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Abstract We propose a geometrically and materi-

ally nonlinear discrete mechanical model of graphene

that assigns an energetic cost to changes in bond

lengths, bond angles, and dihedral angles. We formu-

late a variational equilibrium problem for a rectangu-

lar graphene sheet with assigned balanced forces and

couples uniformly distributed over opposite side pairs.

We show that the resulting combination of stretching

and bending makes achiral graphene easier to bend

and harder (easier) to stretch for small (large) traction

loads. Our general developments hold for a wide class

of REBO potentials; we illustrate them in detail by

numerical calculations performed in the case of a

widely used 2nd-generation Brenner potential.

Keywords Graphene � Softening � Hardening �
Bending stiffness � Stretching stiffness

1 Introduction

Flexible and stretchable components are more and

more frequently employed in such electronic devices

as displays, light emitters, solar cells, etc. Recently,

graphene has been shown to be a promising material to

build devices that are able to bend and stretch; it has

then become important to model, predict, and test, its

mechanical behaviour under various combinations of
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bending and stretching loads. The basic problem we

here tackle is sketched in Fig. 1, where a rectangular

graphene sheet is depicted, subject to balanced couples

and forces uniformly applied along two different pairs

of opposite sides. Our goal is to evaluate how the

sheet’s bending and stretching stiffnesses depend on

the value of the couple and force loads. A brief survey

of the relevant literature is to be found in Sect. 2.

We consider a force-and-couple distribution as in

Fig. 1, for which it has been shown in [38], with the

use of Density Functional Theory, that bending

stiffness decreases in the presence of traction loads.

This effect, which is ascribed to a microscopic

phenomenon, namely, the stretch-induced loosening

of atom packing, is somehow counterintuitive for a

person trained in standard structure mechanics, whose

point of view is of course macroscopic. In this

contribution, we propose a geometrically and materi-

ally nonlinear discrete mechanical model, micro-

scopic in nature, which predicts, among other things,

that stretch reduces the bending stiffness of graphene.

Graphene is a two-dimensional carbon allotrope, in

the form of a hexagonal lattice whose vertices are

occupied by C atoms. In principle, just as for every

other molecular arrangement, graphene’s equilibrium

shapes can be characterized as local minima of an

intermolecular potential depending on the relative

positions of all C-atom pairs. Needless to say,

numerical simulations based on such an approach

would turn out to be either scarcely significant or

prohibitively honerous. In another largely adopted

approach, a choice of kinematic order parameters is

made: (1) under the assumption that their changes

decide the energetic cost of shape changes, as

predicted by a related intermolecular potential; (2)

with a view to end up with a list of Lagrangian

coordinates much shorter than the collection of triplets

of Cartesian coordinates of all C atoms in a given

graphene sheet. What makes the list short is a careful

account of the symmetries enjoyed by the problem at

hand. We choose three types of scalar order param-

eters, namely, bond length, bond angle, and dihedral

angle (see Fig. 2 in Sect. 3). The number of triplets of

such order parameters one needs assign to determine a

deformed configuration of a graphene sheet is small

when attention is confined, as we do here, to rectan-

gular achiral graphene sheets (see Figs. 4 and 7 for,

respectively, armchair and zigzag graphene sheets),

because their local and global geometries agree, in the

sense that their chiral vectors are parallel to a side pair,

both before and after application of loads. A further

reduction in the number of independent configuration

variables follows from taking into account the sym-

metries in the equilibrium solutions implied by the

specialty of the load distribution over the boundaries;

as detailed in Sects. 4 and 5, these symmetries are

different in the two achiral cases, but equally effective.

Just as in [10], material constitution is specified

here by an intermolecular potential depending on a

finite list of the above order parameters: our consti-

tutive prescriptions (19–20) are general enough to

include all potentials in the REBO family we know of

[3, 4, 40, 41]; equilibria correspond to local minima of

an energy functional including also the potential of the

applied loads; the governing equations are expressed

in terms of three types of nanostresses, that is, force-

like objects which are work-conjugated to, respec-

tively, changes in length of atomic bonds, changes in

angle between two adjacent bonds, and changes in

dihedral angles. The problem-specific novelties in this

paper are that we introduce proper definitions of

curvature, axial deformation, bending stiffness, and

stretching stiffness of a graphene sheet; and that, for

whatever potential in the chosen constitutive class, we

derive two analytical conditions for, respectively, (1)

softening of bending stiffness induced by a force

distribution as in Fig. 1 [condition (C1), formulated in

Sect. 4.3 for armchair graphene and adapted for the

Fig. 1 A sheet subject to bending and stretching loads

H

I J

K

Fig. 2 A four-atom chain in

a hexagonal lattice
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zigzag case in Sect. 5.3];1 (2) hardening of stretching

stiffness induced by a couple distribution as in Fig. 1

[condition (C2), Sects. 4.5 and 5.4].

Our main qualitative result is that concomitant

bending and stretching loads make the bending

stiffness decrease and, provided the applied tractions

are not too large, make the stretching stiffness

increase; said differently, graphene is softer to bend

when stretched and bent and harder to stretch when

bent and moderately stretched; moreover, the stretch-

ing stiffness decreases for large tractions, no matter

how large the applied couples. Related qualitative

results are the analytical expressions we derive for the

pristine (�no-load) bending and stretching stiffnesses

of achiral graphene. These expressions permit to spot

what deformation mechanisms make graphene able to

bear applied forces and couples, a piece of information

that we regard as important to try and build a

continuum theory by way of homogenization.

To arrive at the representative quantitative results

collected and discussed in Sect. 6, we choose the same

2nd-generation Brenner potential as in [10].2 This

potential is widely used in MD simulations for carbon

allotropes, such as graphene; for a detailed description

of its general form and the one adopted in our theory,

the reader is referred to the Appendix B of [10]. Here

we remark that the quantitative results we obtain are

plausible insofar the potential is; its calibration is then

crucial. We learn from [4] that ‘‘the database used for

fitting the parameters in the pair interactions and the

values of the bond order consists of equilibrium

distances, energies, and stretching force constants for

single (from diamond), conjugated double (from

graphite), full double (from ethene), and triple (from

ethyne) bonds’’. As detailed in Sect. 6, our results are

in good agreement with DFT computations presented

in [38], where axial strain up to 25 % is considered; we

presume, but we cannot guarantee as now, in the

absence of specific DFT confirmation, that our results

are realistic for very large curvature. We calculate

numerically how bending stiffness (Figs. 10, 11, 12

and 13), stretching stiffness (Figs. 14, 15, 16 and 17)

and nanostresses (Figs. 18, 19, 20, 21, 22, 23 and 24)

depend on the axial strain and curvature induced by the

applied force F and couple C. As to the bending

stiffness, we find that: (1) for F ¼ Fmax and C increas-

ing from 0 to Cmax, it decreases till � 19 % (43 %) in

the armchair (zigzag) case; (2) for F ¼ 0 and

C increasing from 0 to Cmax, it decreases till � 20 %

(23 %) in the armchair (zigzag) case; (3) C ¼ Cmax

and F increasing from 0 to Fmax, it decreases till � 35

% (59 %) in the armchair (zigzag) case; (4) for C ¼ 0

and F increasing from 0 to Fmax, it decreases till � 36

% (45 %) in the armchair (zigzag) case. As to the

stretching stiffness, we find that, for C increasing from

0 to Cmax, bending makes graphene harder to stretch

when F ¼ 0 and easier to stretch when F ¼ Fmax; the

regime transition occurs at the threshold value F ’ 6:5

nN/nm in the armchair case (F ’ 12:3 nN/nm in the

zigzag case), that is, at about 15 % (29 %) of the

fracture load. Moreover, (1) for F ¼ Fmax and C in-

creasing from 0 to Cmax, the stretching stiffness

decreases till � 14 % (13 %) in the armchair (zigzag)

case; (2) for F ¼ 0 and C increasing from 0 to Cmax, it

increases till �11 % (38 %) in the armchair (zigzag)

case.

2 A brief survey of the literature

The literature about the mechanical modeling of

C-atom complexes whose shape is reminiscent of

one or another type of macroscopic structure and

whose dimensions are minuscules is vast: in addition

to nanotubes, by far the most studied such minuscule

structures, one encounters nanoropes, graphene

nanoribbons, nanoshells (a term at times used as

alternative to nanotubes), etc.; what follows has no

pretensions to completeness, it only aims to exemplify

the various modeling approaches that have been used.

The elastic properties of nanoropes and of single-

and multi-wall carbon nanotubes (CNTs) have been

investigated in [25] by means of a lattice model

adopting a pair-wise harmonic interatomic potential;

in [49], molecular dynamics (MD) simulations were

performed, on adopting the Tersoff–Brenner potential;

local density approximation has been used in [43], and

ab initio calculations relative to nanoshells are offered

in [22]; experimental values have been reported in

1 In this connection, we note that, reversing the force distribu-

tion shown in Fig. 1 does not necessarily induce hardening,

because the problem nonlinearity demands for a recalculation of

the solution with a priori unpredictable effetcs.
2 In fact, we repeat, our procedure is general enough to

accommodate a variety of diehedral-angle sensitive REBO

potentials; consequently, it can be adopted to find out whether an

intermolecular potential in the class specified by (19–20) does

predict the peculiar behavior of graphene predicted in [38].
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[24, 42]. Discrete models have been employed since

long to predict the mechanical properties of CNTs: in

[14], closed-form expressions for the elastic properties

of armchair and zigzag CNTs have been proposed; the

model has been extended in [48] to study torsion

loading, with nonlinearities handled by means of a

modified Morse potential. A similar approach has been

used in [37] to investigate various loading conditions,

and in [44] to evaluate effective in-plane stiffness and

bending rigidity of CNTs. In [6], the model of [9] is

extended to chiral CNTs, an issue addressed also in

[7]. Computational methods have been presented in

[28] for CNTs and in [14–18] for graphene and

grahene nanoribbons.

Various continuum theories have been proposed,

with the same scope: in [50] a continuum theory of

single-wall CNTs has been presented, based on

Tersoff–Brenner potential; in [1] the stretching and

bending stiffnesses of graphene have been investi-

gated, by means of Tersoff–Brenner interatomic

potential; in [19, 45] the elastic properties of graphene

and CNTs have been evaluated by means of a higher-

order Cauchy–Born rule and of a Tersoff–Brenner

potential; in [29], an equivalent-continuum modeling

of nanostructured materials has been adopted; and

scale-bridging methods have been proposed in

[2, 8, 12, 13].

As to single-layer graphene sheets, their nonlinear

response to both in-plane and bending deformations has

been studied in [27] and their out-of-plane bending

behavior has been investigated in [32, 33] with the use a

special equivalent atomistic-continuum model. In [51],

the elastic properties of graphene have been theoreti-

cally predicted on taking into account internal lattice

relaxation. In [5], by combining continuum elasticity

theory and tight-binding atomistic simulations, a con-

stitutive nonlinear stress–strain relation for graphene

stretching has been proposed. Atomistic simulations

have been employed to investigate the elastic properties

of graphene in [30]. Based on the experiments

performed in [23], the nonlinear in-plane elastic

properties of graphene have been calculated in [46],

by means of DFT. A continuum theory of a free-

standing graphene monolayer, viewed as a two dimen-

sional 2-lattice, has been proposed in [34–36], where

the shift vector, which connects the two simple lattices,

is considered as an auxiliary variable.

To the best of our knowledge, the effects on

graphene stiffness of simultaneously increasing axial

and bending loads have never been investigated by

means of either first-principle calculations or MD. That

graphene’s bending stiffness decreases when graphene

is stretched has been shown for the first time in 2012, in

a paper where density functional theory (DFT) and

bond-orbital-theory (BOT) calculations were per-

formed and found to provide consistent results [38].

A study of the bending stiffness of single-layer

graphene with an initial curvature has been presented

in [21], where small-scale effects are accounted for by

the use of nonlocal elasticity. Very recently, in [31] and

in [39], a continuum theory based on REBO potentials

has been proposed, in order to study the elastic

properties of finitely-deformed graphene sheets; the

authors of [31], seemingly unaware of [38], claim that

theirs is the first study where the effects of curvature on

stretching stiffness are considered.

Papers [38] and [31] are the closest antecedents of

our study, in which the effects of concomitant

stretching and bending loads are examined in detail,

both qualitatively and quantitatively, on the basis of

the geometrically and materially nonlinear mechanical

model we propose. In the first of those papers, the

reported results are the output of DFT and BOT

computations; neither the dependence of the bending

stiffness on the amount of bending is evaluated nor the

stretching stiffness is considered; the focus is on how

bending stiffness depends on stretching in the absence

of bending loads: it is shown that softening does occur,

a prediction of our model that we use to validate it by

comparison. The influence of a modest amount of

curvature on stretching stiffness has been considered

in [31], within the framework of a continuum theory

and in the absence of stretching loads; a 2nd-gener-

ation Brenner potential is adopted, but dihedral

contributions are neglected and the potential is not

re-parameterized to compensate for this shortage. That

dihedral contributions are important was pointed out

in [26] and [10], and it is made evident by our Eq. (40),

that displays a direct dependence of the bending

stiffness, even in the absence of any loads, on the

dihedral stiffness and the bond-angle selfstress.

3 A discrete mechanical model for graphene

In this section, we introduce the geometrical, consti-

tutive, and equilibrium-related, general features of our

model. As anticipated, the solutions of the bending and
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stretching problems we solve will be discussed in

detail in Sect. 4 for an armchair sheet, and in Sect. 5

for a zigzag sheet.

3.1 Order parameters

The kinematic variables we consider are associated

with the interactions of a given atom with its first,

second and third nearest neighbours. Precisely, with

reference to the typical chain of four atoms depicted in

Fig. 2, consisting of atom H and its nearest neighbours

I, J, and K, we consider: (1) bond lengths, namely, the

lengths of the covalent bonds between two successive

atoms, such as H and I; (2) bond angles, namely, the

angles between two successive bonds, such as H � I

and I � J; (3) dihedral angles, namely, the angles

between the planes spanned by two pairs of successive

bonds, such as the plane spanned by H � I and I � J

and the plane spanned by I � J and J � K.

In its unloaded ground configuration, the graphene sheet

we consider has the form of a rectangle (see Fig. 3), whose

sidesarealignedwith, respectively, thearmchairandzigzag

directions 1 and 2; this rectangle consists of n1 hexagonal

cells in direction 1 and n2 cells in direction 2. With

reference to the representative cell A1B1A2B3A3B2A1,

a denotes the length of sides A1B1 and A3B3, and b the

length of the remaining four sides; morever, bond

angles are of a-type, such as e.g. dA3B2A1 , and of b-

type, such as dB2A1B1 ; finally, there are only five types

of dihedral angles, denoted by ðH1; . . .;H5Þ, to be

individuated with the help of the colored bond chains.

The information carried by a 9-entry substring

nsub :¼ ða; b; a; b;H1; . . .;H5Þ ð1Þ

is enough to determine the deformed configuration of a

representative hexagonal cell. In principle, the whole

sheet’s order-parameter string n consists of an

exhaustive and non-redundant sequence of cell sub-

strings; in practice, as we shall see in Sects. 4 and 5,

the symmetries enjoyed by the equilibrium problems

we study are such that the convenient kinematical

unknown turns out to be a string q of Lagrangian

coordinates shorter than nsub.

3.2 Energetics and equilibria

When attention is confined to traction loads as in

Fig. 1, a string q of Lagrangian coordinates is enough

to determine the energetic cost of load-induced

changes in bond lengths, bond angles and dihedral

angles of achiral graphene sheets; this fact, that we

anticipated in closing the previous subsection, will be

made clear in Sect. 4 for armchair sheets and in Sect.

5 for zigzag sheets.

The constitutive information about atom interac-

tions is embodied in a a stored-energy functional V ¼
eV ðnÞ of the REBO class, to be specified in Sect. 4.2;

given the mapping q 7!n ¼ bnðqÞ, we set:

V ¼ bV ðqÞ; with bV ¼ eV � bn : ð2Þ

For f the generalized dead load work-conjugated to

the generalized displacement bdðqÞ, the load potential

takes the form:

bPðqÞ :¼ f � bdðqÞ : ð3Þ

The equilibrium configurations are the stationary

points of the functional

W ¼ bW ðqÞ :¼ bV ðqÞ � bPðqÞ : ð4Þ

An equilibrium point q0 satisfies the condition:

dW ¼ oq bV ðq0Þ � dq� oqbdðq0Þ
� �T

f � dq ¼ 0

for all variations dq ¼ q� q0;
ð5Þ

with

oq bV ðq0Þ � dq ¼ oqbnðq0Þ
� �T

on eV ðn0Þ�

dq ¼ on eV ðn0Þ � oqbnðq0Þ
� �

dq ; n0 ¼ bnðq0Þ :

We set ev :¼ on eV , and call v ¼ evðnÞ the stress

mapping, in that, for dn :¼ n� n0 the strain incre-

ment in passing from the configuration n0 to the

configuration n, the quantity

dV ¼ v � dn ð6Þ

can be regarded as the incremental stress power, that

is, the expenditure of internal power associated with a

strain increment. We also set bB :¼ oqbn, and call bB the

kinematic compatibility operator, in that

dn ¼ bBðqÞdq :

Finally, we call bA :¼ bB
T

the equilibrium operator,

and note that (5) holds if and only if
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bAðq0Þevðn0Þ ¼ oqbdðq0Þ
� �T

f : ð7Þ

4 Armchair graphene

In the first two parts of this section we pose the

equilibrium problem of an armchair graphene sheet

acted upon by such couple and force distributions as

depicted in Fig. 4. Our main concern is to assess

whether traction loads induce a reduction in the

bending and in the stretching stiffnesses the

graphene sheet exhibits in their absence; the

preparatory developments to settle this issue in the

affirmative in Sect. 6 are the contents of Sect. 4.3;

the bending stiffness when traction loads are null is

evaluated in Sect. 4.5.

The analysis in Sects. 4.1 and 4.2 is general enough

to evaluate the effects of any combination of dis-

tributed couple and force loads; in particular, in the

last subsection we determine the effects of couple

loads on stretching stiffness and we evaluate the latter

explicitly when those loads are null; that non-null

couple loads induce hardening of stretching stiffness

will be shown in Sect. 6.

4.1 Loads and geometry

The bending loads applied to the undeformed rectan-

gular sheet sketched in the leftmost part of Fig. 4

consists of two equal and opposite sets of uniformly

distributed couples, whose axes are aligned with

direction 2, applied over the two sides of the sheet

parallel to direction 2 itself; C is the magnitude of the

resultant moment of both couple sets. Moreover, equal

and opposite sets of uniformly distributed forces

parallel to direction 2, whose resultant magnitude is F,

are applied over the two sides of the rectangle parallel

to direction 1.3

B3

(or              )

(or              )

(or              )

Fig. 3 A rectangular

graphene sheet

1
2

C C

1
3

φ

CC

F

F

2 1
3

Fig. 4 Bending and stretching an armchair graphene sheet

3 Couples and forces are uniformly distributed in a discrete

sense.
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The monolayer graphene piece we consider is in its

ground configuration (GC) when both C and F are

null, all atoms lie on the same plane, all bond lengths

have the ground length r0,4 all bond angles are equal to

h0 ¼ 2p=3, and all dihedral angles are null; we assume

that the stored-energy functional eV has a global

minimum in the GC. When at least one of C and F is

non-null, the graphene piece is in a deformed config-

uration (DC). No matter if F is null or not, whenC 6¼ 0

we have that: (1) all atoms lie on the lateral surface of a

right cylinder, whose axis is parallel to direction 2; (2)

each plane orthogonal to the cylinder’s axis and

passing through an atom is a plane of both reflection

and periodic symmetry for atomic positions; (3) the

axis of the cylinder is an axis of one-cell periodic polar

symmetry for atomic positions, and any plane through

this axis and an atom is a plane of reflection symmetry.

Consequently, in a DC there are only two inequivalent

bond lengths a and b, two inequivalent bond angles a
and b, and three inequivalent dihedral angles, Hi

ði ¼ 1; 2; 3Þ, while the two remaining dihedral angles

keep the GC value H0 ¼ 0.

With reference to Fig. 5, let u be the angle between

the plane of A1;B1, and B3 and the plane of B1;A2, and

B3 and, this time with reference to the rightmost sketch

in Fig. 4, let U be the angle at center subtended by the

deformed sheet; then,

U ¼ 2n1u : ð8Þ

Moreover, for geometric compatibility, the bond

angles a and b must satisfy the following condition:

cos b ¼ � cos
a
2

cosu ; ð9Þ

whence

b ¼ ebða;uÞ :¼ arccos � cos
a
2

cosu
� �

: ð10Þ

Finally, the dihedral angles can be expressed in terms

of a and b with the use of the following relations:

sin b sin
H1

2
¼ cos

a
2

sinu ; sin b sinH2 ¼ sinu ;

H3 ¼ 2H2 ; H4 ¼ H5 ¼ 0 ;

ð11Þ

whence expressions for H1 ¼ eH1ða;uÞ and H2 ¼
eH2ða;uÞ follow.

With the help of Fig. 6, it is not difficult to see that

the following geometric compatibility relation holds:

qa sinu ¼ b

2
cos

a
2
þ a

2
cosu ; ð12Þ

where qa is the distance of an a-type bond from the

cylinder’s axis; moreover,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
a þ

a2

4

r

; ð13Þ

where q denotes the cylinder’s radius; hence, the

current curvature j :¼ 1=q has the expression

j¼ q2
aþ

a2

4

� ��1=2

;

qa¼ðsinuÞ�1 b

2
cos

a
2
þa

2
cosu

� �

:

ð14Þ

Moreover, the current lengths of the rectangle’s sides

are given by:

k1 ¼ 1 � b

a
cos b

� �

n1 a; indirection 1;

k2 ¼ 2 n2 b sin
a
2
; indirection 2;

ð15Þ

as an axial deformation measure we take

Fig. 5 The deformed cell of an armchair graphene sheet

4 The value of this parameter depends slightly on the inter-

molecular potential of one’s choice; for the 2nd-generation

Brenner potential we use later on in our computations, r0 ¼
0:14204 nm.
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e ¼ k2 � k2;0

k2;0
; k2;0 ¼

ffiffiffi

3
p

n2r0; ð16Þ

where k2;0 denotes the GC length of the rectangle’s

side in direction 2, whence

e ¼ 2
ffiffiffi

3
p b

r0

sin
a
2
� 1 : ð17Þ

4.2 Equilibrium conditions

Let na; nb; na; nb, and nHi ði ¼ 1; 2; 3Þ, be the number

of bond lengths, bond angles, and dihedral angles, of

the same type; it is the matter of a simple count to find:

na ’ n1n2; nb ¼ 2n1n2; na ’ 2n1n2; nb ¼ 4n1n2;

nH1
¼ 2na; nH2

¼ 2nb; nH3
¼ nb;

nH4
¼ nb; nH5

¼ 2na

ð18Þ

(in the above expression, terms which are linear in n1

or n2, two very large integers, have been neglected).

Firstly, we specify as follows the stored-energy

functional introduced in Eq. (2):

V ¼ naVa þ nbVb ¼ n1n2ðVa þ 2VbÞ ; ð19Þ

where

Vaða; b;H1Þ ¼ VRðaÞ þ baðb;H1ÞVAðaÞ ;
Vbðb; a; b;H2;H3;H4Þ ¼ VRðbÞ þ bbða;b;H2;H3;H4ÞVAðbÞ :

ð20Þ

As is typical of REBO potentials, VR and VA are,

respectively, the repulsive and attractive ingredients of

V, and ba; bb are the bond-order mappings, each of

which depends on some, but not all, of the geometric

parameters. In the present case of armchair bending,

with slight notational abuse, we set:

V ¼ eV ðnÞ :¼ naVaða; b;H1Þ þ nbVbðb; a; b;H2;H3; 0Þ;
n :¼ ða; b; a; b;H1;H2;H3; 0; 0Þ;

ð21Þ

due to the geometric conditions (9) and (11), the

9-entry string nsub in (1) is determined by the 4-entry

string q ¼ ða; b; a;uÞ (recall the anticipations given in

Sects. 3.1 and 3.2).5

Secondly, we specify as follows the load potential

introduced in Eq. (3):

P ¼ Fðk� k0Þ þ CU; ð22Þ

where the loads f � ðF;CÞ; are associated to the

generalized displacement

bdðqÞ � dbkðb; aÞ; dbUðuÞ
� �

;

dbkðb; aÞ ¼ k� k0 ¼ 2n2 b sin
a
2
� k0; dbUðuÞ ¼ U ¼ 2n1u

(here we have made use of 15 and 8).

We are now in a position to write explicitly the

stationarity condition (7) of potential bW . Under the

present circumstances, the equilibrium operator takes

the form of a 4 � 7 matrix:

Fig. 6 Local geometry of a deformed armchair graphene sheet

5 Here we have taken relations (11)4;5 into account; later on,

when we deal with zigzag bending, we shall use another

specialization of (19) and (20).
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A½ � ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 b;a H1;a H2;a 2H2;a

0 0 0 b;u H1;u H2;u 2H2;u

2

6

6

6

4

3

7

7

7

5

;

ð23Þ

and the stress-mapping string v consists of the

following seven entries:

v½ �T¼ na ra nb rb na sa nb sb nH1
T 1

�

nH2
T 2 nH3

T 3� :
ð24Þ

All in all, in view of (18) and (11)3, the equilibrium

Eq. (7) now read:

ra ¼ 0 ; ð25Þ

rb �
F

n1

sin
a
2
¼ 0 ; ð26Þ

sa þ 2sbb;a þH1;aT 1 þ 2H2;aðT 2 þ T 3Þ

� 1

2

F

n1

b cos
a
2

¼ 0 ; ð27Þ

2sbb;u þH1;uT 1 þ 2H2;uðT 2 þ T 3Þ �
C

n2

¼ 0 :

ð28Þ

We call each of ra; rb; sa; sb, and T i ði ¼ 1; 2; 3Þ, a

nanostress. Nanostresses are work-conjugate to

changes of, respectively, a- and b-bond lengths, a
and b bond angles, and dihedral angles, and depend as

follows from the order parameters:

ra ¼ V 0
RðaÞ þ baðb;H1ÞV 0

AðaÞ ;
rb ¼ V 0

RðbÞ þ bbða; b;H2; 2H2; 0ÞV 0
AðbÞ ;

ð29Þ

sa ¼ bb;a ða; b;H2; 2H2; 0ÞVAðbÞ ;

sb ¼ 1

4
ba;b ðb;H1ÞVAðaÞ
�

þ2bb;b ða; b;H2; 2H2; 0ÞVAðbÞ
	

;

ð30Þ

T 1 ¼ 1

2
ba;H1

ðb;H1ÞVAðaÞ ;

T 2 ¼ 1

2
bb;H2

ða; b;H2; 2H2; 0ÞVAðbÞ ;

T 3 ¼ 1

2
bb;2H2

ða; b;H2; 2H2; 0ÞVAðbÞ

ð31Þ

(in the first two of these relations an apex signifies

differentiation). Combination of (29-31) with (10) and

(11)1;2, followed by substitution into (25-28), gives a

nonlinear system of four equations in the four

unknowns ða; b; a;uÞ, whose solution is unique under

reasonable assumptions on the constitutive mappings

VR;VA; ba and bb,6 a system generally too difficult to

be solved analytically but solvable numerically for any

given load pair (C, F).

4.3 Stretching-induced softening of bending

stiffness

In the framework of structure mechanics, bending

stiffness is a constitutive/geometric notion, intended to

measure a structure’s sensitivity to bending whatever

the loads: e.g. in the standard one-dimensional linear

theory of rods, the bending stiffness EJ, where E is the

Young’s modulus and J the cross-section’s inertia,

equals the moment-to-curvature ratio M=j; its inverse

ðEJÞ�1
is the bending compliance. In the present

context, the role of stiffness or compliance notions is

different: although they all incorporate constitutive

and geometric information, they tell us about a

structure’s response to a given system of loads and

are expressed in terms of the solution to the relative

equilibrium problem. Had we at our disposal an

analytic expression for the part u ¼ buðC;FÞ of the

solution to the armchair-bending problem, our task

would be easy: in view of (8), we would set

U ¼ bUðC;FÞ :¼ 2n1buðC;FÞ

and define the bending compliance of a graphene sheet

to be

bcðC;FÞ :¼ oC bUðC;FÞ;

with

oFbcðC;FÞ :¼ o
ð2Þ
FC

bUðC;FÞ

the relative stretching sensitivity: the sign of this

second derivative would tell us whether an axial

traction induces softening or hardening of the sheet’s

bending stiffness. Unfortunately, we cannot count on

an explicit knowledge of bu. We then take a different

and less direct path.

6 For an example of such assumptions, which are fulfilled by the

stored-energy functional we will use to obtain the representative

results reported in Sect. 6, see [10].
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When combined with (29–31) and (15)2, Eq. (28)

can be used to define a mapping eC delivering the

couple per unit current length:

C ¼ eCða; b; a; b;H1;H2Þ :¼

2b sin
a
2

� ��1

2sbb;u þT 1H1;u þ2ðT 2 þ T 3ÞH2;u
� 	

:

ð32Þ

Now, in view of the geometric relations (10) and

(11)1;2, each of the variables b,H1 andH2 depends in a

known manner on the pair ða;uÞ. Consequently, (1) in

view of the equilibrium Eq. (25) and the constitutive

Eq. (29)1, variable a too depends in a known manner

on ða;uÞ; (2) in view of the equilibrium Eq. (26) and

the constitutive Eqs. (29)2, variable b depends in a

known manner on ða;uÞ and the datum F: we

provisionally have from (32) that

C ¼ eC eaða;uÞ; ebða;u;FÞ; a; ebða;uÞ; eH1ða;uÞ;
�

eH2ða;uÞÞ: ð33Þ

Furthermore, in view of the dependences detailed just

above, (3) when combined with the constitutive

Eq. (30), the equilibrium Eq. (27) takes the form of a

restriction on the triplet ða;u;FÞ; (4) the geometric

relation (14) takes the form of a restriction on the

triplet ða;u; jÞ, where, we recall, j is the current

curvature; (5) the system of these two restrictions

provides implicit representations in terms of the pair

ðj;FÞ for both a and u. In conclusion, we have from

(33) that

C¼ bCðj;FÞ :¼ eC eaða;uÞ;ebða;u;FÞ;a;ebða;uÞ;
�

eH1ða;uÞ; eH2ða;uÞÞ; a¼ eaðj;FÞ; u¼ euðj;FÞ:
ð34Þ

For the bending stiffness of an armchair graphene

sheet loaded as indicated in Fig. 4 we take

D ¼ bDðj;FÞ :¼ ojbCðj;FÞ; ð35Þ

the derivative of bD with respect to F:

S ¼ bSðj;FÞ :¼ oF bDðj;FÞ ¼ o
ð2Þ
Fj
bCðj;FÞ ð36Þ

measures the sensitivity of the bending stiffness to the

applied traction:

(C1) stretching-induced softening of the bending

stiffness occurs whenever S\0.

We point out that these derivatives can be analytically

determined, possibly with the help of a symbolic

manipulator, but the task of evaluating them in

correspondence of the solution of a given equilibrium

problem can be achieved only numerically; this we

have done, and our findings are presented in Sec. 6.1.

To evaluate the pristine bending stiffness of an

armchair graphene sheet—that is, its bending stiffness

for null force loads and small angle u—turns out to be

a much easier task, undertaken in the next section.

4.4 Pristine bending stiffness

We consider an armchair graphene sheet in its ground

configuration (GC). In addition to setting F ¼ 0 in the

equilibrium Eqs. (26) and (27), we approximate all u-

dependences detailed just after Eq. (32) by their first-

order expansion in u itself; combination of these two

measures eliminates any need for numerical calcula-

tions. Our developments are sketched hereafter.

To begin with, note that the first-order expansion in

u of (14) is:

j0 :¼ 4

3
r0

�1u: ð37Þ

In view of (32) and (35), we have that, respectively,

C0 ¼ ð
ffiffiffi

3
p

r0Þ�1
2sbb;u þT 1H1;u þ2ðT 2 þ T 3ÞH2;u
� 	

GCj
ð38Þ

and

D0 :¼ u;j ouC
� 	

GC ¼
ffiffiffi

3
p

4
ou 2sbb;u þT 1H1;u

�













þ2ðT 2 þ T 3ÞH2;u ÞjGC;

ð39Þ

where the indicated evaluations at the ground config-

uration are understood in the sense of small angles u.

Recourse to the constitutive Eqs. (29–31), after some

simple calculations that we here omit, yields the

following formula:

D0 ¼ � 1

2
s0 þ

7
ffiffiffi

3
p m; ð40Þ

where

s0 :¼ sa GC ¼ sb












GC

is the bond-angle self-stress—that is, the ground value

of the nanostress work-conjugated to bond-angle
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changes—and m is the dihedral stiffness in GC—that

is, the ground value of the nanostress work-conjugated

to a unit change in dihedral angle:

T i GC ¼ mHij jGC; ði ¼ 1; 2; 3Þ:

When, as we do in Sec. 6, we specialize the above

results for the case of a 2nd-generation Brenner

potential, we find that m = 0.0282596 nN�nm;

moreover, we import from [10] the value s0 ¼
�0:2209 nN�nm for the bond-angle self-stress. The

resulting GC bending stiffness has a value in complete

agreement with what is found in the literature [26, 47],

namely,

D0 ¼ 0:22466 nN � nm ¼ 1:4022 eV: ð41Þ

We point out that, in absence of the dihedral contri-

bution, the bending stiffness is about one half of the

above value. Such an incorrect evaluation is inevi-

table, as remarked in [26], in case of MD simulations

based on potentials that do not account for third-

neighbour interactions (e.g. the 1st-generation Bren-

ner potential).

4.5 Bending-induced hardening of stretching

stiffness

In this subsection we parallel as much as we can

the developments in the previous one. Just as we

did to lay down Eq. (32) for the couple per unit

current length, we begin by observing that, when

combined with (30–31) and (15), Eq. (26) can be

used to define a mapping eF delivering the force per

unit current length:

F ¼ eF ða; b; a; b;H1;H2Þ :¼

rb 1 � b

a
cos b

� �

sin
a
2

� ��1 ð42Þ

We continue by noting that, in view of the geometric

relations (10) and (11)1;2, each of the variables b, H1

and H2 depends in a known manner on the pair ða;uÞ.
Consequently, (1) in view of the equilibrium Eq. (25)

and the constitutive Eq. (29)1, variable a too depends

in a known manner on ða;uÞ; (2) in view of the

equilibrium Eq. (27) and the constitutive Eq. (29)2,

variable b depends in a known manner on ða;uÞ and
the datum C. Thus, we provisionally have from (42)

that

F ¼ eF eaða;uÞ; ebða;u;CÞ; a; ebða;uÞ;
�

eH1ða;uÞ; eH2ða;uÞ
�

:
ð43Þ

Furthermore, in view of the dependences detailed just

above, (3) the equilibrium Eq. (27), when combined

with the constitutive Eq. (30) and the equilibrium

Eq. (26), takes the form of a restriction on the triplet

ða;u;CÞ; (4) the geometric relation (16), combined

with (15), takes the form of a restriction on the triplet

ða;u; eÞ, where, we recall, e is the axial strain; (5) the

system of these two restrictions provides implicit

representations in terms of the pair ðe;CÞ for both a
and u. All in all, we have from (43) that

F ¼ bF ðe;CÞ :¼ eF eaða;uÞ; ebða;u;CÞ; a; ebða;uÞ;
�

eH1ða;uÞ; eH2ða;uÞ
�

;

a ¼ eaðe;CÞ; u ¼ euðe;CÞ:
ð44Þ

For the stretching stiffness of an armchair graphene

sheet loaded as indicated in Fig. 4 we take

Y ¼ bYðe;CÞ :¼ oe bF ðe;CÞ; ð45Þ

the derivative of bY with respect to C:

H ¼ bHðe;CÞ :¼ oC bYðe;CÞ ¼ o
ð2Þ
Ce

bF ðe;CÞ ð46Þ

measures the sensitivity of the stretching stiffness to

the applied couple:

(C2) bending-induced hardening of the stretching

stiffness occurs whenever H[ 0.

4.6 Pristine stretching stiffness

By pristine stretching stiffness of an armchair

graphene sheet we mean its GC stretching stiffness,

for null couple loads and small strain e in direction 2.

In the flat ground configuration, u ¼ 0 and

H1 ¼ H2 ¼ 0, and the relevant equilibrium Eqs. are

(25), (26) and (27), which, with the use of (26), takes

the following form:

sa þ 2sb b;a �
1

2
rb b cot

a
2
¼ 0: ð47Þ

Furthermore, Eq. (26), together with the constitutive

assumptions (29–30) and the geometric conditions (9)
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and(11)1;2, allows to define the load per unit length as a

function of b and a:

F 0 ¼ F

k1;0
¼ 4

3
ffiffiffi

3
p

r0

rbðb; ebðaÞ; aÞ ¼ eF ðb; aÞ; ð48Þ

where use has been made of the fact that the GC side

length in direction 1 is

k1;0 ¼ 3

2
n1r0:

Equations (17), (25), and (47), together with the

constitutive assumptions (29)1–30), implicitly define

each of a, b, and a, as a function of e. All in all, we

have from (48):

F 0 ¼ bF 0ðeÞ ¼ eF 0 bðeÞ; aðeÞð Þ; ð49Þ

whence the following notion of GC stretching

stiffness:

Y0 ¼ oe bF 0ðeÞ
¼ ob eF 0 bðeÞ; aðeÞð ÞoebðeÞ

þ oa eF 0 bðeÞ; aðeÞð ÞoeaðeÞ ð50Þ

(hereafter, although not indicated in the interest of

notational lightness, evaluation at GC has to be

understood). As to the partial derivatives of eF 0 in

(50), we have:

ob eF 0 ¼ 4

3
ffiffiffi

3
p

r0

jb; jb ¼ rb;b ;

oa eF 0 ¼ 4

3
ffiffiffi

3
p

r0

lba �
1

2
lbb

� �

;

lba ¼ rb;a ; lbb ¼ rb;b ;

ð51Þ

as to the other partial derivatives in (50), on taking

again into account Eqs. (17), (25), (47), and (291–30),

we have via some cumbersome calculations that we

prefer to omit that

where we have set

ja ¼ ra;a ; lab ¼ ra;b ; lab ¼ sa;b ; lbb ¼ sb;b ;

ka ¼ sa;a ; lab ¼ sa;b lba ¼ sb;a ; kb ¼ sb;b :

ð53Þ

By combining (51) and (52), we arrive at:

This expression shows that the stretching stiffness

depends in a complicated way on the bond-length

stiffnesses ja and jb, on the bond-angle stiffnesses ka
and kb and on the four coupling stiffnesses denoted by

oeb

¼
12 r0jaka þ 6 r0jakb �

ffiffiffi

3
p

r2
0jalba � 6 r0jalab � 6 r0lablba � 12 r0jalba

r2
0jajb þ 12 jaka þ 6 jakb � 3

ffiffiffi

3
p

r0jalba � 6 jalab � 6 lablba þ 2
ffiffiffi

3
p

r0jalbb � 12 jalba
;

oea

¼
2r0jað

ffiffiffi

3
p

r0jb � 6 lba þ 6lbbÞ
r2

0jajb þ 12 jaka þ 6 jakb � 3
ffiffiffi

3
p

r0jalba � 6 jalab � 6lablba þ 2
ffiffiffi

3
p

r0jalbb � 12 jalba
;

ð52Þ

Y0 ¼ 4

3
ffiffiffi

3
p

ja �6 lbaðlba � lbb þ jb 12ka þ 6 kb � 6 ðlab þ 2 lbaÞ
� 	� 	

� 6jblablba
ffiffiffi

3
p

r0jað3 lba � 2 lbbÞ � r2
0jajb þþ6 lablba þ jað�2ka � kb þ lab þ 2 lbaÞ

� 	 : ð54Þ
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the kernel letter l, but it does not depend on self-stress;

not surprisingly, dihedral stiffness has no role. Among

other things, this result should be kept in mind in the

perspective of putting together a proper homogenized

theory.

When, as we do in Sect. 6, we specialize the above

results for the case of a 2nd-generation Brenner

potential, we find that

Y0 ¼ 242:924 nN=nm;

a result in complete agreement with the literature (cf.

[1, 20, 27], where the value 243 nN/nm is computed on

adopting the 2nd-generation Brenner potential, by an

approach completely different from ours). If Y0 is

divided by the nominal thickness t ¼ 0:34 nm usually

adopted in the literature to evaluate graphene’s Young

modulus, the value 714.482 GPa is obtained.

5 Zigzag graphene

In this section we repeat the developments of the

previous one, with the few changes made necessary by

the different interplay between loads and geometry, so

as to arrive at a complete formulation of the equilib-

rium problem for a zigzag graphene sheet.

5.1 Loads and geometry

Compare Fig. 7 with Fig. 4: side couples and forces

have been switched, so that now C (F) is the

magnitude of the resultant of each set of uniformly

distributed couples (forces) acting along direction 1

(1), applied to the sides parallel to direction 1 (2). In

view of symmetry properties that can be exploited in

the same way as before, there are two inequivalent

bond-lengths, two inequivalent bond-angles, and three

(out of five) non-null inequivalent dihedral angles. The

definitions of a; b; a, and b, remain the same, and the

count of the dihedral angles associated to the two types

of bonds gives the same result.

The geometric conditions involving the order

parameters are different from those holding in the

armchair case. Let u denote the angle between planes

(1–2) and A1B1A2 (see Fig. 8); with reference to the

rightmost sketch in Fig. 7, we find that

U ¼ 2n2u : ð55Þ

The geometric compatibility condition for bond angles

is:

sin b cos
u
2
¼ sin

a
2
; ð56Þ

whence

b ¼ ebða;uÞ :¼ p� arcsin
sin

a
2

cos
u
2

0

B

@

1

C

A; ð57Þ

finally,

H1 ¼ u ; sin a sinH2 ¼ sin b sinu ; H3 ¼ 0 ;
H4 ¼ 2H2 ; H5 ¼ 0:

ð58Þ

With the help of Fig. 9,

it is not difficult to see that the radius of curvature of

a sheet bent in Z-direction is:

q ¼ sin b
2 sinu=2

b ; ð59Þ

the current curvature j :¼ 1=q has the expression

j ¼ sinb
2 sinu=2

b

� ��1

: ð60Þ

As a measure of axial deformation we take

1
2

2
3

φ

CC

F

F

1

2

3

C C

Fig. 7 Bending and stretching a zigzag graphene sheet Fig. 8 The deformed cell of a bended sheet in Z-direction

Meccanica

123



e ¼ k1 � k1;0

k1;0
; k1;0 ¼ 3

2
n1r0; ð61Þ

where k1;0 denotes the GC length of the rectangle’s

side in direction 1; therefore,

e ¼ 2

3

a

r0

ð1 � b=a cos bÞ: ð62Þ

5.2 Equilibrium conditions

By the same procedure as in Sect. 4.2, the following

equilibrium equations are obtained:

ra �
F

n2

¼ 0 ; ð63Þ

rb þ
F

2n2

cos b ¼ 0 ; ð64Þ

sa þ 2sbb;a þ2H2;a ðT 2 þ T 4Þ �
1

2

F

n2

bb;a sin b ¼ 0;

ð65Þ

2sbb;u þT 1 þ 2H2;u ðT 2 þ T 4Þ �
C

n1

¼ 0; ð66Þ

the constitutive equations for the nanostresses are:

ra ¼ V 0
RðaÞ þ baðb;H1ÞV 0

AðaÞ ;
rb ¼ V 0

RðbÞ þ bbða; b;H2; 0; 2H2ÞV 0
AðbÞ;

ð67Þ

sa ¼ bb;a ða; b;H2; 0; 2H2ÞVAðbÞ ;

sb ¼ 1

4
ba;b ðb;H1ÞVAðaÞ
�

þ2bb;b ða; b;H2; 0; 2H2ÞVAðbÞ
	

;

ð68Þ

T 1 ¼ 1

2
ba;H1

ðb;H1ÞVAðaÞ ;

T 2 ¼ 1

2
bb;H2

ða; b;H2; 0; 2H2ÞVAðbÞ ;

T 4 ¼ 1

2
bb;2H2

ða; b;H2; 0; 2H2ÞVAðbÞ:

ð69Þ

5.3 Stretching-induced softening of bending

stiffness

When combined with (68–69) and (15)1, Eq. (66) can

be used to define a mapping eC delivering the couple

per unit current length:

C ¼ eCða; b; a; b;H1;H2Þ :¼

1 � b

a
cos b

� ��1

2sbb;u þT 1 þ 2H2;u ðT 2 þ T 4Þ
� 	

:

ð70Þ

This relation can be given a form parallel to (34), that

is, the form of a function that delivers C as a function of

j and F.

To begin with, note that (70) admits a formal

expression identical to (33), as the consequence of the

combined implications of the following facts:

1. in view of the geometric relations (57) and (58)1;2,

each of the variables b, H1 and H2 depends in a

known manner on the pair ða;uÞ;
2. in view of the equilibrium Eq. (63) and of the

constitutive Eq. (67)1, variable a too depends in a

known manner on ða;uÞ;
3. in view of the equilibrium Eq. (64) and the

constitutive Eq. (67)2, variable b depends in a

known manner on ða;uÞ and the datum F.

Fig. 9 Local geometry of a sheet bended in Z-direction
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Furthermore, on taking into account the dependences

detailed just above,

4. when combined with the constitutive Eq. (68), the

equilibrium Eq. (65) takes the form of a restriction

on the triplet ða;u;FÞ;
5. the geometric relation (60) takes the form of a

restriction on the triplet ða;u; jÞ, where, we

recall, j is the current curvature;

6. the system of these two restrictions provides

implicit representations in terms of the pair ðj;FÞ
for both a and u.

In conclusion, an expression of type (34) is arrived

at or the mapping ðj;FÞ7!C. With such a mapping at

hand, we can again define as in (35) the bending

stiffness, and its sensitivity to applied tractions as in

(36), so that condition (C1) of Sect. 4.3 continues to

hold; the same is true for formula (40).

5.4 Bending-induced hardening of stretching

stiffness

When combined with (68–69), Eq. (64) can be used to

define a mapping eF delivering the force per unit

current length:\

F ¼ eF ða;b;a;b;H1;H2Þ :¼�2rb 2b sin
a
2

cosb
� ��1

:

ð71Þ

Again, in view of the geometric relations (57) and

(58)1;2, each of the variables b,H1 andH2 depends in a

known manner on the pair ða;uÞ. Consequently,

1. in view of the equilibrium Eq. (63) combined with

(64) and the constitutive Eq. (67)1, variable

a depends in a known manner on ða;uÞ;
2. in view of the equilibrium Eq. (65) and the

constitutive Eq. (67)2, variable b depends in a

known manner on ða;uÞ and the datum C.

Thus, we provisionally have from (71) a formal

expression identical to (43). Furthermore, in view of

the dependences detailed just above,

3. the equilibrium Eq. (65), when combined with the

constitutive Eqs. (68) and the equilibrium

Eq. (64), takes the form of a restriction on the

triplet ða;u;CÞ;

4. the geometric relation (61), when combined with

(15)2, takes the form of a restriction on the triplet

ða;u; eÞ, where, we recall, e is the axial strain;

5. the system of these two restrictions provides

implicit representations in terms of the pair ðe;CÞ
for both a and u.

All in all, we have an implicit representation for F as a

function of ðe;CÞ, as in (44). Therefore, we are in a

position to define the stretching stiffness as in (45) and

its sensitivity to applied couples as in (46), as well as to

state condition (C2) as in Sect. 4.5; moreover, formula

(54) still holds true.

6 Numerical results

In this section we collect a set of representative results

and compare them with those in the literature, when

available. In our computations, we choose a 2nd-

generation Brenner potential, the same as in [10]; the

applied traction load ranges from 0 to a value Fmax

approximately equal to 2/3 of graphene’s fracture load

(’42 nN/nm, according to [23]) and the applied

couple ranges from 0 to a value Cmax that induces a

large curvature, approximatively equal to that of a

(6–6) armchair CNT or of a (10-0) zigzag CNT.

6.1 Stretching-induced softening of bending

stiffness

By definition (recall Eq. 35),D, the bending stiffness, is a

function of curvature j and applied load F. In the light

of (14) (for the armchair direction) and of (60) (for the

zigzag direction), j can be regarded as a function of

the order-parameter list fa; b; a;ug that solves either

system (25–31) (for the armchair direction) or system

(63–69) (for the zigzag direction); and, such solution

depends on the assigned data (C, F). Therefore, D is

expressible as a function of (C, F), whose level curves

are depicted in Fig. 10; the same is true for the axial

stretch e, with the use of either (17) (for the armchair

direction) or (62) (for the zigzag direction).

Figure 11 is a plot of D ¼ DðC;FÞ versus

e ¼ eðC;FÞ, for a discrete set of values of the applied

couple C and for both directions, armchair and zigzag;

here and in Fig. 12 the color code is: blue, C ¼ 0;

green, C ¼ 0:233 eV; orange, C ¼ 0:346 eV; pink,
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C ¼ 0:467 eV; cyan, C ¼ 0:587 eV; red, C ¼ Cmax ¼
0:7 eV. Two concurrent effects can be individuated:

whatever the value of parameter C, D decreases when

(F and hence) e increases; and, for each fixed value of

e, D decreases for increasing values of C. That

graphene is softer to bend when stretched is also

illustrated by Fig. 12, where the softening measure S is

plotted as a function of e for the same set of values of

parameter C as in Fig. 11: at first glance, we see that S
is always negative for both directions, armchair and

zigzag; we also see that, in the zigzag case, the 2nd-

generation Brenner potential predicts an unexpected

jump of S for C ¼ Cmax (red curve).

As a complement to the quantitative information

about the bending stiffness summarized in Fig. 11, we

point out that

1. for F ¼ Fmax, increasing the applied couple

produces a decreasing up to � 19 % in the

armchair case and � 43 % in the zigzag case;

2. for F ¼ 0, increasing the applied couple produces

a decreasing up to � 20 % in the armchair case

and � 23 % in the zigzag case;

3. for C ¼ Cmax (red curve), increasing the stretch-

ing load produces a decreasing up to � 35 % in

the armchair case and � 59 % in the zigzag case;
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Fig. 10 Level curves of bending stiffness as a function of curvature and applied traction load, armchair (left) and zigzag (right)
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Fig. 11 Bending stiffness D versus axial strain e, armchair (left) and zigzag (right). (Color figure online)
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4. for C ¼ 0 (blue curve), increasing the stretching

load up produces a decreasing up to � 36 % in

the armchair case and up to � 45 % in the zigzag

case. These results can be compared with those

obtained by the use of DFT and BOT in [38],

namely, a reduction of about 35 % (armchair) and

44 % (zigzag) of the pristine bending stiffness D0,

whose estimated value is however quite higher

than according to both our theory and MD

computations, namely, 1.5292 eV instead of

1.4022 eV.

In Fig. 13, bending stiffness is plotted vs. curvature for

a discrete set of values of the stretching force; the color

code is: blue, F ¼ 0; light blue, F ¼ 4:474 nN/nm;

green, F ¼ 8:681 nN/nm; orange, F ¼ 12:895 nN/

nm; pink, F ¼ 17:367 nN/nm; cyan, F ¼ 21:836 nN/

nm; red, F ¼ 26:050 nN/nm. This figure shows that

increasing (the applied couple and hence) the curva-

ture makes the bending stiffness decrease, with a

concurring softening effect.

6.2 Bending-induced hardening of stretching

stiffness

Just as detailed in the preceding subsection for the

bending stiffness D and it sensitivity S to stretching,

the stretching stiffness Y and its sensitivity H to

bending—whose definitions are given by (45) and
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Fig. 12 Softening measure S versus axial strain e, armchair (left) and zigzag (right). (Color figure online)
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Fig. 13 Bending stiffness D versus curvature j, armchair (left) and zigzag (right). (Color figure online)

Meccanica

123



(46), respectively – can be expressed in terms of the

assigned data (C, F). The level curves of Y as a

function of (C, F) are depicted in Fig. 14. By

comparison with Fig. 10, we see that the dependences

of bending stiffness and stretching stiffness on the data

are quite different. Figure 15 permits to visualize how

the latter depends on curvature for a discrete set of

increasing values of the applied traction; here and in

Fig. 16 the color code is: blue, F ¼ 0; light blue, F ¼
1:316 nN/nm; green, F ¼ 2:632 nN/nm; orange, F ¼
6:316 nN/nm; pink, F ¼ 14:472 nN/nm; cyan, F ¼
21:836 nN/nm; red, F ¼ 26:050 nN/nm. We see that,

both for armchair and zigzag directions, bending

makes graphene harder to stretch for F ¼ 0 ( blue

curve) and easier to stretch for F ¼ Fmax (red curve);

the transition, which is visualized by the lblue light

blue, green and orange curves, occurs for

0\F\Ftld, with the threshold value Ftld ’ 6:5 nN/

nm (about 15 % of the fracture load) in the armchair

case and ’ 12:3 nN/nm (about 29 % of the fracture

load) in the zigzag case. The qualitative information

summarized by Fig. 15 are supplemented by that in

Fig. 16, where we also notice that once again the 2nd-

generation Brenner potential predicts unexpected

jumps in the zigzag case; some complementary

quantitative information are:

1. for F ¼ Fmax (red curves), the decrement in

stretching stiffness is � 14 % in the armchair

case and � 13 % in the zigzag case;
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Fig. 15 Stretching stiffness Y vs. curvature j, armchair (left) and zigzag (right). (Color figure online)
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2. for F ¼ 0 (blue blue curves), the increment in

stretching stiffness goes up to � 11 % (armchair

case) and � 38 % (zigzag case); interestingly, the

stretching stiffness of bent graphene is the same as

that of a CNT of identical curvature, as computed

in [11].

While bending makes the stretching stiffness increase,

stretching makes it decrease; which of the two effects

is going to prevail depends on the region of the

(C, F) plane one selects, in a manner that depends on

the type of graphene, armchair or zigzag. This explains

why, in Fig. 15, the blue and red curves do not include

all the others. This also explains why in Fig. 17, where

the stretching stiffness is plotted vs. the amount of

stretching for two fixed values of the couple, null (blue

curve) and large (red curve, C ¼ Cmax), an initial

hardening regime is followed by a substantial soften-

ing regime.

6.3 Nanostresses

Recall that we have introduced three types of nanos-

tresses, work-conjugated to, respectively, changes in

length of atomic bonds (ra and rb), with ra ¼ 0 in the

equilibrium problem of armchair graphene; changes in

angle between two adjacent bonds (sa and sb); changes

in dihedral angles (T i, i=1,...,4), with T 4 ¼ 0 in the

case of armchair graphene and T 3 ¼ 0 in the zigzag

case.
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Fig. 16 Hardening measure H vs. curvature j , armchair (left) and zigzag (right). (Color figure online)
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The color code we use in the figures to follow is the

same as in Sect. 6.1: blue, C ¼ 0; green, C ¼ 0:233

eV; orange, C ¼ 0:346 eV; pink, C ¼ 0:467 eV; cyan,

C ¼ 0:587 eV; red, C ¼ Cmax ¼ 0:7 eV. We see that

application of a bending couple does not affect

significantly either bond-length nanostresses (Figs. 18

and 19) or the bond-angle nanostresses sa, in the case

of armchair graphene, and sb in the zigzag case

(Figs. 20 and 21). Both sa and sb are different from

zero in GC, a fact that reveals that graphene suffers a

bond-angle selfstress in its ground configuration, as

extensively discussed in [10]. Finally, Figs. 22, 23 and

24 illustrate the significant dependence of dihedral-

angle nanostresses on the applied couple.
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Fig. 19 Nanostress rb versus axial strain e, armchair (left) and zigzag (right; curves cross at e ’ 0:65%). (Color figure online)
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Fig. 21 Nanostress sb versus axial strain e, armchair (left) and zigzag (right; curves cross at e ’ 0:55%)
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Fig. 22 Nanostress T 1 versus axial strain e, armchair (left) and zigzag (right)

0.00 0.05 0.10 0.15

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

ε

T 2

C increasing

[ n
N

 n
m
]

0.00 0.02 0.04 0.06 0.08 0.10

0.000

0.002

0.004

0.006

0.008

0.010

ε

[n
N

 n
m
]

T 2

C increasing

Fig. 23 Nanostress T 2 versus axial strain e, armchair (left) and zigzag (right)
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7 Conclusions

A discrete mechanical model for graphene, both

geometrically and materially nonlinear, has been

proposed. Atomic interactions have been specified

by choosing a class of REBO potentials depending

on strings of kinematic descriptors (� order-param-

eters) identified with changes in bond lengths, bond

angles, and dihedral angles. The equilibrium problem

considered has been that of balanced and uniform

boundary distributions of force and couple over pairs

of opposite sides of a rectangular graphene sheet. The

governing equilibrium equations have been written in

terms of nanostresses, i.e. force-like objects in one-to-

one correspondence with the order parameters.

Suitable definitions of bending and stretching stiff-

nesses have been proposed, and analytical formulas

given to evaluate them whatever the loads and the

configuration, including the ground one; moreover,

notions of sensitivity to changes in applied forces and

couples of bending and stretching stiffnesses have

been introduced, and two analytical conditions for

detecting softening of the former and hardening of the

latter have been formulated. Such definitions and

conditions are written in terms of bond-length, bond-

angle, and dihedral, stiffnesses and of bond-angle

selfstress, that is, in terms of the quantities on which,

according to our discrete model, graphene’s mechan-

ical response depends, and whose role, so we believe,

should be properly reflected into whatever homoge-

nization procedure one may think of.

Combination of large bending and stretching states

has been investigated here for the first time. It has been

shown that concomitant bending and stretching,

whatever their value, concur to make bending stiffness

decrease. It has also been shown that concomitant

bending and stretching make the stretching stiffness

increase until the applied forces reach a threshold

value, then they make it decrease; the reasons of this

rather surprising behaviour have been discussed.

Finally, equilibrium nanostresses have been quantita-

tively evaluated for whatever combination of applied

forces and couples.
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