
Buckling Delamination with Application to Films and Laminates
Thermal gradient with
interruption of heat transfer
across crack.

Mixed mode 
interface crack

Buckling 
delamination

Compression in film
producing buckling

No crack driving force
due to film stress; Unless

Show Volinsky movie



Mechanics of thin films and multilayers
Application areas electronics, coatings of all kinds.

Example:  Buckle Delaminations

Good Delaminations on 
Patterned substrates



Thermal Barrier Coatings (TBCs)
Application to jet and power generating turbines

Blades taken from an engine
showing areas of spalled-off
TBC 

Ceramic
(Zirconia)

Ceramic
(Alumina)

Metal 
bond coat



Straight-sided

Buckle Delaminations: Interface cracking driven by buckling
Three Morphologies: Straight-sided, Varicose and Telephone Cord

Propagation of a buckle delamination along a pre-
patterned tapered region of low adhesion between
film and substrate.  In the wider regions the telephone
cord morphology is observed.  It transitions to the
straight-sided morphology in the more narrow region
and finally arrests when the energy release rate drops
below the level needed to separate the interface.

Computer simulations

Experimental observations
200nm DLC film on silicon



A Model Problem—Mode I Buckling Delamination of Symmetric Bi-layer
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Buckling stress of clamped beam length 2b.
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Mode I Buckling Delamination of Symmetric Bi-layer:  continued

The energy release rate G can be re-written in the following non-dimensional form:
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Abbreviated Analysis of the Straight-Sided Buckle Delamination
A 1D analysis based on vonKarman plate theory  (See next 2 pages) Propagation direction
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direct energy change calculation
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Plots are given 3 slides ahead

Discussed in class



Digression—Von Karmen nonlinear plate theory applied to clamped wide plates

x

y

•
•

( )u x

( )w xPlate is infinite in z direction.  Deformation is plane strain with 2/(1 )E E ν= −

Strain-displacement relations:
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Stress-strain relations: (for plate of  thickness h)
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Equilibrium equations: (obtained from principle of virtual work)

Moment equil.:  ; Horizontal equil.: 0M Nw p N′′ ′′ ′− = =

Finite deflection solution for buckling of clamped-clamped beam (wide plate)
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Notation:  average compressive stress in unbuckled beam:  /
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 impose a displacement on the right end and then hold that end fixed. 

The compressive stress in the unbuckled beam is /(2 ).
u
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By equilibrium, N is independent of x

Moment equil. 0; ( 0); clamped BC's 0,CDw h w p w w x bσ′′′′ ′′ ′⇒ + = = ⇒ = = = ±

This is an eigenvalue problem with Cσ as the eigenvalue.  Note that this stress will be independent of the amplitude of w.

Continued on next slide



Von Karmen nonlinear plate theory applied to clamped wide plates--continued

2 3 1 4
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For the lowest eigenvalue, the BCs 0, sin 0, .
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This completes the finite deflection for the clamped-clamped wide plate.
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BASIC ELASTICITY SOLUTION FOR INFINITE ELASTIC BILAYER WITH SEMI-INFINITE CRACK
(Covered in earlier lectures and included here again for completeness)

Equilibrated loads.  General solution for energy
release rate and stress intensity factors available
in Suo and Hutchinson (1990)
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delamination crack

Infinitely thick substrate--
Primary case of interest for thin films
and coatings on thick substrates

Dundurs’ mismatch parameters for plane strain:
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For homogeneous case: 0D Dα β= = If both materials incompressible: 0Dβ =
is the more important of the two parameters for most bilayer crack problems Dα

Take 0Dβ = if you can.  It makes life easier!
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Basic solution continued:
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Stress intensity factors:
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Interface toughness—the role of mode mix
,I IIK K

Experimental finding:  The energy release rate required to propagate
a crack along an interface generally depends on the mode mix, often with
larger toughness the larger the mode II component.

C
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Interface Toughness:      ( )
Propagation condition: ( )G

ψ
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Γ
= Γ

2
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ψ
Liechti & Chai (1992) data for an epoxy/glass
interface.

A phenomenological interface toughness law
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See earlier slide for interface toughness function

Stable configurations
(half-widths, b) of
1D delaminations

0Dα =
Mode II

Caution! This plot is difficult to interpret because
σeach axis depends on 

Pure mode II



Illustration of Spread of Delamination if no mixed mode dependence ( 1 & )ICGλ = = Γ

0Scenario:   Given & initial delamination flaw with length 2 .
Monotonically increase the pre-stress (the stress in the unbuckled film), .
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associated with 
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This is the pre-stress, ,
at which crack will advance.
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Note that once the interface crack advances,
and it will spread dynamically without

limit.  For mode-independent interface toughness
the condition to ensure no "wholesale" delamination

is  , or
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Stresses well above this level can be tolerated if the
interface toughness has a significant mixed mode
dependence.
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Since the delamination becomes mode II as it
spreads, the above simple criterion against 

can generalized when
there is mode-dependence of the toughness by 
the requirement, .IICG < Γ

complete delamination

But such a criterion
would not exclude localized delaminations such
as telephone cord delaminations.  



Inverse determination of interface toughness, stress (or modulus)
by measuring buckling deflection and delamination width
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Straight-sided delamination without ridge crack on flat substrate
front (SS)

side

S stretching stiffness
D bending stiffness
∼
∼

Applies to any multilayer film with arbitrary
stress distribution

The basic results can be written as:

If bending and stretching stiffness of the film are known, then the energy release rates and the
resultant pre-stress can be determined by measurement of the deflection and the delamination width.

If resultant pre-stress is known, then the equations can be used to determine film modulus and
release rates in terms of deflection and delamination width– see Faulhaber, et al (2006) for an example.



Energy Released as a Function of Morphology
Three morphologies:

2/ ( / )C Cb bσ σ =

Film under equi-biaxial stress

Energy/area:
2

0 (1 )
hU

E
σ

ν
=

−

Energy/area in buckled film averaged
over one full wavelength: U

Euler (straight-sides) mode is only possible mode
For  / 6 :Cσ σ <

Telephone cord morphology has lowest energy and releases
the most energy/area.

For  / 7.5 :Cσ σ >

DLC on silicon—tapered low adhesion interface: propagates from right to left

Moon et al 2004



Metal or Ceramic Films on Compliant Substrates (Polymer or Elastomer)
Cotterell & Chen, 2000; Yu & Hutch, 2002; Parry, et al.,2005 

Analytical Fact: Edges of buckle delamination is effectively clamped if substrate modulus
is larger than 1/3 of film modulus (i.e. clamped plate model is valid)

Highly compliant substrate has three effects:
1) Stabilizes straight-sided buckle delamination and tends to eliminate telephone cord morphology.
2) Significant film rotation occurs at edges of delamination and larger buckling deflections.
3) Relaxation of stress along bonded edges of delamination (shear lag effect) amplifies energy released.

Ni films on polycarbonate
substrates (Parry, et al.)

greater rotation
along edges

Shear lag relaxation of stress
in bonded film

clamped model

Compliant substrate:
simulations and exps.












