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Abstract

Mathematical provability , then classification, of Saint-Venant’s Prin-
ciple are discussed. Beginning with the simplest case of Saint-Venant’s
Principle, four problems of elasticity are discussed mathematically. It is
concluded that there exist two categories of elastic problems concerning
Saint-Venant’s Principle: Experimental Problems, whose Saint-Venant’s
Principle is established in virtue of supporting experiment, and Analytical
Problems, whose Saint-Venant’s decay is proved or disproved mathemati-
cally, based on fundamental equations of linear elasticity. The boundary-
value problems whose stress boundary condition consists of Dirac measure,
a “ singular distribution ”, can not be dealt with by the mathematics of
elasticity for “ proof ” or “ disproof ” of their Saint-Venant’s decay, in
terms of mathematical coverage.

AMS Subject Classifications: 74-02, 74G50
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1 Introduction

In 1855 Saint-Venant published his famous ”principle” [1, 2]. Boussinesq
(1885) and Love (1927) announce statements of Saint-Venant’s Principe respec-
tively [3, 4]. Trusdell (1959) asserts, from the perspective of Rational Mechan-
ics, that if Saint-Venant’s Principle of equipollent loads is true, it “ must be a
mathematical consequence of the general equations” of linear elasticity [5]. It
is obvious that Saint-Venant’s Principle has become an academic attraction for
contributors of Rational Mechanics [6, 7, 8, 9]. Authors focus their attention on
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establishment or proof of the principle in wide areas of research.

In this paper, we pay our attention to the problem of mathematical provabil-
ity of the principle. The simplest case of Saint-Venant’s Principle , the suggested
simplest case of the principle in two dimensional elasticity, the 2D problem gen-
eralized from the simplest case and Saint-Venant’s Principle of 2D problem are
discussed mathematically. Then we realized that there exist two categories of
elastic problems concerning Saint-Venant’s Principle: Experimental and Ana-
lytical. The boundary-value problems whose stress boundary condition consists
of Dirac measure, a “ singular distribution ”, can not be dealt with by the math-
ematics of elasticity for “ proof ” or “ disproof ” of their Saint-Venant’s decay,
in terms of mathematical coverage.

2 The Simplest Case of Saint-Venant’s Principle

The simplest case concerning Saint-Venant’s Principle should be for stress distri-
bution of the cylinder with square cross-section under axial concentrated loading
(Fig.1) [10, 11, 12]. We take the case of axial pressure for discussion.

- � -P P X

Fig. 1. The simplest case of Saint-Venant’s Principle.

Practically, except in the immediate vicinity of the points of loading, the stress
is independent of the actual mode of application of the loads and uniformly
distributed as

σx = −P

A
(1)

where P is the magnitude of the concentrated pressure and A is the area of the
square cross-section of the cylinder.

3 Discussing the Equivalent Problem of the Sim-
plest Case Mathematically

Equation (1) implies that removing the concentrated force P from and applying
an uniformly distributed pressure P

A to each of the ends would not change the
stress distribution except in the immediate vicinity of the points of loading,
and so the boundary conditions of the equivalent problem of the simplest case
(Fig.2), as Saint-Venant’s Principle is discussed, should be:
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x = 0 : σx = P (δ − 1

A
), (2)

τxy = τxz = 0; (3)

x = L (L → ∞) : σx → 0, (4)

τxy → 0, (5)

τxz → 0; (6)

y = ±a : σy = τyx = τyz = 0; (7)

z = ±a : σz = τzx = τzy = 0, (8)

where δ is Dirac measure , of unit load at the origin of O − yz coordinates ,
[13, 14, 15]; A is the area of the end, x = 0, of the cylinder ( Fig.2).
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Fig. 2. The equivalent problem of the simplest case.

The fundamental equations, if applicable, of the problem defined in the
domain (0 ≤ x ≤ L,−a ≤ y ≤ a,−a ≤ z ≤ a), should be :

∂σx

∂x
+

∂τxy
∂y

+
∂τxz
∂z

= 0, (9)

∂τyx
∂x

+
∂σy

∂y
+

∂τyz
∂z

= 0, (10)

∂τzx
∂x

+
∂τzy
∂y

+
∂σz

∂z
= 0, (11)

∇2σx +
1

1 + ν

∂2Θ

∂x2
= 0, (12)

∇2σy +
1

1 + ν

∂2Θ

∂y2
= 0, (13)

∇2σz +
1

1 + ν

∂2Θ

∂z2
= 0, (14)

∇2τxy +
1

1 + ν

∂2Θ

∂x∂y
= 0, (15)

∇2τyz +
1

1 + ν

∂2Θ

∂y∂z
= 0, (16)
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∇2τzx +
1

1 + ν

∂2Θ

∂z∂x
= 0, (17)

where
Θ = σx + σy + σz, (18)

ν is Poisson ratio.
In reference to Eq.(2)-Eq.(8), stresses σx, τxy and τxz should favorably be

formulated as

σx = C(x)P (δ − 1

A
)e−λx (19)

where
C(0) = 1, (20)

τxy = f(x)g(y, z)e−λx (21)

and
τxz = f(x)s(y, z)e−λx, (22)

where
f(0) = 0, (23)

g(±a, z) = 0, (24)

s(y,±a) = 0. (25)

When Saint-Venant’s Principle is discussed, stresses σy, σz and τyz should
be suggested as

σy = u(x)h(y, z)e−λx (26)

where
h(±a, z) = 0, (27)

σz = u(x)j(y, z)e−λx (28)

where
j(y,±a) = 0, (29)

τyz = v(x)m(y, z)e−λx (30)

where
m(±a, z) = 0, m(y,±a) = 0. (31)

Putting Eq.(19), Eq.(21) and Eq.(22) into Eq.(9), we have

[C ′(x)− λC(x)]P (δ − 1

A
)e−λx + f(x)

∂g

∂y
e−λx + f(x)

∂s

∂z
e−λx = 0. (32)

Putting Eq.(21), Eq.(26) and Eq.(30) into Eq.(10) results in

[f ′(x)− λf(x)]g(y, z)e−λx + u(x)
∂h

∂y
e−λx + v(x)

∂m

∂z
e−λx = 0. (33)
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Putting Eq.(22), Eq.(30) and Eq.(28) into Eq.(11) leads to

[f ′(x)− λf(x)]s(y, z)e−λx + v(x)
∂m

∂y
e−λx + u(x)

∂j

∂z
e−λx = 0. (34)

From Eq.(32) we have, by separating variables, that

[C ′(x)− λC(x)]/f(x) = −(
∂g

∂y
+

∂s

∂z
)/P (δ − 1

A
) = α. (35)

Variable separation is possible for Eq.(33) and Eq.(34) under the conditions

g(y, z) = s(y, z), (36)

u(x) = v(x) ≡ q(x), (37)

and
h(y, z) = j(y, z) = m(y, z), (38)

which results in
f ′(x)− λf(x)

q(x)
= −(

∂h

∂y
+

∂h

∂z
)/g = β. (39)

Equation(35) is transformed, by means of Eq.(36), into

C ′(x)− λC(x) = αf(x), (40)

∂g

∂y
+

∂g

∂z
= −αP (δ − 1

A
). (41)

Then C(x) is deduced from Eq.(40) as

C(x) = Neλx +W (x), (42)

where W (x) is a special solution of Eq.(40), that is,

W ′(x)− λW (x) = αf(x). (43)

The function f(x) is obtained from Eq.(39) as

f(x) = Keλx +R(x), (44)

where R(x) is a special solution of Eq.(39), that is,

R′(x)− λR(x) = βq(x). (45)

From Eq.(19), Eq.(21), Eq.(22), Eq.(42) and Eq.(44) we obtain

σx = NP (δ − 1

A
) +W (x)P (δ − 1

A
)e−λx, (46)

τxy = Kg(y, z) +R(x)g(y, z)e−λx, (47)
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τxz = Kg(y, z) +R(x)g(y, z)e−λx. (48)

Considering boundary conditions Eq.(4), Eq.(5) and Eq.(6), we have, in
terms of Eq.(46)-Eq.(48), that

σx = W (x)P (δ − 1

A
)e−λx, (49)

τxy = R(x)g(y, z)e−λx, (50)

τxz = R(x)g(y, z)e−λx, (51)

by taking
N = 0, K = 0. (52)

According to Eq.(26), Eq.(28), Eq.(30), Eq.(37) and Eq.(38),

σy = q(x)h(y, z)e−λx, (53)

σz = q(x)h(y, z)e−λx, (54)

τyz = q(x)h(y, z)e−λx. (55)

Now, the question of the simplest case of Saint-Venant’s Principle is : Does
any function of q(x) satisfying equations Eq.(12)-Eq.(17) exist so that

W (x) ̸= 0, (56)

W (0) = 1 (57)

and
R(0) = 0 (58)

could be established for σx , τxy and τxz in terms of Eq.(49), Eq.(50) and
Eq.(51)?

Unfortunately, the answer is : NO.
In fact, putting Eq.(49), Eq.(53) and Eq.(54) into Eq.(12) leads to

∇2[W (x)P (δ − 1

A
)e−λx] +

1

1 + ν
(59)

∂2

∂x2
[W (x)P (δ − 1

A
)e−λx + 2q(x)h(y, z)e−λx] = 0.

It is deduced from Eq.(59) by differential calculus that

2 + ν

1 + ν

∂

∂x
{[W ′(x)− λW (x)]P (δ − 1

A
)e−λx} (60)

+W (x)P (
∂2δ

∂y2
+

∂2δ

∂z2
)e−λx +

2h(y, z)

1 + ν
[q′′(x)− 2λq′(x)

+λ2q(x)]e−λx = 0.
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Equation (60) is changed , by virtue of Eq.(43), to

2 + ν

1 + ν

∂

∂x
[αf(x)P (δ − 1

A
)e−λx] (61)

+W (x)P (
∂2δ

∂y2
+

∂2δ

∂z2
)e−λx +

2h(y, z)

1 + ν
[q′′(x)

−2λq′(x) + λ2q(x)]e−λx = 0.

It is inferred from Eq.(61) by differential calculus again that

2 + ν

1 + ν
[αf ′(x)− λαf(x)]P (δ − 1

A
)e−λx (62)

+W (x)P (
∂2δ

∂y2
+

∂2δ

∂z2
)e−λx +

2h(y, z)

1 + ν
[q′′(x)

−2λq′(x) + λ2q(x)]e−λx = 0.

Equation (62) is transformed, by virtue of Eq.(39), into

2 + ν

1 + ν
αβq(x)P (δ − 1

A
) (63)

+W (x)P (
∂2δ

∂y2
+

∂2δ

∂z2
) +

2h(y, z)

1 + ν
[q′′(x)

−2λq′(x) + λ2q(x)] = 0.

It is required, for q(x) having a solution, that

α = 0 or β = 0, (64)

h(y, z) =
∂2δ

∂y2
+

∂2δ

∂z2
, (65)

because of Eq.(56).
However , as

α = 0, (66)

from Eq.(40) or Eq.(43),
W (x) = 0 (67)

which contradicts Eq.(56) and Eq.(57).
When the second equation of Eq.(64),

β = 0, (68)

is considered, from Eq.(39) ,

f(x) = Keλx. (69)
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Substituting Eq.(69) into Eq.(40) and Eq.(43), we have

C ′(x)− λC(x) = αKeλx (70)

and
W ′(x)− λW (x) = αKeλx. (71)

The solution of Eq.(70) or Eq.(71) is

W (x) = αKxeλx (72)

which contradicts Eq.(57).
By the way, inconsistent with Eq.(4), Eq.(72) brings about

σx = αKxP (δ − 1

A
) (73)

by means of Eq.(49).
The same result is given by discussion of Eqs (13)-(17) (omitted), and so the

function of q(x) expected does not exist, then the simplest case of Saint-Venant’s
Principle is not “ mathematically proved”.

4 Discussing the Simplest Case in Two Dimen-
sional Elasticity

It is logical to suggest the simplest case of Saint-Venant’s Principle in two di-
mensional elasticity in reference to the discussion in the last section and its
boundary-value problem (Fig.3) should be suggested as

∇2∇2φ(x, y) = 0 onD,D = {(x, y)|0 ≤ x ≤ L,−c ≤ y ≤ +c}; (74)

x = 0 : σx = P (δ − 1

2c
), (75)

τxy = 0; (76)

x = L (L → ∞) : σx → 0, τxy → 0; (77)

y = ±c : σy = τyx = 0, (78)

where φ(x, y) is Airy stress function; δ is Dirac measure , of unit load at the
origin of O-y coordinate [13, 14, 15].
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Fig. 3. The simplest case in two dimensional elasticity.

To satisfy Eq.(74) , Eq.(77) and Eq.(78), the stress function is suggested as

φ1(x, y) = Ce−γ x
c (κ cos

γy

c
+

γy

c
sin

γy

c
), (79)

whose eigenvalue problem is discussed by Timoshenko and Goodier [16].
The shearing stress τxy is deduced from Eq.(79), which is

τxy = − ∂2φ1

∂x∂y
(80)

= C(
γ

c
)2[(1− κ) sin γ

y

c
+ γ

y

c
cos γ

y

c
]e−γ x

c .

If Eq.(76) is to be satisfied, it is required that

C = 0 (81)

that implies
φ1(x, y) = 0, σx = 0, (82)

which is impossible to satisfy Eq.(75).
Considering, for the stress function, the odd function of y

φ2(x, y) = Ce−γ x
c (κ′ sin

γy

c
+

γy

c
cos

γy

c
) (83)

gives the same result of discussion: satisfaction of Eq.(76) ruins satisfaction of
Eq.(75).

Therefore, the Saint-Venant’s decay in terms of Eq.(79) or Eq.(83) for the
two dimensional problem in terms of Eq.(74)-Eq.(78) is not proved.

5 Two-Dimensional Problems Mathematically Dis-
cussed

5.1 Generalized 2D Problem

We generalize the 2D simplest case of Saint-Venant’s Principle discussed in the
last section by replacing P (δ− 1

2c ) in Eq.(75) with an arbitrary “ self-equilibrated
” function p(y) and suggest the boundary-value problem as

∇2∇2φ(x, y) = 0 onD,D = {(x, y)|0 ≤ x ≤ L,−c ≤ y ≤ +c}, (84)
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where φ(x, y) is Airy stress function;

x = 0 : σx = p(y) ̸= 0, (85)

τxy = 0, (86)

where ∫ +c

−c

p(y)dy = 0, (87)∫ +c

−c

p(y)ydy = 0;

x = L (L → ∞) : σx → 0, τxy → 0; (88)

y = ±c : σy = τyx = 0. (89)

It is easy to argue, by means of the logic used in the last section, that it is
impossible to establish Saint-Venant’s decay in terms of

φ1(x, y) = Ce−γ x
c (κ cos

γy

c
+

γy

c
sin

γy

c
) (90)

or
φ2(x, y) = Ce−γ x

c (κ′ sin
γy

c
+

γy

c
cos

γy

c
), (91)

for the problem Eq.(84)-Eq.(89). In other words, Saint-Venant’s decay in terms
of Eq.(90) and Eq.(91) for the problem Eq.(84)-Eq.(89) is disproved.

5.2 Saint-Venant’s Principle of 2D Problem

The boundary-value problem is defined as

∇2∇2φ(x, y) = 0 onD,D = {(x, y)|0 ≤ x ≤ L,−c ≤ y ≤ +c}, (92)

where φ(x, y) is Airy stress function;

x = 0 : σx = f(y), (93)

τxy = g(y), (94)

where f(y) and g(y) are functions to be determined;

x = L (L → ∞) : σx → 0, τxy → 0; (95)

y = ±c : σy = τyx = 0. (96)
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The condition Eq.(96) is satisfied when

φ(x, y) = 0,
∂φ(x, y)

∂y
= 0 (on y = ±c) (97)

because it implies

∂2φ(x, y)

∂x2
= 0,

∂2φ(x, y)

∂x∂y
= 0 (on y = ±c). (98)

[16].
To satisfy the biharmonic equation Eq.(92) , the conditions Eq.(95) and

Eq.(97), the stress function is suggested as

φ1(x, y) = Ce−γ x
c (κ cos

γy

c
+

γy

c
sin

γy

c
). (99)

The eigenvalue problem is discussed by Timoshenko and Goodier [16]. The
eigenvalue equation of γ is

sin 2γ + 2γ = 0, (100)

which results from
κ cos γ + γ sin γ = 0 (101)

and
γ cos γ + (1− κ) sin γ = 0 (102)

by eliminating κ.
Substituting the complex eigenvalues of γ into Eq.(99), we transform the

stress function φ1(x, y) into

φ1(x, y) = φ1r(x, y) + iφ1i(x, y), (103)

where

φ1r(x, y) =
1

2

∑
Cne

−γnr
x
c {cos γni

c
x[κnr(e

− γni
c y (104)

+ e
γni
c y) cos

γnr
c

y + κni(−e−
γni
c y + e

γni
c y) sin

γnr
c

y

+
γni
c

y(e−
γni
c y − e

γni
c y) cos

γnr
c

y

+
γnr
c

y(e−
γni
c y + e

γni
c y) sin

γnr
c

y]

+ sin
γni
c

x[κnr(e
− γni

c y − e
γni
c y) sin

γnr
c

y

+ κni(e
− γni

c y + e
γni
c y) cos

γnr
c

y

+
γni
c

y(e−
γni
c y + e

γni
c y) sin

γnr
c

y

+
γnr
c

y(−e−
γni
c y + e

γni
c y) cos

γnr
c

y]},

11



φ1i(x, y) =
1

2
ΣCne

−γnr
x
c {cos γni

c
x[κnr(e

− γni
c y (105)

− e
γni
c y) sin

γnr
c

y

+ κni(e
− γni

c y + e
γni
c y) cos

γnr
c

y +
γni
c

y(e−
γni
c y

+ e
γni
c y) sin

γnr
c

y

+
γnr
c

y(−e−
γni
c y + e

γni
c y) cos

γnr
c

y]

+ sin
γni
c

x[−κnr(e
− γni

c y + e
γni
c y) cos

γnr
c

y

+ κni(e
− γni

c y − e
γni
c y) sin

γnr
c

y

+
γni
c

y(−e−
γni
c y + e

γni
c y) cos

γnr
c

y

− γnr
c

y(e−
γni
c y + e

γni
c y) sin

γnr
c

y]},

where γnr and γni are the real and imaginary part of nth non-zero eigenvalue of
γ respectively, in virtue of (100); κnr and κni are the real and imaginary part
of the related nth eigenvalue of κ respectively, in virtue of (101) or (102).

Since φ1(x, y) in (99) or (103) satisfies the biharmonic equation (92), its real
part φ1r(x, y) in (104) and imaginary part φ1i(x, y) in (105) individually satisfy
this biharmonic equation and can be used as the stress functions of the problem
respectively.

Differentiating (104), we find the stresses as

σx =
∂2φ1r(x, y)

∂y2
(106)

=
1

2

N∑
n=1

Cne
−γnr

x
c {cos γni

c
x[(κnr

γ2
ni

c2
− κnr

γ2
nr

c2
+ 2

γ2
nr

c2
− 2

γ2
ni

c2

+ 2κni
γnr
c

γni
c

)(e−
γni
c y + e

γni
c y) cos

γnr
c

y + (κni
γ2
nr

c2
− κni

γ2
ni

c2

+ 2κnr
γnr
c

γni
c

− 4
γnr
c

γni
c

)(e−
γni
c y − e

γni
c y) sin

γnr
c

y

+ (
γ3
ni

c3
− 3

γ2
nrγni
c3

)y(e−
γni
c y − e

γni
c y) cos

γnr
c

y

− (
γ3
nr

c3
− 3

γnrγ
2
ni

c3
)y(e−

γni
c y + e

γni
c y) sin

γnr
c

y]

+ sin
γni
c

x[(κnr
γ2
ni

c2
− κnr

γ2
nr

c2
+ 2

γ2
nr

c2
− 2

γ2
ni

c2
+ 2κni

γnr
c

γni
c

)

(e−
γni
c y − e

γni
c y) sin

γnr
c

y + (κni
γ2
ni

c2
− κni

γ2
nr

c2
− 2κnr

γnr
c

γni
c
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+ 4
γnr
c

γni
c

)(e−
γni
c y + e

γni
c y) cos

γnr
c

y

+ (
γ3
ni

c3
− 3

γ2
nrγni
c3

)y(e−
γni
c y + e

γni
c y) sin

γnr
c

y

+ (
γ3
nr

c3
− 3

γnrγ
2
ni

c3
)y(e−

γni
c y − e

γni
c y) cos

γnr
c

y]},

σy =
∂2φ1r(x, y)

∂x2
(107)

=
1

2

N∑
n=1

Cne
−γnr

x
c {[(γ

2
nr

c2
− γ2

ni

c2
) cos

γni
c

x+ 2
γnr
c

γni
c

sin
γni
c

x]

[κnr(e
− γni

c y + e
γni
c y) cos

γnr
c

y + κni(−e−
γni
c y + e

γni
c y) sin

γnr
c

y

+
γni
c

y(e−
γni
c y − e

γni
c y) cos

γnr
c

y +
γnr
c

y(e−
γni
c y + e

γni
c y) sin

γnr
c

y]

+ [(
γ2
nr

c2
− γ2

ni

c2
) sin

γni
c

x− 2
γnr
c

γni
c

cos
γni
c

x]

[κnr(e
− γni

c y − e
γni
c y) sin

γnr
c

y + κni(e
− γni

c y + e
γni
c y) cos

γnr
c

y

+
γni
c

y(e−
γni
c y + e

γni
c y) sin

γnr
c

y

+
γnr
c

y(−e−
γni
c y + e

γni
c y) cos

γnr
c

y]},

τxy = −∂2φ1r(x, y)

∂x∂y
(108)

=
1

2

N∑
n=1

Cne
−γnr

x
c {(γnr

c
cos

γni
c

x+
γni
c

sin
γni
c

x)

[(−κnr
γni
c

− κni
γnr
c

+
γni
c

)(e−
γni
c y − e

γni
c y) cos

γnr
c

y

+ (−κnr
γnr
c

+ κni
γni
c

+
γnr
c

)(e−
γni
c y + e

γni
c y) sin

γnr
c

y

+ (
γ2
nr

c2
− γ2

ni

c2
)y(e−

γni
c y + e

γni
c y) cos

γnr
c

y − 2
γnr
c

γni
c

y

(e−
γni
c y − e

γni
c y) sin

γnr
c

y] + (
γnr
c

sin
γni
c

x− γni
c

cos
γni
c

x)

[(−κnr
γni
c

− κni
γnr
c

+
γni
c

)(e−
γni
c y + e

γni
c y) sin

γnr
c

y

+ (κnr
γnr
c

− κni
γni
c

− γnr
c

)(e−
γni
c y − e

γni
c y) cos

γnr
c

y

+ (
γ2
nr

c2
− γ2

ni

c2
)y(e−

γni
c y − e

γni
c y) sin

γnr
c

y

+ 2
γnr
c

γni
c

y(e−
γni
c y + e

γni
c y) cos

γnr
c

y]},
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where
N < ∞ (109)

for satisfaction of (95). Then the functions f(y) in (93) and g(y) in (94) are
determined from (106) and (108) as

f(y) =
1

2

N∑
n=1

Cn[(κnr
γ2
ni

c2
− κnr

γ2
nr

c2
+ 2

γ2
nr

c2
− 2

γ2
ni

c2
(110)

+ 2κni
γnr
c

γni
c

)(e−
γni
c y + e

γni
c y) cos

γnr
c

y

+ (κni
γ2
nr

c2
− κni

γ2
ni

c2
+ 2κnr

γnr
c

γni
c

− 4
γnr
c

γni
c

)(e−
γni
c y − e

γni
c y) sin

γnr
c

y

+ (
γ3
ni

c3
− 3

γ2
nrγni
c3

)y(e−
γni
c y − e

γni
c y) cos

γnr
c

y

− (
γ3
nr

c3
− 3

γnrγ
2
ni

c3
)y(e−

γni
c y + e

γni
c y) sin

γnr
c

y],

g(y) =
1

2

N∑
n=1

Cn{
γnr
c

[(−κnr
γni
c

− κni
γnr
c

(111)

+
γni
c

)(e−
γni
c y − e

γni
c y) cos

γnr
c

y

+ (−κnr
γnr
c

+ κni
γni
c

+
γnr
c

)(e−
γni
c y + e

γni
c y) sin

γnr
c

y

+ (
γ2
nr

c2
− γ2

ni

c2
)y(e−

γni
c y + e

γni
c y) cos

γnr
c

y

− 2
γnr
c

γni
c

y(e−
γni
c y − e

γni
c y) sin

γnr
c

y]

− γni
c

[(−κnr
γni
c

− κni
γnr
c

+
γni
c

)(e−
γni
c y + e

γni
c y) sin

γnr
c

y

+ (κnr
γnr
c

− κni
γni
c

− γnr
c

)(e−
γni
c y − e

γni
c y) cos

γnr
c

y

+ (
γ2
nr

c2
− γ2

ni

c2
)y(e−

γni
c y − e

γni
c y) sin

γnr
c

y

+ 2
γnr
c

γni
c

y(e−
γni
c y + e

γni
c y) cos

γnr
c

y]}.

Now we have established Saint-Venant’s decay (106)-(108) for the boundary-
value problem (92)- (96) with explicit f(y) (in (110)) and g(y) (in (111)) loading
on x = 0.

It is reasonable to expect that discussion of φ1i(x, y) should give another
solution of Saint-Venant’s decay for the boundary-value problem (92)- (96) with
another explicit couple of stresses of σx (or f(y) ) and τxy (or g(y) ) loading on
x = 0.
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Considering, for the stress function, the odd function

φ2(x, y) =
∑

Cne
−γn

x
c (κ′

n sin
γny

c
+

γny

c
cos

γny

c
), (112)

should result in other solutions of Saint-Venant’s decay for the boundary-value
problem (92)- (96). (We omit the detail of discussion here.)

Here we reiterate that the discussion in every section of this paper is based
on the argument that Saint-Venant’s decay is decay of stress ,or strain, or strain
energy density, as is discussed by Zhao [9].

6 Classification of Saint-Venant’s Principle

6.1 Experimental Saint-Venant’s Principle

The first category is Experimental Saint-Venant’s Principle, of which the sim-
plest case of Saint-Venant’s Principle discussed in Sec.2 and Sec.3 is the typical
example. Saint-Venant’s Principle is not “ mathematically proved ” for the
case, but stands true by experimental testing. In principle and in fact, the
fundamental equations of elasticity, where stresses are defined to be “ functions
” , can not deal with the boundary-value problems of this category, where the
stress boundary condition consists of Dirac measure, a “ singular distribution
”. Therefore, Saint-Venant’s Principle of this category is not “ a mathematical
consequence of the general equations ” of elasticity. In other words, the math-
ematics of elasticity does not cover this category of problems of Saint-Venant’s
Principle.

More complicated cases of Saint-Venant’s Principle are mentioned by Bu-
dynus [17]. The simplest case of Saint-Venant’s Principle is impossible to be
mathematically proved , let alone the more complicated cases.

As is discussed in Sec.4, the simplest case of Saint-Venant’s Principle in
two dimensional elasticity is not “ mathematically proved ” . Furthermore,
Saint-Venant’s Principle is not mathematically disproved for the problem either
because, as mentioned before, the mathematics of the problem is beyond the
coverage of the fundamental equations of elasticity. The only way to test the
validity of Saint-Venant’s Principle for the problem should be approached by
experiment.

Counterexamples to “ traditional verbal statements ” of Saint-Venant’s Prin-
ciple are mentioned in the articles of Toupin [18, 19] . The arguments against
broad validity of Saint-Venant’s Principle are based on “ qualitative, intuitive
observations ” rather than mathematical analysis.

6.2 Analytical Saint-Venant’s Principle

The second category is Analytical Saint-Venant’s Principle. Saint-Venant’s de-
cay of this category is proved or disproved mathematically for boundary-value
problems of elasticity. The discussion of the problem in Sec.5.2 is an example
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for “ proof ” of Saint-Venant’s decay that is “ a mathematical consequence of
the general equations ”, or, a theorem, of linear elasticity. The discussion of the
problem in Sec.5.1 is an example for “ disproof ” of Saint-Venant’s decay.

7 Conclusion

1. There exist two categories of elastic problems concerning Saint-Venant’s
Principle. The first category is of Experimental Saint-Venant’s Principle. Saint-
Venant’s Principle is tested, confirmed and then established in virtue of sup-
porting experimental evidence and data . The second category is of Analytical
Saint-Venant’s Principle. Saint-Venant’s decay is proved or disproved mathe-
matically, based on fundamental equations of linear elasticity.

2. The boundary-value problems whose stress boundary condition consists
of Dirac measure, a “ singular distribution ”, are beyond the coverage of the fun-
damental equations of elasticity, and can not be dealt with by the mathematics
of elasticity for “ proof ” or “ disproof ” of their Saint-Venant’s decay.
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