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Summary 

The superelastic, shape memory, biocompatibility, and 
fatigue properties of Nitinol, a nickel-titanium alloy, have 
made the material attractive for medical devices such as 
cardiovascular stents. However, it is a complex material 
and difficult to process. Finite element modeling of Nitinol 
devices such as stents reduces testing and time-to-
market by allowing the designer to simulate the stent 
manufacturing and deployment processes. The constitu-
tive models for superelastic alloys are available as user 
subroutine libraries for both Abaqus/Standard and 
Abaqus/Explicit. 

Background 

Self-expanding micro devices (stents) are cylindrical metal 
mesh tubes, made of materials such as Nitinol, that are 
inserted into blood vessels to counteract the effects associ-
ated with vascular diseases, such as narrowing of the 
blood vessels due to plaque build-up. 

Nitinol stents can be manufactured from thin tubes into 
which a pattern is electromachined. After a sequence of 
operations, a stent is mounted on a catheter and inserted 
into a blood vessel. After being released by this delivery 
system (Figure 1), the stent self-expands and exerts a 
radial force on the wall of the blood vessel. 

 

 

 

 

 

 

The behavior of Nitinol is extremely complex, as can be 
seen from its uniaxial behavior shown in Figure 2. The 
key characteristic of Nitinol is its superelastic material be-
havior, making it an extremely flexible metal alloy that can 
undergo very large deformations without losing the ability 
to recover its original shape upon unloading. At rest, the 
material presents itself in an austenite phase. When 
loaded beyond a certain stress, the austenite phase 

Key Abaqus Features and Benefits 

Constitutive models, provided as user subrou-

tines, for accurately modeling the behavior of 
superelastic alloys such as Nitinol. 

Advanced modeling capabilities such as contact, 

large deformations, and annealing. 

Figure 1:  Stent and delivery system. 

Figure 2: Uniaxial behavior of Nitinol. 
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transforms into a martensite phase. The transformation 
produces a substantial amount of strain, which on 
unloading is reversible. Since the transformation strains 
are large (of the order of 6%) compared to elastic strains 
in typical metals, the material is said to be superelastic. 
Further loading beyond superelastic limit reveals plastic 
behavior in martensite. The material data required to cali-
brate the Abaqus material model can be obtained from 
the uniaxial behavior (Figure 2) in terms of loading, 
unloading, reverse loading, and temperature effects. 
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Finite Element Analysis Approach 

The manufacturing process of Nitinol stents starts from a 
thin tube in which a pattern is micro- machined. The finite 
element model is built from this machined tube. Since the 
pattern repeats itself symmetrically, only a part of the 
stent with appropriate symmetry boundary conditions 
needs to be considered (Figure 3). 

The stent is expanded to its nominal dimensions, typically 
at a diameter much larger than the original tube diameter 
(Figure 4). The fraction of martensite after expansion is 
shown in Figure 5. It can be seen that the fraction of mart-
ensite as well as the stresses are higher at the corners of 
the stent. The stent is then annealed to provide its new 
unloaded configuration. It is then crimped from the out-
side (Figure 6) and inserted into the delivery system 
(usually a system of catheter tubes). Once inside the 
blood vessel, the delivery system pushes the stent out of 
its containment (Figure 7), expanding to exert radial 
forces on the blood vessel. The tools are considered rigid 
and cylindrical. In this simplified Nitinol stent simulation, 
only a fraction of the length of the stent is modeled and 
the expansion is unconstrained when the tool is released 
(Figure 7). For the simulation to be more realistic, the ar-
tery has to be included in the model and the full length of 
the stent needs to be modeled. 

Figure 3: FE model of stent. 

Figure 4: Expanded stent. 

Figure 5: Fraction of transformed martensite. 

Figure 6: Crimped stent.  

Figure 7: Partially deployed stent. 

Results and Conclusions 

Nitinol exhibits extremely complex behavior and can be 
difficult to process; however, finite element modeling can 
hasten the time-to-market by reducing the design itera-
tions required. 

Finite element modeling can be used to reveal the stress 
or strain concentrations during manufacturing as well as 
deployment of the stent. This allows for optimization of 
stent designs. Additional pulsating loads after deployment 
allow prediction of the device life. The simulation can also 
reveal the amount of martensitic transformation that has 
taken place in the stent and, therefore, how close the de-
sign is to the limits of the material flexibility. 
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- “Annealing procedure,” Section 6.12.1 

- “Defining contact pairs in Abaqus/Standard,” Section 34.3.1 
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