
3-D Aspects of the Plastic Zone at Crack Tip for Mode I, Small Scale Yielding
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LEFM KIC testing
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for valid (LEFM)  test:

      Ref.  Chp. 3 Barsoum & Rolfe
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Crack first advances at center of specimen where plane strain holds.
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ASTM requirement 

Indentation toughness of brittle ceramics and glasses:  Cone & Radial Cracks
(Reference: B..Lawn Fracture of Brittle Solids, 2nd ed. Cambridge Univ. Press, Chp. 8.
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Dimensional analysis if no residual stress at surface:  
  For ,only important parameters are  ( ), ( ), ( ) :

c /
If is measured experimentally at load , then

c /IC

a d P N K Nm a m
K P a

a P
K P a

−

−

−

>>

⇒ =

=

i

i

Cone crack in soda-lime glass under a spherical indenter 

Radial cracks in soda-lime glass under a Vickers indenter 
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The constant c depends on whether conical or radial cracking 



Elements of Nonlinear Fracture Mechanics with Emphasis on Large Scale Yielding

For the purposes of this introduction to nonlinear fracture mechanics we will employ the
Deformation Theory of Plasticity which is a small strain nonlinear elastic constitutive law
and which is only applicable under applications where elastic unloading (load reversal) is
not significant.  What follows is a one-slide introduction of J2 deformation Theory.
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This can be considered as a small strain, nonlinear elastic relation 
with strain energy density ( ): 
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J-Integral of Nonlinear Fracture Mechanics  (J. R. Rice, 1967)

J is the energy release rate for straight-ahead crack advance for the nonlinearly
elastic deformation theory solid.  For elastic-plastic solids J should not be regarded
as the energy release rate, rather a measure of crack tip intensity. As will be discussed.

The following is taken from pgs 29-35 of the nonlinear fracture notes.
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Denote the strain energy/thickness of the cracked deformation theory component by
( , ), and denote the elastic energy of the nonlinear spring by ( ), .
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A two line proof in the fracture notes (pg. 31) shows that
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The J-Integral

There are two steps in the following derivation: 1) showing that the line integral definition of J is path-independent,
and 2) showing that this line integral is the rate of change of the energy of the system with respect to crack length.

Step 1—path independence

Let ( , , ) be a solution to the field equations of small strain

 deformation theory plasticity.
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J-Integral– continued.  Step 2-- CI J=
c.f. pages 33-34 of notes

Consider a crack of height b advanced da
as shown.  The potential energy of the system
is
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For a remote contour, one argues heuristically that the result applies as b shrinks to zero.

For linear elasticity, one can 
show directly with aid of 
mode I crack tip fields
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Dugdale-Barenblatt Model  (pgs. 35-40 of notes)

Consider a crack of length 2a in an infinite sheet (plane stress) subject to remote tension perpendicular to the crack line.
The sheet is elastic-perfectly plastic.  Dugdale observed that in mild steel sheets (with a upper/lower yield behavior),
that narrow plastic zones of height on the order of the sheet thickness, t, extended ahead of the crack tip as depicted below.

0 yield stress, plastic zone lLength, remote stress,s L a sσ σ ∞ = +∼ ∼ ∼

Dugdale made use of the solution (see Tada, et al for the most direct source) for the elastic crack problem of length 2L,
where the yield stress acts over the end of each crack as depicted.  For given crack length 2a, applied stress and yield stress,
there is only one value of s such that the stress at x=L is bounded, with the distribution shown below to the right.
That choice is given by
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Dugdale Model -- continued
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The crack tip opening displacement is (with / )
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(The result, ,  is valid in all cases, not only the infinite sheet problem.)
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For / 1, to lowest order in / , the above
expressions become:
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which are compared with the exact results in the plot.
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Dugdale Model -- continued
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( ) :
critical crack tip opening- :

or, equivalently, :
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Denote applied stress at attainment of by .
Exact Model (Large scale yielding--lsy) :
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For small scale yielding (ssy) (which is identical to LEFM)
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See plot for comparison of lsy and ssy predictions.  For this configuration, the lsy prediction
is reasonably accurate (to within 10%) as long as the applied stress is less than ½ of the
yield stress.  At higher applied stresses, the ssy (LEFM) is not reliable.  In this case it over
estimates the stress for initiation of fracture initiation.  A rough rule for most applications is 
that LEFM should not be applied when the applied load exceeds about 50% of the plastic
limit load.
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