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8. Nonlinear Fracture Mechanics II: Crack Bridging 
 

References: 
J. W. Hutchinson, Notes on Nonlinear Fracture Mechanics (http://imechanica.org/node/755);  
Alan Zehnder, Lecture Notes on Fracture Mechanics (http://hdl.handle.net/1813/3075). 
G. Bao and Z. Suo, Remarks on crack-bridging concepts. Appl. Mech. Rev. 45, 355-366, 1992. 
 
 Dugdale-Barenblatt Model. Dugdale (J. Appl. Mech. 8, 100-104, 1960) observed that 
the plastic zone ahead of a crack tip in a thin sheet of mild steel was primarily a narrow strip of 
height comparable to the sheet thickness (localized plastic deformation, necking), while the 
length of the strip s was much longer. The elastic-plastic fracture problem is modeled by an 
elastic plane-stress problem with a strip of plastic zone ahead of each crack tip; the length of the 
plastic zone is to be determined. Assuming the material to be elastic-perfectly plastic with 0σ  as 
the tensile yield stress, the stress variation ahead of the crack tip is illustrated in the figure below. 

 
 For a finite crack of length 2a in an infinite plate, subject to a remote tension in the 
direction normal to the crack plane, the plastic zone size s can be determined by considering a 
fictitious crack of length 2(a+s). In addition to the remote tension, the fictitious crack is subject 
to distributed normal traction over part of the crack surfaces ( saxa +<< ); the plastic zone 
plays a role of bridging between the crack surfaces with a constant traction 0σ . The stress 
intensity factor at the tip of the fictitious crack ( Lax += ) can be calculated by the method of 
linear superposition: 
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where the first term is due to the remote tension (c = a + s), and the second term is integration of 
the stress intensity factor due to crack face tractions (negative sign for tractions in the direction 
of closing the crack). Carrying out the integration, we obtain that 
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 However, with the presence of plastic zone, the stress is bounded at the tip with no 
singularity (see the figure above). This requires that 0=sK  for the fictitious crack, by which the 
plastic zone size is determined as: 
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 Dugdale (1960) performed experiments with steel 
sheets containing center and edge cracks and measured 
the plastic zone lengths (by an optical method) under 
tension. The agreement between the experiments and the 
above model was excellent (see figure).  
 
 The plastic deformation ahead of the crack tip 
leads to an opening displacement at the original crack tip 
( ax = ). Again, by the method of linear superposition, 
the crack-tip opening displacement (CTOD) is obtained 
as 
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With the previously determined plastic zone size s, 
the CTOD becomes 
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 Next we develop the condition for initiation of crack 
growth. The plastic zone may also be regarded as a bridging 
zone with a traction-displacement relationship. The 
assumption of perfectly plasticity leads to a constant traction 
within the plastic bridging zone. The bridging however is 
broken when the opening displacement reaches a critical 
level ( cδ ). Thus, the initiation of crack growth is predicted 
when ct δδ = . 

δ δc 

σ 

σ0

0 

ccJ δσ 0=  

 It was shown that the J-integral around the crack tip is 
related to the CTOD as: 

tJ δσ0=  
Thus, an equivalent condition for fracture initiation may be stated in terms of a critical energy 
release rate (or fracture energy), ccJ δσ0= , which corresponds to the area under the traction-
displacement curve for crack bridging (see figure). The critical opening displacement cδ  or the 
critical energy release rate  may be experimentally determined using appropriate test 
specimen. 

cJ

 Using the above determined CTOD, the critical remote stress for fracture initiation is 
determined: 
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 Small-scale yielding or large-scale yielding. It is instructive to compare the Dugdale-
Barenblatt model with LEFM to further understand the condition of small scale yielding. When 

1/ 0 <<∞ σσ , the results from the Dugdale-Barenblatt model reduce to 
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Recall that aK πσ∞=  and 
E

KGJ
2

==  in LEFM under the SSY condition. The energy release 

rate from LEFM agrees closely with the J-integral from the Dugdale-Barenblatt model for 
remote stresses up to approximately 4.0/ 0 =∞ σσ . The corresponding plastic zone size is up to 

. Thus the SSY condition is valid when the plastic zone size is less than 20% of the 
crack length. 

2.0/ ≈as

 The critical stress for fracture initiation predicted by the Dugdale-Barenblatt model 
extends the previous prediction by LEFM from small scale yielding to large scale yielding. 
Substituting the critical stress into the solution for the plastic zone size (set cσσ =∞ ), we obtain 
the critical plastic zone size 
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The small scale yielding condition requires that 1/ <<asc , and thus 1
8 0

<<
a

E c

σ
δπ  or 
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An intrinsic length scale emerges: 
08σ
δπ cEL = , which depends on the material properties only. 

Only when the crack size is large compare to L, LEFM is applicable. An order-of-magnitude 
estimate of the length scale gives L ~ 1 mm for steel and L ~ 10 nm for ceramics. 

Rewrite the critical stress in terms of the critical plastic zone size: 
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Therefore, under SSY condition ( 1/ <<asc ), the critical stress reduces to 
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which agrees with the LEFM condition, 
a

Kc
c π

σ = , with ccc EEJK δσ 0== . On the other 

hand, when , we have 1/ >>asc 0σσ ≈c , corresponding to the global yielding condition. 
Therefore, the Dugdale-Barenblatt model successfully captured both linear elastic fracture 
mechanics (small scale yielding) and nonlinear elastic-plastic fracture mechanics (large scale 
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yielding) regimes, with limitations in the assumptions of perfectly plastic deformation (no 
hardening) and highly localized plastic zone (a narrow strip). 
 

Generalized crack bridging concept-cohesive zone model. Barenblatt (1962) 
generalized the plastic strip model to a cohesive zone model in which the stress in the cohesive 
zone ahead of the crack is a function of the displacement rather than a constant yield stress. 
Cottrell (1963) put forward the concept of crack bridging as a unifying theory for fracture at 
various length scales, from atomic bond breaking in monolithic ceramics to fiber pull-out in 
composite materials. In each case, the microscopic mechanism of fracture and associated 
inelastic processes are represented by a bridging law that relates the face tractions in the bridging 
zone (or cohesive zone) to the relative displacements. The essential features of crack bridging 
were reviewed by Bao and Suo (1992), emphasizing their implications for strength and fracture 
resistance of ceramic matrix composites. The concept has also been widely used for modeling 
interfaces between elastic and/or elastic-plastic materials (see a review by Hutchinson and 
Evans, Acta Mater. 48, 125-135, 2000). 

 
Unlike LEFM where the microscopic mechanisms of fracture are essentially ignored (all 

material aspects are lumped into one parameter, fracture toughness), the bridging law or the 
traction-displacement relation in the cohesive zone model depends on the material and the 
associated fracture mechanism. For example, in an ideally brittle material, fracture occurs by 
atomic bond breaking, for which a bridging law may be derived from an interatomic bond 
potential. To be specific, consider an empirical potential for a covalent bond in form of 

nm r
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where r is the separation between two atoms. The interatomic force as a function of the 
separation is 
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where the first term represents an attractive force (positive) and second term represents a 
repulsive force (negative). By setting F = 0, the equilibrium separation between the two atoms 
can be determined: 
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For two solid blocks held together by such atomic bonds (see figure), the stress as the total force 
per unit area is related to the separation between 
two planes within the material: 
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where  is the number of atomic bonds 
per unit area. Rewrite the stress as a function of 
the displacement from the equilibrium separation, 

2
0/1 rN =

0rr −=δ : 
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where 0σ  is the maximum stress and α  is a prefactor 
of order unity (depending on the exponents n and m). 
A sketch of this traction-displacement relation is 
shown below. The maximum stress 0σ  can be related 
to the elastic modulus of the material: 
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0σ  is roughly one order of magnitude lower than the 
modulus (e.g., E ~ 1011 N/m2 and 0σ  ~ 1010 N/m2). A cut-off separation ( ) between the atoms 
is often specified for the empirical potential, beyond which the atomic bond is regarded as 
broken and thus no interaction between the atoms (F = 0). The critical displacement, 

cr

0rrcc −=δ  
is typically comparable to the equilibrium separation  (in the order of 100r

-10 m). In addition to 
tensile stresses ( 0>σ ) typically expected for crack bridging with 0>δ , a compressive stress 
(repulsion) occurs when 0<δ , which may be important for cases with contacts between the 
crack surfaces (e.g., under mixed mode loading). 

δ 

σ 

δc 
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 With the above traction-displacement relation as the bridging law for the ideally brittle 
material, the fracture energy per unit area is 

c
c d δσδσ

δ
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An order-of-magnitude estimate gives that Γ  ~ 1 J/m2, which is essentially the surface energy 
per unit area of the solid. Therefore, the bridging law based on the atomic bond breaking 
mechanism effectively predicts the fracture energy of ideally brittle materials. 
 
 For metals, however, the fracture mechanism is different, with large plastic deformation 
(local necking) and void nucleation, growth, and coalescence ahead of the crack tip. The 
bridging law, )(δσ , may be derived from detailed micromechanics models or may be 
determined experimentally (Cox, 1991). Relatively simple bridging laws are often used in 
theoretical and numerical analyses. For example, the Dugdale model assumes a constant traction 
in the bridging zone. A triangular or trapezoidal shaped traction-displacement curve is frequently 
used in practice. In any case, the maximum stress 0σ  and the critical displacement cδ  are the 
two most important parameters. For ductile fracture, 0σ  corresponds to the yield stress (~108 
N/m2), and cδ  is typically in the order of 10-6 m (depending on the microstructures). The fracture 
energy of metals is thus much higher than the surface energy: Γ  ~ 102 J/m2. 
 
 Bridging laws have also been developed for adhesion and debonding of interfaces 
between two dissimilar materials (Hutchinson and Evans, 2000); the constituent materials can be 
either linear elastic or elastic-plastic. Depending on the material systems, the maximum stress of 
the bridging law 0σ  can be either small or large compared to the yield stress of the constituent 
material. When 0σ  is greater than the yield stress, plastic deformation in the constituent material 
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occurs during interfacial fracture, and the total energy of fracture is greater than the intrinsic 
fracture energy  (Γ cδσ 0~ ). The effect of plasticity can be analyzed by coupling the bridging law 
for the interface with continuum elastic-plastic models for the constituent materials. A few 
examples were reviewed by Hutchinson and Evans (2000). 
 A simple bridging law for adhesive interactions between two solid surfaces can be 
derived from the classical Lennard-Jones potential (Springman and Bassani, JMPS, 2008): 
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Similar to the covalent bond bridging, r0 is the equilibrium separation. However, the adhesive 
interaction is typically weaker ( 0σ  ~ 107 N/m2), but with a longer range (cut-off displacement 

010~ rcδ ~10-8 m). The adhesion energy is thus relatively low: Γ  ~ 0.1 J/m2. A large portion of 
the interfacial fracture energy measured from experiments may be due to extrinsic plastic 
deformation of constituent materials. 
 
 Crack bridging in ceramic composites (Bao and 
Suo, 1992). As an example of the applications of the crack 
bridging concept, we consider fiber-reinforced ceramic 
matrix composites. Ceramics are brittle and prone to 
fracture. Strong fibers in ceramic matrix can enhance the 
resistance to fracture; the diameter of the fiber is typically 
in the range of 1 – 100 µm. As a crack front reaches a fiber, 
the fiber is pulled out from the matrix with interfacial 
sliding; additional energy is dissipated by friction. As the 
crack front advances, some fibers remain intact, bridging the crack surfaces. A bridging law was 
developed by a simple model described as follows.  
 First consider a reference state with parallel fibers in an elastic matrix subjected to an 
average axial stress σ . By a simple rule of mixture, the effective modulus of the composite is 

mf EffEE )1( −+=   
where  and  are Young’s modulus of the fiber and the matrix, respectively, and f is the 
volume fraction of the fiber in the composite. The axial strain of the composite is then 

fE mE

E
σε =  

With no cracking or sliding, the axial strains in the fiber and the matrix are identical,  
εεε == mf . Thus the stresses in the fiber and the matrix are, respectively 

σσ
E
E f

f =  and σσ
E
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Next, consider the region where the matrix is fractured and bridged by the continuous 

fibers. The bridging fibers are pulled out as the crack surfaces open. Sliding at the fiber/matrix 
interface occurs over a length s on both sides of the crack; s is to be determined. The stress in the 
fiber now is redistributed with a variation along the axial direction. Assume a constant friction 
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force per unit area, τ, along the sliding interface, and assume s to be large compared to the fiber 
radius R (s >> R). By a shear lag model, the equilibrium of the fiber requires that 

Rdz
d f τσ 2

−=  

The boundary conditions are: (i) At z = 0, the matrix has fractured and all the applied load is 

carried by the fiber, thus, 
ff
σσ = . (ii) At z = s, the fiber is perfectly bonded to the matrix with 

no sliding, thus σσ
E
E f

f =  (the reference state). Solving the differential equation with the 

boundary conditions, we obtain that, for sz <  
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The axial strain of the fiber is  
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The relative opening displacement between the two planes at sz ±=  is  
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Subtracting the elastic displacement at the reference state ( sεδ 21 = ) from the total 
displacement, we obtain the separation displacement of the crack faces: 
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Reorganizing the above result gives a bridging law: 
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Take the strength of the fiber as  (which may depend on the fiber radius), the critical 
average stress is then 

fS

ffS=0σ  (when the fiber breaks). By the bridging law, the corresponding 
opening displacement is 
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The bridging law can then be rewritten as 

cδ
δσδσ 0)( =  

Typically, ~10fS 9 N/m2, τ ~ 107 N/m2, and thus ffS=0σ ~108 N/m2, Rc ~δ ~10-5 m. The 
fracture energy for the composite is then cδσ0~Γ  ~ 103 J/m2, much greater than the fracture 
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energy for the ceramic matrix (~1 J/m2). Therefore, the fiber reinforcement with the pull-out 
bridging mechanism greatly enhances the fracture resistance for the composite. It is noted that 
the fracture energy is very sensitive to the fiber strength, . Increasing the fiber strength 
(e.g., by reducing the fiber radius) can significantly improve the fracture resistance of the 
ceramic composite. It may also be interesting to note that, based on this bridging model, the 
ceramic composite has the best fracture resistance with a
 

3~ fSΓ

 fiber volume fraction, . 

Small-scale bridging. The size of the 

atr

3/1=f

 
bridging zone ahead of the crack tip may be estimated 
under the condition of small scale bridging (similar to 
the SSY condition for elastic-plastic fracture). 
Assume that the bridging zone size is small compared 
to the crack size, aL << . In this case, the external 
load can be represe y the stress intensity factor 
K or energy release rate G, ignoring the details of the 
bridging zone. The crack starts to grow in the matrix 
when 0Γ=G , where 0Γ  is the fracture energy of the 
ceramic m ix. As the crack front advances, a fiber 
bridging zone develops (see figure). An application of J-integral along a contour at the boundary 
of the bridging zone gives that 

nted b

( )∫+== t dGJG tip
δ

δδσ
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While fracture of the matrix at the tip of the bridging zone still occurs with G , the energy 
dissipation by friction to pull out the fibers requires increasing energy release rate, depending on 
the bridging law, 

0Γ=tip

)(δσ . 
The size of the bridging zone L increases as the applied load (G) increases, until a steady 

state is reached when the fibers at the end of the bridging zone start to break ( ct δδ = ). 
Subsequently, the bridging zone size remains a constant SSLL =  as the crack grows. The 
required energy release for the steady state growth is: 

( )∫+Γ=Γ c dSS
δ

δδσ
00  

 To determine the resistance curve (R-curve) and the steady state bridging zone size, a 
boundary value problem has to be solved. Within the bridging zone, the face traction is related to 
the opening displacement by the bridging law. The outer boundary condition is given by the K 
field corresponding to the applied energy release rate G. 
Given a bridging zone size L, the stress intensity factor 
at the crack tip can be calculated by linear superposition 
(LEFM): 

)(LKKK bridgingtip −=  
The opening displacement at the end of the bridging 
zone can be calculated in a similar manner: 
  )(),( 21 LLK ttt δδδ −=  
A dimensional analysis leads to the following: 
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The functions f and g will also depend on the shape of the bridging law. Note that Irwin’s 

relation holds at both the local and the global levels: 
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Setting ct δδ =  with , we obtain the steady state bridging zone size by the equation: )(LKK =
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It may be confirmed that at SSSS ELK Γ= ')( . 
 As a simple example, consider a rectilinear bridging law: 0)( σδσ =  for cδδ <<0  and 

0)( =δσ  for cδδ > . In this case, we have 

π
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Therefore, the R curve is 
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The steady state fracture energy, cSS δσ 00 +Γ=Γ . Setting SSSS ELK Γ= ')( , we obtain that 
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 The small scale bridging condition is satisfied when the crack size . SSLa >>
 
 Large-scale bridging. The small scale bridging condition is rarely satisfied in practice 
for composites. When large scale bridging occurs, the R curve depends sensitively on the 
specimen geometry and thus cannot be used to predict the 
strength and load carrying capacity of components of different 
sizes and geometry. A full stress analysis coupling the 
specimen geometry and the bridging law must be carried out to 
predict the mechanical properties including the resistance to 
fracture. 
 As an example, consider a panel with a circular hole. 
The maximum load the panel can carry depends on the material 
of the panel as well as the relative hole size a/w. For a 
monolithic ceramic panel, the maximum load is such that the 
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stress at the hole is below the strength of the ceramics, 0σ , which depends on the flaw size 

( cKc /~0σ ). The stress concentration factor C is a function of a/w, and C = 3 for . 
Therefore, the ceramic panel is brittle and notch sensitive (even a small hole reduces the load 
carrying capacity of the panel), with the maximum permissible stress: 

0/ →wa

C
0

max
σσ =  

 For a ductile metal panel, plasticity relieves stress concentration near the hole and makes 
the panel notch insensitive. The maximum permissible load depends on the yield stress of the 
metal, roughly 
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Small holes ( ) do not reduce much of the load carrying capacity for metal panels. 0/ →wa
 For a fiber-reinforced ceramic panel, matrix cracking with fiber-bridging near the hole 
provides a mechanism for ductile-brittle transition 

(see figure). When 
0

'
σ
δcEa >> , the small scale 

bridging condition is satisfied, and the panel is 
ceramic-like brittle. For a large panel ( ), 

the maximum load 

0/ →wa

3
~ 0

max
σσ . When 

0

'
σ
δcEa << , 

large scale bridging prevails, and the panel is 
metal-like ductile. The maximum load, 

0max ~ σσ . Therefore, the load carrying capacity 
of the panel depends on both the hole size and the 
bridging law. 
 
 To conclude the discussions on crack bridging, we list the representative properties for 
different bridging mechanisms in the table below. It should be emphasized that, as a unifying 
concept for fracture (linear or nonlinear), crack bridging couples mechanics and materials 
through specific fracture/bridging mechanisms. While all the bridging mechanisms can be 
represented by traction-displacement relations, the large variation in the bridging scales ( 0σ  and 

cδ ) underlies the richness in the fracture behavior of materials. 
 

Bridging 
mechanism 

Example 
material 

Strength, σ0 
(N/m2) 

Critical 
displacement, δc (m)

cδσ0~Γ  
(J/m2) 

0/~ σδcEL  
(m) 

Atomic bond ceramics 1010 10-10 1 10-9

Plastic zone metals 108 10-6 102 10-3

Adhesive 
interactions 

bimaterial 
interfaces 

107 10-8 0.1 10-4

Fiber bridging Ceramic 
composites 

108 10-5 103 10-2
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