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Abstract

Plastic constitutive relations are derived for a class of anisotropic porous materi-
als consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embed-
ding orthotropic matrix. The derivations are based on nonlinear homogenization,
limit analysis and micromechanics. A variational principle is formulated for the
yield criterion of the effective medium and specialized to a spheroidal representa-
tive volume element containing a confocal spheroidal void and subjected to uniform
boundary deformation. To obtain closed form equations for the effective yield lo-
cus, approximations are introduced in the limit-analysis based on a restricted set of
admissible microscopic velocity fields. Evolution laws are also derived for the mi-
crostructure, defined in terms of void volume fraction, aspect ratio and orientation,
using material incompressibility and Eshelby-like concentration tensors. The new
yield criterion is an extension of the well known isotropic Gurson model. It also ex-
tends previous analyses of uncoupled effects of void shape and material anisotropy
on the effective plastic behavior of solids containing voids. Preliminary compar-
isons with finite element calculations of voided cells show that the model captures
non-trivial effects of anisotropy heretofore not picked up by void growth models.

Keywords: A. Ductile fracture; A. Voids and inclusions; B. Constitutive behavior; B.
Elastic-plastic porous material; C. Upper bound Theory; C. Finite Element Analysis

1 Introduction

Failure in metallic structures at temperatures above the brittle-to-ductile transition typ-
ically occurs by the nucleation, growth and coalescence of microvoids (e.g., Pineau and
Pardoen, 2007). Understanding the material-specific processes of ductile fracture is cen-
tral to structural integrity assessment and to failure mitigation in various contexts, from
metal forming to high strain-rate penetration phenomena. A generally accepted model of
ductile fracture was developed in the 1980’s by Tvergaard and Needleman (1984) based
on earlier developments in the micromechanics of void growth by McClintock (1968), Rice
and Tracey (1969) and most notably Gurson (1977); see (Tvergaard, 1990) for a review.
However, many structural materials exhibit pronounced anisotropic deformation, dam-
age and fracture behavior, which cannot be captured using the above isotropic model
(Fig. 1). Part of this anisotropy is initial in that it is related to processing and fabrication



routes. The other part is induced: the basic microstructural unit evolves under the large
plastic deformations that precede fracture. The key microstructural features involved in
anisotropic ductile damage include material texture, grain elongation, deformability of
second-phase particles during processing and directionality in the spatial distribution of
the latter. While damage initiation mainly occurs at second-phase particles, subsequent
accumulation of damage (void growth) is affected by plastic deformation in the matrix.
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Figure 1: Crack growth resistance curves of a tough pressure vessel C–Mn steel deter-
mined using compact-tension specimen testing for two loading orientations: L–T (load
along axial direction L with crack extension, ∆a, along transverse direction T) and T–L
(vice-versa). Values of toughness, JIc, according to ASTM E-813-94 are 503kJ/m2 and
121kJ/m2, respectively. Adapted from (Benzerga, 2000).

Gurson (1977) treated the nonlinear homogenization problem of a representative vol-
ume element (RVE) of a porous material subject to axisymmetric loading. His RVE
consisted of a hollow sphere made up of a rigid, perfectly plastic and isotropic material
containing a concentric spherical void. The outcome of his analysis was an effective yield
criterion for the porous material along with an evolution law for the void volume frac-
tion. His derivation was later shown to be amenable to Hill–Mandel homogenization of
the kinematic kind, combined with limit-analysis of the chosen RVE subject to arbitrary

loading conditions; (see e.g. Perrin, 1992; Leblond, 2003). A unique feature of Gurson’s
criterion is that it constitutes, for the chosen RVE, a rigorous upper bound, which also
happens to lie very close to the exact criterion (Leblond, 2003). To account for initial
and induced anisotropies, extensions of the Gurson model were developed in the 1990’s
to incorporate void shape effects (Gologanu et al., 1993, 1994, 1997; Garajeu et al., 2000)
and plastic anisotropy of the matrix material (Benzerga and Besson, 2001). Both have
been shown to affect void growth to first order. Incorporating void shape effects based
on an alternative variational principle using the concept of a linear comparison mate-
rial (Ponte Castaneda, 1991) are also worthy of note (Ponte Castañeda and Zaidman,
1994; Kailasam and Ponte Castaneda, 1998). It seems reasonable to expect that plastic
anisotropy and void shape effects will manifest themselves in the orientation dependence
of toughness in some structural materials, as illustrated in Fig. 1.

Micromechanical unit-cell calculations of the type pioneered by Koplik and Needleman
(1988) have also documented the effect of void shape on void coalescence (Sovik and
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Thaulow, 1997; Pardoen and Hutchinson, 2000). This has motivated the development of
improved models of void coalescence (Gologanu, 1997; Gologanu et al., 2001; Benzerga
et al., 1999; Benzerga, 2000; Pardoen and Hutchinson, 2000; Benzerga, 2002; Leblond
and Mottet, 2008; Scheyvaerts et al., 2010). For further practical implications of using
anisotropic models in ductile fracture predictions, see the recent reviews by Pineau (2006)
and Pineau and Pardoen (2007).

Based on the above extensions of the Gurson model, Benzerga et al. (2002, 2004) intro-
duced a ductile fracture computational methodology, which accounts for all types of initial
and induced anisotropy listed above. In particular, they proposed a heuristic combination
of void shape and plastic anisotropy effects. Details may be found in (Benzerga, 2000).
More recently, Monchiet et al. (2008) and Keralavarma and Benzerga (2008) have tackled
a Gurson–like homogenization problem to obtain a new yield function that truly couples
plastic anisotropy and void shape effects. In both investigations, the RVE consisted of a
hollow spheroid made up of a rigid, perfectly plastic and orthotropic material containing
a confocal spheroidal void. The chief concern of both articles was the derivation of a new
effective yield function, not the evolution of microstructure. While Monchiet et al. (2008)
derived an approximate yield criterion using a limited description of the microscopic de-
formation fields, Keralavarma and Benzerga (2008) obtained more accurate results by
considering a richer description of those fields. However, in the latter work, the void axis
was taken to be aligned with one direction of orthotropy of the matrix material and the
loading was axially symmetric about the void axis. In this paper, we develop a more
general approximate solution applicable to (i) non-axisymmetric loadings; and (ii) under
circumstances where the void axis is no longer constrained to be aligned with a principal
axis of matrix orthotropy. The latter situation arises, for example, under off-axes load-
ing of hot-rolled steels as a consequence of induced anisotropy, Fig. 2. In addition, we
derive micromechanics-based evolution laws for the microstructure. We emphasize that
while the remote loading is non-axisymmetric the void is approximated by a spheroid
throughout the deformation. This approximation is of no consequence on the potential
upper-bound character of the effective yield locus; it may be likened to approximating a
void by a sphere in the Gurson model when deviatoric loadings are considered.

The paper is organized as follows. In Section 2 we motivate further the need for
improved models of void growth and coalescence by a set of finite-element calculations
of voided unit-cells subject to imposed stress histories. Next, we recall the variational
formulation of the effective yield criterion in Section 3. In Section 4 the micromechanics
problem is posed by specifying geometry, microscopic plasticity model and velocity fields.
Section 5 is a self-contained derivation of the approximate effective yield function with
details deferred to four appendices. In the following section, salient features of the derived
yield surfaces are analyzed using data for three orthotropic materials. We close the model
equations by developing laws for microstructure evolution in Section 7 along with some
preliminary, but discriminating, comparisons with finite element calculations of voided
cells.

2 Finite Element Simulations

We present a set of finite element calculations on porous representative volume elements
(RVE) to demonstrate the subtle coupling between the effects of void shape and material
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Figure 2: (a) Sketch of porous material consisting of an aggregate of aligned spheroidal
voids embedded in a plastically orthotropic matrix. (b) Actual configuration of void pop-
ulation in an initially dense steel after heavy deformation under off-axes triaxial loading
(Benzerga, 2000). (c) Etched cross-section of same specimen revealing its two-phase mi-
crostructure, ferrite (bright phase) and banded pearlite responsible for plastic anisotropy
(dark phase). Orientation of void aggregate in (b) is not that of pearlite bands in (c)
because of deformation-induced anisotropy.

anisotropy and motivate the need for an improved model. In all simulations, the principal
axes of the void, the axes of material orthotropy and the principal axes of the loading all
coincide. Thus, the chosen configuration is considerably simplified from the general case
sketched in Fig. 2. Yet, it illustrates important points while allowing for the analysis to
be conducted under axisymmetric conditions.

The calculations are based on the concept of a unit-cell containing a void as elaborated
upon by Tvergaard (1982) and further developed by Koplik and Needleman (1988). A
spheroidal void is embedded in an elastoplastic cylindrical matrix, as sketched in Fig. 3,
with elastic constants E = 210 GPa and ν = 0.3. The geometry of the unit-cell is
characterized by the initial porosity, f0, void aspect ratio, w0, defined as the ratio of the
axial to transverse semi-axes, and the cell aspect ratio, H0/R0. Invariance of material
plastic flow properties about an axis eS is assumed. The latter is identified with the
axis of the spheroidal void e3. The hatched bands in Fig. 3a schematically represent
pearlite banding as in Fig. 2 and, more generally, any processing-induced texturing of the
matrix material. More specifically, the matrix is taken to be plastically anisotropic of
the Hill type, with the associated flow rule and power-law strain-hardening of the form
σ̄ = σS(1 + ǭ/ǫ0)

N , where σ̄ and ǭ are work-conjugate measures of matrix effective stress
and plastic strain, respectively. To avoid confusion with the notion of effective properties,
we will refer to ǭ as the cumulative plastic strain. Here, ǫ0 = 0.002 is a constant strain
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Figure 3: Configuration of the cylindrical RVE considered in the finite element simula-
tions. (a) Front view. (b) Top view. Void axis e3 and axis of transverse isotropy eS are
the same.

offset, N = 0.1 is the hardening exponent and σS = 420 MPa is the initial yield stress of
the matrix material along eS. The applied loading is taken to be axially symmetric about
e3.

The computations are carried out using the object-oriented finite-element (FE) code
ZeBuLoN (Besson and Foerch, 1997) and a Lagrangian formulation of the field equations.
The cell boundaries are constrained to remain straight so that the unit cell is representative
of a periodic array of voids. Special boundary conditions are formulated such that, in any
given calculation, the ratio γ of net axial stress, Σ33, to net lateral stress, Σ11, remains
constant throughout. Stress triaxiality is measured by the ratio T of mean normal stress,
Σm, to the von Mises effective stress, Σe, given by:

Σe = |Σ33 − Σ11|, Σm =
1

3
(Σ33 + 2Σ11), T =

Σm

Σe

=
1

3

2γ + 1

|1− γ| (1)

A Riks algorithm (Riks, 1979) is used to integrate the nonlinear constitutive equations
in order to keep the stress ratio γ, and hence T , constant. T is taken to be unity in the
calculations presented here. The effective response of the unit cell is defined in terms of
the effective stress Σe above versus an effective strain, Ee, defined as follows:

Ee =
2

3
|E33 − E11|; E33 = ln

(

H

H0

)

, E11 = ln

(

R

R0

)

(2)

where H and R are the current height and radius of the cylindrical unit cell, respectively,
and H0 and R0 their initial values (Fig. 3).

In all calculations, H0/R0 = 1, the initial void volume fraction is fixed at f0 = 0.001
while three values of the void aspect ratio are used: w0 = 1/2 (oblate void), w0 = 1
(spherical void) and w0 = 2 (prolate void). Typical meshes are shown in Fig. 4, which
consist of sub-integrated quadratic quadrilateral elements. Exploiting the symmetry of
the problem, only one fourth of the domain is meshed. All material parameters are kept
fixed except w0 and the Hill anisotropy factors that characterize plastic flow in the matrix.
Two sets of Hill coefficients are used which are representative of an aluminum alloy and a
zirconium alloy and referred to as Material 1 and Material 2, respectively (Table 1). The
third set of values (Material 3) will be used later. In a reference calculation, the material
is isotropic and the void spherical (w0 = 1).
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Figure 4: Finite element meshes used in the unit-cell calculations with initial porosity
f0 = 0.001, cell aspect ratio H0/R0 = 1, and void aspect ratio (a) w0 = 2, and (b)
w0 = 1/2.

hL hT hS hTS hSL hLT
Isotropic 1.000 1.000 1.000 1.000 1.000 1.000
Material 1 1.000 1.000 1.000 2.333 2.333 1.000
Material 2 1.000 1.000 1.000 0.500 0.500 1.000
Material 3 1.650 0.778 0.893 1.378 0.943 1.627

Table 1: Matrix material anisotropy parameters, hi, used in the numerical computations.
hi (i = L,T, S,TS, SL,LT) represent the diagonal elements of the Voigt representation of
Hill’s tensor in deviatoric stress space, h, expressed in the frame of material orthotropy;
see Section 4.2 for details.

The effective responses of the anisotropic unit cells are compared in Fig. 5a with that
of an isotropic solid (i.e., isotropic matrix and w0 = 1). The effective stress is normalized
by the matrix yield stress σS. The corresponding porosity versus effective strain curves
are shown in Fig. 5b. The calculations, which were terminated just at the onset of void
coalescence, illustrate three typical trends. First, the effect of initial void aspect ratio
w0 is generally significant: in Material 1 there is nearly a 0.25 difference in effective
strain between the w0 = 1/2 and w0 = 2 cases at incipient void coalescence. This result
demonstrates the effect of initial void shape on void growth rates, in keeping with previous
studies (Pardoen and Hutchinson, 2000). Next, at fixed value of w0, changing the matrix
anisotropy properties from Material 1 to Material 2 drastically affects the stress bearing
capacity of the unit cell (Fig. 5a) as well as the rate of increase of porosity (Fig. 5b) with
the effect being more dramatic for the oblate void (w0 = 1/2). Finally, the combined effect
of plastic anisotropy and void shape can yield unexpected trends as is the case for Material
2: the effect of initial void shape, which is invariably present in isotropic matrices, simply
disappears within the range of w0 considered here (Fig. 5). For reference, the results
corresponding to the isotropic matrix with w0 = 1/2 and w0 = 2 fall in between the
results for materials 1 and 2. They are not shown in Fig. 5 for the sake of clarity.

None of the available porous plasticity models capture all aspects of the behavior
documented in Fig. 5. This includes the heuristic model of Benzerga et al. (2004) who
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Figure 5: Results of unit-cell calculations for two transversely isotropic matrix materials
(Table 1) containing either oblate (w0 = 1/2) or prolate (w0 = 2) voids. (a) Effective
stress, Σe, normalized by the matrix yield stress in tension along eS, versus effective strain,
Ee. (b) void volume fraction versus Ee. Key data include: initial porosity f0 = 0.001;
matrix hardening exponent N = 0.1; and stress triaxiality ratio T = 1. For comparison,
results for initially spherical void in an isotropic matrix are also shown.
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conjectured that the combined effect of void shape and plastic anisotropy is a simple
superposition of separate effects. In fact, the effect of plastic anisotropy is more subtle
than discussed above. Examination of the deformed configurations for an initially prolate
cavity, Fig. 6a-c, shows that void growth depends on material anisotropy even when the
void aspect ratio evolves in a nearly identical fashion (Fig. 6d). As previously shown in
Fig. 5b, the porosity grows much faster in Material 1 than in Material 2 leading to a
much lower ductility for the former. This is in contrast with existing void growth models
(Gologanu et al., 1997; Benzerga, 2000; Pardoen and Hutchinson, 2000), which would
predict nearly identical evolutions of the porosity in these two materials.
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Figure 6: Contours of cumulative plastic strain, ǭ, at a unit cell effective strain Ee = 0.45
and T = 1 using f0 = 0.001, w0 = 2, H0/R0 = 1, N = 0.1 and anisotropy parameters for
(a) Material 1; and (b) Material 2 from Table 1. (c) Initial state. (d) Evolution of void
aspect ratio w. Nearly identical evolutions of void aspect ratio do not necessarily imply
the same amount of void enlargement.

In fact, the strong coupling between plastic anisotropy and void shape effects is not
surprising. Void growth is merely the expression of plastic deformation of the surrounding
matrix. Physically, it is therefore expected that the ease, or difficulty, with which plastic
flow takes place in the matrix will affect the rate of void growth. While the results in
Figs. 5–6 provide a quantification of this coupling, it remains that such results hold for
particular choices made for the initial microstructural parameters, loading history, etc.
One can only carry out a finite number of such unit cell calculations. A more challenging
task is to derive a mathematical plasticity model with an inherent predictive capability
of coupled anisotropy effects as evidenced at the mesoscopic, unit-cell level. In doing
so, the ambition goes beyond the restrictive case of transversely isotropic matrices and
axisymmetric proportional loadings. On the other hand, derivation of such a mathematical
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model from first principles is currently not tractable without some basic restrictions. Chief
among these are the neglect of elasticity and work hardening in the matrix material. In
return, the derivation can be tackled using tools and concepts from limit analysis and
nonlinear homogenization theory.

3 Variational Formulation of the Yield Criterion

The effective yield criterion of a porous anisotropic material is determined through homog-
enization of a representative volume element occupying domain Ω and containing voids
that jointly occupy sub-domain ω. The kinematic approach of Hill–Mandel homogeniza-
tion theory (Hill, 1967; Mandel, 1964) is used, wherein the RVE is subjected to uniform
deformation-rate boundary conditions, i.e.,

vi = Dijxj on ∂Ω (3)

where v is the microscopic velocity field and D is a second-rank symmetric tensor, which
specifies the loading. It is straightforward to show that the imposed boundary rate of
deformation, D, is equal to the volume average of the microscopic rate of deformation, d,
over the volume of the RVE. The corresponding macroscopic stress, Σ, is defined in an
analogous way as the volume average over Ω of the microscopic Cauchy stress, σ. Hence,

Dij = 〈dij〉Ω, Σij ≡ 〈σij〉Ω, (4)

where the notation 〈·〉Ω is for volume averaging over Ω. For a porous material, (4) re-
mains valid regardless of the extensions chosen for the fields σ and d within the void,
provided that the boundary of the void remains traction free and the velocity field is con-
tinuous across the boundary. The Hill–Mandel lemma (Hill, 1967; Mandel, 1964) entails
that the above defined macroscopic measures of stress and rate of deformation are work
conjugate. It may be noted that in the lemma σ and d need not be related through a
constitutive relation. For a rigid perfectly plastic matrix material with normality obeyed,
the macroscopic, or effective, yield surface in stress space is determined using the classical
limit-analysis theorem identifying the sets of potentially and actually sustainable loads
(Suquet, 1982), and is defined by

Σij =
∂Π

∂Dij

(D) (5)

Here, Π(D) is the macroscopic plastic dissipation defined as the infimum of the volume-
average of the microscopic plastic dissipation π(d), the infimum being calculated over all
admissible microscopic deformation fields. The above theorem and equation (5) also apply
when elasticity is included if transformations are small. Physically, equation (5) means
that among all microscopic diffuse modes of plastic deformation, those that result in the
smallest average dissipation over the cell will define “macroscopic” yielding. Formally,

Π(D) = inf
d∈K(D)

〈π(d)〉Ω (6)

where K(D) denotes the set of kinematically admissible microscopic deformations:

K(D) = {d|∃v, ∀x ∈ Ω, dij =
1

2
(vi,j + vj,i) and ∀x ∈ ∂Ω, vi = Dijxj} (7)
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For a given deviator d, the microscopic plastic dissipation is defined as

π(d) = sup
σ
∗∈C

σ∗
ij dij (8)

the supremum being taken over all microscopic stresses that fall within the microscopic
convex C of elasticity.

Equations (5) through (8) represent a variational definition of the effective yield cri-
terion. Actual derivation of the latter requires that the following be specified: (i) the
geometry of the RVE; (ii) a micro-scale plasticity model, which enters through the term
π(d); and (iii) trial velocity fields defining the set K(D) for use in (6). These tasks are
undertaken in the following section.

4 Problem Definition

Using the variational approach above, an effective yield criterion is sought for anisotropic
porous materials subjected to arbitrary loadings. Aligned spheroidal voids are embed-
ded in a rigid, plastically orthotropic matrix. Elasticity is thus neglected in the analysis
so that (5) applies at finite strains. It will be included heuristically at the end within
a hypoelastic framework. The microstructure orientation is defined by two triads: (i)
(e1, e2, e3) associated with the aggregate of spheroidal voids with e3 being their common
axis and e1, e2 chosen arbitrarily; and (ii) (eL, eT, eS) associated with the directions of
orthotropy of the matrix. The microstructural and matrix triads are not necessarily tied
to each other; see Fig. 2a. Under an arbitrary macroscopic stress state with principal axes
(eI, eII, eIII), initially spheroidal voids would develop into three-dimensional voids. This
evolution is neglected in the present treatment:

Approximation A1: We approximate the void shape to be spheroidal at every stage of
the deformation.

This approximation is similar to Gurson’s assumption of spherical voids in his deriva-
tion of the isotropic criterion. It can be further justified on the basis that the objective is
to develop an accurate estimate of the macroscopic yield criterion, not to determine the
exact microscopic fields. Finding the latter is a challenging problem because of their ex-
pected dependence upon specific matrix flow characteristics and of other subtle nonlinear
effects1. The microscopic velocity fields are important, however, in determining the evo-
lution laws for some microstructural variables. The treatment of the evolution problem
in Section 7, therefore, will examine possible strategies to correct for the inaccuracies in
the assumed velocity fields.

It is worth noting that while the homogenization procedure outlined in Section 3 is
more easily tractable for spheroidal void shapes, alternative homogenization approaches
using non-linear extensions of the Hashin-Shtrikman theory (Ponte Castaneda, 1991) have
been effectively used for ellipsoidal void geometries. While earlier versions of such mod-
els (Ponte Castañeda and Zaidman, 1994; Kailasam and Ponte Castaneda, 1998) did not
provide good agreement with numerical estimates of the yield criterion at high stress triax-
ialities, recent extensions based on a second order homogenization procedure (Danas and

1A typical example is the counterintuitive flattening of cavities under axial loading with sufficient
amount of superposed hydrostatic stress.
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Ponte Castañeda, 2009) provide approximate, but more accurate results. However, these
models have not yet been extended to treat the case of plastically anisotropic matrices.
In passing, we also note a recent formulation of admissible velocity fields by Leblond and
Gologanu (2008) for ellipsoidal voids. It remains to be seen whether the homogenization
procedure of Section 3 is tractable in that case.

4.1 Geometry and Coordinates

Following previous works on void shape effects (Gologanu et al., 1993, 1994, 1997), we
consider a spheroidal RVE containing a confocal spheroidal void, as shown in Fig. 7. Let a

(a) (b)

Figure 7: Porous representative volume elements used in the derivation of the analytical
yield criterion. The cases of prolate (a), and oblate (b) voids require separate treatments.

and b represent respectively the lengths of the axial and transverse semi-axes of the current
confocal spheroid, and let c =

√

|a2 − b2| represent the semi-focal length. Hereafter,
the subscripts 1 and 2 shall represent variable values at the void and RVE boundaries,
respectively. At fixed void orientation, the geometry is thus completely defined by two
dimensionless parameters; the porosity, f = |ω|/|Ω| = a1b

2
1/a2b

2
2, and the void aspect

ratio, w ≡ a1/b1. For given values of f and w, the eccentricities of the inner and outer
spheroids may be uniquely determined from the relations

e21 =

{

1− 1

w2
(p)

1− w2 (o)
,

(1− e22)
n

e32
=

1

f

(1− e21)
n

e31
, n =

{

1 (p)
1/2 (o)

(9)

where the shorthand notations (p) and (o) stand for prolate and oblate, respectively.
Due to the chosen geometry of the RVEs, we shall mainly employ the spheroidal

coordinate system (λ, β, ϕ) for the subsequent analysis. The base vectors of the spheroidal
frame are defined by

eλ = {a sin β cosϕe1 + a sin β sinϕe2 + b cos βe3}/
√
gλλ

eβ = {b cos β cosϕe1 + b cos β sinϕe2 − a sin βe3}/
√
gλλ

eϕ = − sinϕe1 + cosϕe2

(10)
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gλλ ≡ a2 sin2 β + b2 cos2 β,

{

a = c coshλ, b = c sinhλ (p)
a = c sinhλ, b = c coshλ (o)

(11)

where (e1, e2, e3) is the Cartesian base associated with the voids introduced above (also
see Fig. 2c). With this choice of coordinates, the boundaries of the void and the RVE
correspond to constant values of λ, designated λ1 and λ2 respectively. The eccentricity of
the current confocal spheroid, e, is related to λ by the relation e = 1/ coshλ.

4.2 Microscale Plasticity Model

The RVE is assumed to be made of a rigid ideal plastic orthotropic and incompressible
material obeying the Hill quadratic yield criterion (Hill, 1948), which writes

σeq ≡
√

3

2
σ : p : σ =

√

3

2
σ

′ : h : σ′ ≤ σ̄, p = J : h : J (12)

where the prime denotes the deviatoric part of a second order tensor and σ̄ is the yield
stress of the material in a reference direction. The fourth order tensor p denotes the Hill
anisotropy tensor, h denotes the anisotropy tensor in the deviatoric stress space and J

denotes the deviatoric projection operator defined by J ≡ I− 1
3
I⊗I, where I and I are the

fourth and second order identity tensors, respectively. The symbol ⊗ denotes the dyadic
product, defined by (I⊗ I)ijkl ≡ IijIkl. Typically, σ̄ is chosen as the yield stress in one of
the directions of orthotropy of the matrix material and the components of the anisotropy
tensors p and h in (12) are scaled accordingly. The material obeys the associated flow
rule, which may be written in the following form

d =
3

2

deq
σ̄
p : σ (13)

where deq is defined work-conjugate to σeq as the equivalent microscopic strain rate

deq =

√

2

3
d : ĥ : d (14)

Here, ĥ is a formal inverse of tensor h. It is defined by Benzerga and Besson (2001) as

p̂ ≡ J : ĥ : J, p : p̂ = p̂ : p = J (15)

Both h and ĥ are symmetric positive definite tensors; i.e. hijkl = hjikl = hijlk = hklij and

∀σ 6= 0, σ : h : σ > 0. In the frame of material orthotropy (Fig. 2), h and ĥ may be
expressed as diagonal 6× 6 matrices using Voigt’s condensation. The six Hill coefficients
are then denoted hL, hT, etc. (see Table 1). For a Hill material with associated flow rule,
the microscopic plastic dissipation in (8) takes the form

π(d) =

{

σ̄ deq (in the matrix)
0 (in the voids)

(16)
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4.3 Microscopic Velocity Fields

To describe plastic flow in the matrix, the velocity field is taken as a linear combination
of two incompressible trial velocity fields

∀x ∈ Ω\ω, vi(x) = AvAi (x) + βijxj, (17)

where scalar A and tensor β are parameters. Thus, v leads to an inhomogeneous de-
formation field, dA, responsible for void expansion, and a homogeneous field β. Matrix
incompressibility requires that the latter be a pure deviator (βkk = 0). The above decom-
position was also used in previous works (Gurson, 1977; Gologanu et al., 1997; Benzerga
and Besson, 2001; Monchiet et al., 2008). Here, however, the homogeneous part β is not
required to be axisymmetric. The expansion velocity field, vA, is taken to be axisymmet-
ric about the void axis and constructed from the family of incompressible velocity fields
introduced by Lee and Mear (1992). Its components in spheroidal coordinates are:















































vλ(λ, β) = c2/
√
gλλ {B00/ sinh(λ)

+
+∞
∑

k=2,4,..

+∞
∑

m=0

k(k + 1)[BkmQ
1
m(ζ) + CkmP

1
m(ζ)]Pk(ξ)}

vβ(λ, β) = c2/
√
gλλ {

+∞
∑

k=2,4,..

+∞
∑

m=1

m(m+ 1)[BkmQm(ζ)

+CkmPm(ζ)]P
1
k (ξ)}

(p) (18)















































vλ(λ, β) = c2/
√
gλλ {B00/ cosh(λ)

+
+∞
∑

k=2,4,..

+∞
∑

m=0

k(k + 1)im[i BkmQ
1
m(ζ) + CkmP

1
m(ζ)]Pk(ξ)}

vβ(λ, β) = c2/
√
gλλ {

+∞
∑

k=2,4,..

+∞
∑

m=1

m(m+ 1)im[i BkmQm(ζ)

+CkmPm(ζ)]P
1
k (ξ)}

(o) (19)

where

ζ ≡
{

coshλ (p)
i sinhλ (o)

; ξ ≡ cos β (20)

In the above expressions, Pm
n and Qm

n represent associated Legendre functions of the first
and second kinds respectively, of order m and degree n (Gradshteyn and Ryzhik, 1980),
Bkm and Ckm are arbitrary real constants and i2 = −1.

As discussed by Gologanu et al. (1997), the condition of uniform boundary rate of
deformation (3) formally fixes parameters A and β in a two-field approach such as (17).
This may be seen by substituting the velocity field (17) into the macro-homogeneity
condition (4)1, which is itself a corollary of boundary condition (3); this yields:

Dij = A〈dAij〉Ω + βij (21)

Denoting DA ≡ 〈dA〉Ω the contribution to D due to the expansion velocity field vA, it
thus follows that parameters A and β are given by:

A =
Dm

DA
m

, βij = Dij −
Dm

DA
m

DA
ij (22)
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where the subscript ‘m’ denotes the mean part of a tensor (Dm = Dkk/3). Note that DA

is by definition axially symmetric about the void axis. In fact, the imposed boundary
conditions imply further restrictions on the velocity fields. Since the second deformation
field in (17) is uniform by construction, equation (3) also requires that:

vAi = DA
ij xj for λ = λ2 (23)

This condition implies that coefficients Bkm and Ckm of the Lee–Mear fields (18)–(19)
obey the following linear constraints (see Gologanu et al., 1997)







e32B00/(3(1− e22)) + (3− e22)F2(λ2)/
√

1− e22 −G2(λ2) = 0 (p)

−e32B00/(3
√

1− e22) + (3− 2e22)F2(λ2)/
√

1− e22 −G2(λ2) = 0 (o)

(24)

Fk(λ2) = Gk(λ2) = 0, k = 4, 6, 8... (25)

where






















Fk(λ) ≡
+∞
∑

m=0

[

BkmQ
1
m(ζ) + CkmP

1
m(ζ)

]

Gk(λ) ≡
+∞
∑

m=1

m(m+ 1) [BkmQm(ζ) + CkmPm(ζ)]

(p)























Fk(λ) ≡
+∞
∑

m=0

im
[

iBkmQ
1
m(ζ) + CkmP

1
m(ζ)

]

Gk(λ) ≡
+∞
∑

m=1

m(m+ 1)im [iBkmQm(ζ) + CkmPm(ζ)]

(o)

(26)

In the derivation of the effective yield criterion in closed form, only four terms in the
Lee–Mear expansion are used. These correspond to factors B00, B20, B21 and B22. Since
the field vA is defined only up to a multiplicative constant, coefficient B00 is taken as
unity to normalize the field and the remaining factors are collectively referred to as B2m

(m = 0, 1, 2). In the case of a spherical cavity, the fields related to the B2m factors vanish
and that related to B00 becomes spherically symmetric. The velocity fields corresponding
to the coefficients Ckm are not used since these fields do not vanish at infinity as is
required, so that one can recover the correct limit behavior for a vanishingly small value
of the porosity. The chosen velocity fields are in fact identical to those used by Gologanu
et al. (1997) in their work on void shape effects and is a generalization of the fields used
in the earlier works of Gologanu et al. (1993, 1994) (B00 and B22) and Garajeu et al.
(2000) (B00 and B20). Recent work by Monchiet et al. (2008) using the Hill matrix also
considered the fields B00 and B22 to describe the expansion field. However, we have chosen
to use the above four fields to describe cavity expansion as this was found to yield a better
correspondence with numerical estimates of the true yield criterion (Keralavarma, 2008;
Keralavarma and Benzerga, 2008). In the case of isotropic matrices, comparison between
the model developed by Gologanu et al. (1997) using four fields and their earlier models
using two fields has evidenced superior predictive capability of the former regarding the
evolution of microstructure.
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5 Approximate Analytical Yield Criterion

The macroscopic yield locus is given by the parametric equation (5) with the dissipation
function rewritten as:

Π(D) = inf
d∈K(D)

〈 sup
σ
∗∈C

σ∗
ij dij 〉Ω (27)

With the choice (12)–(13) made for the matrix plasticity model and the choice (17)–(19)
for the microscopic velocity fields, an estimate of Π(D) is, in view of (16),

Π(D) = σ̄(1− f)〈deq〉Ω\ω =
σ̄

Ω

∫ λ2

λ1

∫ π

0

∫ 2π

0

deqb gλλ sin β dϕ dβ dλ (28)

In this expression, deq, which is defined by (14), is evaluated for the specific set of chosen
admissible velocity fields. Since a subset of K(D) is used, Eq. (28) delivers an upper bound
for the true dissipation. For notational convenience, this upper-bound value and other
subsequent estimates are also designated Π(D). As noted above, imposition of kinematic
boundary conditions in terms of D formally determines the velocity field through (22)
thus eliminating the need for explicit minimization in computing the macroscopic plastic
dissipation, Eq. (27). However, the coefficients Bkm appearing in the expression of vA are
left undefined, to be fixed later independently of the boundary conditions. Rewriting deq
in terms of the fields dA and β, we get

deq =

√

A2dA2

eq + βeq
2 +

4

3
AdA : ĥ : β (29)

Here and subsequently, the meaning of subscript “eq” is consistent with definition (14)
for deformation related quantities. Now, let

〈deq〉(β,ϕ) ≡
∫ π

0

∫ 2π

0
deqgλλ sin β dϕ dβ

∫ π

0

∫ 2π

0
gλλ sin β dϕ dβ

=
3

4π(2a2 + b2)

∫ π

0

∫ 2π

0

deqgλλ sin β dϕ dβ (30)

be the average value of deq over coordinates β and ϕ. Then, using the change of variable
y = c3/ab2, (28) becomes:

Π(D) = σ̄y2

∫ y1

y2

〈deq〉(β,ϕ)
dy

y2
(31)

which can be rigorously bounded from above by

Π(D) = σ̄y2

∫ y1

y2

〈d2eq〉
1/2
(β,ϕ)

dy

y2
(32)

using Hölder’s inequality. We recall that subscripts 1 and 2 in the bounds of the integral
refer to the inner void surface and outer surface of the RVE, respectively. Note at this
juncture that the above change of variable to y singles out the case of a spherical cavity
(for which c → 0). A special treatment in that case leads to the criterion developed by
Benzerga and Besson (2001) since the velocity field vA reduces to a spherically symmetric
field. We shall seek to recover this special case as the limit of the final criterion when
y2 → 0. Now, from (29) we have

〈d2eq〉(β,ϕ) = A2〈dA2

eq 〉(β,ϕ) + βeq
2 +

4

3
A〈dA33〉(β,ϕ)Q : ĥ : β (33)
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with

Q ≡ −1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3 (34)

Exact integration of (32) with the integrand specified through (33) and (34) is ruled out
due to the complexity of the expression for dAeq. Anticipating approximations to come, in
the spirit of Gologanu et al. (1997), we define two new functions F (u) and G(u) through

〈dA2

eq 〉(β,ϕ) = F 2(u)u2, 〈dA33〉(β,ϕ) = F (u)G(u)u2, u ≡
{

y (p)
y

y+1
(o)

(35)

thus operating a change of the spatial variable from y to u. This change of variable leaves
the form of the integral in (32) unchanged for both prolate and oblate cavities. After
rearranging, 〈d2eq〉(β,ϕ) may be written as

〈d2eq〉(β,ϕ) =



A
F (u)
√

ĥq

Q+

√

ĥqG(u)β





2

eq

u2+H2(u)βeq
2, H2(u) ≡ 1−ĥqG2(u)u2 (36)

See above for the meaning of subscript “eq” and ĥq is defined by

ĥq ≡
2

3
Q : ĥ : Q =

ĥ11 + ĥ22 + 4ĥ33 − 4ĥ23 − 4ĥ31 + 2ĥ12
6

(37)

ĥij above denote the Voigt-condensed components of the fourth-order tensor ĥ, expressed
in the basis associated with the void, hence the appearance of terms h23 etc. Since Q is
axially symmetric about e3, it is clear that ĥq is invariant with respect to the choice of
axes e1 and e2 in Fig. 2.

Approximation A2: We simplify the spatial fluctuations of the microscopic rate of
deformation by replacing functions F (u), G(u) and H(u) in (36) by constants that ap-
proximately realize the minimum overall dissipation under some particular loading paths.

This permits evaluation of integral (32) in closed form. The accuracy of A2 can read-
ily be assessed using numerical integration as illustrated by Keralavarma and Benzerga
(2008) for transversely isotropic materials under axisymmetric loadings. In general, how-
ever, A2 is an “uncontrolled” approximation in the sense that it does not necessarily
preserve the upper-bound character of Π(D) under all loading paths. In Appendix A we
study the spatial fluctuations of the deformation to justify replacing F (u), G(u) and H(u)
by constants designated F̄ , Ḡ and H̄, respectively. For a frozen microstructure, the value
of F̄ is chosen such that the analytical criterion yields a close approximation to the true
yield criterion for purely hydrostatic loading, while Ḡ and H̄ are chosen such that the
analytical criterion provides a close match to the true yield criterion for purely deviatoric
axisymmetric loading about the void axis. Here, by true yield locus we mean the locus
defined by equations (5) and (28) evaluated using the four velocity fields chosen in Sec-
tion 4.3 and determined numerically without approximations. The precise constants F̄ ,
Ḡ and H̄ and their dependence upon f and w will be specified later.

Thus, substituting (36) in (32) in view of A2, we can write the plastic dissipation in
the Gurson-like form

Π(D) = σ̄y2

∫ u1

u2

√

Ã2
equ

2 + B̃2
eq

du

u2
(38)
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where Ã and B̃ are traceless tensors defined by

Ã ≡ A
F̄
√

ĥq

Q+

√

ĥqḠβ, B̃ ≡ H̄β (39)

To obtain the closed form expression of the macroscopic yield locus, the components of D
are to be eliminated from the parametric equation (5). D enters implicitly the equation
above through A and β. In Appendix B we provide the key steps for partial elimination
of the parameters, leading to the following equation for the yield locus

q2C
3

2

Σ : H : Σ

σ̄2
+ 2(g + 1)(g + f) cosh

(

q1κ
Σ : X

σ̄

)

− (g + 1)2 − (g + f)2 = 0 (40)

where
H ≡ (I+ η(X⊗Q) : p̂) : p : (I+ p̂ : (ηQ⊗X)), (41)

X ≡ α2(e1 ⊗ e1 + e2 ⊗ e2) + (1− 2α2)e3 ⊗ e3 (42)

and q1 and q2 are scalar-valued functions of β/A. For example,

q1 =
√

1 +R2
eq/ĥq; R ≡ (Q : p̂ : Q)β/A− (Q : p̂ : β/A)Q

3
2
F̄ /Ḡ+Q : p̂ : β/A

(43)

Expressions of the criterion parameters C, g, κ, η and α2 are given in Appendix C. They
are tied to the constants involved in approximation A2 above, i.e., F̄ , Ḡ and H̄ whose
derivation is also given in Appendix C. Most parameters depend on the anisotropy tensor
h; all of them are implicit functions of microstructural variables f and w. The effect of
void orientation enters the criterion through tensors Q and X defined by (34) and (42),
respectively, while matrix anisotropy enters via tensors h and ĥ. An important formal
difference with the model of Benzerga and Besson (2001) is that the fourth order tensor
H, which may be termed the macroscopic plastic anisotropy tensor, is different from the
microscopic anisotropy tensor h. This difference stems from the fact that the expansion
velocity field vA used in the previous work was spherically symmetric, whereas that used
now is not. In the limit of a spherical cavity, q1 → 1 and so does q2. We thus check that
the criterion does not depend on the void orientation (see Appendix B).

Finally, since the plastic dissipation Π(D) is positively homogeneous of degree 1, elim-
ination of the ratio β/A, which appears through q1 and q2, from criterion (40) is possible,
at least in principle. However, the resulting criterion would be unnecessarily complicated.
For the sake of simplicity, therefore, we adopt the final approximation as follows

Approximation A3: The derived yield criterion is approximated by replacing the coef-
ficients q1 and q2 by unity in equation (40).

In Appendix D we provide some arguments pleading in favor of this approximation. The
final form of the derived anisotropic yield criterion is thus written as F(Σ) = 0 with

F(Σ) = C
3

2

Σ : H : Σ

σ̄2
+ 2(g + 1)(g + f) cosh

(

κ
Σ : X

σ̄

)

− (g + 1)2 − (g + f)2 (44)

where, in view of approximation A3, H is given by

H ≡ p+ η(X⊗Q+Q⊗X) (45)
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Q by (34), X by (42) and the criterion parameters κ, α2, g, C and η are provided in
Appendix C. Recall the definitions of the anisotropy tensors p and p̂ from (15).

In the special case of an isotropic Von Mises matrix (h = ĥ = I) equation (44) reduces
to the form proposed by Gologanu et al. (1997). However, Gologanu et al. had proposed
the above form as a heuristic generalization of an axisymmetric criterion derived using
a similar limit analysis. In the case of spherical voids in a Hill matrix, from (C.3) one
obtains lim

w→1
α2 = 1/3 and from (C.4) C = 1 and η = 0. Also, (C.2) reduces to

κBB =
3

2

√

5

(ĥq + 2ĥa + 2ĥt)
=

3

2

[

2

5

hL + hT + hS
hLhT + hThS + hShL

+
1

5

(

1

hTS

+
1

hSL
+

1

hLT

)]− 1

2

(46)
in terms of Hill’s coefficients from Section 4.2 and the upper-bound yield criterion of
Benzerga and Besson (2001) is recovered. Note that κBB is an invariant of tensor h but
ĥ, ĥa and ĥt are only transversely isotropic invariants. In particular, the Gurson yield
function is obtained in the limit of spherical voids in an isotropic matrix since h = I

implies κBB = 3/2.
In the limit of cylindrical voids in a Hill matrix with eS = e3, we have lim

w→∞
α2 = 1/2

C = 1, η = 0 and (C.2) reduces to

κcyl =

√

3

ĥt
=

√
3

[

1

4

hL + hT + 4hS
hLhT + hThS + hShL

+
1

2hLT

]− 1

2

(47)

which is the result obtained by Benzerga and Besson (2001)2. In particular, the Gurson
yield function for cylindrical cavities in a Von Mises matrix is recovered with κcyl =

√
3

in that case.

6 Example Yield Loci

The yield surface defined by equation (44) may be visualized as the boundary of a convex
region in the Haigh–Westergaard stress space (three-dimensional space with the principal
stresses ΣI,ΣII,ΣIII as the Cartesian coordinates). It is conventional in plasticity theory

to use cylindrical coordinates z = Σm, r =
√
Σ

′

: Σ
′

=
√

2/3Σe and θ such that cos (3θ) =

27/2 det(Σ
′

/Σe). As in equation (1), Σe and Σm are the Von Mises effective stress and
mean normal stress, respectively, and θ is the Lode angle. Cross-sections of the yield
surface corresponding to the family of planes Σm = cste are called π-planes and the cross
sections corresponding to θ = cste are called meridional planes. It is emphasized that,
the yield function (44) being anisotropic, the shape of the yield surface in principal stress
space will vary depending on the relative orientations of the principal axes of loading, the
axes of orthotropy of the matrix and the axis of symmetry of the void.

In this section, we present cross-sections of the yield surface corresponding to special
cases of loading. The first cross-section corresponds to triaxial loadings sharing a common
value of Σm. This cross-section represents the trace of the yield surface on a π-plane. The
second cross-section corresponds to axisymmetric loading about the eIII axis, Σ = ΣmI+

2There are two typographical errors in (Benzerga and Besson, 2001) (i) the exponent 1/2 was dropped
in print; and (ii) Σαα should read Σ11 +Σ22 after their equation (58).

18



Label Loading orientation
L1 eI = eL, eII = eT, eIII = eS
L2 eI = eL, eII = eS, eIII = −eT
L3 eI = eL, eII =

1√
2
(eT + eS), eIII =

1√
2
(−eT + eS)

Table 2: Orientations of the principal axes of loading relative to the microstructure,
corresponding to the yield loci of Figs. 8–11.

Σ
′

/3(−eI⊗eI−eII⊗eII+2eIII⊗eIII). The third cross-section corresponds to in-plane shear
loading with a superposed hydrostatic stress, Σ = ΣmI+Σ

′

/
√
3(eI ⊗ eI − eII ⊗ eII). Note

that for the latter types of loading, the Von Mises effective stress Σe = |Σ′ |. Assuming that
the Lode angle θ is measured with respect to the Σ

′

III axis in the π-plane, the above two
cross-sections correspond to the traces of the yield surface on meridional planes defined
by θ = nπ and θ = (n+ 1/2)π, respectively, with n = 0, 1. In all cases, the values of the
stresses are normalized by a reference stress, σ̄ ≡ σS, which is identified with the yield
stress of the matrix material along direction of orthotropy eS. Also, all examples below
are shown for a porosity f = 0.1.

Four orthotropic materials are considered for the matrix. Their Hill coefficients are
listed in Table 1 (see Section 2). We consider two configurations of the microstructure,
characterized by the orientation of the void axis relative to the axes of orthotropy of the
matrix. In the first case, referred to as the “aligned” configuration, the void axis e3 is
taken to be aligned with the eS axis of orthotropy. In the second case, referred to as the
“misaligned” configuration, an arbitrary orientation is chosen for the void axis relative
to the matrix, e3 = 1/7(2eL + 3eT + 6eS). In the case of the aligned configuration, the
effective medium will be orthotropic with the same triad of orthotropy as the matrix
material (eL, eT, eS). In particular, when the matrix material is transversely isotropic
about the eS axis (materials 1 and 2 from Table 1), the effective medium will exhibit
transverse isotropy about the eS axis. On the other hand, the misaligned configuration
does not admit any orthotropic symmetry. Three loading cases are considered depending
on the orientation of the principal axes of loading (eI, eII, eIII) relative to the material
axes, Table 2. In cases L1 and L2, the principal axes of loading are aligned with the axes
of orthotropy of the matrix, whereas L3 corresponds to off-axis loading.

We first start with the case of materials containing spherical voids embedded in
anisotropic matrices. In that case, the new criterion reduces to that of Benzerga and
Besson (2001). The yield loci corresponding to all four materials from Table 1 are com-
pared in Fig. 8 for various loading configurations. For loadings aligned with the matrix
(L1), Figs. 8(a) and (b) show the traces of the yield surfaces on the π-plane Σm = 0 and
the yield loci for axisymmetric loading about the eIII axis, respectively. The yield loci
in the π-plane for the isotropic matrix and materials 1–2 are perfect circles. This is a
consequence of Hill coefficients h1, h2 and h3 being equal in these materials. By way of
contrast, the yield locus of Material 3 is an ellipse. In general, the elliptical shape of the
yield locus on the π-plane is a signature of the Hill criterion assumed for the matrix and
introduces a Lode angle dependence for the effective yield criterion. For reference, the
yield loci of the sound matrices (i.e. for f = 0) are cylinders whose cross-sections are
similar to the cross-sections in the π plane (shown in parts (a) of Fig. 8 and subsequent
figures), but are bigger by a factor 1/(1− f).

Since the yield function is indifferent to the sign of stress, the yield surface is symmetric
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Figure 8: Cross-sections of the yield surface for a spherical cavity with f = 0.1 and
the four different anisotropic materials from Table 1. The loading orientations L1–L3

correspond to Table 2. Orientation L1 – (a) π-plane with Σm = 0 (b) axisymmetric
loading with Σ

′

II = Σ
′

I. Orientation L3 – (c) π-plane with Σm = 0 (d) axisymmetric
loading with Σ

′

II = Σ
′

I. Stresses are normalized by the yield stress of the matrix material
under uniaxial tension in the eS direction of orthotropy.
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with respect to inversion about the origin (point symmetry). Hence only the halves of the
axisymmetric yield loci corresponding to Σm > 0 are shown in Fig. 8b. For the spherical
voids considered here, the axisymmetric yield loci are also symmetric with respect to
the Σm axis. The radial lines in Fig. 8(b) correspond to proportional loading paths, i.e.,
with fixed stress triaxiality ratio T . In practice, values of T greater than 4 are rarely
attained. Notice that even though the yield points themselves may be close to each other,
the normals to the yield loci vary considerably from one material to another, especially
towards higher values of T .

Figs. 8(c)-(d) show the corresponding yield loci for the off-axis loading case L3. Here,
all the yield traces in the π-plane are ellipses centered at the origin. The apparent Lode-
angle dependence is thus exacerbated under off-axes loadings. Interestingly, in Fig. 8(c),
one may notice that the yield locus for Material 3 is nearly circular in shape, indicating
that the Lode angle dependence of the yield criterion may disappear depending on the
orientation of loading relative to the material.

Next, consider the case of materials containing oblate voids with w = 1/5 in an
isotropic matrix, Fig. 9. In this case, the new yield criterion coincides with that of
Gologanu et al. (1997). Results for all loading orientations L1–L3 are shown superposed
on each other. Figs. 9(a)-(b) show the π-plane cross-sections corresponding to Σm = 0
and Σm = 0.9Σh, respectively, where Σh designates the yield stress of the effective medium
under pure hydrostatic loading. Although barely visible in Fig. 9(a), the non-spherical
void shape leads to a slightly oval shape for the yield locus in the π-plane. However, the
main effect of void shape is apparent for non-zero values of the mean stress as in Fig. 9(b).
Depending on the loading orientation, the centroid of the yield locus moves away from the
Σm = 0 axis. This effect is also manifest in Figs. 9(c)-(d), which correspond to the cases of
axisymmetric and transverse shear loadings, respectively, with a superposed hydrostatic
stress. Note that, unlike in the case of spherical voids, these loci do not exhibit symmetry
with respect to either coordinate axis.

Consider now the case of oblate voids (again with w = 1/5) embedded in an orthotropic
matrix (Material 3) in an aligned configuration, i.e., e3 = eS. The results summarized in
Fig. 10 are the counterpart of the results in Fig. 9 when the isotropic matrix is replaced
by Material 3. Notice that these yield loci inherit some of the characteristic features from
both Figs. 8 and 9. The shape of the yield locus in the π-plane is primarily determined
by the anisotropy of the matrix while the location of the centroid is primarily determined
by the void shape. However, it is worth noting that the combined effect is not a simple
superposition of a shape change due to material texture and a translation due to void
shape. This is best seen from the fact that, unlike in Figs. 8(a) and (c), the π-plane yield
loci are not ellipses, but assume a general oval shape. Also, the anisotropy of the matrix
has a secondary influence on the location of the centroid. Similar results for prolate
cavities (not shown) exhibit all the above characteristics, albeit to a lesser extent. The
main difference between prolate and oblate cavities is that, all other conditions being
the same, oblate cavities exhibit a greater sensitivity to the mean stress (i.e. lower yield
stresses at larger values of Σm).

Finally, Fig. 11 shows the yield loci for the most general case of oblate cavities
(w = 1/5) dispersed in an orthotropic matrix (Material 3) in a misaligned configura-
tion (e3 = 1/7(2eL + 3eT + 6eS)). These results differ from those of Fig. 10 by the
orientation chosen for the void axis e3. The π-plane yield loci in Figs. 11(a)-(b) reveal
general oval shaped cross sections. Comparing Figs. 10(c)-(d) with Figs. 11(c)-(d) shows
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Figure 9: Cross-sections of the yield surface for an oblate cavity with f = 0.1, w = 1/5
and an isotropic matrix. The loading orientations L1–L3 correspond to Table 2. (a) π-
plane with Σm = 0 (b) π-plane with Σm = 0.9Σh (c) axisymmetric loading with Σ

′

II = Σ
′

I

(d) in-plane shear with superposed hydrostatic stress, Σ
′

II = −Σ
′

I. Stresses are normalized
by the yield stress of the matrix material under uniaxial tension in the eS direction of
orthotropy.
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Figure 10: Cross-sections of the yield surface for an oblate cavity with f = 0.1, w =
1/5 and Material 3 from Table 1. Aligned microstructure with the void axis e3 = eS.
The loading orientations L1–L3 correspond to Table 2. (a) π-plane with Σm = 0 (b)
π-plane with Σm = 0.9Σh (c) axisymmetric loading with Σ
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I (d) in-plane shear with
superposed hydrostatic stress, Σ
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I. Stresses are normalized by the yield stress of
the matrix material under uniaxial tension in the eS direction of orthotropy.
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Figure 11: Cross-sections of the yield surface for an oblate cavity with f = 0.1, w = 1/5
and Material 3 from Table 1. Misaligned microstructure with the void axis e3 = 1/7(2eL+
3eT+6eS). The loading orientations L1–L3 correspond to Table 2. (a) π-plane with Σm = 0
(b) π-plane with Σm = 0.9Σh (c) axisymmetric loading with Σ

′

II = Σ
′

I (d) in-plane shear
with superposed hydrostatic stress, Σ
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II = −Σ
′

I. Stresses are normalized by the yield stress
of the matrix material under uniaxial tension in the eS direction of orthotropy.
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that there is a drastic reduction in the yield stresses at higher triaxialities in the case of
the misaligned microstructure, indicating that the evolution of the microstructure due to
sustained deformation can lead to significant weakening of the material.

While the analytical yield criterion, equation (44), has been derived using a rigorous
variational approach, due to the approximations introduced in the derivations it is unclear
whether the final result respects the upper-bound character of the approach. We have
developed a numerical method to derive rigorous upper-bound yield loci for anisotropic
materials containing spheroidal voids and subjected to axisymmetric loading about the
void axis. The method is based on limit-analysis using a large number of velocity fields
from the Lee-Mear decomposition (Lee and Mear, 1992), and has the property that it
yields nearly exact results for the yield criterion in the particular case when the material
exhibits transverse isotropy about the void axis. A more detailed study aimed at validation
of the analytical criterion by comparison to the numerical upper-bound yield loci will be
published in a forthcoming paper.

7 Microstructure Evolution

To close the constitutive formulation, evolution equations are needed for the microstruc-
tural variables that enter the criterion, i.e., void volume fraction, aspect ratio and ori-
entation. Once these are specified, the constitutive equations can be integrated using a
suitable scheme to obtain the stress-strain response of the material for specified loading
paths.

7.1 Evolution of Porosity

The evolution of void volume fraction, or porosity, follows directly from the assumption
of an incompressible matrix so that

ḟ

1− f
= Dkk (48)

where D is entirely due to plastic deformation since elasticity is neglected. Given that the
matrix obeys the normality flow rule, so does the effective material (Hill, 1967; Gurson,
1977):

Dij = Λ
∂F
∂Σij

(Σ) (49)

where F(Σ) denotes the yield function (44) and Λ the plastic multiplier. Combining (48)
and the hydrostatic part of (49) we obtain the evolution equation for the porosity

ḟ = (1− f)Λ
∂F
∂Σm

(50)

Thus, the evolution of porosity follows directly from the yield criterion. With the
results of Figs 8-11 in mind, the following is worth noting. While the loci appear to be
close to each other in the practical range of stress triaxialities the normal to the loci can
vary considerably, even at low T . This has important implications for the evolution of the
microstructure, as the evolution laws for the porosity and void shape are formulated in
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terms of the macroscopic plastic rate of deformation, which is normal to the yield locus.
Hence, small differences in the yield loci can lead to large differences in the evolution of
microstructural variables.

7.2 Evolution of Void Shape

7.2.1 Basic form

Since the trial velocity field (17) contains a non-axisymmetric component, the model can
be used to deliver evolution laws of two independent aspect ratios3. However, consistent
with approximation A1, the void aspect ratio w is taken to represent the effective shape
of the three-dimensional void, interpreting b1 as the transverse semi-axis of an ‘equivalent
spheroid’ whose volume equals that of the ellipsoid. For convenience, we define a void
shape parameter S ≡ lnw, so that S > 0 for prolate voids and S < 0 for oblate voids,
Fig. 7. Thus,

Ṡ =
ẇ

w
=
ȧ1
a1

− ḃ1
b1

(51)

To evaluate the right-hand side term in (51), we assume that the void is deforming ho-
mogeneously with rate of deformation Dv, naturally defined by

Dv
ij = 〈dij〉ω =

1

2ω

∫

∂ω

(vinj + vjni)dS (52)

where n is the unit normal to the boundary of the void. With the above interpretation
in mind, it follows from (51) that

Ṡ = Dv
33 −

1

2
(Dv

11 +Dv
22) (53)

with the components of Dv calculated based on (52) and the chosen microscopic velocity
fields in (17). Eliminating A and β using equations (B.3), we obtain

Dv = D+ 3

(

1

f
Xv −X

)

Dm (54)

where tensor Xv is defined similar to X in (42) with α2 replaced by α1. Combining (53)
and (54) one gets

Ṡ =
3

2
D

′

33 + 3

[

1− 3α1

f
+ 3α2 − 1

]

Dm (55)

This equation constitutes the basic form for the evolution of void shape and does in-
clude an implicit dependence upon matrix anisotropy through the macroscopic rate of
deformation, D, which derives from yield criterion (44) by normality.

3Note that such laws would be crude, since the assumed velocity fields of Section 5 do not depend on
Hill’s anisotropy factors. In actuality, the exact velocity field must be affected by the anisotropy.
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7.2.2 Alternative Approach

An alternative expression for the average rate of deformation of the void Dv was derived
by Ponte Castañeda and Zaidman (1994) using a micromechanical approach extending the
classical Eshelby analysis (Eshelby, 1957) to the case of finite porosities. Their expression
reads

Dv = A : D, A = [I− (1− f)S]−1 (56)

where A may be termed the strain concentration tensor and S is the Eshelby tensor for
a spheroidal inclusion in an incompressible linear elastic isotropic matrix. One may use
(56) in place of (54) in (53) to obtain an alternate estimate for the evolution of the shape
parameter. Since a simple closed form expression for Ṡ of the type (55) can not be found
in this case, implementing this approach involves evaluation of the strain concentration
tensor A, and hence Dv, based on the current values of f and S and using (53) to evaluate
Ṡ. In this stiffness-based approach, the derived expression for Dv is independent of the
microscopic velocity fields.

It must be emphasized, however, that neither the basic nor the alternate expression
for Dv capture the complex effect of stress triaxiality that leads to cavity flattening
under a major axial stress evidenced in finite element simulations (Budiansky et al.,
1982; Koplik and Needleman, 1988). In addition, similar FE calculations have revealed
an effect of porosity on the magnitude of the deviatoric term in (55). This effect is
implicitly contained in the alternate form (56), but the dependence is weaker than in FE
calculations. Therefore, at present it does not seem to be possible to avoid completely all
heuristics in the evolution law of void shape. In a companion paper, we analyze possible
heuristic extensions of (55). Here, it suffices to investigate the capability of this evolution
law at capturing the nontrivial coupling between void growth and plastic anisotropy.

7.3 Evolution of Void Orientation

Under general loading conditions, the orientation of the void axis e3 evolves as a result
of the macroscopic spin of the material in addition to the local plastic distortion. While
the simplest proposal would be to assume that the spin rate of the voids is equal to the
continuum spin, micrographic evidence of evolving material texture in notched tensile
specimens (Benzerga, 2000) suggests that this is not necessarily the case (see Figure 12).

Based on a non-linear homogenization analysis, Kailasam and Ponte Castaneda (1998)
have developed an expression for the void spin rate, which reads

Ωv = Ω− C : D (57)

where Ωv and Ω represent the void and continuum spin tensors respectively. C represents
the fourth order spin concentration tensor, which is given by

C = −(1− f)Π : A (58)

where Π is the Eshelby rotation tensor for a spheroidal inclusion in an incompressible
linear matrix (Eshelby, 1957). Simplified expressions for S and Π for the cases of prolate
and oblate spheroidal inclusions are provided in (Eshelby, 1957). The evolution of the
void orientation may then be obtained using the kinematical relationship

ė3 = ω · e3, ω = Ωv +Ωl (59)
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(a)

60µm

LT

ψ0

(b)

150µm

LT

ψ = 15◦

Figure 12: Void rotation under off-axes triaxial loading of steel. (a) Initial configuration:
elongated sulfide inclusion oriented at ψ0 = 45◦ from the vertical loading direction. (b)
Deformed configuration: elongated cavities located in the neck of a notched bar and
oriented at ψ ≈ 15◦ from the vertical loading direction.

where Ωl is an antisymmetric tensor given by

Ωl
12 = 0, Ωl

i3 =
w2 + 1

w2 − 1
Dv

i3 (i = 1, 2, w 6= 1) (60)

in the coordinate frame associated with the void (see Kailasam and Ponte Castaneda,
1998).

It may be remarked that the actual derivation of (57) assumes that the matrix is
isotropic, and hence is strictly not applicable to the case of an anisotropic matrix like
Hill’s. Nevertheless, one can see that, as in equation (55) for the void shape evolution,
equation (57) includes an implicit dependence of Ωv on material anisotropy through the
macroscopic rate of deformation, D. Hence, in the practical range of material anisotropy
parameters, we may consider equation (57) as the best available estimate of the void spin
rate.

7.4 Example

In this section, we compare the predictions of the analytical model, consisting of the yield
function (44), flow rule (49) and the microstructure evolution laws (50) and (55), with the
finite-element results presented in Section 2 for axisymmetric proportional loading at a
moderate stress triaxiality ratio of T = 1. Since the materials considered are transversely
isotropic, the void orientation does not change during loading (ω ≡ 0). For comparison,
responses obtained using the alternative law for void shape evolution, i.e., equations (53)
and (56), are also investigated. The constitutive equations are integrated using a backward
Euler scheme. Strain hardening in the matrix is incorporated using the energy balance
approach of Gurson (1977), whereby the cumulative plastic strain ǭ is evolved through

Σ : D = (1− f)σ̄ ˙̄ǫ (61)

The current yield stress in the matrix σ̄ is determined using the same power law hardening
model used in the FE calculations as described in Section 2. Elasticity is included in the
analytical model results using a hypoelastic form for the elastic constitutive law and
assuming additive decomposition of the deformation rate tensor into elastic and plastic
parts.
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Figure 13: Model predictions for the effective material response under axisymmetric load-
ing, corresponding to the unit-cell results of Fig. 5, Section 2: (a) Stress-strain response
(b) Evolution of porosity (c) Evolution of void aspect ratio. The unit-cell results for the
evolution of the void aspect ratio (not shown in Fig. 5) are shown in (d).

Figs. 13(a) and (b) show the stress versus strain and porosity versus strain curves
predicted by the model. These results correspond to the unit-cell results of Figs. 5(a) and
(b), respectively. Recall that the unit-cell results had evidenced a non-trivial coupling
between the effects of void shape and plastic anisotropy of the matrix, the effect of void
shape on the porosity rate being enhanced in the case of Material 1 and barely detectable
in the case of Material 2. Comparison with the model predictions in Fig. 13(a)-(b) shows
that the qualitative features of the unit-cell results are very well reproduced by the model.
In addition, the evolution of the void aspect ratio depicted in Fig. 13(c) shows that the
model predictions yield a reasonably good match with the unit-cell results, which are
summarized in Fig. 13(d). In the latter figure, the symbol (x) indicates the onset of void
coalescence, which is not accounted for by the analytical model.

It is worth emphasizing that such qualitative behavior, notably the weak effect of void
shape on void growth for material 2, is predicted without any heuristics in the evolution
law (55). For better quantitative predictions, however, a heuristic “void interaction” pa-
rameter q could be introduced in the spirit of Gologanu et al. (1997). Further discussion
of these issues may be found in a forthcoming companion paper. For comparison pur-
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Figure 14: Model predictions for the porosity f and void aspect ratio w using the alternate
form (56) for void shape evolution in (53). Compare with Fig. 13(b) and (c).

poses, Fig. 14 shows the evolutions of porosity f and void aspect ratio w as predicted
by the alternate evolution law for w due to Ponte Castañeda and Zaidman (1994) (see
Section 7.2.2). Just like the proposed model, the alternate model does a good a job at
predicting the qualitative trends at T = 1 for both materials.

8 Conclusion and Outlook

Using nonlinear homogenization theory, limit analysis and elements from Eshelby mi-
cromechanics, a new model has been developed for plastically deforming solids contain-
ing spheroidal voids. Motivated by the experimental evidence of fracture and toughness
anisotropy in a class of structural materials and by direct numerical simulations of void
growth to coalescence, emphasis was laid on coupled effects of matrix material anisotropy
and void shape. Notable among the model features are the following:

• A closed form expression for the effective yield locus was obtained which is applica-
ble to arbitrary loadings, i.e, not necessarily aligned with the microstructure, and
arbitrary microstructures, i.e., principal directions of orthotropy not necessarily tied
to the voids.

• The model has the capability to predict a much broader range of damage and frac-
ture behaviors than with currently available models. For example, it picks up an
apparent Lode-angle dependence as well as a shift of the yield surface in the π-plane
for non vanishing amounts of hydrostatic stress.

• In the case of transversely isotropic materials and axisymmetric loadings, the model
delivers quasi-exact results with any errors being associated with the cutoff in the
velocity fields. It is demonstrated that the new yield criterion reduces to previously
established results in the literature for the special cases of spheroidal voids in an
isotropic matrix and spherical voids in a Hill matrix. The Gurson model is a special
limit case of the model.
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• Comparison with results of unit cell calculations using the finite element method
has demonstrated the potential capabilities of the model at predicting complex
microstructure evolution.

In addition, some of the model characteristics and limitations are common to other
porous plasticity models, namely:

• Most attributes of the anisotropic plasticity model assumed at the microscale do not
translate to the macroscale. In particular, the macroscopic behavior is not ideally
plastic, it is sensitive to pressure and leads to dilation. In addition, macroscopic
anisotropy evolves with deformation and carries the signature of the microstructure.

• Among the things that the model does not deliver for arbitrary loadings or general
matrix anisotropies are the exact microscopic velocity fields. From the outset, this
has not been the objective. The model delivers approximate but accurate macro-

scopic yield criteria.

• The closed form expression of the yield criterion was obtained using approximations
that do not necessarily preserve the upper-bound character. For that reason, we have
devoted a thorough numerical study to assess the approximations made. Complete
validation of the new model would also require a critical assessment of microstructure
evolution laws beyond the preliminary comparisons offered in Fig. 13. This requires
extensive finite element analyses of anisotropic porous unit cells under controlled
loading conditions. Corresponding numerical methods and results are the subject
of a forthcoming companion paper.
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Appendix A. Rationale for Approximation A2

The microscopic deformation resulting from the trial expansion field vA fluctuates within
the RVE. Simplifying these fluctuations amounts to analyzing the variations of functions
F (u) and G(u) introduced in (35). We first examine the limits of these functions, aided
by the Maple software. In the limit u→ 0 (i.e., spherical void) we get:

lim
u→0

F 2(u) = lim
y→0

1

y2
〈dA2

eq 〉(β,ϕ) =
4

5
(ĥq + 2ĥt + 2ĥa), (A.1)

and
lim
y→0

〈dA33〉(β,ϕ) = 0 (A.2)

whereas in the limit y → ∞ (i.e., cylindrical void in the prolate case and a “sandwich” in
the oblate case) we obtain:











lim
u→∞

F 2(u) = lim
y→∞

1

y2
〈dA2

eq 〉(β,ϕ) = 3ĥt (p)

lim
u→1

F 2(u) = lim
y→∞

〈dA2

eq 〉(β,ϕ) = 9ĥq(3πB22 + 4B21)
2 + 6ĥa(πB21 + 12B22)

2 (o)

(A.3)
and







lim
y→∞

〈dA33〉(β,ϕ) = 0 (p)

lim
y→∞

〈dA33〉(β,ϕ) = 12B21 + 9πB22 (o)
(A.4)

where B21 and B22 were introduced in (18), ĥq is defined by (37) and

ĥt ≡
ĥ11 + ĥ22 + 2ĥ66 − 2ĥ12

4
, ĥa ≡

ĥ44 + ĥ55
2

. (A.5)

Here, ĥij are the components of tensor ĥ expressed using Voigt’s condensation, with
respect to the basis (ei) associated with the voids4. The above limits call for some obser-
vations: (i) in the prolate case, 〈dA2

eq 〉(β,ϕ) behaves asymptotically as y2, hence the change
of variable u(y) in (35); (ii) in the oblate case, the asymptotic behavior at ∞ is different,
hence the different mapping u(y); and (iii) most importantly, all limits of F (u) are finite.
The only singular behavior is in the neighborhood of 0 for function G(u), which is tied to
the term 〈dA33〉(β,ϕ) via (35). This behavior is peculiar to the spherical void when consid-
ered in the limit u→ 0. Nevertheless, the corresponding term in equation (33) drops out
rigorously in the limit of a spherical void due to the property (A.2), which is a consequence
of the fact that the expansion velocity field vA reduces to a spherically symmetric field in
the limit of a spherical void. Under such circumstances, the yield criterion can be derived
without recourse to approximation A2 but the final expression would be consistent with
that obtained in the general case using A2.

Next, we show that F (u) behaves well in between the above limits. In doing so, we
realize that the function to be studied is that for which the minimum overall dissipation
is obtained when minimizing over the B2m factors of the velocity field (m = 0, 1, 2).

4The values of ĥt and ĥa are invariant with respect to the choice of axes e1 and e2 transverse to the
symmetry axis of the void.
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This function is denoted by Fmin(u) for the sake of clarity. Numerically, Fmin(u) may
be determined for given plastic anisotropy, microstructural parameters f and w and for
any loading path. The involved velocity fields do depend upon the plastic anisotropy
tensor h through factors B2m. For illustration, Figs. 15 and 16 (solid lines) show such
functions Fmin(u) for the isotropic matrix and one anisotropic material, for states of purely
hydrostatic loading. Similar results were derived for the other materials listed in Table 1.
In the prolate case (Fig. 15) Fmin is more conveniently plotted against the eccentricity e as
the spatial variable within the RVE. The bounds for e and u in these plots depend on the
specific choices made for porosity f and void aspect ratio w. The key point is that, despite
their complicated expressions, the functions Fmin(u) exhibit smooth variations between
their finite limits. This is the rationale for replacing F (u) with F̄ . The reasoning behind
replacing G(u) and H(u) with constants is similar and leads to the proposed simplification
of fluctuating deformation fields.
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Figure 15: Numerically determined Fmin(e) minimizing the overall dissipation under hy-
drostatic loading, and its approximate closed form F app(e) in (C.7) for a prolate void with
f = 0.001 and w = 5: (a) Isotropic matrix; (b) Material 1 from Table 1.
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Figure 16: Numerically determined Fmin(u) minimizing the overall dissipation under hy-
drostatic loading, and its approximate closed form F app(e) in (C.8) for an oblate void
with f = 0.001 and w = 1/5: (a) Isotropic matrix; (b) Material 1 from Table 1.
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Appendix B. Derivation of yield criterion (40)

To obtain form (40) of the yield criterion, we first separate mean and deviatoric parts of
Σ in the parametric equation (5) such that

Σkk = 3
∂Π

∂Dkk

, Σ
′

ij =
∂Π

∂D
′

ij

(B.1)

Writing the axisymmetric tensor DA in the form DA
ij = DA

kkXij with tensor X given
by (42) and using the expressions for the expansion velocity field vA (18)–(19) in the
boundary condition (23), one can show that

DA
kk = 3y2, α2 ≡

DA
11

DA
kk

=
1

3
− b2

c
F2(λ2) (B.2)

where F2(λ) is defined by (26). Using (42) and (B.2) in (22), Dkk and D
′

are related to
A and β through

A =
1

3y2
Dkk, β = D

′

+
1

3
Dkk(I− 3X) (B.3)

Using the change of variables (Dkk,D
′

) → (A,β) equation (B.1) is rewritten in the form

3y2ΣijXij =
∂Π

∂A
, Σ

′

ij =
∂Π

∂βij
(B.4)

Next, use of the chain rule in conjunction with equation (39) yields

∂Π

∂A
=

F̄
√

ĥq

∂Π

∂Ã
: Q,

∂Π

∂β
=

√

ĥqḠ
∂Π

∂Ã
+ H̄

∂Π

∂B̃
(B.5)

where evaluation of the Jacobian must be carried out with care given that change of
variable (39) is not one to one5. From expression (38) for the plastic dissipation, one
formally gets

∂Π

∂Ã
= C1

2

3
p̂ : Ã,

∂Π

∂B̃
= C2

2

3
p̂ : B̃, p̂ = J : ĥ : J, (B.6)

where C1 and C2 are positive scalar-valued functions. One can solve for the unknown C1

by substituting (B.6)1 in (B.5)1. Using the above derived expression for ∂Π/∂Ã in (B.5)
and upon simplification using (B.4), one obtains

∂Π

∂Ã
=

(Σ : X)
√

ĥq

2y2
F̄

p̂ : {Q+R} , ∂Π

∂B̃
=

1

H̄

[

Σ
′ − 2y2Ḡ

F̄
(Σ : X)p̂ : {Q+R}

]

(B.7)

where the tensor R is defined by

R ≡ [(Q : p̂ : Q)β/A− (Q : p̂ : β/A)Q]
[

3
2
F̄ /Ḡ+ (Q : p̂ : β/A)

] (B.8)

5We keep the notation Π(Ã, B̃) for what should be Π̃(Ã, B̃)
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Notice that R ≡ 0 if β ∝ Q, i.e. for states of axisymmetric deformation about the void
axis. Also note that, since β/A = 3y2(D/Dkk −X) from (B.3) and y2 → 0 for a spherical
void, R ≡ 0 in the limit case of a spherical void.

From the chain rule and the definitions of Ãeq and B̃eq, we get

(

∂Π

∂Ãeq

)2

=
3

2

∂Π

∂Ã
: p :

∂Π

∂Ã
,

(

∂Π

∂B̃eq

)2

=
3

2

∂Π

∂B̃
: p :

∂Π

∂B̃
, p = J : h : J (B.9)

Finally, evaluation of the integral in (38) and elimination of the ratio Ãeq/B̃eq between the
expressions for ∂Π/∂Ãeq and ∂Π/∂B̃eq leads to the following equation of the macroscopic
yield locus

1

σ̄2

(

∂Π

∂B̃eq

)2

+ 2(g + 1)(g + f) cosh

(

1

σ̄y2

∂Π

∂Ãeq

)

− (g + 1)2 − (g + f)2 = 0 (B.10)

Using (B.7)1 in (B.9)1 and the property that Q : p̂ : R = 0, we see that

∂Π

∂Ãeq

= q1
3y2
F̄

(Σ : X), q1 ≡
√

1 +
R2

eq

ĥq
≥ 1 (B.11)

Similarly, using (B.7)2 in (B.9)2, we obtain

(

∂Π

∂B̃eq

)2

=
q2
H̄2

3

2
[Σ

′ − 2y2Ḡ

F̄
(Σ : X)p̂ : Q] : p : [Σ

′ − 2y2Ḡ

F̄
(Σ : X)p̂ : Q] (B.12)

where the dependency on tensor R is lumped into a parameter q2

q2 ≡ 1 +
6y22Ḡ

2(Σ : X)2R2
eq − 4y2F̄ Ḡ(Σ : X)(Σ : R)

[F̄Σ
′ − 2y2Ḡ(Σ : X)p̂ : Q] : p : [F̄Σ

′ − 2y2Ḡ(Σ : X)p̂ : Q]
, q2 ≤ 1 (B.13)

The result that q2 ≤ 1 may be verified by evaluating (∂Π/∂B̃eq)
2 by combining forms

(B.6)2 and (B.7)2 for ∂Π/∂B̃ in (B.9)2 and recalling that B̃ = H̄β. Also note that in the
special cases of spherical void shapes or non-spherical voids subjected to axisymmetric
deformation about the void axis e3, R ≡ 0 and q1 = q2 = 1.

Using (B.11) and (B.12) in (B.10) leads to the desired result (40). In the latter, the
criterion parameters are related to constants F̄ , Ḡ and H̄ (Approximation A2) through

κ ≡ 3

F̄
, C ≡ 1

H̄2
, η ≡ −2y2Ḡ

F̄
, g ≡

{

0 (p)
y2 (o)

(B.14)

while α2 is defined by (B.2) above.

Appendix C. Criterion Parameters

C.1 Expressions

There are six parameters which depend on the microstructural variables f and w and on
the anisotropy tensor h: C, g, κ, η and α2, listed by order of appearance in criterion (40)
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or its final form (44), and α1, which mainly appears in the evolution law of w. We first
provide their expressions in closed form then present their derivation in the following
sections.

g = 0 (p); g =
e32

√

1− e22
= f

e31
√

1− e21
= f

(1− w2)
3

2

w
(o) (C.1)

We recall that e1 and e2 are the eccentricities of the void and the outer boundary of the
RVE, respectively. Both are implicit functions of f and w.

κ =



















































√
3

{

1

ln f

[

2

3
ln

1− e22
1− e21

+
3 + e22
3 + e42

− 3 + e21
3 + e41

+
1√
3

(

tan−1 e22√
3
− tan−1 e21√

3

)

−1

2
ln

3 + e42
3 + e41

]

4ĥq + 8ĥa − 7ĥt
10

+
4(ĥq + 2ĥa + 2ĥt)

15

}−1/2 (p)

3

2

(

ĥq + 2ĥa + 2ĥt
5

)−1/2{

1 +
(gf − g1) +

4
5
(g

5/2
f − g

5/2
1 )− 3

5
(g5f − g51)

ln
gf
g1

}−1

(o)

(C.2)

where ĥq, ĥt and ĥa are defined by (37) and (A.5), and

gf ≡ g

g + f
, g1 ≡

g

g + 1

α2 =















(1 + e22)

(1 + e22)
2 + 2(1− e22)

(p)

(1− e22)(1− 2e22)

(1− 2e22)
2 + 2(1− e22)

(o)
(C.3)

η = − 2

3ĥq

κQ∗(g + 1)(g + f)sh

(g + 1)2 + (g + f)2 + (g + 1)(g + f)[κH∗sh− 2ch]
,

C = −2

3

κ(g + 1)(g + f)sh

(Q∗ + 3
2
ĥqηH∗)η

, sh ≡ sinh (κH∗), ch ≡ cosh (κH∗)

(C.4)

where H∗ ≡ 2
√

ĥq(α1 − α2) and Q
∗ ≡

√

ĥq(1− f).

α1 =

{ [

e1 − (1− e21) tanh
−1 e1

]

/(2e31) (p)
[

−e1(1− e21) +
√

1− e21 sin
−1 e1

]

/(2e31) (o)
(C.5)

Note that the expressions of α2 and α1 are identical to those given by (Gologanu et al.,
1997) for isotropic matrices. (C.1)2 derives directly from (B.14)4 and y2 = c3/a2b

2
2.

C.2 Derivation of κ and α2

Most important among all criterion parameters are κ and α2 which enter the “cosh” term
in yield criterion (44). Both are affected by factors B2m (m = 0, 1, 2) of the velocity
field. Note that α2 enters the definition of the axisymmetric tensor X (42) which depends
on the void axis e3. For consistency, it is required that the criterion be independent of
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the void orientation in the limit of a spherical void, which implies that X must reduce
to an isotropic tensor (i.e. α2 = 1/3). We satisfy this requirement by constraining the
parameters B2i to be independent of material anisotropy so that α2 remains independent
of h; see equation (B.2). To obtain κ, we start from (B.14)1 where F̄ is defined through

F̄ =

(

ln
u1
u2

)−1

inf
[B20,B21,B22]∈R3

∫ u1

u2

F (u)
du

u
(C.6)

by virtue of approximation A2. The true function that minimizes the above integral and
the overall dissipation under purely hydrostatic loading was plotted in Figs. 15 and 16 as
special cases of the family of functions designated Fmin(u) in Appendix A. In seeking a
closed form expression for F̄ and κ, we must approximate Fmin(u) by a function F app(u)
since the former can only be evaluated numerically6. This is done in two steps, in the spirit
of Gologanu et al. (1997). First, the specific values of B20, B21 and B22 are obtained by
minimizing the integrand F (u) in (C.6) and not the integral itself (or equivalently Π(D)).
The existence of the minimum is guaranteed by the convexity of F (u) in the triplet B2m

(Keralavarma, 2008). This yields expressions for B2m in terms of e, the eccentricity of the
current confocal spheroid7. The function F (u) that results from using the above values of
B2m has, however, a complicated expression and the integral (C.6) cannot be evaluated in
closed form to calculate F̄ . Hence, in a second step, we recourse to heuristics. It is noted

that this function has the form
√

ĥqFq(e) + ĥtFt(e) + ĥaFa(e) where the eccentricity e

is used as the independent variable. Functions Fq, Ft and Fa are well approximated by

functions of the form C1
(1−e4)
(3+e4)2

+ C2, where C1 and C2 are determined by fitting the
functions at the end points of the domain of e.

In the prolate case, the above procedure leads to the following approximate function
F app(e)

F app(e) =

√

9

5
(4ĥq + 8ĥa − 7ĥt)

(1− e4)

(3 + e4)2
+ 3ĥt (p) (C.7)

This approximation gives a close agreement with Fmin(u), which minimizes the overall
dissipation, regardless of the values of u1 and u2. In particular, F app(e) matches Fmin(e)
exactly in the limit cases of spherical (e = 0) or cylindrical (e = 1) void shapes. Fig. 15
compares the two functions for two different materials from Table 1 and a given mi-
crostructure (f = 0.001 and w = 5). In the case of oblate voids, however, the above
procedure does not yield a satisfactory function F app(u) that minimizes the integral in
(C.6). This is probably due to the stronger variations of Fmin in that case, as illustrated
in Fig. 16. We therefore propose the following heuristic function

F app(u) =

√

4

5
(ĥq + 2ĥa + 2ĥt)(1 + u+ 2u5/2 − 3u5) (o) (C.8)

which captures the asymptotic behavior studied in Appendix A. The quality of this
approximation is illustrated in Fig. 16. It provides a reasonable approximation of Fmin(u).

6There is an abuse of language here since Fmin is in fact Fmin(u;h, B2m(u1, u2,h)) whereas the sought
approximation F app(u;h) lives in a different functional space.

7The expressions of Gologanu et al. (1997) for B2m also depended on e2, due to the constraint (24).
However, we choose to ignore this dependency, effectively constraining vA to be homogeneous on every
confocal spheroid, which is possible since B2m are treated as functions of e rather than constants.
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Finally, parameter κ is obtained in either case by substituting F app given by (C.7) or
(C.8) into (C.6) then using equation (B.14)1. For the prolate case, since the integral can
still not be evaluated in closed form, the mean of F app2(e) is evaluated using equation
(C.6) and the square root of this value is assigned to F̄ . It is verified numerically that for
all values of e1 and e2, the two values are close to each other. The final expressions are
given by (C.2). The determination of α2 is based on the factors B2m determined after step
1 of the above procedure. Based on definition (B.2), this leads to the expressions (C.3),
which are identical to those obtained by Gologanu et al. (1997) although the B2m(e)
expressions used are not the same.

C.3 Parameters C and η

The parameters C and η are tied to the constants Ḡ and H̄ by equations (B.14)2,3. These
are determined by forcing the approximate analytical yield locus to pass through and be
tangent to known points on the exact two field yield locus (i.e. the yield locus defined
by equations (5) and (28) without the approximations A2 and A3). Specifically, we seek
to identify exact points on the yield locus for states of purely axisymmetric deformation
for which β ∝ Q. As can be inferred from (B.3)2, this corresponds to stress states of the
form Σ = ΣmI + Σ

′

p̂ : Q. In this case, the derivatives of the plastic dissipation, ∂Π/∂A
and ∂Π/∂βij can be evaluated exactly for the points corresponding to A = 0, i.e., purely
deviatoric loadings. Using equations (B.4), we obtain

Σ : X = ±2σ̄

√

ĥq(α1 − α2)

Σ
′

= ±2

3

σ̄
√

ĥq

(1− f)p̂ : Q (C.9)

In equation (C.9)1, the parameter α1 is defined in a manner similar to α2 in (B.2), i.e., by

α1 ≡
DvA

11

2DvA
11 +DvA

33

(C.10)

where DvA is the contribution to the average deformation rate of the void due to the
velocity field vA, defined as in equation (52) with the components of v replaced by those
of vA. The two algebraic equations that result from (i) substituting the above exact
points in the equation of the analytical yield locus (44); and (ii) equating the slopes of
the analytical and exact two-field yield loci at these points, can be solved for the values
of the two unknown parameters Ḡ and H̄, or equivalently C and η. This results in the
expressions (C.4) given above.

Parameter α1, which enters in both η and C through the term H∗, also enters the
evolution law (55) of the void aspect ratio. Its expression is determined in a manner
identical to that in (Gologanu et al., 1997). Similar to the case of α2, which was found
to be closely approximated by a function of e2 alone, it is assumed that α1 depends only
on e1 (or S) and is independent of f . Then α1 can be evaluated by letting the boundary
of the RVE tend to infinity (i.e. a2, b2 → ∞ or f → 0). Under these circumstances, one
must take B20 = B21 = 0 for the velocity fields to be bounded. The remaining parameter
B22 is then fixed by the boundary conditions and the components of DvA can be evaluated
in closed form, thus leading to the final expression (C.5) using (C.10). In the limit of a
spherical void lim

w→1
α1 = 1/3
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Appendix D. Rationale for Approximation A3

Since the first two terms in yield criterion (40) are non-negative quantities, it is clear
that replacing q1 and q2 by lower bound estimates will lead to an upper bound to the
yield criterion. However, as was shown in Appendix B, q2 ≤ 1 and hence, in general,
approximation A3 does not preserve the upper bound character. In order to estimate
the error entailed by A3, consider the case of small porosities, say f < 0.1. Tensor R is
evaluated from its definition (B.8) using A and β from (B.3). A and β are determined by
D, which is evaluated from the yield function (40) using the normality rule and neglecting
the derivatives of q1 and q2 with respect to Σ. Expanding the resulting expression for
R in a power series in the porosity f and keeping only the leading term, one may verify
that A3 preserves the upper bound character for special loadings of the type Σ

′

= 0
(hydrostatic loading) and Σ : X = 0 (equivalent of deviatoric loading for non-spherical
voids). Also, we remark that approximation A3 is exact in certain special cases such as
spherical voids or non-spherical voids subjected to axisymmetric deformation about the
void axis, as shown in Appendix B. For general loadings, one can show that the errors
in the value of the yield function due to A3 are at least an order of magnitude smaller
than f , which should be negligible for all practical purposes. Hence A3 is expected to be
a good approximation at small porosities.
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