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4. Energy Release Rate 
 

References: 
J. W. Hutchinson, Notes on Nonlinear Fracture Mechanics (http://imechanica.org/node/755);  
Alan Zehnder, Lecture Notes on Fracture Mechanics (http://hdl.handle.net/1813/3075). 
 

As an alternative approach to studying fracture mechanics, energy approach is applicable 
for both linear and nonlinear elastic materials. Within linear elastic fracture mechanics (LEFM), 
the connection between the energy flow and the crack tip stress field provides a powerful tool 
(e.g., J integral) for the determination of stress intensity factors. 
 

A. A. Griffith’s work (1921). “The phenomena of rupture and 
flow in solids”, Philosophical Transactions of the Royal Society of 
London, A221:163-198. (Times Cited: 2646. No. 3 in the list of the most 
cited, http://imechanica.org/node/587).  

 
Three things known to Griffith at his time: 
 
(1) Linear elasticity solution of an elliptic hole in a large plate 

(Inglis solution); 
(2) Fracture stress measured for bulk glass is around 100 MPa, 

with a big scatter in data; 
(3) Theoretical strength for atomic bond breaking is much higher, 

~10 GPa.  
 

In his own experiments, Griffith measured fracture stresses of 
glass fibers under uniaxial tension tests and found that the measured 
strength increases as the fiber thickness decreases. Thus, the uniaxial 
tension strength depends on the specimen size, not a material property. 
Griffith assumed that the size-dependent strength is due to different flaw 
sizes in the fibers. However, the flaw size is typically unknown and not 
well controlled (vary from specimen to specimen). To verify his 
assumption, Griffith introduced a well-controlled artificial flaw-crack, 
much larger than other flaws in the fiber, and measured the tensile 
strength of specimens with different crack sizes. His experimental r
measured tensile strength depends on the crack size, and the product of the strength and the 
square root of the crack size was nearly a constant, namely,  

esult showed that the 

 
Caf =σ  

 
The next question: what determines the constant C? Griffith knew about surface energy 

of solids (J. W. Gibbs, 1878), and he actually did the experiments to measure the surface energy 
of glass at a number of high temperatures between 730°C and 900°C. Let’s briefly review the 
concept of surface energy before we come back to Griffith’s experiments. 
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Surface energy. The excess energy at the surface, compared to the bulk, is defined as 
surface energy. For a liquid, the surface energy density (pre unit area of the surface) is identical 
to the surface tension (force per unit line length). For example, the surface tension of water is 
about γ = 0.08 N/m, which is 0.08 J/m2 for the surface energy density. 

 
Example 1: a semi-spherical droplet. By force balance, the weight of the droplet is 

balanced by the surface tension around the edge, namely 
 

γπρ agV 2=  
 

Given the mass density and surface tension of water, the radius of the droplet is predicted to be 
 

g
a

ρ
γ3

=  

 
 Example 2: capillary effect. A thin tube (open ended) of radius a is inserted into a liquid 
reservoir. Let 1γ  be the surface energy density of the interface between the tube (a solid) and air, 
and  2γ  be the surface energy density of the interface between the tube and the liquid. The free 
energy of the system include the surface energy of all interfaces and the potential energy of 
gravity (as the liquid rise or drop in the tube), namely 
 

( )
2

2 2
210

hhagahGG πρπγγ +−−=  

where h is the height of the liquid level in the tube. The change of the liquid level outside the 
tube is ignored for a thin tube in a large reservoir. 
 
By minimizing the free energy with respect to the height h, we obtain the equilibrium height, 
 

ga
h

ρ
γγ 21 −=  

Thus, if 12 γγ <  (e.g., water), the liquid rises in the tube to a positive height ( ); otherwise, if 0>h

12 γγ >  (e.g., mercury), the liquid level drops in the tube to a negative height ( ). 0<h
 
 Example 3: measure surface energy of a liquid membrane. A liquid membrane on a metal 
frame is pulled by a force on one side. At equilibrium, the force is measured to be F, and the 
length of the membrane is L. The width of the frame is a constant, W. The work done by the 
force increases the surface area of the membrane and thus the surface energy. The total free 
energy is a minimum at equilibrium. By a variational statement,  
 

02 =+−= LWLFG δγδδ  
 

Thus the surface energy is: 
W
F

2
=γ . The factor of 2 is due to the two surfaces of the membrane. 

The same result can be reached by force balance with the surface tension. 
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 The membrane method however cannot measure surface energy of a solid, because 
stretching of a solid membrane induces elastic energy in the bulk in addition to the change of 
surface energy. In general, surface energy of a solid is not necessarily identical to the surface 
tension. Furthermore, surface energy of a solid also depends on the deformation of the surface 
(strain), which leads to the concept of surface stress. For a reference on surface energy and 
surface stress of solids, see J. W. Cahn (1980) “Surface stress and the chemical-equilibrium of 
small crystals. I: The case of the isotropic surface.” Acta Metall. 28, pp. 1333–1338. 
 
 The surface energy of a solid may be measured at high temperatures, when the solid 
creeps. Consider a cylindrical rod of radius r and length L, under a uniaxial tension P, at a high 
temperature. Both the radius and the length changes due to creeping, while the volume 
( ) remains constant. At the equilibrium, the variation of the total free energy vanishes, 
namely 

LrV 2π=

 
0=+−= ALPG γδδδ  

 

Here,  and rLrA ππ 22 2 += LrrL
L
rA δπδπδ 2221 +⎟
⎠
⎞

⎜
⎝
⎛ += . Meanwhile, , 

which leads to 

02 2 =+= LrrrLV δπδπδ

L
L
rr δδ

2
−= . Inserting into the variation of the free energy, we obtain that 

⎟
⎠
⎞

⎜
⎝
⎛ −=

L
rrP 21γπ  

 
Thus, measuring P, r, L at the equilibrium state determines the surface energy. The force P is 
also called zero-creep load.  
 

Back to Griffith’s work. Griffith used a method similar to the creeping rod to measure 
surface energy of glass at high temperatures (a homework problem next week). To explain his 
experimental results on the fracture stress that depends on the crack size, Griffith took an 
energetic approach. Consider a reference state of the glass fiber with no crack or any other flaws. 
Under a uniaxial tension ∞σ , the specimen is homogeneously loaded with an axial strain, 

E
∞=

σε , where E is Young’s modulus of the material. The potential strain energy stored in this 

perfect specimen is then, 
 

V
E

VG
22

1 2

0
∞

∞ ==
σεσ  

 
Next, fix the remote boundary so that the applied load does not do extra work, and introduce a 
crack of length a into the specimen. The crack relaxes the stress thus the elastic strain energy 
near the crack faces, within an area scaling as  (considering a plate of unit thickness). 
Meanwhile, creation of two new surfaces of the crack increases the surface energy. The change 
of the total free energy from the reference state due to the crack is thus 

2~ aA
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a
E
agaA

E
G γσγσ 22

2

222
+−=+−=Δ ∞∞  

 
where g is a dimensional number of order unity, not so important for the purpose of current 
discussion. 
 
 Sketch the change of free energy as a function of the crack length. The free energy 
reaches a peak at a critical crack size 
 

2
∞

=
σ
γ

g
Eac  

 
If , the free energy decreases by reducing the crack length (crack healing). If , the 
free energy decreases by increasing the crack length (crack growing to cause fracture). 

caa < caa >

 
 Alternatively, for a given crack length a, the critical stress to cause crack growth is 
 

ga
E

c
γσ =  

 
Griffith solved the elasticity problem for a finite crack in an 
infinite plate and obtained that 
 

a
E

c π
γσ 2

=  

 
This result agrees very well with his experiments, i.e, 

Cac =σ , with the constant 
π
γEC 2

= . Taking 1~γ  J/m2 

and E ~ 9 × 106 psi, the agreement between the predicted fracture stresses and the measured ones 
was excellent! 
 
Summary of Griffith’s work. 
 

(1) Experimental observations: the measured fracture stress of a glass fiber is much lower 
than the theoretical strength and depends on the specimen size. 

(2) Introduction of a crack as a controllable flaw: stress at the crack tip predicted by linear 
elasticity goes to infinity. Cannot directly apply the stress criterion. 

(3) An energetic approach: compare the release of elastic strain energy and the increase in 
the surface energy to determine the critical stress of fracture. This approach works great 
for the glass fibers. 
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George R. Irwin (1907-1998): the role of plasticity. Griffith 
was fortunate in working with glass, an ideal brittle material. When 
applying the same idea to steel, it leads to an unrealistically large 
surface energy for steel, 1000~γ  J/m2! On the other hand, the 
scaling relationship between the fracture stress and the crack size, 

, still holds for steel and many other metals. 2/1~ −acσ
 The role of plasticity in fracture was first realized by Irwin. 
Plasticity plays a negligible role in fracture of brittle materials (e.g., 
glass and ceramics). For ductile materials (e.g., metals), however, a 
finite plastic zone develops around the crack tip. The size of the 
plastic zone (rp) increases as the load increases. At a critical load, the 
crack grows, and the material behind the crack tip unloads. The 
hysteresis of the loading-unloading of the materials around the crack 
dissipates energy (e.g., as heat), another energy term involved during fracture in addition to the 
surface energy and elastic strain energy. Consequently, additional energy is required for the 
crack growth in ductile materials. The plastic energy dissipation is small compared to the surface 
energy in brittle materials, but becomes significant for ductile materials, even under the small-
scale yielding (SSY) condition. 

 

Shape of plastic zone around a 
crack tip 

 It was Irwin’s idea to separate the energy into two parts: 
 

(1) The elastic strain energy, which releases as the crack grows. The release of the elastic 
energy thus defines a thermodynamic driving force for fracture; 

(2) Energy dissipation near the crack, which includes both the excess surface energy and the 
plastic dissipation as well as any other energy dissipation processes (e.g., phase 
transformation) near the crack. The lump sum of the energy dissipation defines the 
overall material resistance to fracture, or the fracture energy required to grow a crack. 

 
Recognizing that the plastic deformation around the crack is controlled locally by the crack-

tip stress field, independent of the sample geometry, Irwin added an additional energy term onto 
the surface energy density as the total fracture energy: 

pw+=Γ γ2  

where wp is the plastic energy dissipation per unit area of crack growth. A modification to 
Griffith’s solution for the fracture stress is then 
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a
E

c π
σ Γ

= . 

 
For glass, γ2<<pw , and 1~2γ≈Γ J/m2; for steel, γ2>>pw , and 1000~Γ J/m2; epoxy has an 
intermediate fracture energy, 100010~ −Γ J/m2. 
 

Energy release rate. The driving force for fracture is the release of elastic strain energy. 
This can be obtained by solving an elasticity boundary value problem. Under the condition of 
small-scale yielding, the effect of plasticity is ignored in the calculations of energy release rates. 

 
Consider a large plate with a crack of length a (or crack area 
). Apply a force P. The displacement at the loading point is 

. Let U be the total elastic energy stored in the plate. For a fixed 
crack length (area), the elastic energy is a function of the applied 
load or displacement, i.e., 

ahA =
Δ

( )Δ= ,AUU . 
Now compare the elastic energy of two samples, with 

different crack lengths ( ), but with the same displacement 12 AA > Δ . 
T d he sample with the larger crack is more compliant, and the store
elastic energy is lower: ( ) ( )Δ<Δ,2AU
the first sample grows from area 1A  to are 2A , with the 
displacement fixed (thus no work done by the external load), the 
elastic energy in the plate reduces by 

,1AU . Thus, when the crack in 
a 

( ) ( )Δ−Δ=− ,, 21 AUAUUδ .  
The energy release rate is defined as the differential change of the elastic strain energy 

due to per unit area of crack growth, namely 
 

( ) ( )
Δ→→
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
−

Δ−Δ
=⎟

⎠
⎞

⎜
⎝
⎛−=

A
U

AA
AUAU

A
UG

AAA 12

21
0

,,limlim
12δ

δ
δ

 

 

Method of compliance: measure the compliance of the sample, 
P

C Δ
= , as a function of the crack 

size, . The elastic strain energy is then, )(ACC =
C

PU . The energy release rate is 

thus 
22

1 2Δ
=Δ=

dA
dCP

dA
dC

CA
UG

22

2

2

2
=

Δ
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−=
Δ

 

 
The compliance C depends on the sample geometry, crack size, and the material properties (E 
and ν). The energy release rate G depends on the applied force P in addition to the sample 
geometry and material properties. 
 
Under a displacement control experiment, we have GdAPddU −Δ= .  
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Under load control, we define a potential energy as Δ−=Π PU . Then, GdAdPd −Δ−=Π . 
Thus, an equivalent definition for the energy release rate is: 
 

PA
G ⎟

⎠
⎞

⎜
⎝
⎛
∂
Π∂

−=  

Noting that  for linear elasticity problems, we have UPU −=Δ−=Π
PA

UG ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= . Thus, under 

the load control, the elastic strain energy increases as the crack grows; for a good example, 
consider a specimen loaded by a dead weight. Sketch the energy change under both displacement 
and load control. 
 

Calculation of energy release rate. Several methods may be employed to determine 
energy release rate of a crack. 
 
Energy method. Consider a double cantilever beam 
(DCB) specimen. Treat each arm of the specimen as 
a cantilever beam of length a, so that the end 
deflection is 
 

3

33 4
32 Eb

Pa
EI

Pa
==

Δ  

 
The elastic strain energy stored in both arms is 
 

3

23

3

32

16
4

2
1

a
Eb

Eb
aPPU Δ

==Δ=  

 
Thus, the energy release rate is 
 

3

2212
Eb

aP
a
UG

P
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=  or 4

23

16
3

a
Eb

a
UG Δ

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
Δ

 

 
Confirm that the two are identical. Sketch the energy release rate as a function of the crack 
length under displacement and load control, respectively. 
 
 As a second example, consider a semi-infinite 
crack in an infinite strip held in rigid grips and subject 
to a prescribed separation Δ. Let the crack advance by 
da. The stress and strain fields are unchanged if one 
shifts the origin of the coordinate by da in the positive 
x-direction. The change of the elastic energy due to 
the crack growth is simply the difference between two 
slices of the strip, one far ahead of the crack tip  
( +∞→x ) and the other far behind the crack tip ( −∞→x ). The former is uniformly strained by 
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byy 2
Δ

=ε  ( 0=xxε ), while the latter is unloaded by the traction-free crack surfaces. Therefore, 

the energy release rate for this crack is simply 
 

( )+∞→= xbUG 2  
 

Under the plane stress condition, as +∞→x , 
b

E
yy 21 2

Δ
−

=
ν

σ  and yyxx νσσ = . Thus 

( )
)1(4

2 2

2

ν−
Δ

=+∞→=
b

ExbUG . 

 

 
 
Crack closure integral method. Consider a mode I crack. The stress field ahead of the crack tip is  
 

x
aKx I

yy π
σ

2
)()0,( = . 

 
Let the crack advance in the x-direction by small amount, Δa. The stress intensity factor of the 
new crack is, . The opening displacement of the crack is )( aaKI Δ+
 

( ) ( )
2/1

2'
)(80,0, ⎟

⎠
⎞

⎜
⎝
⎛ −ΔΔ+

=− −+

π
xa

E
aaKxuxu I

yy  

 
Under a prescribed displacement (no work done by external loads), the elastic strain energy 
release during the crack growth equals the work done by closing the crack with the traction, 

)0,(xyyσ− , which is 

[ ]

a
E

aaKaKdx
x

xa
E

aaKaK

dxxuxuxU

IIaII

a
yyyy

Δ
Δ+

=
−ΔΔ+

=

−=Δ

∫

∫
Δ

Δ −+

'
)()(

'
)()(2

)0,()0,()0,(
2
1

0

0

π

σ
 

 
By definition, the energy release rate of the initial crack is 

 8



EM 388F Fracture Mechanics, Spring 2008  Rui Huang 
 

'
)(lim)(

2

0 E
aK

a
UaG I

a
=

Δ
Δ

=
→Δ

 

 
This gives the relationship between energy release rate and stress intensity factor for a model I 
crack. Similar relation can be derived for mode II and mode III cracks. In general, we have 
 

μ2'

222
IIIIII K

E
KKG +

+
=  

Recall that  for plane strain and )1/(' 2ν−= EE EE ='  for plane stress, and )1(2/ νμ += E  is the 
shear modulus. 
 

A general form of the crack closure integral may be written as 
 

∫ ∫Δ

Δ

→Δ Δ
=

A

u
iiA
dAdu

A
G i

0 20

1lim σ  

 
where . For linear elastic materials, the traction −+ −=Δ iii uuu i2σ  is linearly proportional to the 
displacement , thus iuΔ
 

∫Δ→Δ
Δ

Δ
=

A iiA
dAu

A
G 20 2

1lim σ  

 
 A revisit to Griffith’s crack. As noted in a previous lecture, the full-field solution for a 
finite crack in an infinite plate under remote tension can be obtained by the Westergaard 
approach of complex variable method, which gives the crack opening displacement 
 

22

'
2 xa
E

uy −±= ∞σ  for ax <  

 
We have found the stress intensity factor for such a crack by comparing the full-field solution to 
the asymptotic crack-tip solution. Let’s now determine the energy release rate. 
 
 Relative to the reference state with no crack, the elastic strain energy in the cracked plate 
equals the negative of the work done by closing the crack so as to recover the reference state, 
namely, 
 

( )
''

2
2
1)(

22

0
22

2

00 E
aUdxxa

E
UdxuuUaU

a

a

a

a yy
∞

−
∞

−
−+

∞ −=−−=−−= ∫∫
πσσσ  

 
Then, the energy release rate for each of the two crack tips is 
 

'2
1 2

E
a

A
UG ∞

Δ

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
πσ  
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For a plate of finite width (2b), the energy release rate takes the form 
 

'

2

E
a

a
bG ∞⎟
⎠
⎞

⎜
⎝
⎛Ω=

σ  

The dimensionless function, ⎟
⎠
⎞

⎜
⎝
⎛Ω

a
b , is available in the Handbook (Tada, Paris and Irwin), in 

tabulated and graphic forms. 
 
 
Contour integral (J-integral) method. Consider a 2D linear elastic body. Define a contour 
integral 
 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
C

i
i ds

x
utwnJ

1
1  

where ijijw εσ
2
1

=  is the elastic strain energy density, jiji nt σ=  is the traction along the contour 

C, with  being the unit normal of the contour path. jn
 
 It can be shown that, over a closed contour over a simply-connected domain, the J-
integral equals zero. 
 

0
11

1

2

111
1

1
1

1
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

−
∂
∂

∂
∂

−
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=

∫

∫∫

∫∫

A
ij

ij

A
j

i
ij

i

j

ij
A

i
ijj

j

C j
i

ijjC
i

i

dA
xx

w

dA
xx

u
x
u

xx
wdA

x
uw

x

dsn
x
uwds

x
utwnJ

ε
σ

σ
σ

σδ

σδ

 

In the above proof, we have used the divergence theorem converting a closed contour integral 
into a domain integral over the area A enclosed by the contour. In addition, we have used the 

equilibrium equation, 0=
∂
∂

j

ij

x
σ

 (assuming no body force), and the small-strain kinematic 

relation, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

=
i

j

j

i
ij x

u
x
u

2
1ε , noting the symmetry, 

j

i
ijijij x

u
∂
∂

= σεσ . The last step requires the 

existence of a strain energy density function such that  
ij

ij
w
ε

σ
∂
∂

= . 

 Now consider J-integral around a crack tip. Over a contour path that starts on one crack 
face and ends on the other, the value of J-integral is non-zero and independent of the path. This 
can be proved by considering a closed contour formed by two different paths plus the crack 
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surfaces in between, i.e., . 
The J-integral over the closed contour is zero, thus 

)()(
21

−+ Γ+Γ+Γ−Γ=C

 
0)()(

21 =++−= −+ JJJJJC  
 
Noting that on the crack surface, 01 =n  and 

0== ijji nt σ , we have . Therefore, 
, i.e, the J-integral around a crack tip is path-

independent. 

0)()( == −+ JJ

21 JJ =

 
 Next we show that the J-integral over a contour around a crack tip equals the energy 
release rate, i.e., J = G. A rigorous derivation was given by Budiansky and Rice (J. Appl. Mech., 
pp. 201, 1973), who considered the change of the potential energy due to extension of a blunt-
ended notch as a generalized crack model in nonlinear elastic solids. A similar derivation can be 
found in Lecture Notes on Fracture Mechanics by Alan Zehnder, where the energy flow during 
fracture is considered. Under the condition of small scale yielding, one can choose a contour path 
within the K-annulus, where the stress and displacement fields are given by the asymptotic 
crack-tip solution in terms of the stress intensity factors. Then, a direct evaluation of the J-

integral verifies that G
E
KJ ==

'

2
 for mode I and mode II, and 

μ2

2KJ =  for mode III. 

 
 Note: The stress intensity factors, K, and the J-integral, depend only on the current state 
of the crack, irrespective of how the crack may grow under the current condition. On the other 
hand, the energy release rate, G, is specified with respect to the direction of crack growth. In 
other words, for the same crack under the same loading condition, the energy release rate may be 
calculated as a function of the crack growth direction. Only for the straight ahead growth, the 
energy release rate is related to the stress intensity factors and J-integral as developed above. 
  
 Example: Consider a semi-infinite crack in an infinite strip held in rigid grips and subject 
to a prescribed separation Δ. The energy release rate for th
obtained previously by the energy method. Now 
we apply the J-integral over a path as shown in 
the figure: 54321 Γ+Γ+Γ+Γ+Γ=C . We note 
the following
 

e straight ahead crack growth was 

: 

(1) Along  and , far behind the crack tip, the material is completely unloaded, i.e., 1Γ 5Γ
0=ijσ  and =w . Thus, the J-integral is zero on 10 Γ  and 5Γ : 051 == JJ . 

2Γ  an , close to the interfaces with the rig  g(2) Along d id rips, we have  4Γ 01 =n  and 

0=
∂ui ent). Thus, 0

1∂x
 (constant displacem 42 == JJ . 
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(3) Along , far ahead of the crack tip, the material is uniformed strained, with 3Γ b222
Δ

=ε  

and 011 =ε , and also 0
1
=

∂
∂

x
ui . Assuming plane stress, the elastic strain energy density is, 

2

22222 2)1(22
1

⎟
⎠
⎞

⎜
⎝
⎛ Δ

−
==

b
Ew
ν

εσ .  Thus,  

)1(4
2 2

2

2
1

13
3 ν−

Δ
===⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−= ∫∫ −Γ b
Ewbwdxds

x
utwnJ

b

b
i

i  

 

Therefore, the J-integral over the contour C is: 
)1(4 2

2

3 ν−
Δ

==
b

EJJ , identical to the energy 

release rate obtained before. 
 
 J-integral in three dimensions: consider a 
crack in a plate of thickness b as shown. The J-
integral can be evaluated over the surface surrounding 
the crack front line: 210 SSSS ++= . However, since 

 and  on  and  (traction free surfaces 
of the plate), the J-integral in this case is 

01 =n 0=it 1S 2S

 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
0 1

1
1

S
i

i dA
x
utwn

b
J  

 
The local value of the J-integral along the crack front, ( )3xJ , can be calculated over a slice of the 
cylindrical surface, . 30 dxdS Γ=
  
 Summary: finding the energy release rate. The following approaches may be used to 
determine energy release rate for linear elastic fracture mechanics problems (small scale 
yielding): 
 

(1) Solve the full-field elasticity problem analytically, and find the energy release rate by 
definition. 

(2) Energy method, sometimes analytical, without solving the full-field problem. 
(3) Numerical methods (e.g., finite element method), with J-integral or crack closure 

integral. 
(4) Handbook solutions, available for a large number of specimen geometries. 
(5) By experiments, measuring the compliance as a function of the crack size.  
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