A modified Follansbee-Kocks model for 6061-T6 aluminum

Anup Bhawalkar and Biswajit Banerjee

Department of Mechanical Engineering, University of Utah

ASME Applied Mechanics and Materials Conference, 2007

ELE NON

ヘロト ヘヨト ヘヨト ヘヨト

Outline

Mechanical Behavior of 6061-T6 Aluminum

2 Models

How well does our model do?

Some numerical simulations

E SQA

Mechanical Behavior of 6061-T6 Aluminum

Temperature Dependence

Strain-Rate = 1000 /s.

Sigmoidal curves?

For sources of data see Anup Bhawalkar's M.S. Thesis.

Strain-Rate Dependence

Pressure Dependence

Strain Rate = 0.001/s; Plastic Strain = 0.05

High strain rate data?

Experimental data from Davidson, 1973

Anup Bhawalkar and Biswajit Banerjee (Ur Modified Follansbee-Kocks Model

→ ∃ →

Can a single flow stress model predict all these behaviors?

McMat07 6 / 33

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Older Models

- Steinberg, Cochran, Guinan (1980), Steinberg and Lund (1989).
- Johnson and Cook (1983, 1985), Johnson and Holmquist (1988).
- Zerilli and Armstrong (1987, 1993), Abed and Voyidajis (2005).

Different regimes need different sets of parameters.

More Recent Models

- Mechanical Threshold Stress Model Follansbee and Kocks (1988), Goto et al. (2000).
- Preston, Tonks, Wallace (2003).

Physically based to some extent. May be possible to extend so that the same parameters can be used for a large domain of regimes.

Original Follansbee-Kocks Model

$$\sigma_{\gamma}(\sigma_{e}, \dot{\varepsilon}, p, T) = [\tau_{a} + \tau_{i}(\dot{\varepsilon}, T) + \tau_{e}(\sigma_{e}, \dot{\varepsilon}, T)] \frac{\mu(p, T)}{\mu_{0}}$$

where

- $\sigma_{ heta}$ =an evolving internal variable that has units of stress (also called the mechanical threshold stress)
 - $\dot{\varepsilon}$ =the strain rate
 - p = the pressure
 - T =the temperature
- τ_a =the athermal component of the flow stress
- au_i =the intrinsic component of the flow stress due to barriers to thermally activated dislocation motion
- τ_{θ} = the component of the flow stress due to structure evolution (e.g., strain hardening)
- $\mu=$ the shear modulus
- μ_0 =a reference shear modulus at 0 K and ambient pressure.

(1)

Assumptions in Original Model

- Thermally activated dislocation motion dominant and viscous drag effects on dislocation motion are small.
 - \bullet This assumption restricts the model to strain rates of $10^4~{\rm s}^{-1}$ and less.

- High temperature diffusion effects (such as solute diffusion from inside grains to grain boundaries) are absent.
 - This assumption limits the range of applicability of the model to temperatures less than around 0.6 T_m . For 6061-T6 aluminum alloy this temperature is approximately 450 500 K.

The Modified Follansbee-Kocks Model

A Simple Modification

$$\sigma_{\gamma}(\sigma_{e}, \dot{\varepsilon}, p, T) = [\tau_{a} + \tau_{i}(\dot{\varepsilon}, T) + \tau_{e}(\sigma_{e}, \dot{\varepsilon}, T)] \frac{\mu(p, T)}{\mu_{0}}$$

Since hardening is relatively small we can

- Try to get the correct temperature dependence of μ and τ_i .
- Add a viscous terms that can account for viscous drag.
- Include a modification for overdriven shocks a la Preston-Tonks-Wallace.

to get

$$\sigma_{Y} = \begin{cases} \min\left\{ \left[\tau_{V} + (\tau_{a} + \tau_{i} + \tau_{e}) \frac{\mu}{\mu_{0}} \right], \sigma_{YS} \right\} & \text{for } T < T_{m} \\ \mu_{V} \dot{\varepsilon} & \text{for } T \ge T_{m} \end{cases}$$
(2)

A Model for the Shear Modulus

Temperature dependence from Nadal and LePoac (2003) and pressure dependence from Burakovsky and Preston (2005).

$$\mu(\boldsymbol{p}, \boldsymbol{T}) = \frac{1}{\mathcal{J}(\hat{\boldsymbol{T}}, \zeta)} \left[\left\{ \mu_0 + \boldsymbol{p} \; \frac{\partial \mu}{\partial \boldsymbol{p}} \left(\frac{\boldsymbol{a}_1}{\eta^{1/3}} + \frac{\boldsymbol{a}_2}{\eta^{2/3}} + \frac{\boldsymbol{a}_3}{\eta} \right) \right\} (1 - \hat{\boldsymbol{T}}) + \frac{\rho}{C \; \boldsymbol{M}} \; \boldsymbol{k}_{\boldsymbol{b}} \; \boldsymbol{T} \right]$$
(3)

$$\begin{split} \eta &:= \frac{\rho}{\rho_0}; \ C &:= \frac{(6\pi^2)^{2/3}}{3} t^2; \ \widehat{T} &:= \frac{T}{T_m} \\ \mathcal{J}(\widehat{T}, \zeta) &:= 1 + \exp\left[-\frac{1+1/\zeta}{1+\zeta/(1-\widehat{T})}\right] \quad \text{for} \quad \widehat{T} \in [0, 1+\zeta] \,. \end{split}$$

A Model for the Melt Temperature

The Burakovsky-Greeff-Preston model (2003):

$$T_{m}(\rho) = T_{m0} \eta^{1/3} \exp\left\{ 6\Gamma_{1} \left(\frac{1}{\rho_{0}^{1/3}} - \frac{1}{\rho^{1/3}} \right) + \frac{2\Gamma_{2}}{q} \left(\frac{1}{\rho_{0}^{q}} - \frac{1}{\rho^{q}} \right) \right\} .$$
(4)
$$\eta \coloneqq \frac{\eta}{\rho_{0}}$$
$$\Gamma(\rho) = \frac{1}{2} + \frac{\Gamma_{1}}{\rho^{1/3}} + \frac{\Gamma_{2}}{\rho^{q}}$$

Model Checks

Models do reasonably well.

1= 990

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A Model for τ_i

Use a quadratic model to allow for rapid decrease in τ_i at high temperatures:

$$\tau_{i} = \sigma_{i} \left[1 - \left\{ \left(\frac{k_{b} T}{g_{0i} b^{3} \mu(p, T)} \ln \frac{\dot{\varepsilon}_{0i}}{\dot{\varepsilon}} \right)^{1/q_{i}} \right\}^{2} \right]^{1/p_{i}} .$$
 (5)

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Fit Parameters for τ_i

11 DQC

<ロ> <同> <同> <同> < 同> < 同>

A Model for the Viscous Drag

Use ideas from Kumar and Kumble (1969) and Frost and Ashby (1971).

$$\tau_{\rm V} = \frac{2}{\sqrt{3}} \frac{B}{\rho_{\rm m} b^2} \dot{\varepsilon} \tag{6}$$

Need to find drag coefficient *B* and the density of mobile dislocations ρ_m .

The Drag Coefficient

Assume that

$$B = B_{e} + B_{p}$$

where B_e = electron drag, B_p = phonon drag. Neglect B_e for temperatures greater than 50 K.

$$B \approx \lambda_{\mathcal{P}} B_{\mathcal{P}} = \frac{\lambda_{\mathcal{P}} q}{10 c_s} \langle E \rangle \tag{7}$$

where q = cross-section of dislocation core, $c_s = \text{shear wave speed}$, and

$$\langle E \rangle = \frac{3 k_b T \rho}{M} D_3 \left(\frac{\theta_D}{T}\right) ; \ \theta_D = \frac{h \bar{c}}{k_b} \left(\frac{3 \rho}{4 \pi M}\right)^{1/3}$$

Mobile Dislocation Density

Use simple model developed by Estrin and Kubin (1986)?

$$\frac{d\rho_m}{d\varepsilon_p} = \frac{M_1}{b^2} \left(\frac{\rho_f}{\rho_m} \right) - l_2(\dot{\varepsilon}, T) \rho_m - \frac{l_3}{b} \sqrt{\rho_f}$$

$$\frac{d\rho_f}{d\varepsilon_p} = l_2(\dot{\varepsilon}, T) \rho_m + \frac{l_3}{b} \sqrt{\rho_f} - A_4(\dot{\varepsilon}, T) \rho_f$$
(8)

Stiff differential equations!

A model that works for our purposes is

$$\rho_m \approx \rho_{m0} (1+\hat{T})^m \,. \tag{9}$$

Modified Follansbee-Kocks Model

Check Viscous Drag Model

McMat07 21 / 33

11 DQC

イロト イヨト イヨト イヨト

How well does our model do ?

How well does our model do?

Temperature Dependence

Strain-Rate = 0.001 /s.

Strain-Rate = 1000 /s.

How well does our model do?

Strain Rate Dependence

イロト イヨト イヨト イヨト

Pressure Dependence

1 = 990

イロト イヨト イヨト イヨト

Numerical validation of the model

Flyer Plate Impact

Flyer Plate Simulations

 $h_i = 1.879 \text{ mm}, h_t = 3.124 \text{ mm}, v_0 = 270 \text{ m/s}.$

 $h_i = 1.600 \text{ mm}, h_t = 3.073 \text{ mm},$ $v_0 = 265 \text{ m/s}.$

Experimental data from Isbell (2005).

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Taylor Impact Tests

McMat07 29 / 33

Some numerical simulations

Comparison of Metrics

McMat07 30 / 33

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Comparison of Profiles

Experimental data from Gust (1982).

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Summary

- Improved high temperature prediction.
- Improved strain rate dependence at high rates.
- Pressure dependence cannot be solely from shear modulus.

For Further Reading I

B. Banerjee and A. Bhawalkar.

An extended Mechanical Threshold Stress plasticity model: modeling 6061-T6 aluminum alloy. *under review*, 2007.

A. Bhawalkar,

The Mechanical Threshold Stress Plasticity Model for 6061-T6 aluminum alloy and its numerical validation *M.S. Thesis*, University of Utah, 2006.

<ロ> <同> <日> <日> <日> <日> <日> <日</p>