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3. Stress Intensity Factors 
 

 References: 
Alan Zehnder, Lecture Notes on Fracture Mechanics (http://hdl.handle.net/1813/3075). 
H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook (1973, 1985, 2000). 
 
 Three modes of fracture. A crack in 3D may have a curved front. At any point of the 
crack front, a local coordinate system can be set up so that the 

1x  axis is normal to the crack front and parallel to the crack 
surface, the 2x  axis is normal to the crack surface, and the 3x  
axis is tangential to the crack front. A local cylindrical 
coordinate system can also be set with (r, θ) in the 21 xx −  
plane. 
 
 Using the local coordinates, three fracture modes can be defined. Within the framework 
of linear elastic fracture mechanics (LEFM), an arbitrary crack problem (2D and 3D) can be 
considered as a linear combination of the three basic modes. 

 
 The characteristic stress field near the crack tip is solved separately for each of the three 
fracture modes, assuming a straight crack front and semi-infinite crack length in an infinite body. 
 
 Mode I and Mode II fields. The asymptotic crack tip fields under mode I and mode II 
conditions were obtained by Williams (1957). Follow the general approach to solving plane 
elasticity problems. In the local cylindrical coordinates originated at the crack tip, the Airy stress 
function ),( θφ r  satisfies the biharmonic equation 
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By the method of separation of variables, let ( ) ( ) ( )θθφθ Θ=∇=Ψ rfrr ),(, 2 . The biharmonic 
equation becomes 
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The solution to the above equation takes form: λrrf =)(  and λθλθθ cossin)( BA +=Θ , where 
λ  is an eigenvalue to be determined. 
 
Noting that ( )λθλθθφ λ cossin),(2 BArr +=∇ , let ( )θθφ λ Γ= +2),( rr . Then, 
 

( ) λθλθλ cossin2" 2 BA +=Γ++Γ  
 

The general solution to the above ODE consists of a superposition of the homogeneous solution 
and a particular solution, namely 
 

( ) λθλθθλθλθ cossin)2cos()2sin( 4321 CCCC +++++=Γ  
 
Therefore, the original biharmonic equation is solved by a stress function in form of Williams’ 
expansion 
 

( ) [ ]λθλθθλθλθφ λ cossin)2cos()2sin(, 4321
2 CCCCrr +++++= +  

 
Then, the stress components are: 
 

( ) ( )[ ]λθλθλθλθλλλσ λ cossin)2()2cos()2sin()2()1( 4321 CCCCrr +−+++++−+=  
[ ]λθλθθλθλλλσ λ

θ cossin)2cos()2sin()2)(1( 4321 CCCCr +++++++=  
( ) ( )[ ]λθλθλθλθλλλσ λ

θ sincos)2sin()2cos()2()1( 4321 CCCCrr −++−+++−=  
 
 Next, we determine the eigenvalue and the coefficients from the boundary conditions. 
 
 Mode I crack tip field. For a mode I crack, the stress field is symmetric with respect to 
the x axis, i.e., 
 

),(),( θσθσ rr rr =− , ),(),( θσθσ θθ rr =− , and ),(),( θσθσ θθ rr rr −=−  
 
Thus, 031 == CC . Next, apply the boundary condition at the crack surface, i.e., 0== θθ σσ r  at 

πθ ±= , which leads to 
 
   [ ] 0cos)2cos()2)(1( 42 =++++ λππλλλ CC  
   [ ] 0sin)2sin()2()1( 42 =++++− λπλπλλλ CC  
 
This becomes a standard eigenvalue problem. In order to have nontrivial solutions to the 
coefficients 42 ,CC , the determinant of the coefficient matrix of the above equations must vanish, 
namely 
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This reduces to a simple equation: 02sin)2()1( 2 =++ λπλλ . Therefore, there exists infinite 

number of eigenvalues: L,2,
2
3,1,

2
1,0 ±±±±=λ  

 
 A couple of physical conditions help us reduce the number of eigenvalues: 
 

(1) The stress scale with λr , which would only make sense if 0<λ , because stress 
concentration (or singularity) at the crack tip is expected. 

(2) The displacement scales with 1+λr ; to have a bounded displacement at the crack tip 
( 0→r ), it is necessary to have 01>+λ . 

 

The only eigenvalue that satisfies both the conditions is: 
2
1

−=λ . Corresponding to this 

eigenvalue, the eigen vector gives the ratio between the two coefficients: 24 3CC = . This leaves 
only one unknown parameter for the stress fields near the crack tip. 
 

 ( ) ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=+−=

2
sin1

2
cos32/cos352/3cos3

4
222 θθθθσ

r
C

r
C

r  

 [ ] ⎟
⎠
⎞

⎜
⎝
⎛=+=

2
cos32/cos32/3cos

4
3 322 θθθσθ r

C
r

C  

 [ ] ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=+=

2
cos

2
sin32/sin2/3sin

4
3 222 θθθθσ θ r

C
r

C
r  

  
 Stress intensity factor. The remaining unknown parameter can only be determined from 
a remote boundary condition. On the other hand, the square root singularity as well as the 
circumferential distribution of the stress field near the crack tip is independent of the remote 
loading conditions. In other words, the mode I crack is fully described by a single parameter, 
which is called stress intensity factor. For convenience, define π23 2CKI = , so that the 
opening stress ahead of the crack tip is: rKI πσθ 2/= . 
 
 Mode I displacement field. The displacement field is determined by integrating the 
strain components; the latter are related to the stress components by Hooke’s law.  
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where νκ 43−=  for plane strain problems and )1/()3( ννκ +−=  for plane stress problems. 
 
 Of particular interest is the crack opening displacement: 
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where )1/(' 2ν−= EE  for plane strain and EE ='  for plane stress. The opening displacement has 
a shape of parabola. The relative displacement of the two crack faces requires that 0>IK , to 
avoid interpenetration of the crack faces. 
 
 Mode II crack tip field. Follow the same steps as for the mode I field. Note the different 
symmetry condition for Mode II. The stress field is anti-symmetric with respect to the x axis. 
Thus, in the general solution, the coefficients 0, 31 ≠CC , but 042 == CC  instead. The same 

eigenvalue, 
2
1

−=λ , is obtained. The asymptotic stress field for a mode II crack: 
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IIK  is the mode II stress intensity factor, which depends on the boundary conditions away from 

the crack tip. Ahead of the crack tip ( 0=θ ), we have 0== θσσ r , but the shear stress 

rKIIr πσ θ 2/= . 
 
 The mode II displacement field is 
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The shearing displacements at the crack faces are 
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The opening displacement of a mode II crack is zero, thus the possibility of contact and friction 
between the crack surfaces. 
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 Mode III crack tip field. This is an anti-plane shear problem (even simpler than plane 
elasticity). The displacement 0== θuur , and ),( θruu zz = , independent of the z coordinate. 
The stress components are: 
 

r
uz

zr ∂
∂

= μσ , 
θ

μσ θ ∂
∂

=
r

uz
z , and 0==== θθ σσσσ rzr  

 
Thus, the equilibrium equation becomes 
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This is a harmonic equation of the anti-plane displacement. Again, using the method of 
separation of variables, the general solution takes the form 
 

( )λθλθλ cossin BAruz +=  
 

Apply boundary conditions: 0=
∂
∂

=
θ

μσ θ r
uz

z  at πθ ±=  (traction free crack surfaces), and we 

have 
 
    ( ) 0sincos =− λπλπλ BA  
    ( ) 0sincos =+ λπλπλ BA  
 
The existence of nontrivial solutions requires that 02sin2 =λπλ . Thus, the possible eigenvaules 

are: L,2,
2
3,1,

2
1,0 ±±±±=λ . With the same physical conditions for the mode I field, only one 

eigenvalue, 
2
1

−=λ , is retained. 

 The asymptotic stress field for mode III is 
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IIIK  is the mode III stress intensity factor. Ahead of the crack tip ( 0=θ ), we have 0=zrσ , but 

rKIIIz πσ θ 2/= . 
 
 The mode III displacement field has only one component: 
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 Summary of the linear elastic crack-tip fields. The asymptotic stress fields for the three 
fracture modes may be reduced to a simple, general form 
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Both the radial and circumferential distribution are fully determined. The stress intensity factors 
depend on the remote boundary conditions, i.e., the applied load and specimen geometry. 
 
 Calculations of stress intensity factors. Analytical methods such as the complex 
variables method (see Alan Zehnder, Lecture Notes on Fracture Mechanics, 
http://hdl.handle.net/1813/3075) have been used to solve full fields of elastic boundary value 
problems to determine the stress intensity factors. For example, the crack opening displacement 
of a finite crack in an infinite plate under remote tension can be obtained by the Westergaard 
approach of complex variable method: 
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Near one crack tip (say ax = ), the opening displacement in 
the local cylindrical coordinates is: 
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Compare the above solution to the asymptotic mode I 

solution, ( )
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aKI πσ∞=  
 

 More generally, numerical methods (e.g., finite element method, boundary element 
method, etc.) are used to calculate the stress intensity factors. Some of these numerical methods 
will be introduced in later lectures. A large collection of stress intensity factors is available in H. 
Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook, with a variety of 
loading conditions and specimen geometry. A few examples are given below. 

 

A finite crack in an infinite plate under remote shear: 
aKII πτ∞=  
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A rectangular crack in an infinite body or an 
edge crack in a half space under mode III 
shear: 

aKIII πτ∞=  

An edge crack in a half plane under remote tension: 
 

aKI πσ∞= 12.1  

Standard ASTM compact tension specimen (h = 0.6b, h1 
= 0.275b, D = 0.25b, c = 0.25b, thickness w): 
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with 432 9.6310177.6555.1856.29)( xxxxxF +−+−=  
for 6.04.0 << x . 

An edge crack in a strip (thickness w) 
under bending: 
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When a/b → 0, baF /9.11→ ; 
When 1/ →ba , 95.3→F . 
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 Small scale yielding and K annulus. The asymptotic crack tip field (also called K field) 
is only valid under two conditions: 
 

(1) at a region close to the crack tip. Specifically, the distance to the crack tip, r, should be 
small compared to other length scales (e.g., crack length, specimen size). Beyond this 
limit, the remote boundary conditions add additional terms (non-singular) to the 
asymptotic field. 

(2) But not too close to the crack tip. The singular stress field from the elastic solution is 
truncated by plastic yield or other inelastic behavior at a distance rp. 

 
 The condition of small scale yielding (SSY) states that the plastic zone size is sufficiently 
small compared to the crack length and other geometrical lengths of the specimen, i.e., Lrp << . 
This ensures that the elastic K field is correct in an annular region surrounding the crack tip, i.e., 

Lrrp << . 
 
 The plastic zone size may be estimated by comparing the asymptotic stress field to the 

yield strength of the material. Roughly, by yr
K σ
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. Thus, the 

plastic zone size increases as the applied load increases. In most instances, SSY appears to be a 
reasonable assumption as long as the applied load is below about one half of the limit load for 
full scale plastic yielding (e.g., yσσ 5.0<∞ ). 
 
 Linear elastic fracture mechanics (LEFM) is essentially based on the assumption of SSY. 
Under the condition of SSY, the stress intensity factors ( IIIIII KKK ,, ) provide the only link 
between the outer boundaries and the crack tip. The fracture process at the crack tip is thus 
dependent on the stress intensity factors. The details of geometry and loading conditions become 
irrelevant as long as the stress intensity factors are known. 
 

A penny shaped crack in an infinite body under remote 
tension. Near crack edge field is identical to mode I plane 
strain with 
 

aKI πσ
π ∞=
2  


