

1 d A2\ e (M _
sin ¢ d¢<m¢¢>_pw <sin2¢_cl>¢_0'

The second equation above has the form of an associated Legendre equation and can be written in the form

1 d w2 B
singi)dqb(sm(bdqﬁ) |:V(l/+1)— sin2¢} ®=0

where
v(v41):=p2?C; and p? := plPm?

Note that v and p are not necessarily integers. The general solution of this equation involves a combination
of Legendre functions P¥(cos ¢) which are commonly expressed in terms of hypergeometric functions.
Since ¢ is an angular function, any solution of the above equation must have ¢ + 27n periodicity where n
is an integer. Legendre functions satisfy these periodicity conditions whether v and p are integers or not.
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The equation involving R(r) can then be expressed as

da r? dR r2w? _v(v+1) R—0
dr | prr(r) dr K (1) p2?® o
Recalling that
1 (r—R1)? 1 1 1 (r—Ry)?
= , — = — and = -
T e et ) R
we have
d | (r—Ry)* dR N W (r—Ri)* v(v+1) R—0
dr pt dr Kt3 pt
or
d aR] [WPplr — Ry)?
- Ay )| R=0.
a (r—Ry)? T [ 3 v(v+ )} R=0

This has the form of Bessel’s equation with a general solution that is a linear combination of spherical
Bessel functions j, [a(r — Ry)] where o? := w?p/(kt?).
The remaining equation is
1 d*e 9 d*e Lo =0
—_— = — — =
0090 dg2 " a0

where (2 := p?m?2. Solutions are of the form exp(i¢f) and 27n periodicity in @ implies that ¢ must be
an integer. We can combine the solutions for ®(¢) and ©(6) to get spherical harmonic solutions for the
special case where p?? = p??, i.e., when 2 = (2 and both are integers. These solutions have the form

Y/H(,0).

If we further consider the special case where v is an integer, the general solution for p(r, 6, $) can be
expressed as

p(r.0,6) = Re | 357 Cuyu {ulalr — Ry)] + iy alr — Ry} Y2(6,0)

where C,,, are constants and o> = w?p/(kt?). Spherical Bessel function solutions of the second kind are
represented by y,, in the above equation. Note that there is a singularity at » = R; in the Hankel function
solution. Also observe that j, is zero for » < R; and consequently the pressure in that region is zero.

Let us now consider the scattering problem for a coated sphere. Let the incident waves have the form

(r,0,¢) = ZZCVH]” (atr) Y} (o,0) .

The scattered waves in the region r > Rs have the form

p°(r,0,0) = ZZ s W0 (atr) Y4, 0)

where hl(,o) are spherical Hankel functions of the first kind. The boundary conditions at = Ry are

[p] =0 - pl(RQaeagb) +pS(R2a9a¢) :p(R2a9a¢)

_ 1 o
Py (Re) or|

=112

5‘pi ap°®
[61" tor

r=
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The first boundary condition gives
ZZ [ ¢ gu(atRy) + C3, b (at Ry) }w 6, 0) ZZCW;V (Rs — R)Y(¢,6)

or,

ZZ [ ¢ du(atRy) + C3, b0 (atRy) } ZZOW]V (atRy). (6.56)

The second boundary condition leads to
LS [t + O (00| = S S (ot
z (112
vop

Using
- R3t t
o (B = s = =0

" (Ry—Ry)?2 2t

Z Z (CludsatRe) + €l n (atRy)] = Z chgy atRy). (6.57)

These two conditions can be satisfied simultaneously only if C n = 0,i.e., if Cf,# = C), and there is no
scattering from the coated sphere.

we have

That implies that if the incident wave is plane with the wave front perpendicular to the r, plane we can
write it in the form

p'(r,0,$) = Re [pg exp(iatr cos ¢))]

using the series expansion of the exponential in terms of Bessel and Legendre functions. The the field
inside the cloak can similarly be written as

p(r,0,$) = Re [pg exp(ia(r — Ry) cos @)] .

Substituting the expression for o, we have

Po €Xp <i\/w2p(7’R1) cos¢>] O
K t

Note the number of assumptions regarding the density that have been made in arriving at this solution.

p(r,0,6) = Re
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Problem 6.8 Show that the acoustic wave equation in a medium with
p(x) = p(r) = pr(r) P+ po(r) PL;  r(x) = k(r)

can be expressed in spherical coordinates as

k(r) 0 [ r2 (9]9] N k(r)

v vr 2 . _
r2 Or | p.(r) Or 7"2/)1_(7‘)va B(r,t) =0

where V2 (e) is the angular part of the second-order Laplace-Beltrami operator in spherical coordinates.
Then show that the above equation is equivalent to the uniform wave equation

V- [Vxp(X)] = 5(X) = 0

only if we have a mapping X = [f(r)/r] x such that

N A AT A T A
p’“‘(f) ar "= \ar ”*‘<f) ar

Solution - 6.8 : The first part of this problem is similar to the previous problem. The acoustic wave equation
can be expressed as
K(X)V - [p~!-Vpl—p=0.

It is easiest if we use matrix notation (keeping in mind that x is a scalar quantity). Then we can write

pr (1) 0 0
p(x) = pr(r) I)II +pL(r) PL=p(r)e,@e.+p1(r)(es @ ey + €y ® e¢>) = 0 pi(r) 0
0 0 pu(r)
and
K(x) = £(r)
Proceeding as in the previous problem we have
.
pr(r) Op
_ Jp Ur
1, _ 1
PVPE | e og G
a9 ’
(1) 9

The divergence term is given by

1 - 2
V- (pa .Vp)rQar(pTr)ar Jrrsirlqb% rsingp (r) 00 +rsin¢% rpL(r) 0¢
2

(
1 1o} dp 1 &%p 1 o (. Op
T2 or (pr(r) 87") - r2sin ¢p (1) ij r2sin ¢py (1) O Smd)a?s ’

The Laplacian (second order Laplace-Beltrami operator) in spherical coordinates is

1 0 r2  Op 1 0 1 Op 1 0 sing Op
r

oL 000y, 1 O 1 O f. Op\ o 1o,
VP_T2 ar\" or +r2sin2¢ 892+rzsin¢ 0 bln¢8¢ —.V,.p+r2VLp.
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The above split of the operator into radial and angular parts allows us to write

1 0 r2 Op 1
. -1 . [ — J— [ — 2
Vil VD=, (mm 6r> T

Therefore the acoustic wave equation can be expressed in the form

WW[ﬂﬂ+awz

) = O
r2 Or | p.(r) Or TQpJ_(T)VLP B(r,t) =0

If we substitute the mapping

(r de_TQf/ B df _1_ 1 o 2 df _1_ 7,,2
p"(f) a0 \ar _f"”_(f) ) 2f

into the acoustic wave equation, we have

1 0 [fQGp

f2f or ? (97“] Iz VJ_p p(r,t) =0

or,
2f/2 _ ff// ap 1 62]7 1
) e
We now have to transform the above equation to one in P(R) where R = R(r) = f(r). To do that we
observe that

V2p—p(r,t)=0. (6.58)

op 9P dR f . Pp_p(dr ’ JOPER P 0P
or  OR dr N 9T or\ @) Torar T ar2T R
Plugging these into (6.58) leads to
2 f§"\OP PP 0P 1,
DR P-P R,t
( 72 )R T or T R aR " P2 VP B(rY) =
or 2
a 2 OP ,
2p— P(R,t
o 7 aR f2v (R,t) =
Alternatively,
0°P 2 0P
2 v2 P — P(R,t) = (6.59)

OR? R 8R R?
Recall that, in spherical coordinates,

V- (V- P = - 2 (g2 00 ! 82P+1 J
IV PI= e o\ or)  mn®e 0 T Resing 0 b g5 ¢

1 0 oP 1 ?P 2 (’)P
— — (1-22 ) + ViP= 4= vViPp.

“R2or\"" OR or2 T ROR T R2
Comparison with (6.59) shows that
Vx-[Vx-P|-P=0 O

The necessity proof can be found in the acoustic cloaking paper by Norris (2008).
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Problem 6.9 Find the transformed equations of elastodynamics for harmonic maps with the property G,;; = 0.
Show that for the special case when the equations of elastodynamics in the reference configuration have
the form

~Vx - =w?pxU with ¥ =rx(Vx-U)

the transformed stress field has the form

o(x) =aV where «a:= %tr [V {Vxu+ (Vxu)'}]

where V' = F - FT. Compare the above stress-strain relation to those for pentamode materials.

Solution - 6.9 : The quantity G is defined as

OF
= Gppt = ——or.
G Pkt = 5 X,
The condition G,;; = 0 is equivalent to
0F);
=0.
0X;

The quantity G appears in the transformed equations of elastodynamics in the terms

P 1
P —XF-FT—ﬁg:Cx:gT

J
sz%(FgF);cX;gT
DI:%Q:CX:(FT@FT).

Let us consider D,, in terms of Cartesian components, i.e.,

r o _ OF
Dinm - Gijkcjkqumeqn = T)QCFWPFHQCjkpq .

For anisotropic Cx, even for harmonic maps, D, # 0 and simple expressions the transformed equations
are not obvious. But for isotropic Cx with zero shear modulus, we can write

Cijpg = K05 0pq
where x is the bulk modulus, and we have

K 6FU

Dipn = = il aF”
J 0Xy

Fmpan5jk5pq = &
J

FopFp =0.

and ox
e = —~F.FT.
Pz ="7

Similarly, since Gj, = G, we have Gy;; = GT.; = 0 and
T T
OFT oFT

—r_ ZF,F;
19X,, J "ikax,.

K
—Fi Fji0ke0p

=0.
J

Sijm =
Therefore the transformed equations of elastodynamics have the form
Vi -0=—-w?p,-u where o=C,:V,iu O

Note that the transformed equation has a tensor valued density.
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The transformed stiffness tensor is given by

CIZ%(FﬁF):cX;(FT®FT).

When 3 = kx(Vx - U)1 we have Cx = kx1 ® 1 and hence

czz’%‘(F&F);u@z);(FTxpT)z’“TX(F-FT)@(F.FT):%XV@V.

Also,
SIZ%X(F&F) (191):G7 = HTX(F-FT)®(VX~F): HTXV®(VX~F).
Therefore Kx
0':7[(V®V):qu+(V®(Vx-F))~u]
= %X LV (Viu+ Vou")+ FT: (VF-u)] V
= %X Le{V - (Veu+ VouD )} + FT: (V F-u)] V.
We find that

o(x) =aV where «:= %tr [V {Vxu+ (Vxu)'}]

only for the case where V - F' = 0.

A comparison with pentamode materials is straightforward.
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Problem 6.10 Verify the relation
Vx (Vxp)=J Vs (J7'8S7- V2. Vyp): § with Vi-S=0.
Solution - 6.10 : Starting from equation (6.35) of the book we have

Vx - [pr] =JVy- [JilF'FT ‘pr}
=JV, [J'VZ. .V, p]
=JVy-[J7'S- 871 V2.V, pl.

Noting that
0

6xi

0

V. (A-b)= o~

we have
Vx - [Vxp] = IV [J 18- V2. Vyepl : 8T+ (Vy-8)-[S71- V2. V).
Since V4 - S = 0, we have
Vx-[Vxp|=JV[J 18- V2.V, p|: ST
If S is symmetric then

Vx-[Vxpl=JV[J 'S V2. V,p]: 8§ O

117



Chapter 7

Solutions for Exercises in Chapter 7

Problem 7.1 Show that for periodic composites in the quasistatic limit, the momentum equation, the stress-strain
relations and the strain-displacements relations can be written as

~ [N 2 o~ AL~ A~
V.o, +i0, -k+wpu,=0; 0,=C,:¢,

and
& =5 U 0k +kat,)+ 3 [V, +(Va,)"] .

Solution 7.1: The governing equations of linear elasticity in the quasistatic limit are
V.o, = wapnun; o,=C,:e,; = %[Vu,, (Vun)T] .
Bloch wave solutions of these equations for a periodic elastic composite have the form
oy(x) = exp(ik - x) 0y (x);  ey(x) = exp(ik - x) €,(X) ;5 uy(x) = exp(ik - x) Uy (x) .
Plugging these solutions into the governing equations, we have

V - [explik - x) 8, (x)] = —py () exp(ik - %) 8, (x)

exp(ik - x) o, (x) = C;;(x) : [exp(ik - x) &, (x)]
exp(ik - x)&,(x) = 3 { 7 lexp(ik - ) 8, (x)] + (¥ exp(ik - ) @, (x)])" } -

It is easier to simplify these equations when we express them in terms of Cartesian components. For the
momentum equation we have

lexp(ikmTm) 0ji] + w? pn exp(tkmTm) U; =0

dr;

. . _ . 0

= i exp(tkmTm) kndn; 0ji + exp(ikmam) 3 —(75:) + w? pn exp(tkmTm) U; =0
Lj

o 9 9

— ijaji"‘ 7(O—ji) +w Py Ui = 0.
8xj
In direct notation
ik-G,+V-5,+wp,u=0 O (7.1)

The symmetry of the stress tensor allows us to write the above equation in the desired form The expression
for the stress-strain relation is derived directly from the expanded stress-strain relation above to give

0,=C,:¢e, O (7.2)
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For the strain-displacement relation we have

~ 0 . . 0 . .
exp(ikmxm) Eij = % {&E_[exp(lkmxm) ua] + ax'[eXP(kax'rn) u]]}
J 3

. ~ 1 . . ~ . 8@1
= exp(tkmTm)Eij = 5 3 1exp(iknTm)k;j U; + exp(zkmxm)aT +
J

ou;

% {z exp(ikmxm)k; Uj + exp(ik:mxm)u]}
6‘:rz-

ou;, 0u;

ij 8;&

= &ij = 5 (ik;u; + ik;u;) + 3

In direct notation ‘
(PPN ~ ~ ~
&y = i(un®k+k®un)+% (Vu, +[Va,]") O (7.3)
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Problem 7.2 Verify that the matrix A defined by the action A-(ep) := (k- (eg))k— (k-k) (eo) can be expressed
as A =k ®k — (k- k)1. Show that the eigenvalues of — A are

M=0, o=X3=k? +k3+ki=k k.
What do these eigenvalues imply about the quantity k - (eg)?
Solution - 7.2: If we express the equation that defined A in index notation, we have
Aim (em) = (km (em))ki — (kpkp) (€:)

= (kmk;) (em) — (kpkp) (e:)
= [(kmki) - (kpkp>5im] <€m> .

Therefore
Aim = kzkm - (kpkp)6i7rz .

In direct notation

A=kok-(k-kK)1 O (7.4)
Writing the above out in matrix form, we have
(k1 1 0 0
A= |ky| [kr ko ks]—(ki+ki+k3) [0 1 0
ks 0 0 1
[k} kiks  Kaks k% + k2 + k2 0 0
= |kika k2 kiks| — 0 k2 + k2 + k2 0
| kiks  koks K3 0 0 kT + k3 + k3
[—k2 — k2 k1ko k1ks
= | kiks —k? — k2 k1ks
k1 ks koks —k? — k32

A straightforward eigenvalue calculation for the problem

—A - {eo) = A(eo)
shows that the eigenvalues of — A are

M=0, o=X3=FK+E+Ek)=k-k O
Plugging in the non-zero eigenvalue into the equation gives
A - (eo) = —(k - k) (eo) .

If we compare this with the defining equation for A we see that

K-(e)=0 [ (7.5)

This means that the wave vector is perpendicular to the direction of the electric field vector.
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Problem 7.3 Show that perturbation expansions of the Bloch wave equations for elastodynamics lead to the

relations
o) = C"7 L €p

0= Vyuo + (VyU())T
g0 = 5w @k +k@ug) + 3[Vyu + (Vyur)'].
Solution - 7.3: The Bloch wave equations for elastodynamics under quasistatic conditions (low frequency) are
V.5, +io, - k+wip,l, =0
& =3 (W@ k+ kel +3 [V, +(VH,)"]
o,=C,:¢,.
Using perturbations of the form
&y(x) = oo(y) +noi(y) + ’oa(y) + ...
(%) = €o(y) + nei(y) +n’ez(y) + ...

2(X) = o(y) +nui(y) + n*uz(y) + ...
w=wo+nw1+n wé—}—...

where y = x/7, we can write the Bloch form of the momentum equation as

V - [oo(x/n) + no1(x/n) + nPo2(x/n) + ... ] +iloo(y) + noi(y) + n*oa(y) + ... ] - k+

po(@d + ] 4 1Pw] + ) [uo(y) + un (y) + n*ua(y) + ... ] = 0.
Now,
0 0 OYm 0 1 10
V -loo(x/n)] = af%[ajp(x/m] ayim[ajp()’)] 8755] = ayim["jp(}’)] 55mj = 5@[“1@(}’)]
1
= — V oo .
p “[oo(y)]
Therefore we can write the momentum equation as
1 _ 9
\ZE 50'04—0'1 +noa+...| +ilog+nor+n°oa+...] - k+
(W 4+ nwl + 02wl + .. )2 ug +uy +nPug ... =0.
If we equate terms containing the same order of 7, we have
Vy 00 = 0

V- 01 +i0-k+ (wg)Qpnuo =0
V- o2 +io-k+ 2w6w{pnu1 =0

If we follow the same procedure for the constitutive equation we get
oo+nor+---=C,:(eg+ner+...).
The first term of the expansion lead to the required result

oy = C17 L €p U (76)
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Similarly, the strain-displacement relation can be written as

i
€0+T]€1+---=5[(1104-77111+-.-)®k+k®(uo+nu1+.-.)]+
1
% (Vy(wo+nui+...) + [Vy(ug+nu +...)]")

Equating terms of the same order in 7, we have

0= %[Vyuo + (VyuO)T]
g0 = 2wy @k +k®up) + 3[Vyus + (Vyuy)’]
e1=twmek+keu)+ 3[Vyus + (Vyu)’]
The desired equations are
0= %[Vyuo + (Vyu(])T]
€0 = %(uo®k+k®uo) + %[Vylh +(VyU1)T] U
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Problem 7.4 Show that we can express the first order term in the perturbation expansion of &, in the form
eo = 3 (V,(y) + [V,u(y)]")

where u(y) = i(k - y)uo(y) + ui(y).

Solution - 7.4: Recall that _
g0 = 3wk +k@u) + 3[Vyu + (Vyu)7].

Expressed in index notation,

) Aul  Oul
0 i/, 0 0 1 i J
D= Lt(u ks + kus) + 5 .
i 2(% ! u]) 2 5%‘ 3%1

Similarly, the expression
g0 =5 (Vyu(y) + [V,u(y)]”)

where u(y) = i(k - y)uo(y) + u;(y) can be written in index notation as

o 1 |0 O
Yo 2|0y Oy
F s )
! ' 0 4 ot ; 0, ,1
2 -ayj(l pypul +ul) + ayZ(Z pypu] +u_])
ar o0 . 0wl Oup o . Oul  Ouj
=5 |ikpOpju; +zkpypa—yj+ a9; + ikpdpit; +z/<;pyp87i+ o
1—'k: 0 4 ik 8u?+8u}+,k 0 4 ik 8u2+ ujl
=35 |tRju; WRpYp = ks ikyy )
2 I J P payj 3yj j P payi Dys
Since . )
ou;,  Ou;
Vyuo + (Vyug)' = —+ =0
! ! dy; Oy
we have
; au} . u; ; Bu} Aul
E?j = % zkju? + 8yj + zkiug + ayz = %(u?k] + kzu?) _|_% ayj + 8yj
Therefore,

g0 =i(wp@k+k®u) + 3 [V,u + (V,u)’] = 1 (V,aly) + [V,u(y)]") O (7.8)
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Problem 7.5 Show that the volume averaged gradient, divergence, and curl are zero for a periodic vector-valued
function u(x) which satisfies the relation u(y + a) = u(y) within a unit cell with lattice vector a.

Solution - 7.5: Recall that x is the macroscopic position and y = x/7 is the local (microscopic) position within
the unit cell. The volume average of the vector-valued function u(x) inside in the unit cell Y is defined as

1
(u(x)) = —/ u(x,y)dY where V = / dy .
Viy Y
If there are internal surfaces 0Y;, in the RVE (holes, cracks etc.), then
1 1
Vi i) = ([ Vyuixy) ) - [ ulxy)@nixy)ds
7 V' Jovi

where n is the outward normal to the internal surfaces (away from the body). Because of periodicity, the
gradient of (u(x)) = 0 and therefore (in the absence of internal surfaces)

(Vyu(x,y)) =0 O (7.9)

We can use similar arguments for the divergence and the curl.
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Problem 7.6 For a periodic elastic composite show that
1 AV
m(k . Ceff . k) Uy = (wo) Up .
n
Solution - 7.6: Let us start with the relation (7.22):
i(00) -k + (p,) ()0 = 0
where _
i
<O'0> = §Ceff : (llo ®k+k®u0) .
Combining these we have

—3 [Cerr: (o @k +k@Tp)] - k+ (py) (w))*Up=0.

From the minor symmetry of the tensor C, i.e.,

eff __ veff
ijkl = Vijik
we have
Cett : (Ug®k) =Ceir: (k@) .
Hence ‘
[Ceir : (k@ 1o)] - k = (p) (w))? U
or

Aeff(k) . ﬁo = (wg)z ﬁo
Where, for any vector v,

Aeii(k) - v = Cerr: (k@ V)] k.

1
{pn)
Reorganization of the above equation shows that

1

(Pn)

and the required result follows. The quantity A is the effective acoustic tensor.

Aui(k) = —(k-Cer-k) O (7.10)
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Problem 7.7 Derive Hashin’s estimate for the effective bulk modulus of a coated sphere:

bil
1 n P
K1 — Ko 4

:‘€2+§M2

after verifying the expressions for the radial displacements and the traction continuity conditions.

Keff = K2 +

Solution - 7.7: The sample Mathematica notebook below shows the steps.

url = alr;

ur2 = a2r + b2/r"2;

ureff = aeffr;

sigl = lam1(Dfurl, r] + 2url/r) + 2mulDlurl, r]

sig2 = lam2(Df(ur2, r] + 2ur2/r) + 2mu2D[ur2, r|

sigeff = lameff( D[ureff, r] + 2ureff/r) + 2mueffD[ureff, r|

stgl — 3allaml 4 2almul

b2
2 ) + a2r
T
2b2 2b2

5192 — 2mu2 2:12—T—3 + lam2 a2—T—3+—

sigef f — 3aefflameff + 2aeffmueff

urla =url/r =18

ur2a =ur2 /.r — 18

ureffb = ureff/.r — rc

ur2b = ur2/.r — rc

sigla = sigl/.{r — rs}//FullSimplify
sig2a = sig2 /.{r — rs}//FullSimplify
sig2b = sig2/.{r — rc}//FullSimplify

alrs

b2
—+ a2rs
IS
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aeffrc

b2
—+ a2rc
Ic

al(3laml 4 2mul)

4b2mu?2
3a2lam2 + 2a2mu2 — 3
Is
4b2mu?
3a2lam?2 + 2a2mu2 — 3
rc

dispa = ur2a — urla

dispb = ureffb — ur2b

siga = sig2a — sigla

sigb = p + sig2b

sigeffb = p 4+ sigeff

sigaQ =

siga/.{laml — kapl — 2/3mul,lam2 — kap2 — 2/3mu2,
lam3 — kap3 — 2/3mu3}//FullSimplify

sighb0 =

sigb/.{lam1 — kapl — 2/3mul, lam2 — kap2 — 2/3mu2,
lam3 — kap3 — 2/3mu3}//FullSimplify

sigeffb0 =

sigeffb/.{lam1l — kapl — 2/3mul, lam2 — kap2 — 2/3mu2,
lameff — kapeff — 2/3mueff}//FullSimplify

sol = Solve[{dispa == 0, siga0 == 0, sigh0 == 0}, {al,a2,b2}]
alval = al/.sol//FullSimplify

a2val = a2/.sol//FullSimplify

b2val = b2/.sol//FullSimplify

soll = Solve[{sigeffb0 == 0}, {aeff}]

aeffval = aeff/.soll

b2
— = alrs 4 a2rs
IS
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b2
- a2rc + aeffrc
Ic

4b2mu?2

3a2lam?2 — al(3laml + 2mul) 4 2a2mu2 — "~

4b2mu?2

rc3

3a2lam?2 + 2a2mu2 + p —

3aefflameff + 2aeffmueff + p

4b2mu?2
—3alkapl + 3a2kap2 —
alkapl + JaZkap e
4b2mu?2
3a2kap2 4 p — 3
rc
3aeffkapeff + p

(3kap2 + 4mu2)prc?

1o —
“ 3kap2(3kapl + 4mu2)re3 + 12(kapl — kap2)mu2rs3

(3kapl + 4mu2)prc?

25—
“ 3kap2(3kapl + 4mu2)re3 + 12(kapl — kap2)mu2rs3

b2 — -
kap2(3kapl + 4mu2)rc? + 4(kapl — kap2)mu2rs?

p

ff - ———
aett = 3kapeff

b
a 3kapeff

{ (kapl — kap2)prc3rs®

dispb0 = dispb/.{aeff — aeffval, a2 — a2val, b2 — b2val}//
FullSimplify

soleff = Solve[dispb0 == 0, {kapeff}]

kapeffval = kapeff/.soleff//FullSimplify
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kapeffval0 = kapeffval/.rs — 17 (1/3)rc//FullSimplify
CollectNumerator[kapeffval0] /3, {f1, kap2}]
Collect|Denominator [kapeffval0] /3, {f1, kap2}]
kapeffval0/.{fl — 0}//FullSimplify

1 1 (3kapl + 4mu2)rc® + 3(—kapl + kap2)rs®

3" | " kapeff * kap2(3kapl + 4mu2)rc® + 4(kapl — kap2)muZrs?

3kaplkap2rc?® + 4kap2mu2rc? + 4kaplmu2rs® — 4kap2mu2rs®

kapeff
apett = 3kaplrc3 + 4mu2rc3 — 3kaplrs3 + 3kap2rs3

kap2(3kapl + 4mu2)rc® + 4(kapl — kap2)mu2rs3

{ (3kapl + 4mu2)re3 + 3(—kap1 + kap2)rs3

3kaplkap2 + 4flkaplmu?2 + 4kap2mu?2 — 4flkap2mu2
3kapl — 3flkapl + 3flkap2 4 4mu2

1 dkaplmu2  4kap2mu?2

gkapZ(Skapl + 4mu2) + f1 3 - 3

1
f1(—kapl + kap2) + §(Skapl + 4mu2)

{kap2}

2mu2((3 + 6f1)kap1 + 4(f2)mu2)

9(f2)kapl + 6(2 + f1)mu2
Limit[KeffWater, f1 — 0]

KeffH = kap2 + f1/(1/(kapl — kap2) + (1 — f1)/(kap2 + 4/3mu2))
kapeffval0 — KeffH//FullSimplify

KeffWater =

2mu2((3 + 6f1)kapl + 4f2mu2)
9f2kap1l + 6(2 + f1)mu2

2mu2(3kapl + 4f2mu2)
9f2kapl + 12mu2
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fl

kap2 +
1 1-—f1

kapl — kap2 +
kap2 +

4mu?2

{0}

invKeff = 1 /kapeffvalQ
Limit[invKeff, kap2 — Infinity]

3kapl — 3flkapl + 3flkap2 + 4mu2
3kaplkap2 + 4flkaplmu2 + 4kap2mu?2 — 4flkap2mu?2

3f1
3kapl — 4(—1 + f1)mu2
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Problem 7.8 Show that Maxwell’s equations for a Bloch periodic medium can be expressed as
ik-d,(x)+V-d, =0, ik -b,(x) +V-b, =0,
ik x e,(x) + V x e, — iwb,(x) =0, ik x h,(x) + V x h, +iwd,(x) = 0.
Solution - 7.8: For a Bloch periodic medium, Maxwell’s equations at fixed frequency are
vV-D,=0; V:-B,=0; VxE,=iwB,; VxH,=-iwD,

and the constitutive relations are
D, =e,Ey; By =puyHy.

Periodic solutions to these equations have the form
D, =exp(itk-x)d,; B, =exp(ik-x)b,; E,=-exp(ik-x)e,; H, =exp(tk-x)h,.
Plug these solutions into Maxwell’s equations to get

ik-d, +V-d, =0
ik-b,+V-b,=0
ik x e,(x) + V x e, —iwb,(x) =0
ik x h,(x) + V x h, +iwd,(x) = 0.

The above calculations are straightforward in index notation.
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Problem 7.9 Show, using an approach similar to that used to obtain the effective bulk modulus, that Hashin’s
estimate for the effective electrical permittivity of a coated sphere can be expressed as

3f1€2(51 *62)
€2 +
3ea + fa(e1 — €2)

Eeff =

where ¢ is the permittivity of the sphere, €5 is the permittivity of the coating, and f; = 1 — fy is the
volume fraction occupied by the sphere.

Solution - 7.9: Let us assume that the sphere is centered at the origin. We look for a solution to the time-
independent Maxwell’s equations

VXE=0; V-D=0; D=¢cE

with potentials

p1(xz) =ay r cosd in the core
ba : .

p2(z) = [azr+ — | cosO in the coating
r

Petr(T) = aepr 7 cos O in the effective medium.

Then the electric field is given by

E; = Vi (x) = ay [cosb e, — sin b ey]

2by ba\ .
E; = Vps(z) = agrT— —% cosf e, — ar+ — sin @ ey
r r

Eeff = V(ﬂeff(x) = Qeff [COS 0 €, — sin 6 eg] .
The potentials satisfy Laplace’s equations
V21 = V3 = VZper = 0

and we only need to match the boundary conditions at the interfaces to get a solution, i.e.,

ba ba
alrc:aﬂrc‘i’ﬁ; aeffre:a2re+r72-
c e

Continuity of the tangential component of the electric field at the interface implies that
204 2bs
€1 a1 = €2 (A2 — —5-| § Ceff Geff = €2 (G2 — —5| -
TC T'C

Combining the above equations gives

ba 3 €2 b 3 e
ry €1 — € re Ceff — €2
Defining the volume fraction f as
3
TC
fl = 1 — f2 = —3
Te

leads to the following expression for e.:

3 f1 e2(e1 — €2)
2+
3ex+ fa (€1 —€2)

Geff = € |:| (7.11)
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Problem 7.10 Consider an infinite one-dimensional lattice of circular rings connected to each other by linear
springs. The mass of each ring is M and the stiffness of each spring is K. Each ring contains an additional
mass m that is connected to the ring by a spring that has a stiffness K. Show that the dispersion relation
for the lattice is

mMw* — [(m + M)Kq +2mK (1 — cos ka)] + 2K Ko(1 — coska) = 0

where a is the lattice spacing, k is the wave number, and w is the frequency. Plot the dispersion relation
for the lattice.

Solution - 7.10: Several approaches can be used to determine the equations of motion of the system. Let us
follow the approach of Huang et al. (2009).

o

From the figure above we see that the Lagrangian of the j-th unit cell of the system is

L=1K(U;—Uj-1)* 4+ 3K (Ujy1 — Uj)? = AMU? + 1 Ko(uj — Uj)® — $mai? .

-2
oL d (oL _,
8’ui B @ 8’&2‘ N

Then, for the j-th cell, the governing equations are the Euler equations

The Euler equations are

Ko(Uj = uj) = K(Uj—1 = 2U; + Uj1) + MU; = 0
Ko(’LLj — Uj) + muj =0.

For time-harmonic problems with frequency w, we can write the above as

KO(Uj — uj) — K(Uj_l — 2Uj + Uj+1) — szUj =0
Ko(uj — U]) — mwQuj =0.

From Bloch’s theorem we know that for a unit cell of length a, we have
Uj—1 = exp(—ika)U; and Uj;q = exp(ika)U; .
Substituting these into the above equations, we have

— Kouj + {Ko — K[exp(—ika) + exp(ika) — 2] — Mw?}U; = 0
(KQ — mwz)uj - KOUj =0.

In matrix form,

Ky — K[exp(—ika) + exp(ika) — 2] — Mw? —Ky Uil 10
7K0 Ko - mw2 Uy o ’
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The dispersion relation is given by the determinant of the 2 x 2 matrix,

mMw* — [Ko(m+ M)+ Km (2 — e tha _ eik“)] w? + KoK (2 — e ™ —

or,

€

ika)

mMw* — [Ko(m 4+ M) +2Km (1 — cos ka)] w? + 2KoK (1 —coska) =0 O

The dispersion plot is shown below.

5

N

co/(oo
[N} (9%}

-2 -1 0 1 2
ka/m

The Matlab script used to generate the above plot is given below.

function plotDispersion
KO = 0.1;

7

7

7

7

= pi/a;

= —-2%b0:0.01:2+b;

o0 2R3
Il
N S

for ii=1l:length (k)
[omega(ii, :)] = calcOmega (KO, K, m, M, a, k(ii));
end
omegal = sqgrt (KO/m) ;
pl = plot (k/b, omega(:,1)/omegal); hold on;
p2 = plot(k/b, omega(:,2)/omegal); hold on;

set (gca, ’'LineWidth’, 3, ’'FontName’, ’'times’, ’'FontSize’, 22);

set ([pl p2], ’LineWidth’, 2, ’'Color’, 'k’);
axis square;
xlabel ("ka/\pi’,’FontName’, ’'times’, ’'FontSize’, 22);

ylabel (' \omega/\omega_0’,’FontName’, ’'times’, ’'FontSize’, 22);

set (gca, ’'XTick’, [-2 -1 0 1 21);
function [omega] = calcOmega (KO, K, m, M, a, k)

tl
t2

KO* (m+M) + 2xKxmx (1 - cos(kxa));
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t3 = sqgrt (2xmxM);

omega (1) = sqgrt(tl - sqgrt(t2))/t3 ;
omega (2) = sqgrt(tl + sqgrt(t2))/t3 ;
omega (3) = - sqgrt(tl - sqgrt(t2))/t3 ;
omega (4) = - sqrt(tl + sqgrt(t2))/t3 ;

135



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

Problem 7.11 Plot the dispersion relation described by equation (7.44) and compare your result to the plot
shown in Figure 7.11.

Solution - 7.11: A sample Matlab script is given below. Some sorting etc. are needed to clean the data.

function disperseNet

calcDisperse;
plotData;

function calcDisperse
fid = fopen(’'DispersePlotDat.dat’,’'w’);
figure;
omegal = 0.001:0.1:16;
for ii=1l:length (omegal)
ii
plotDisperse (fid, omegal (ii), ii);
end
fclose (fid);
axis square;
set (gca, ’'LineWidth’, 3, ’'FontName’, ’'times’, ’'FontSize’, 22);
set (gca, ’'XLim’, [-1.41421*pi/pi 2*pi/pi]l, 'YLim’, [0 16/pil);
xlabel ("ka/\pi’, ’'FontName’, 'times’, ’'FontSize’, 22);
ylabel (" \omega/\pi’, ’FontName’, ’'times’, ’FontSize’, 22);

function plotData
load DispersePlotUnig.dat
kk = DispersePlotUnig(:,1);
omega = DispersePlotUniqg(:,2);
plot (kk, omega, ’'k.’)
axis square;
set (gca, ’'LineWidth’, 3, ’'FontName’, ’'times’, ’'FontSize’, 22);
set (gca, 'XLim’, [-1.41421+%pi/pi 2#*pi/pi], ’'YLim’, [0 6]);
xlabel ("ka/\pi’, ’'FontName’, ’times’, ’'FontSize’, 22);
ylabel (" \omega/\pi’, ’'FontName’, ’'times’, ’'FontSize’, 22);

function plotDisperse (fid, omegal, nn)
a=1;
cl = 1;
c2 = 5;

% First M-Gamma

inc = 0.1;

intl 1.0:-inc:0;

int2 = 0:inc:1.0;

k1l = intlxpi/a;

for ii=1l:length (k1)

omegab (ii) = bisection(kl(ii), k1(ii), a, cl, c2, omegal);

loc(ii) = sqgrt(2)x«kl(ii);

fprintf (fid, ’%12.5e %12.5e\n’, -loc(ii)/pi, omegab (ii)/pi);
end

plot (-loc/pi, real (omegab)/pi, 'k.’); hold on;

% Then Gamma-X

kl = int2xpi/a;

for ii=l:length(kl)
omegab (ii) = bisection(kl(ii), 0, a, cl, c2, omegaOl);
loc(ii) = k1 (ii);
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fprintf (fid, ’%12.5e %12.5e\n’,

end

plot (loc/pi, real (omegab)/pi, 'k.’);
% Last X-M
k2 = int2xpi/a;
for ii=1:length(k2)
omegab (ii) = bisection(pi/a, k2 (ii

loc(ii) /pi,

omegab (ii) /pi);

hold on;

), cl, c2, omega0);

ar

loc(ii) = pi/a+inc=*(ii-1)+*pi/a;
fprintf (fid, ’%12.5e %12.5e\n’, loc(ii)/pi, omegab (ii)/pi);
end
plot (loc/pi, real (omegab)/pi, 'k.’); hold on;
function [omega] = calcOmega(kl, k2, a, c, n)
cc = 1/2%(cos (klxa)+cos (k2*a));
ss = sqgrt(l -cc”2);
tt = ss/cc;
omega = (c/a)+xacos(cc);
function [fx, dfdx] = calcFunc(omega, k1, k2, a, cl, c2)
fx = —c2xcot ((a*xomega)/cl) - clxcot ((axomega)/c2) +
c2xcos (axkl) /sin ((a*xomega) /cl) + clxcos(axk2)/sin((axomega)/c2);
dfdx = 0;
function [omega] = bisection(kl, k2, a, cl, c2, omega0)
aa = omegal;
bb = omegal0 + 0.01;
[fa, dfadx] = calcFunc(aa, k1, k2, a, cl, c2);
[fb, dfbdx] = calcFunc(bb, k1, k2, a, cl, c2);
while (sign(fa) == sign(fb))
bb = bb + 0.01;
[fb, dfbdx] = calcFunc(bb, k1, k2, a, cl, c2);
end
if (fa <= 0)
lo = aa; hi = bb;
else
lo = bb; hi = aa;
end
mid = lo + (hi-lo)/2;
while (mid "= lo) & (mid “=hi)
[fmid, dfmiddx] = calcFunc(mid, k1, k2, a, cl, c2);
if (fmid <= 0)
lo = mid;
else
hi = mid;
end
mid = lo + (hi-lo)/2;
end
omega = mid;
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Problem 7.12 Find the dispersion relations & = k(w) for the Milton-Willis model discussed in Chapter 5. Plot
the dispersion diagram for the model with ¢ = 1/2.

Solution - 7.12: The solution given below may not be accurate. Please use it only a guide for the approach to be
taken for this problem.

Recall that
1 5T _
p= {pl} = Re ({—iwm {C UZ’Q] + = { w ul] } e_“"t>
b2 Cui2 2 | —w U9
or,
) u1,1
_|p1] _ 0 0 0 —iwme™ U1,2 /2 0 | |—iwup iwt
P= {pg} =Re {O —iwme 0 0 } Ug.1 t { 0 /2] |—iwug ¢
U2 2

Therefore, we can write the stress and momentum density equations as

[ A it
o011 = Re 5 (ur1,1 +ug2)e ™
[ hk it
012 = Re 7 (u271 + u172) e

091 = Re (ug1 +ui2) — w?me Ug} e_““"}

0 .
p1 = Re [{ —iwme™! U2 — iw§ up p e Wt

p2 = Re

{2
[ e .
022 = Re {2 (w11 + 3ug2) — wime™? ul} e_“"t]

- - g —iwt
—iWwmc uy 2 — zw§ U p €

The equation of motion is
V.-o+b=p

Expressed in terms of components with respect to the (e, e2) basis, we have
0ji,j T bi = Di

For the two dimensional case,
o11,1 +0212+bi =

012,10 + 0222 + b2 = Po
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Now,
o11,1 = Re
o12,1 = Re
o21,2 = Re
0222 = Re
p1 = Re
p2 = Re

Let us look for Bloch wave solutions

ul(x) = ﬂl ezk-x
u2 (X) = ag eik-x
Then ) ) .
w1 =1k U etkx U111 = —k% iy e ui,12 = —ki ka2 Uy elkx
Uro =i ko Uy €% wupor = —ki ko Uy %% wp 00 = —k3 Uy e
. ~ k- 2 ~ ik- ~ k-
U1 =1 ki g €™ ; U211 = —/4;1 U €% y U212 = —k1 ko Ug €™
Uz2 =1 ko U elkex Ugo1 = —k1 ko U etk U 22 = ka Uy e’
Plugging into the expressions for o;; and p;, we have
[ he )
2~ -~ i(k-x—wt
011,1 = Re ?(kl ur + k1 ko ug)e( )
K )
2~ ~ N\ i(kex—wt
0'12}1:RC —7(]61 Us + k1 ko ul)e( wt)
[ hk )
o212 = Re { (k1 ko ua + k2 Up) —1 wrme ko Ty p etlex—wt)
[ h/<; )
0222 = Re { (k1 ko ur +3 k2 Ug) — 1 Wrme ko 1y b etkxwt)
151 = Re {Z w me— kg ag — w2§ ﬂl ez(kxfwt)
P2 = Re {—2 w'me ko U1 — w2§ Ty p ellkx—wt)

h"@ —iwt
5 (w111 +ug21)e
hk —iwt
> (ug11 +uro1)e€
h 2 —iwt
> (ug12 +u122) —w mcugs p e
[ b )
2 -1 —iwt
- (u1,12 + 3ug,22) —wme™ " u1 2 p € ¥
2 1 20 —iwt
—w mc U222 —W S UL (&
2
- 5 |
—w?me Ur2 — w2§ uy p e W

(in the large wavelength limit) of the form
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Plug into equations of motion (with b; = 0) to get

h 0 )
Re (—; {(k‘% + kg) U + 2k ko ag} +1 w%n(cfl — C) ko Uy + w2§ a1> €Z(k'xwt)] =0
he ~ 2 2\ ~ .9 —1 ~ 20 i(k-x—wt)
Re —7{2k1k2u1+(k1+3k2)uQ}+zwm(c—c ) ko1 +w Juz| e =0
Define
Ko hk
=5
Then, in matrix form,
-K (I<:2+k:2)+o.)2é 2K ki ky —iw?m(c—c V) k| [
Re 1T R2 B 12 2 Ur) jitkx—wt) L _ 0
L2 1 2 2 20 U2 0
—2K ki ke +iwm(c—c ) ko —K (ki +3k3) +w’=

2

This system of equations has a nonzero solution only if A is singular, i.e.,

§
K (kf 4 k3) —w?~ 2K ki ky +iw?m(c—c 1) ko
det(A) := det 2 5 -0
2K ky ks —iw?m(c—c1) ko K(kf+3k§)—w2§

Expanded out, we have the dispersion relation

2

) 1
det(A) := meZ <c2+622) k%} wh — K § (K +2k3) w? + K2(ki +3k3) =0

For the case where § = 0, we have

1
det(A) = —m? <02 + i 2) k3w + K (k] +3k5) =0

Ke | Er+3k3

2 1 2
=4 A OJ 7.13
w mbko\ ct—2c2+1 ( )

N 1
{T} = | —2k1k3 Tk +3kd
2

(kT 4 k3) ko

The solutions are

The vectors u are given by

Remark:
Notice that the ratio @y /u» is imaginary. This implies that the displacements in the two directions are out
of phase for our model.

If ¢ = 0.5 then the dispersion relations are

2K
2 _ /1.4 4
w 7i3mk;2 kT + 3 k3 [l (7.14)
Ifk; =0,
2Kk
wr=+ 2
\/gm

140



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

and
N 1
Y= | i3
Ua Ve
ko
If k1 = ko,
4Kk
W=+ 2
3m
and
~ 1
5= s
U 1 —
2 T s

If ko = 0 then the solution blows up.

A plot of the dispersion relation chose to & = 0 (i.e., for long wavelengths) is shown in Figure 7.1(a). A
schematic of the reciprocal lattice and the path along which the dispersion relation has been calculated is
shown in Figuer 7.1(b).
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(a) Dispersion relation.
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(b) Reciprocal lattice.

Figure 7.1: A material made by tiling the plane with the spring model.
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Problem 7.13 The governing equation for antiplane shear (SH-waves) in an inhomogeneous, but isotropic,
medium can be written as

V- (w1, 22)Vug(zy, 29)) + w?p(zy, 20)uz(w1, 12) = 0.

Derive the weak form of this equation as it applies to a periodic composite by taking the product with a
vector test function w(x1,x2) (with compact support) and integrating over the volume of the unit cell.
Discretize the resulting equation using finite element basis functions and comment on how Bloch periodic
boundary conditions may be implemented in this situation.

Solution - 7.13: Note that the weak form in this problem has a physical significance if the weighting function is
scalar valued. However, for the purposes of this problem we will use a vector valued w.

Integration over the volume after multiplication of the governing equation by a weighting function leads to

/ [V (uVuz)w + w’pusw] d2 = 0.
Q

We can show that o o o o -
V. (uVuz @w) =V - (uVuz)w + uVw - Vus.

Using the above identity, we can write
/Q [V (uVus @ W) — uVw - Vug + w’puzw| d2 = 0.

Using the divergence theorem, we have

/F [n- (uVuz @ w)|dl — /Q (LYW - Vuz — w’pusw] dQ = 0.
Rearranging gives the desired weak form

/Q (LYW - Vus — w?pusw] d = /F [(WVuz -n)w]dl' O (7.15)
To get the finite element discretization, we assume solutions of the form

u;;—Zu] (21, 29) and W:iWka(iﬂl,l'g).
k=1

Substituting these into the weak form leads to

/ #ZZ wi @ VN, - (u;VN;) — w?p(u; N;) (Wi Ny) | dQ =

k=1j=1

/ SO [uu,VN;) -n] (wely) | dr
T k=1j=1
Reorganization leads to

ZZ/ Wi (V Ny, - VN;) u; — wi(w?pN; Ni,) u;] dQ =
k=1 j=1

ZZ/ Wi (1t Ny VN; -n)u;] dr.

k=1 j=1
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Since the weighting function is arbitrary, we have
> / [(WV Ny, - VN;) uj — (w0 pN;Ni,) uj] dQ =
j=1"5%

Z/F[(uNkVNj-n)uj}dF for k=1...n.
j=1

Define the stiffness, mass matrix, and surface traction terms as
Kkj :/NVNkVN]dQ, Mkj ::/kadeQ; and Tkj :/,uNkVNjndF
Q Q r

Then we have .

Z[Kkj*w2Mkj]uj:ZTkjuj for k=1...n.
j=1

j=1
In matrix form,
K-w’Mu=Tu O (7.16)

where the quantities on the right hand side are only evaluated at the boundaries of the unit cell. In practice,
it is more convenient to keep the right hand side in terms of stresses so that the dependence on the boundary
displacements becomes implicit and traction free boundary conditions become easy to implement. In that
case, we can write the above equation as

(K — w’Myu = £
with £ = 0 for traction free boundaries. This eigenvalue problem may then be solved for w(k).

One approach for implementing Bloch periodic boundary conditions for this problem can be found in
Guenneau et al. (2007).
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Problem 7.14 The weak form of the wave equation in a periodic elastic composite can be written as
/ |:(V‘/A\I,,7 +ik @ w,) : C, : (VH, + ik ®u,) — w?p,W, -1, d2 =0.
Q

Show that the above equation can be discretized using finite elements in system of algebraic equations of
the form

[K(k) — w?Mu = 0.

Solution - 7.14: We can introduce a finite element discretization of the form
u, :zn:uka and \ :En:ijj.
k=1 j=1
Plugging these into the weak form gives us
> Z/ [(wj ® VN; +ik ® (W;N;)) : C, : (u @ VNg + ik @ (uNy.)) —
j=1k=1"%
w?py (Wi N;) - (uka)] a2 =0.
Let us simplify the above equation term by term using the symmetries of C,,. For the first term, we have
(W; @ VN;):Cp : (, ® VNR) =w, - (VN;-C,, - VNi) - ug .
For the second term,
(W; ® VN;) : C, : (iNyk®ug) =w; - [iNy VN; -C, - K] - uy, .
For the third term,
(iIN;k@w;):Cp: (upy ® VN,) =w; - [iN;k-C,, - VNi| - uy .
The fourth term is
(iNk@w;):C,: (iNyk®@ui) = —w; - [N;Nyk-C,, - K] - uy .

Therefore, we can write the weak form as

Zij.{/ <VNj-C,,~VNk.+iNkVNj-Cn-k+iNjk-C,,,-VNk—Nij.k-Cn-k—
j=1k=1 Q

w?p, N; Ny, 1>dQ} ‘u,=0.

The weighting function w can be arbitrary, therefore, for each j = 1...n, we have

Z{/ <VN]"CW'VN]C—I—Z'N]CVNJ‘-C,l-k+iNjk~Cn~VNk—Nijk-cn-k—
k=19

w?py N; Ny 1) dQ} ‘u; =0.
Let us define

Kjk :/<VN]CnVNk—HNkVNJan+zNjkC,7VNk—N]Nkank>dQ
Q

Mjk ::/panNkldQ.
Q
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Note that K, is a function of the wavevector k. Then, for each j, we have

In matrix notation,
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Chapter 8

Solutions for Exercises in Chapter 8

Problem 8.1 A plane wave propagating through a layered medium can be expressed in the form
U2 (1‘17 T3, t) = (Aljeijg + Agjeikjra) 6i<k11170ﬁ) .
Show that if 23 > 0 and Re(k;) > 0 we must have Im(k;) < 0.

Solution - 8.1 Let us start from the governing equation and let us express k; in terms of its real and imaginary
parts as
kj =k +ik; .

Then we have,
2/\
0 U9
2
Oxs

The solution to this equation has the form

+ (ky + k)2 02 = 0.

ﬂQ _ Aljeik,,,xgefkia:g + A2j671k7.w36kiz3 )
Therefore, the plane wave solution can be expressed as
u2 (.,1,/,17 :L'3, t) — (Aljelk)T.de—kiiljg + A2je—zki7~$3 ekixg,) ez(klzcl—wt) .

This solution is always bounded if k; = 0, i.e., Im(k‘j) = 0. If z3 > 0 and k; > 0, the second term is
unbounded for z3 — oo unless Ag; = 0. If 3 > 0 and k; < 0, the first term blows up unless A;; = 0.
Therefore, one solution is valid for k; > 0 and the other for k; < 0, i.e.,

AZjefikr,»ag eki$3 ei(krlmlfwt) for k’L < 0
Aljeik’"lge_kix?’ eilkizi—wt)  for k; >0.

u2(£17x37t) = {

To choose between these solutions we have to consider the case where k; is real, k; > 0, and x3 > 0. For
the solution to be bounded, A;; = 0. Therefore, the solution must be

us(z1,23,t) = Azje_lkTMeki‘T?’ gikiz1—wt)

which is bounded only if Im(k;) < 0. Hence the requirement that if z3 > 0 and Re(k;) > 0 we must have
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Problem 8.2 Verify that the generalized reflection and transmission coefficients for TE-waves can also be ap-
plied without change to acoustic waves. What are the equivalent expressions for R; ;1 and T} ;4 for
acoustic waves?

Solution - 8.2: Recall from equations (8.5) and (8.8) that the acoustic and TE wave equations for layered media

can be written as
2P 2} _ d (1dE
—i—[w - kilp=0 and lud2</i P

d (1dp
Paz p dz

It is more convenient to work with solutions of the form exp(+ik,z) rather than exp(+k,z). Note that
these two forms are equivalent. Also note that for the acoustic problem

+ [w’epn — k] E=0.

k2 =w?? 2
K

z

while for the TE problem
k? = w?ep — k3.

The equations are identical and the only difference can be in the boundary conditions at the interface
between two layers (labeled 1 and 2. The interface conditions for acoustic waves are

1 Op1 1 Op2
p1=p2 and Uy = Uy S — = — QX5
p1 0z  po Oz

Clearly, these have the same form as for TE waves and therefore, following the approach in Chapter 2, p.
86-88, we have
k.1 — p1k, 2p2k,
Rys = P2Rz1 — P1Rz2 and Tm:L.
pakz1 + pik.o pak.1 + pik.o
Similarly, for a slab, we have

T12T21 Ro3 exp[2ik.2(dy — dy)]
1-— R21R23 eXp(Qikzg(dQ — dl)
. T12T53 Rog exp|2ik.o(ds — dy)]

13 1-— R21R23 exp(Qikzg(dg — dl) '

Ris = Ria +

The expressions for R; j11,T} ;41 are clearly

pi+1kz; — pikz 41

2pj1kz, 0
pj+1kzj + pikz j41

pi+1kzj + pikz i1

and  Tjj+1 =

Rjj11=
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Problem 8.3 Find the matrix H and the associated state vector V for the propagation of P-SV waves in a layered

medium.

Solution - 8.3 This problem involves linear elastic waves in a layered medium. P-SV waves are a superposition
of P-waves and SV-waves and can occur at interfaces between homogeneous isotropic media. When these
waves occur at a surface they are called Rayleigh waves.

The displacement field in the layered medium has the form
u(zy,xs,t) = u(ws) expli(k1z1 — wt)].
For P-SV waves, the non-zero components of displacement are
u (1, w3, ) = ur () expli(krzy —wt)]  and  ug(w1, 23, t) = Us(ws) expli(krzr — wt)] .

Let us assume that each layer in the medium is composed of an isotropic material. Then the stress-
displacement relation in a layer is

Ouy, Ou;  Ou,
Oij =X 7—0i; + 1t + .

55% 8:5]- 8:51

Then the stress-displacement relations are

ou ou du. R _
o11 = (A +2p) 8—1; +A a—uz = l)\ d—xz + ik (N +2u)uy (m;»,)] expli(k1x1 — wt)]
0 0 du.
099 — A <azﬁ+ 8ZZ> =A £+ ikl ﬂl (.’1?3) exp[i(k:lxl — wt)]
ou ou du N .
033 = ()\ + 2,u) 872 + A 871; = ()\ + 2,u) ﬁ + ’Lkl)\’ul(l'g)‘| exp[z(klml — wt)]
ou us: du N )
031 = <3x;+ 61;?) =u dT::,+ iki1us(x3) | expli(k1z1 — wt)]
_ 3U3 —0 d . 8u1 —0
0'23—/,Lax2— an Ulg—uaxQ— .

Since the stresses must also be harmonic, we can write

g31 = 831(1‘3) GXp[i(klllil — wt)] and J33 = (/3'\33(173) exp[i(k1x1 — wt)]

where
- dﬂl . . —~ daS . ~
031 =t — +ikiptug(xzs) and T33 = (A +2u) — + ik1 AUy (z3) .
d.’L‘g da?g
Also, the momentum equation is
80'1']' . 82uj
or;  F o
In terms of the non-zero components of stress,
80’11 80’31 82’661 80’31 80'33 82’(1,3
+ =p and =p .
01'1 6':c3 8t2 a$1 31’3 8t2
If we substitute the expressions for o;; into the momentum equation, we have
) duz . dos .
ik | Mxs) =— 4 ik1[A(x3) + 2u(xs)]u (xs) | + = —w?p(x3)Uy (23)
dl‘g d$3
du do
ikﬁlu(l‘g) CTT; + ’L']{ilag,(xg) + d$333 = —w2p(x3)ﬂ3(x3) .
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Rearrangement leads to

duz do R
A Grg) = (KA Ges) o+ 2p(a)] — o plas)] A ()
3 dﬂl dagg ~
ZklMx?’)dT;g,Jr Qs [kiu(ws) — w?p(s)] s (s) .

Rearrangement of the expressions for 7;; gives us

duy . -
plas) o= os1(w3) — ihip(ws)us(s)
8 @.1)
duz , N '
[A(zs) + 2u(xs)] drs 033(w3) — ik A(zs)ur(xs) -
Using these to remove the derivatives of %; in the momentum equations, we get
do3 ikiA(z3) , R
= — — itk A
dzs Axs) + 2p(x3) Gsa(ws) = ikaA(s)ii ()] +
[k [A(w3) + 2u(ws3)] — w0’ p(as)] @i (23)
da\33 . ~ . ~ 2 2 ~
e —iky [G31(x3) — ik pu(ws)uz(w3)] + [kiu(zs) — w’p(xs)] Us(ws)
or
dos, ikiA(xs) Ak p(ra)[Mes) + p(xs)] o -
= — 033(x3) + —wp(x3)| ur(x
das ~ A+ 2ts) T T ) +2ue) A
dos3 oA N .
e —ik1G31(23) — w?p(w3)us(xs) .
T3
Combining the four equations and expressing them in matrix form, we have
. 1
i 0 —h 0 o
d ~ —iki A(z3) 0 0 1 ~
s E(z) A o)) e | |5
= 4 T z3)+u(x 7 T o
s g‘il [ 1”}\(;3)+23(m$ 2 —w?p(as) 0 0 - A(13;+2M3(13) :713,1
33 0 —w?p(z3) —iky 0 33
Therefore, the H matrix and the v vector are
. 1
‘ 0 —’Lk]_ m 0
71k1)\(w3) 0 0 1
H= |, ( )[A(A(m)sJ)j(?/t(ﬁs) A(ms_])jiét(r)s) (8.3)
= Tu(z T p(x 2 7 T
o) by W (@) 0 0~ t2ules)
0 —w?p(z3) —iks 0
and
uy
us
V= |.. O 8.4
= 031 8.4
033
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Problem 8.4 Use the WKBJ method to find the transmission coefficient for a plane wave propagating through
the graded slab shown in the figure below.

1(x), €(x) Mgy

TS /\_/

. | Incoming
e€(x)= 80 + (x — xo)‘

T itted
ransmitte; = 1 + e % P — Reflected

X, Slab x|

Solution - 8.4 Let us consider the TE-wave propagation problem for this slab. Recall that the TE-Wave equation
in this medium can be expressed as

d| 1 dE, 2 2
— | kK E,=0.
Therefore, o <> p and B <> e. Since p is not constant, we define ¢(z) = Ey(x)//p(x) to get the
equation
d*y ) ? (1
Tz kx_ﬁdﬁ(ﬁ) Y =0

where k2 (z) = w?e(z)p(x) — k2. Note that, with 1 = o[l + (x — 20)3],

22 mC (L 2 3@ —0)b(r —a0)° — 4]
ku() = ky =i <Mﬁ) =k - 4[(5— 20)3 +01]2

we have the equation

Using w?s?(z) = k2 (z), and the WKBJ solution of the above equation can be found using the approach
given in the text. Note that closed form solutions of the problem are not possible and numerical solutions
are needed. Use some reasonable values of the parameters to arrive at your solution.

The unknown E, () can be found once () is known and the boundary conditions at the incident bound-
ary of the slab have been applied. The ratio of the magnitudes of the field at the two boundaries gives the
transmission coefficient. [J
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Problem 8.5 Let 2, and z be the locations of the top and bottom of an isotropic elastic layer. Show that the
propagator matrix for antiplane shear waves in the layer can be expressed as

_ cosk,(z — 2p) (uk.)"tsink,(z — 2o)
B(z, 20) = —pk,sink,(z — zp) cosk,(z — z0)

Calculate the propagator matrix and then verify your result using the matrix exponential solution and

Sylvester’s formula. Note that the eigenvalues of a square matrix of the form oA where « is a scalar are
given by a\; where ); are the eigenvalues of A.

Solution - 8.5 Recall that the propagator matrix for a homogeneous layer is given by

P(z, z0) = exp[(z — z0)H] .

In the case of antiplane shear waves in an isotropic linear elastic medium

1
H= )| with k2 =u? p(2) — k2.
“K2u(z) 0 #z)

The eigenvalues of H are A = +ik,. Using the Taylor expansion of the exponential around z(, we have

1
P(z,2z0) =1+ (z — z0)H + E(Z — z0)2 H+

K=

1 1
oo (z — 20)°HHH + E(Z—ZO)4HHHH+5(2—20)5HHHHH+...
Explicitly,
k2(z2—20)2 Kk (z—20)t (z—z k3 (2—20)3 k5 (2—20)5
P(z,z0) = 1= 2(2!0> + Z(4! oLy k:u(k<1! o) _ 2(3.0> + 2(5!0) +...)
=50 = kz(z—20) kj:’(z—zo)g’ kz(z_zo)f)
—kp (=7, — = + . +..)

B2(2—20)2 k4 (2—20)4
1_ 2(12!»20) + Z(z4yzg) ¥

Noting that the expressions above are just series expansions of sines and cosines, we have

[ cosfha(z—z0)] ok sinfka(z — 2)]
P(z,20) = — k. sin[k,(z — 20)] kcos[kz(z — 2p)] - ®->

Verification using Sylvester’s formula (p. 305 of the text) is straightforward.
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Problem 8.6 Derive the relations between the E,, H, and E, H;. Also, find the explicit form of the matrix H.
Solution - 8.6 Recall that Maxwell’s equations have the form
VXE=iwu-H and V xH= —iwe-E.

We partition the field vectors and the material tensors into tangential and normal components:

E, H, Hss Hsz €ss Esz
E = == ; H = = I“L = s E =
EZ HZ I'I’ZS #ZZ EZS EZZ
Now,
0E., OE,
56%{ aaEZ PaozHy + proyHy + pio . H, Nss~H~%+HZH§£
V XxE= T_ 272 and p-H= |pyeHy + pyyHy +py.H, | = s H +HT
88EZ aaEm MoaHy + poyHy + po H, =22 ez
Yy xT
Or Jy
Similarly,
0H, O0H,
V xH= T z and e€-E= |eyFEy +eyEy+e B | = | = e
62 ax ) €zs Es + Ezgzz
BHy aHz gszw + €zyEy + EzzEz =
or dy
From the z-components of Maxwell’s equations, we then have
OF OFE, OH 0H,
87; oy iw (pos Hs + Hopiz2)  and Oa:y oy —iw (€55 Es + Ee22) -

From the definition of the tangential gradient operator, we see that

OE, 0K,
Vs xEg = — e, and V, x H;
Ox oy

oH, oH,
Oz Oy €z

Vs xBs =iw (s -Hs + Hopipe,) and Vi xHg = —iw (e,5 - Es + E,e..e;).

Therefore we can write, reverting back to vector notation,

Rearranging, and noting that H, = H,e, ,E, = F.e.,

1 1 1 1
Hz: . VSXES_ilJ/zs'Hs and Ez:_. VSXHs_iezs'Es U (86)
Wz oz WWE 22 €2z

Let us now consider the z- and y-components of Maxwell’s equations. We have,

0F. 0K, OH, OH,

dy 0z _ Ay T 0. _

aET aEZ Zw(“ss:s+ Hzg) and 8HT aHZ ZW(ESS:S + Ezssz)
0z B ox 9z - o
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“EEE

<

or,
OE., O0FE,
oy 0z | L v, xE]. - L. H
aE;E GEZ w |:/1’ss:s+ <iwl-lzz[ s X s]z Liss uzs:s Msz
0z ox
and
0H., O0H,
o . 1 1
oh. of| = [i:i - (iwﬁzz Vs > H: + gi) i:} '
9z Ox
For a infinite layered medium with only 2 variation in the fields, the above equations simplify to
OE,]
~a. 1 1
82 = iw |:I'Lss Hs - Mzs Ha M62:| =iw |:I-"as - Hsz Iszs:| S
aEx == T == . =0 ==
0z 4
and
0H,
- 1 1
616{i - _Zw {Q’E‘:‘S 5‘ZZ EZS ‘E‘:SESZ:| - _Zw {g €ZZ ESZ EZS:| :'é
0z -
Expanded out,
/’LZEZ/’LZZE _ /’[’IZ/’[’Zy _ u
ﬁ |:Ey:| = w Hzz o Hzz e |:Hac:|
0z [ Ba P ) e
ve I’LZZ v /’[’ZZ
and
E(EZEZI E(EZEZy
2 H, = jw Fow €2z Coy T €xz Ey .
0z |Hy EyzEzx EyzEzy E,
S
Combining the equations together,
i Hyz o Ly fhzy |
0 0 Pyz = ——— Hyy — ———
E Y MZZ v MZZ
a E{L‘ 0 0 /’(‘ZDZ/’(’ZZL‘ _ . /”‘wz/”‘zy _ uwy
_ Yyl — iw Mzz Hzz
0z HT EyzE€zx ¢ EyzEzy . 0 0
Hy €2z Y e v
E.TZEZCE E.TZEZy
ECox — Egy — —— 0 0
L Ezz €2z -
The H matrix is 4w times the 4 x 4 matrix above. O
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Problem 8.7 In the Schoenberg-Sen model of a periodic layered medium, the slowness component s, is related
to the angle of incidence 6; by s, = sinf;/cy where ¢y is the phase speed in the medium of incidence.
Show that, in the low frequency limit, the effective angle of transmission (6;) into the layered medium is
given by

6, = tan"! { sinh; (p)% (1/p>% (cgm sin? 97;>

Show that the same expression is obtained for the angle of transmission in a homogeneous medium with

- d p= <8> 1/<?/> 8
“wm PR T

Solution - 8.7 We can express the slowness components in polar coordinates (r,#) with § measured counter-
clockwise from the x-axis. Then,

s = 5(f)cosh and s, = 5(f)sind

where s(0) is the slowness surface (in 2D). Recall that

1 etz (1/P) §2 —
Wy o =)t ey o

In polar coordinates,

;32 cos? M32 sin? @ =
Wy (g ° O eos™ O gy & (D) sin0 =1
or
1/2
o (1/x)

(1/) (757 +sin0)
If 0; is the angle of incidence and 65 is the angle of transmission, Snell’s law requires that

sinf; sin6 .
= 7efft = 5(0;)sin b, = s,(6;)
Co C{

where c£f is the effective speed of sound in the layered medium. Therefore,

1/2
sinf; sin 0, <3£’i> -
co (1/p) (&3’?71/;) + sin 015)
Rearranging, 5 2 (1/k)
sin”0; ( cos” 0, L2 ) in2 g, \L/F
+sin246, | = sin24
7 (s /)
or
sin? 6; ( 1 2 > {1/x)
% + tan“ @ = tan2 0
3\ t 1)
or

tan? 6, {cg 87;; — sin? 91] (p) (1/p) = sin ;.
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Therefore,

0; = tan"* { sin; <,0>% (1/p)% (cgm — sin? HZ) O 8.7

The second part of the problem can be solved using the techniques discussed in earlier chapters. For a
isotropic incidence medium over a medium with a transversely anisotropic density and bulk modulus &,
we can show that the transmission angle is

[N

2
¢
0; = tan"' { sin6; (px/pz)% (pz 0 _ gin? 9i>
K

which is the relation that we seek. ]

156



An Introduction to Metamaterials and Waves in Composites: Solutions Manual

Problem 8.8 Verify that the effective stiffness of an elastic laminate can be expressed as

= (™)

= (e {emem)
G=(C" g e)+
(e e (em ) (e e) .

Consider the three-layered laminate shown in the figure below and assume that the x-direction is the
direction of lamination and the y, z-directions are in the plane of the laminate. The stiffness of layer 7 is

labeled C; in the figure.

Assume that layers 1 and 3 are made of a transversely isotropic AS/3501 (carbon fiber/epoxy) composite
with Young’s moduli £, = 9 GPa, £/, = E, = 140 GPa, Poisson’s ratios v,, = 0.1, vy, = v, = 0.3,
and shear moduli G, = Gy, = 7 GPa. Assume that layer 2 is isotropic with Young’s modulus £ = 70
GPa and Poisson’s ratio v = 0.2. What are the quasistatic effective elastic stiffnesses of the three layer
composite if the thicknesses of layers 1 and 3 are 2 mm and that of layer 2 is 5 mm?

Solution - 8.8 Recall that

()] [ -{em) (e e >[_gn1

<g[> - <(§nl)T 3 (gnn)_1> <gtt _ (:nt)T . (gnn)_l .gnl §
and nn nn nt
—<§‘> —(Cap) (Ceir) " Ceir —a"
() |7 [€" @ Cy-(C)T (G G| | € |
Therefore,
€ =(em) o (8:8)
and
(Cap) " -cap = (€™t €
(Cw)” - (C = (e’ E™))
A__gf'f _ (ﬁ)T . (ﬁ)fl :rel’;t _ <§n _ (Qnt)T . (gnn)fl _gnt> )
Then from the first equation above,
(em ) e =(em-e")
or .
w=(em) (em-eh) o (8.9)
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From the second equation and the symmetry of C,

)= (c" e

Therefore,

(Cen)" - (Cei

)—1

eff —

(C)7 - (

nt

and from the third equation we have

o
eff —

nn
eff

Ctn 5 (gnn)_l

(c

1

<§tt _gm ] (gnn)71 'gnt> i <gm ) (gm)*1> ) <(;an)—1>_ <(gnn)fl ,gnl>

In standard engineering notation, the strain-stress relation for an orthotropic material is

1 _Yya
E, E,
Vay 1
E, E,
Vyz __Vy=
Ey £,
0 0
0 0
0 0

—5= 0

_ ‘E: 0
E% 0
0 Gl
0 0
0 0

Q

w
8

o O O O

o o o o o

Q
8
<

L

O’ZEI

Oyy
02z
Uyz
JZ(E

Ozy

O (8.10)

For a transversely isotropic material that is isotropic in the 2 — 3 plane, the above relation simplifies to

O‘(E(E

Oyy
O—ZZ

Oyz
Ozx

Oxy

where A := E,(1 —v,,) —

have

o

=C
3

1

wal}'
Eyy
€ZZ
Eyz
EZCE

Exy

2

- 1 Vg Vg _
. By {Ej - Ef 0 0 07 T00a
Eyy B ,ﬁ’; ?yyz B Ey 0 0 0 Oyy
€zz| _ | E. = E, B, 0 0 0 Ozz
eyx| | O 0 0 Gl 0 0 Oys
€xa 0 0 0 0 &= 0| |0
Eay 0 0 0 0 0 g Lo
where G, = E,/(2(1 + vy)). Inversion of the above relation gives us
[E2(1-vy.) EyEyvay EyEyvay ]
A A 2. 2 2. 2 A 0 0 0
E.Ey vy E, Enyy Vey Eyuzy+E$ E,vy. 0 0 0
A A(l“l‘”yz) A(1+Vyz)
EyEyvay Ei V§y+EzEyVyz EmEy—Ei l/iy 0 0 0
= A A(l+vy.) A(l+vy.) 5
0 0 0 5400 0 0
0 0 0 0 Gzy O
0 0 0 0 0 Guy
2E, ny Plugging in the values of the elastic moduli of the two materials we
16.2 36 36 0 0 O 77.8 194 194 0
36 2338 1262 0 0 O 194 77.8 194 0
36 1262 2338 0 0 Of c - 194 194 778 O
0 0 0 53.8 0 0| "= 0 0 0 292
0 0 0 0 7 0 0 0 0 0 2
0 0 0 0o 0 7 0 0 0 0
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Now, for layers 1 and 3,

Cii11 Crizz Chriae 0 0 0
Cii22 Ca2222 Caa33 0 0 0
Cc-— Ci122 Caazs  Caooa 0 0 0
= 0 0 0 3(Caog — Cogsz) 0 0
0 0 0 0 Ci212 0
0 0 0 0 0 Ci212
and for layer 2
Ciiin Crizz Chria 0 0 0
Cii22 Ciinn Chriae 0 0 0
C— Cii22 Cri22 Cun 0 0 0
= 0 0 0 2(Ch111 — Ch122) 0 0
0 0 0 0 2(Ci111 — C1122) 0
0 0 0 0 0 2(Cr111 — C1122)

Therefore, we have
1,3 1,3 1,3
05111) = 16-2702(222) = C:§333) =233.8
1,3 1,3 1,3 1,3 1,3 1,3
05122) = 05133) = C’2(211) = ng,su) =36, 05233) = C?()322) =126.2
1,3 1,3 1,3
02(323) =53.8, C'15)131) = C£212) =7
and @) _ o2 _ A
Ciinn = CUzanp = Us333 = 778
2 2 2 2 2 2
01(1)22 = 0512))3 = 52)11 = C?(,3)11 = 02(2)33 = C§3)22 =19.4
2 2 2
02(3)23 = Célg’)l = 01(2)12 =29.2.
All other components of the stiffness tensors are zero. Assuming that the plane of isotropy is the y-z

plane and that the normal to the layers is in the x-direction, we can partition the stiffness matrix using the
definitions

Ciiin - V2Cinz V2 Cins t Ciia2 Ciizs V2 Chizs
C"=|V2C111 2Ci212  2Cim3 | 3 €= [V2Ci222 V2Cisz 2 Chans
V2Ci311 2 Cizie 2 Cia13 V2 O30 V20333 2 Chsas
Ca11 V2 Co1a V2 Coniz . Ca222 Ca233 V2 Ca293
C"=| Csn V23319 V203313 3 € =] COa32 Cszzs V2 Cs3n3
V202311 2Ca312 2 Casis V2 O30 V2 C333 2 Cosos
Plugging in the values of the stiffness matrix components, we have
16.2 0 0 36 36 O
gﬂn — gﬂn _ O 14 O , gﬂl _ gﬂl _ 0 0 0
! 3 0 0 14 ! 3 0 0 0
36 0 O 233.8 126.2 0
C"=C"=1(3 0 0|, C'=C"= 1262 2338 0
! 3 0 0 0 s 0 0 1077
and
77.8 0 0 194 194 O
c"=|0 53 0|, C"=]0 0 0
> Lo 0 583 2 0 0 0
[19.4 0 0 77.8 194 0
C"=1194 0 0|, C"'=[194 778 0
> Lo 0o 2 0 0 583
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Now we have to computing volume averages. For the first partition, we have, with L = Ly + Lo + Ls,

€)= (em™)

:é [/Vl(g:n)_lvar/Vz(%l")—ldv+/‘/S(an)_ldv]

1
= e e e
1 2 3

Plugging in the values of the layer thicknesses and the stiffness matrices, we have

0.034 0 0
ct=| 0 0041 0
0 0 0.041
Therefore, )
28.9 0 0
Ci=|0 242 0 |GPa.
0 0 24.2|
Similarly, for the second partition, we have
1 [32.6 326 0
= (M) (e e)=o 0 ofcpa
| 0 0 O
and
326 0 0
T =1326 0 0| GPa.
0 0 0

Finally, plugging in values for the transverse components of the matrix, we have

145.6  65.3 0
te‘ff: 65.3 1456 0 | GPa.
0 0 80.3

Writing in engineering notation again, we have

989 326 326 0 0 0
326 1456 653 0 0 0
326 653 1456 0 0 0
Ca=1|0 o 0o 401 o o |CPa O
0 0 0 0 121 0
0 0 o 0 0 121
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Problem 8.9 Show that for a laminate made of isotropic linear elastic layers, the effective stiffness tensor has
components

—1 -1
1 . eff A 1
01111 <)\+2#> ) 01122 - 01133 - <)\+2H> </\+2H>
eff _ . eft . eff
01212 - 1313 - < > ) 2323 - <:u> ) C’1112 - C(1113 - C(1123 -
2 -1

O Oeff 4#()\+#) A 1

2222 — Y3333 (A 2p) A2 A 20

-1

eff 2u\ 1

C2233 < A2 > + < A2p > < A2 > '

Solution - 8.9: Recall that

m=(em)
n= (e ) (em e
tetff _ <§n _ gtn ) (an)f1 .gm> i

<gn _ (gm)_1> . <(gm)_1>*1 . <(gm)_1 .:m>

where
Ciiin - V2Cin2 V2 Cins : Cii22 Ciizs V2 Chizs
C"=|V2C111 2Ci212  2Cim3 | 3 €= [V2Ci22 V2Cisz 2 Chans
V2Ci311 2 Chiaie 2 Cia13 V2 O30 V20333 2 Chzas
Cao11 V2 Co212 V2 Ca213 Ca222 Ca233 V2 Ca223
C"=| Csn V2Ca310 V2Cs313| ; €= | Cazzo Cszzs V2 Cs3a3
V20311 2Ca312 2 Casis V2 Coza2 V2 Ca3zz 2 Cagos

If the material in each layer is isotropic, then the constitutive relation is
Cijrke = Nij0ke + p(0ik0je + 0:0051:) -
Then the components of the stiffness tensor are

Ciiin = A+2p; Ci112=0; Ci1i3=0; Ci211 =0

Ciroiz =p; Ci213=0; Ci311=0; Ci312=0; Ciziz=p
Criz2=XA; Crzsz=2A; Cri23=0; Cia22=0

Ci233=0; C1223=0; Ci1322=0; Ci333=0 C1323=0

Ca211 = A5 Ca212=0; C2213=0; Cs311 = A

C3312 =05 Cs313=0; C2311 =0; Coziz=A Ca313=0

Co200 = A+ 215 Cogzz = A; (223 =0; Cs390 = A

C3333 = A +2p; Cz323=0; C23220=0; Ca333=0; Cozo3=p.

Therefore,
A+2u 0 0 A A0
C"=| 0 2u 0|;C"=1{0 0 O
0 0 2u 0 0 0
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A0 0 A2 A 0
C'=|X 0 0f;C'=] X  X+2u 0
000 0 0 2u

Substituting into the expressions for the effective stiffness,

_1 -1
1
S5 0 0
(<) - Cifyy 0 0
.;E: 0 <ﬁ> 0 = 0 2 Cfhyy Oﬁ
- 0 0 2cd,
|0 o (%) |
< L >71 0 0 |
A A
N A2 ) 1 <>\+2M> <>\+2M> 0
eff = 0 <ﬂ> 0 0 0 0
-1 0 0 0
0 0 <ﬁ>
[/ i fi
[ (e ] e e
- 0 0 o —
i 0 0 0 0 0 0
_< 4#(>\+#)> < 2>\u
2u /\+2u
g 2 Ap(n+
=<l </\+2Hu> < l;\+2:
L 0 Qu
1
2 0 A A
i) 000 <>\+2u> S\ <H2#> <A+2#> 0
A 1
A2p 00 0 <2[L> ) 0 0 0

(
(5552 + (32 2p>2 <A+2H> (24 + (s
B < /\Q—i\;u> < A+2u> < A+2p0 >_ <4P;\(-i)-\;r:) > + < A A2u>

+
L 0 (2p)
5222 022f33 0
= 3322 C’3333 0
0 0 2 C§§23

Therefore,
eff 1\ 7! eff eff A 1\ 7!
Ciin = <7A+2u> i Clize = Clizs = <7,\+2u> <7,\+2#>
< > ; 02323 = (1) ; 01112 = 01113 = C1123 =
2 -1
Oeff eff Ap(A+p) A 1
5222 = Ci333 O+2p) P M2
+

—1
Ceff 2u 1
2233 — A+20 X+2,u A2u :

C(1212 - C(1313 -
0 8.11)
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Problem 8.10 Verify that the quasistatic effective permittivity of a laminate is given by the relations
-1

ff 1
i = (o)

eff 1 -1 €1j

_ /1 J
H=a) (8
-1

eff __ €i1 €1j 1 €; €14 .o

Eij_<€ij_ 6113>+<a> <6111><i> SIVECRS

Solution - 8.10 Recall that

where

110}

€32 €33

1t .ot €21 . _u €22 €23
:[612 513],§ :{ ],§=[

Expanding the terms

_ 1 €12 €13
€11 €1 €1
L(X) _ €21 *612621#{611622 *8138211£511€23
= €11 €1 €1
€31 —812631‘}—611532 —813831-}-511833
€11 €11 €11

Also recall that

where )
t
L 1 (-1 €
ff — —&
e 5e1f1f gtl Eiflfgu gtl .§1t
"eff “eff Teff  Teff.
where
seff Eeff Eeff
€1[ _ [Eeff Eeff] . 6[1 _ 21 . €tt _ 22 23
= 12 13] » &  — eff| » & eff eff
eff eff €31 eff €32 €33
Therefore,
_ 1 St €75 _ [ c12 cu
Sefg geﬂi gelﬂi €11 €11 €11
cl’} _ eff _eff eff _eff _ eff _eff eff _eff
€21 €12831+€11820 €13831+€11823 | _ £21 —€12621F€11€22 —€13€21F€11€23
=
i ff _eff | _eff _eff ff _eff | _eff _eff
€51 —eioe +eTiesy —€75c31 te91653 €31 —€12€31+€11€32 —€13€31+€11€33
= = =i
From the (1,1) terms of the equation we see that
—1
seff _ (1
11 €11 .
Therefore, we can write
eff eff
1ff ff f{:f:12 ff _eff ff §13 ff _eff
e eff el eff e eff e eff _e
B CHETAE Rt ad
e eff _e eff e eff e eff e
€31 —€12€31 T €11€32 —E€13€31 T E€11€33
(2 €12 €13
L €11 €11 €11
— [ €21 —€12€21+€11€22 —€13€21+€11€23
€11 €11 €11 €11
€31 —€12€31+€11€32 —€13€31+€11€33
€11 €11 €11

The required equations are obtained by solving the above system of equations. [
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Problem 8.11 Use the Backus approach to find expressions for the effective magnetic permeability of a laminate
with lamination in the x-direction.

Solution - 8.11 To find the effective material properties of the laminate we take advantage of the fact that since
the tangential components (parallel to the layers) of the magnetic field (H) are piecewise constant and
continuous across the interfaces between the layers, these tangential components must be constant, i.e.,
H, and Hj are constant in the laminate. Similarly, the continuity of the normal magnetic induction field
(B) across the interfaces and the fact that this field is constant in each layer implies that the component B,
is constant in the laminate.

Recall that the constitutive relation between B and H is
B=up-H.

Let us rewrite the constitutive relation in matrix form (with respect to the rectangular Cartesian basis
(e1, ez, e3) so that constant fields appear on the right hand side. We start by breaking up the matrix
representation of the constitutive relation into the form

By Hu B H,y

gt = gt1 gn ﬂt
where

v |D2| g |H2

o= |po] =[]
and

=

1t _ 1.t — (M2t [H22 H23
2 s 5 & L&‘n} B [M32 M33} ’

Note that the constant fields are B; and H'. We want to rewrite the equation so that these constant fields

appear on the right hand side. From the first row we get
By = p Hi+ pt - H

or,

-

Hy = (p11) ' By — (unn) '’ H

From the second row we get
i

=

oz,
I=
I

:gﬂHl+

Substitution gives
B' = (pn)'p" By — (pnn) (o pt) - H 4t H
or,
Qt _ (Nll)flitl ‘B1 + [gn o (,Ufll)il(gtl .glt):| .

Collecting and rearranging leads to

t —
Q [i11 itl Nllgn _Lﬁtl Lt

=

where the negative signs on H; and B; are used to make sure that the signs of the off diagonal terms are
identical. Define
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Then we have,
-B

—H,
[ Qt 1 =L(x)- :,Ht

Since the vector on the right hand side is constant, a volume average gives

(@) |- ()

Let us define the effective magnetic permeability of the laminate, p°™, via the relation

-B
t

<B> = Heff - <H> :

Since the tangential components of H are constant in the laminate, the average values (H>) and ( H3) must
also be constant. Similarly, the average value (B;) must be constant. Therefore we can use the same
arguments as we used before to write the effective constitutive relation in the form

o) |

()

1t
1|t Mgy
Leff =
. ff tl eff it . t1 1t
n3T [ Mot H11Mesr — Metr * Meff

-B

=Ly |

where

and per has been decomposed in exactly the same manner as p. If we compare the two forms of the
effective relations we get a formula for determining the effective permittivity of the laminate.

Expanding out the terms, we have

-1

eff _ /1

/~‘11 - <H11>
-1

eff _ /1 Bij

Hij = </1«11> <M11> - ®.12)

eff __ Y 2 2 Y] + 1 -1 Bi1 Bij i %1

Fij = \Hij M1 M1t M1 H11 4]
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Problem 8.12 Use the relation .

[Ser = Py(m)] " = ([0 — Pym)] ")

to find the effective permittivity of a laminate that is oriented in the x5-direction.
Solution - 8.12 From the above relation we see that
1\ 1
Ser = Py(m) + ([S6) - Py(m)] )
Recall that
S(X) = 60[501 - E(X)}il and S = 50[601 - Eeff]71 .

Therefore,

—1 —1
Eoseff = g0l — €eff — Eeff = 60(1 — Seff ) .

Plugging in the expression for S.g, we have

—17

Eeff = €0 [1 - [P|(n) + <[S(x) - P|<n)}1>‘1]

For simplicity, let us consider a rank-1 laminate with

el 0 0 el 0 0]
er=|0 2 0 and eo= |0 €32 0
0 0 &3 0 0 &3]
Assuming €9 = 1, we have
1
1 1—e11 (1) 0
SE)=1-ex)]"=| 0 1= (1)
0 0 e
Withn = (0,1, 0), we have
1-— €11 0 0
[S@@)-Pim)] ™ =| 0 =0
0 0 1-— £33
Therefore,
1-—- f15%1 - f2<€§2 0 0
([S(z) - Py(m)] 1) = 0 e B 0
0 0 1— f1€:1)’3 — f2€§3

where fi; 4+ fo = 1 are the volume fractions of the two materials. Inverting,

TR 0 0
(s@-me"=| 0 EEam
0 0 S
Therefore,
TR 0 0
Py(n) + ([S(z) — Py(n)] ") " = 0 R e 0

0

1—f1eP—f2e3?
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Inverting again,

) 1— fier' — foe3? 0 0
—_1\—1] £22 £22_ 22,22
[Pi) + ([S@) ~ Py )7 = 0 e 0
0 0 1—f15§3—f2€§3
Therefore,
fiett + foe3? 0 0
r 22 r 222 22 22
e R =
0 0 f1ed? + foed?
or,
fiett + foed? 0 0
_ 822822 |:|
Eeff - 0 W 0 (813)
0 0 f1ed3 + foed?
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Problem 8.13 Show that the Tartar-Murat-Lurie-Cherkaev formula for the effective permittivity of a rank-1
laminate

frealeal — €] ! = e2[e2l — &3] — foPy(n)

is equivalent to the formula derived using the Backus method.

Solution - 8.13: Reorganization of the TMLC formula gives us

v S
fiea

-1

Py(n)

Eeff = €21 — [521 —e1]”

h

Assuming thatn = e; = (1,0, 0), we have
1 00
P(n)=1[0 0 0
0 0 O

Let us assume that the permittivity tensor in each layer is symmetric. Expressing everything in matrix form
and running the calculation through Mathematica shows that (with f; = 1 — f5)

o (e1" —eo)eaft
511 62 + 11
ei fateafi
12
fi 22 er’ei® f1fa
€5 = €1 f1 —eafo — m
13
33 er’et® f1fa
€33 =1 f1 —eafo — m
13
e _ 25 e fife
= et fo+eafs
ceff _ 5%352fl
13= A7 T - 7
et fo+eafi
eff 5%252f1
12 T T - 7

et fot+eafi’

The corresponding Backus solution is

1

eff 1 €12

el =( — ).
€11 €11

For a rank-2 laminate with layer properties € and €21,

1\ T1 1 1o 1 1 17" A ]
=V =] —av| =|= AV —av| =|L 42
<511> {V /v €11 ] [V /v1 el v vy €2 } L%l * 52]
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or,
Eiflf - <1>_1 - 8%15211 :
€11 eafi +e1 fo
From the TMLC equations, using f; + fo = 1, we have

11

coff €1 €2

11— 11 :
g1 fat+eafi

Hence the Backus and TMLC results agree for 5. The same procedure can be used to verify the equiva-
lence of the other relations. [J
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Problem 8.14 Show that, for a rank-1 laminate with layer permittivities €; and €5 and volume fractions f; and
f2, Milton’s relation reduces to

B B n®n
fileer —e2) ™" = (e1 —€2) ' + foPa  where P“:m'

Solution - 8.14: Recall Milton’s relation:

S

where ®
n®n
Po=—.

n-gp-n

Clearly, if €9 = e, the average is undefined for regions with £(x) = €5. Instead, we use a small ¢, and
take the limit as § — 0. With eg = €5 — 01, we have

[(ccr &2+ 607" + ] T < {et) — 2 +-01) 7 + Py _1>

where
n®n

Pp=— "
n-(eg—901)-n

The right hand side can be written as

([eo—ervonwn] ") =3 [ [0 -ercon 4p] " av
Ve e i on
=h {{El —e 01} + Pn:| AP A

. . L -1 .
The apparently problematic term in the above expression is fo [6 114 Pn] . However, if we express
everything in matrix form, take the inverse and then take a limit as § — 0, we find that

lim [6'1+ P,] ' =0.

6—0

Therefore, in the limit § — 0, we have

_ -1 _ -1 n®n
(eett — €2) 1+Pn} =fi [(51*52) 1+Pn] where P, = ———.
n-es-n
Taking the inverse of both sides,
1 1 1
(et —€2) + Py = 7 [(81 —e9)  + Pn]
1
or,
f1 (Eeff — 52)_1 = (61 — €2)_1 + (1 — fl)Pn = (€1 — EQ)_l =+ fQPn O (814)
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Problem 8.15 Show that for an isotropic reference material with
Co=XMI®1+ 2u01

the Cartesian components of the operator P, have the form

_ 1 1
(Pn)ijke = <A0+2uo - %) NN Mg

+ All%o(nmgéjk + nmk§jg + njng5ik + njnk(%g) .

Solution - 8.15 Recall that
1 -1 -1 -1 -1
(Pn)ijie = 1 (C’jg n;ny + C’jk ning + C,, nyng + C; njng}
where
0
Cij = anpijqnq .
For an isotropic reference material
Cgijq = X00pidjq + 110(0p;0iq + Opgdij) -
Therefore,
Cij = )\()TLZ'TLJ' + ,uo(nmj + npnpéij) .
Since n is a unit vector, n,n, = 1, and we have
O, = )\oninj + ‘LL()(TLiTLj + 57,]) .
To find the inverse of C' it is convenient to use matrix notation. Thus

to + (Ao + ,uo)n% (Ao + to)nine (Ao + po)nins
C=| (Mo+muo)nine  wo+ Xo+po)nd (Ao + po)nans
(Ao + po)nins (Ao + po)nans  pio + (Ao + po)n3

Inverting the matrix and expressing the components in index notation, we have

o1 _ (Ao + po)npny + poldi; — (Ao + po)nin;

" to[(Ao + po)npny + ko)
Again using n,n, = 1, we have
o1 (Ao +2u0)di; — (Mo +po)nin; 1 o (Xo+ o) e
g = = ij — T ing -
po( Ao + 2p0) Ho po(Xo + 2p0)
Define ) \ ) )
A=— and B:=-— (Ao + fio) = R
Ho po(Xo +2p0) Ao+ 20 Ho
to write

Cgl = A(SU +BTLZ’I’LJ .

Substitute into the expression for (Py); ke to get

1
(Pn)ijke = 1 (A djening + Bngnegning + Adjrning + B njngnine+

Adyning + Bngngning + Adyning + Bninknjng>
or

1
(Pn)ijke = 1 [A (0jeming + Sjpning + 0iening + dipnjng) + 4B ninjnan]

Plugging back the expressions for A and B gives the desired result. [
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