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Abstract An approximate homogenization method is proposed and used to obtain estimates
for the effective constitutive behavior and associated microstructure evolution in hyperelas-
tic composites undergoing finite-strain deformations. The method is a modified version of
the “tangent second-order” procedure (Ponte Castañeda and Tiberio in J. Mech. Phys. Solids
48:1389, 2000), and can be used to provide estimates for the nonlinear elastic composites in
terms of corresponding estimates for suitably chosen “linear comparison composites”. The
method makes use of the “tangent” moduli of the phases, evaluated at suitable averages of
the deformation gradient, and yields a constitutive relation accounting for the evolution of
characteristic features of the underlying microstructure in the composites, when subjected
to large deformations. Satisfaction of the exact, macroscopic incompressibility constraint is
ensured by means of an energy decoupling approximation splitting the elastic energy into
a purely “distortional” component, together with a “dilatational” component. The method
is applied to elastomers containing random distributions of aligned, rigid, ellipsoidal inclu-
sions, and explicit analytical estimates are obtained for the special case of spherical inclu-
sions distributed isotropically in an incompressible neo-Hookean matrix. In addition, the
method is also applied to two-dimensional composites with random distributions of aligned,
elliptical fibers, and the results are compared with corresponding results of earlier homoge-
nization estimates and finite element simulations.
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1 Introduction

The study of the effective response of hyperelastic composites with random or periodic mi-
crostructures has found renewed attention in the literature due to its practical relevance for
soft materials, such as, for example, biological tissues [8, 12], thermoplastic elastomers [17,
31], and reinforced rubbers [5, 6]. Because of the considerable flexibility of these materials
in the elastic regime, their microstructure evolves with the deformation, and this is expected
to have a significant impact on their macroscopic response. It follows that accurate models
for the constitutive behavior of such materials must account for the geometric nonlinearities
associated with the evolution of microstructure, as well as the constitutive nonlinearities as-
sociated with the constitutive response of the constituent phases. With this goal in mind, two
different nonlinear homogenization methods have been developed recently for hyperelastic
composites by means of variational principles [33] for the properties of suitably chosen
“linear comparison composites” (LCC). Both methods have the distinguishing feature of
being exact to second order in the heterogeneity contrast of the phases, and for this reason
they are known as “second-order” methods. The first method, which was proposed by Ponte
Castañeda and Tiberio [36] building on earlier work for viscoplastic composites [35, 38],
identifies the modulus tensors of the phases in the LCC with the tangent modulus tensors of
the hyperelastic phases, evaluated at the phase averages of the deformation fields in the LCC,
and is known as the “tangent second-order” (TSO) method. The second method, which was
developed by Lopez-Pamies and Ponte Castañeda [23, 25] building on earlier work for vis-
coplastic composites [36], makes use of additional information about the second moments of
the fluctuations of the deformation gradients in the LCC to define an alternative linearization
of the nonlinear constitutive response of the hyperelastic phases leading to more accurate
predictions, especially at higher concentration of the phases, and goes by the label of “gen-
eralized second-order” (GSO) homogenization method. Applications for two-dimensional
composites containing periodic and random distributions of aligned, rigid, elliptical fibers
in an elastomeric matrix have been given by Lahellec et al. [20] and Lopez-Pamies and Ponte
Castañeda [24, 26], using a modified version of the TSO and GSO methods, respectively.
More general results for fiber-reinforced elastomers subjected to three-dimensional loading
conditions with periodic and random distributions of fibers have been provided by Brun
et al. [7] and Agoras et al. [2, 3], respectively, by means of the GSO method. In addition,
Bouchart et al. [6] have presented an application of the TSO method for three-dimensional
reinforced rubbers, while Racherla et al. [39] provided an application of the TSO method
for polydomain thermoplastic elastomers with lamellar microstructures. Finally, it should
be mentioned that a novel homogenization approach for hyperelastic composites has been
proposed recently by deBotton [9], and developed further by deBotton et al. [10] and Lopez-
Pamies and Idiart [22], building on earlier work for nonlinear composites with “sequentially
laminated” microstructures [15, 18, 34].

In spite of the significant progress that has been made to date, there are still significant
barriers for the general implementation of all the presently available nonlinear homoge-
nization methods for hyperelastic composites. The TSO method is the easiest to use, but
it can give unreliable estimates for large concentrations and strongly nonlinear behavior of
the constituent phases, including the failure to capture (unless appropriately modified) the
overall incompressibility constraint for incompressible phases. The GSO method seems to
provide the most reliable predictions, but it is more difficult to use than the TSO method
and thus far has only been used for continuous fiber composites. On the other hand, the
“sequentially laminated” homogenization is the most recent, and thus far it has only been
used successfully for neo-Hookean phases, requiring the solution of difficult nonlinear PDE
more generally.
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The main goal of this work is to develop a general, three-dimensional model based on
the TSO method of Ponte Castañeda and Tiberio [36] for the effective behavior of elas-
tomeric composite materials subjected to finite deformations. Thus, we provide analytical
estimates for the effective behavior of dilute and non-dilute composites that are capable of
accounting for general (ellipsoidal) particle shapes and distribution, as well as general three-
dimensional loading conditions (including nonaligned loadings). In addition, evolution laws
can be obtained for the relevant microstructural variables, including particle orientations. It
is also worth emphasizing that the new estimates recover the exact overall incompressibility
constraint for the special case of rigidly reinforced elastomers with incompressible matrix
phases. Furthermore, the resulting constitutive model can be used to detect macroscopic ma-
terial failure in the form of loss of strong ellipticity (or rank-one convexity) of the associated
homogenized behavior [14], although this will not be pursued in detail in this work.

The paper is organized as follows. Sections 2 and 3 describe in some detail the tan-
gent second-order homogenization method. Section 4 presents the main results of the paper,
namely, the derivation of the homogenized constitutive relation for particle-reinforced elas-
tomers with general ellipsoidal microstructures and incompressible matrix behavior, includ-
ing the development of evolution laws for the average orientation of the particles with the
deformation. The principal features of this model are examined within the context of 2-D
and 3-D examples, respectively, in Sects. 5 and 6. Thus, Sect. 5 deals with the application
to elastomers reinforced with cylindrical fibers of elliptical cross-section under (transverse)
plane-strain loading. More specific results are presented and compared with corresponding
GSO estimates for composites with circular fibers, as well as with FEM results from the
literature. In Sect. 6, the results of Sect. 4 are applied to the class of statistically isotropic
composites consisting of an incompressible, elastomeric matrix reinforced by rigid spherical
inclusions. In both examples, the influence of the particle volume fraction, matrix proper-
ties and loading conditions on the macroscopic behavior of the composite is investigated.
Finally, some conclusion are drawn in Sect. 7.

2 Hyperelastic Composites

Consider a material consisting of N different (homogeneous) phases, which are assumed to
be distributed randomly in a specimen occupying a volume Ω0 with boundary ∂Ω0 in the un-
deformed configuration. Furthermore, the characteristic length-scale of the inhomogeneities
(e.g., particles, or voids) is much smaller than the size of the specimen and the scale of vari-
ation of the loading conditions. Let the position vector of a material point in the undeformed
configuration Ω0 be denoted by X, with Cartesian components Xi , i ∈ {1,2,3} and the cor-
responding position vector in the deformed configuration Ω be denoted by x, with compo-
nents xi . The deformation gradient tensor represented by F has components Fij = ∂xi/∂Xj

and is required to satisfy the material impenetrability condition: J = det F(X) > 0 for all
X ∈ Ω0. In addition, let F = RU where U and R stand for the stretch and (rigid-body)
rotation tensors, respectively, and let C = FT F = U2 denote the right Cauchy–Green defor-
mation tensor.

We assume that the constitutive behavior of the phases is purely elastic and characterized
by the stored-energy functions W(r)(F) (r = 1, . . . ,N ), which are taken to be nonconvex
functions of the deformation gradient tensor F, such that the local energy function of the
composite may be written as

W(X,F) =
N∑

r=1

χ(r)(X)W(r)(F). (1)
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In the above equation, the characteristic functions χ(r), describing the distribution of the
phases in the reference configuration, are such that they equal 1 if the position vector X is
inside the phase r (i.e., X ∈ Ω

(r)

0 ) and zero otherwise. The stored-energy functions W(r)(F)

are assumed to be objective, namely, W(r)(QF) = W(r)(F) for all proper orthogonal tensors
Q and arbitrary deformation gradients F, so that W(r)(F) = W(r)(U). The local or micro-
scopic constitutive relation for the composite is then given by

S = ∂W(X,F)

∂F
, (2)

where S stands for the first Piola-Kirchhoff stress tensor.
Following Hill [16], the effective stored-energy function W̃ of the composite elastomer

is defined by

W̃ (F̄) = min
F∈K(F̄)

〈
W(X,F)

〉= min
F∈K(F̄)

N∑

r=1

c
(r)

0

〈
W(r)(F)

〉(r)
, (3)

where K(F̄) denotes the set of kinematically admissible deformation gradients:

K(F̄) = {
F|∃x = x(X) with F = Grad x and J > 0 in Ω0,x = F̄X on ∂Ω0

}
. (4)

In the above expressions, the triangular brackets 〈·〉 and 〈·〉(r) denote volume averages (in
the undeformed configuration) over the domains Ω0 and Ω

(r)

0 , respectively, so that the scalar
c

(r)

0 = 〈χ(r)〉 indicates the initial volume fraction of the phase r .
In the neighborhood of F̄ = I (where I is the second-order identity tensor), the solu-

tion of the Euler-Lagrange equations associated with the variational problem (3) is unique,
and gives the minimum energy. As the deformation progresses into the finite deformation
regime, the composite may reach a point at which this “principal” solution bifurcates into
lower energy solutions. This point corresponds to the onset of an instability, beyond which
the applicability of the “principal” solution becomes questionable. However, it is still pos-
sible to extract useful information from the principal solution by computing the associated
macroscopic instabilities from the loss of strong ellipticity of the homogenized behavior.
Based on these remarks, in this work, we will estimate the overall behavior of composite
elastomers by means of the effective stored-energy function

Ŵ (F̄) = stat
F∈K(F̄)

N∑

r=1

c
(r)

0

〈
W(r)(F)

〉(r)
, (5)

instead of solving the variational problem (3). From its definition, it is clear that W̃ (F̄) =
Ŵ (F̄) from F̄ = I up to the onset of the first instability, beyond which W̃ (F̄) ≤ Ŵ (F̄). More-
over, it is often the case [14] that the first instability is indeed a long wavelength instability,
as characterized by the loss of strong ellipticity of W̃ (F̄). Furthermore, it is worth stating
that Ŵ (F̄) is an objective function of the macroscopic deformation gradient F̄, by virtue of
its definition (5) and of the objectivity assumption for the W(r).

Noting that under the affine boundary condition 〈F〉 = F̄, and defining the average stress
S̄ = 〈S〉, the effective constitutive relation for the composite is given by [16]

S̄ = ∂W̃

∂F̄
(F̄). (6)
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In the next section, we present a concise review of the “tangent second-order” homoge-
nization procedure, including its specialization for the case of two-phase elastomeric com-
posites.

3 Tangent Second-Order Method

In this section, we recall the tangent second-order (TSO) method of Ponte Castañeda and
Tiberio [36] (see also [35, 38]) in order to generate new estimates for the effective stored-
energy function W̃ (F̄) for the above-described elastomeric composite. The main concept
behind the TSO method is the construction of a fictitious “linear comparison composite”
(LCC), with the same microstructure (i.e., same characteristic functions χ(r)(X)) as the
actual (nonlinear) composite material (in the undeformed configuration). The constituent
phases of the LCC are identified with appropriate linearizations of the given nonlinear
phases resulting from suitable variational principles. This allows the use of already available
methods to estimate the effective behavior of linear composites to generate corresponding
estimates for nonlinear composites.

Similar to relation (1), the local stored-energy function of the LCC can be formally ex-
pressed as

WT (X,F) =
N∑

r=1

χ(r)(X)W
(r)
T (F), (7)

where W
(r)
T (F) is the energy potential of phase r in the LCC, which may in turn be rewritten

in the form

W
(r)
T (F) = f (r) + T(r) · F + 1

2
F · L(r)F, (8)

where the “thermal stress” T(r) and “specific heat” f (r) are defined as

T(r) = S(r)
(
F(r)

)− L(r)F(r),

f (r) = W(r)
(
F(r)

)− T(r) · F(r) − 1

2
F(r) · L(r)F(r).

(9)

In these expressions, the F(r) are constant, reference, second-order tensors, while the L(r) are
uniform, (major) symmetric, fourth-order tensors, which are usually identified with the tan-
gent modulus tensors of the phases, evaluated at the corresponding reference deformations
F(r), i.e.,

L(r) = L(r)
t

(
F(r)

)= ∂2W(r)

∂F ∂F

(
F(r)

)
. (10)

In addition, use has been made of the notation

S(r) = ∂W(r)

∂F

(
F(r)

)
. (11)

If all the phases in the LCC are characterized by potentials of the form (8), it follows from
the linearity of the problem that the effective potential of the LCC can be written as [36]

W̃T (F) = f̃ + T̃ · F̄ + 1

2
F̄ · L̃F̄, (12)
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where L̃ is the effective modulus tensor of the linear-elastic comparison composite, and T̃
and f̃ are the effective thermal stress and specific heat, respectively. For two-phase compos-
ites, the expressions for T̃ and f̃ are given by [21, 36]

T̃ = T̄ + (L̃ − L̄)(�L)−1�T, (13)

f̃ = f̄ + 1

2
�T(�L)−1 · (L̃ − L̄)(�L)−1�T, (14)

where �T = T(1) − T(2), and �L = L(1) − L(2). Furthermore, f̄ , T̄, and L̄ are the volume
averages of f , T and L. Using Eqs. (13) and (14) in (12), the effective potential associated
with the LCC for two-phase composites can be written as

W̃T = f̄ + 1

2
(�L0)

−1�T · (L̃ − L̄)(�L)−1�T

+ [
T̄ + (L̃ − L̄)(�L)−1�T

] · F̄ + 1

2
F̄ · L̃F̄. (15)

Within the context of the tangent second-order theory, Ponte Castañeda and Tiberio [36]
made use the prescriptions F(r) = F̄(r) for the LCC and obtained the following estimate for
the stored-energy function of N-phase, hyperelastic composites

Ŵ (F̄) =
N∑

r=1

c(r)

{
W(r)

(
F̄(r)

)+ 1

2

(
F̄ − F̄(r)

) · S(r)
(
F̄(r)

)}
, (16)

where the variables F̄(r) are the phase averages of the deformation gradient field in the
LCC. For two-phase composites, F̄(1) and F̄(2) are determined by means of the system of
equations [36]

F̄ = c
(1)

0 F̄(1) + c
(2)

0 F̄(2), (17)

F̄(2) = F̄ − 1

c
(2)

0

(�L)−1(L̃ − L̄)(�L)−1
[
�S + L(1)

(
F̄ − F̄(1)

)− L(2)
(
F̄ − F̄(2)

)]
, (18)

where �S = S(1)(F̄(1)) − S(2)(F̄(2)), and the first equation describes as the overall average
deformation condition. After some algebra, Eq. (18) can alternatively be written in the form

F̄ − F̄(2) = [
c

(2)

0

(
L̃ − L(1)

)−1 + (�L)−1
][

L(1)
(
F̄(1) − F̄(2)

)− �S
]
. (19)

In this work, we make use of the generalized estimate of the Willis type [37, 40] for
the effective modulus tensor L̃ of the LCC. This type of estimate is known to be quite
accurate for the type of “particulate” random microstructures, up to moderate concentrations
of inclusions. For two-phase composites, this estimate is given by

L̃ = L(1) + c
(2)

0

[
c

(1)

0 P − (�L)−1
]−1

(20)

where the microstructural tensor P contains information about the shape and distribution of
the particles in the undeformed configuration [37]. The general expression for the compo-
nents of the tensor P associated with an ellipsoidal inclusion, defined by

D0 = {
X : XT

(
ZT

0 Z0
)
X < 1

}
, (21)
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in an infinite matrix with the elastic modulus tensor L(1), is given by

Pijkl = 1

4π |Z0|
∫

|ξ |=1
Hijkl(ξ)

[
ξT
(
ZT

0 Z0

)−1
ξ
]−3

2 dS, (22)

where the symmetric, second-order tensor Z0 serves to characterize the shape and orienta-
tion of the inclusion. In addition, H is a fourth-order tensor with components Bik(ξ)ξj ξl ,
and B denotes the inverse of the acoustic tensor K with components

Kik = L
(1)
ijklξj ξl . (23)

Making use of the Willis estimate (20), the implicit tensorial equation (19) for the variable
F̄(2) may be re-written as

F̄ − F̄(2) = (
1 − c

(2)

0

)
P
[
L(1)

(
F̄(1) − F̄(2)

)− �S
]
. (24)

In summary, the variational estimate (16) for two-phase composites depends explicitly
only on the variables F̄(1) and F̄(2) corresponding to the average values of the deformation
gradient over the phases of the chosen LCC with the strain energies defined in (8). Hence,
the implementation of this estimate, in general, requires the calculation of the 18 unknown
components of F̄(1) and F̄(2) using the relations (24) and (17), which constitute a system of
18 scalar, algebraic equations. Having computed these components for given macroscopic
loading, phases characteristics and microstructure, the second-order estimate for the effec-
tive stored-energy function Ŵ (F̄) for particle-reinforced elastomers can be, in turn, obtained
from (16).

4 Rigidly Reinforced Composites

4.1 Tangent Second-Order Estimates

In this section, we confine our attention to the special case of rigid particles, and our ob-
jective is to obtain a simplified form for the effective stored-energy function (16) and the
associated kinematical equation (19) in this case. In order to characterize the constitutive
response of the rigid particles, we assume without loss of generality that the stored-energy
function of the particle phase is given by

W(2)(F) = 1

2
μ(2)

[
tr
(
FT F

)− 3 − 2 ln(det F)
]+ 1

2
μ′(2)(det F − 1)2, (25)

such that the rigid behavior of the particles is obtained by taking the limit as the Lamé moduli
μ(2) and μ′(2) tend to infinity. It should be remarked that the stored-energy function (25) is
zero if and only if F = R, where R stands for a rotation tensor. This indicates that the
particles can only undergo a rigid-body rotation in the limit μ(2),μ′(2) → ∞.

Introducing the small parameter ι, defined by

ι = 1/μ(2) = α/μ′(2), (26)

in which α is an arbitrary constant, we consider the following regular expansion for F̄(2) as
ι tends to zero

F̄(2) = F̄(2)

0 + ιF̄(2)

1 + O
(
ι2
)
. (27)
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The corresponding asymptotic expansions for (F̄(2))−1 and J̄ (2) = det F̄(2) are given by

(
F̄(2)

)−1 = [
F̄(2)

0 + ιF̄(2)

1 + O
(
ι2
)]−1

= (
F̄(2)

0

)−1 − ι
(
F̄(2)

0

)−1
F̄(2)

1

(
F̄(2)

0

)−1 + O
(
ι2
)
, (28)

J̄ (2) = J̄
(2)

0 + ιJ̄
(2)

1 + O
(
ι2
)
, (29)

where

J̄
(2)

0 = det F̄(2)

0 , (30)

J̄
(2)

1 = tr
[(

F̄(2)

0

)∗
F̄(2)

1

]
, (31)

in which the superscript ∗ refers to the adjugate tensor.
Next, using the strain energy (25), along with the expansions (27)–(29), the nominal

stress expansion in phase 2 is written as

S(2)
(
F̄(2)

)= ι−1S(2)

−1 + S(2)

0 + O(ι), (32)

where

S(2)

−1 = F̄(2)

0 − (
F̄(2)

0

)−T + αJ̄
(2)

0

(
J̄

(2)

0 − 1
)(

F̄(2)

0

)−T
, (33)

and

S(2)

0 = F̄(2)

1 + [
1 − αJ̄

(2)

0

(
J̄

(2)

0 − 1
)](

F̄(2)

0

)−T (
F̄(2)

1

)T (
F̄(2)

0

)−T

+ αJ̄
(2)

1

(
2J̄

(2)

0 − 1
)(

F̄(2)

0

)−T
. (34)

Moreover, the average rotational balance equation in phase 2 (which is a consequence of the
objectivity of the chosen strain energy)

(
F̄(2)

)T
S(2) = (

S(2)
)T

F̄(2), (35)

reduces to

[(
F̄(2)

0

)T − (
F̄(2)

0

)−1]
F̄(2)

1 + (
F̄(2)

1

)T [ (
F̄(2)

0

)−T − F̄(2)

0

]+ O(ι) = 0, (36)

by means of Eqs. (27) and (32)–(34).
In addition, making use of the overall average deformation condition (17), it follows that

the average deformation gradient in the matrix is given by

F̄(1) = F̄(1)

0 + O(ι) (37)

where F̄(1)

0 = (1 − c
(2)

0 )−1(F̄ − c
(2)

0 F̄(2)

0 ). (Note that higher-order contributions will not be
needed, and will therefore not be detailed here.)

Noting the asymptotic expansion W(2)(F̄(2)) = W(2)(F̄(2)

0 ) + O(ι) for the stored-energy
function of particles, and making use of relations (27), (32) and (37), the second-order esti-
mate (16) for the rigidly reinforced elastomers can be shown to reduce to
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Ŵ (F̄) = 1

2
ι−1c

(2)

0

(
F̄ − F̄(2)

0

) · S(2)

−1

+ (
1 − c

(2)

0

)
W(1)

(
F̄(1)

0

)+ c
(2)

0 W(2)
(
F̄(2)

0

)

+ 1

2
c

(2)

0

{(
F̄ − F̄(2)

0

) · [S(2)

0 − S(1)
(
F̄(1)

0

)]− F̄(2)

1 · S(2)

−1

}+ O(ι). (38)

Remembering that the computation of F̄(1)

0 and S(2)

−1 requires the evaluation of the tensor

F̄(2)

0 , and that the variable F̄(2)

1 can be eliminated in favor of S(2)

0 by means of Eq. (34), the
calculation of the above expression requires the determination of the variables F̄(2)

0 and S(2)

0 .
To this end, we consider next the expansion of Eq. (19) to obtain a tensorial equation for the
deformation gradient F̄(2)

0 .
Thus, setting L(2) equal to the tangent modulus tensor [36] of the particle phase, L(2) =

L(2)
t (F̄(2)) = ∂2W(2)/∂F∂F(F̄(2)), it follows from the definition of the strain energy (25) that

L(2) can be expanded as

L(2) = ι−1L(2)

−1 + O
(
ι0
)
, (39)

where

L(2)

−1 = {
(III − XXX ) + α

[
J (2J − 1)F−T ⊗ F−T + J (J − 1)XXX

]}∣∣
F=F̄(2)

0
. (40)

In this last expression, III is the fourth-order identity tensor with components Iijkl = δikδjl

and the components of the fourth-order tensor XXX read as

Xijkl = −F−1
li F−1

jk . (41)

Next, assuming that L(1) is of order one and making use of the expression (39), �L =
L(1) − L(2) can be expanded as (�L)−1 = −ι(L(2)

−1)
−1 + O(ι2). Substituting this expansion,

along with relations (27), (32) and (37), into (19), it reduces after some algebra to

c
(2)

0 S(2)

−1ι
−1 + T

(
F̄ − F̄(2)

0

)+ c
(2)

0

[
S(1)

(
F̄(1)

0

)− S(2)

0

]

− (
L̃0 − L(1)

)(
L(2)

−1

)−1
S(2)

−1 + O(ι) = 0, (42)

where we have used the notations

T = L̃0 − (
1 − c

(2)

0

)−1
L(1), (43)

and L̃0 = L̃|L(2)→∞. Thus, expression (42) gives rise to the following system of equations

S(2)

−1 = F̄(2)

0 − (
F̄(2)

0

)−T + αJ̄
(2)

0

(
J̄

(2)

0 − 1
)(

F̄(2)

0

)−T = 0, (44)

T
(
F̄ − F̄(2)

0

)+ c
(2)

0

[
S(1)

(
F̄(1)

0

)− S(2)

0

] = 0. (45)

Noting that Eq. (44) should be satisfied for an arbitrary constant α, it is deduced that the
following equations must be satisfied

F̄(2)

0 − (
F̄(2)

0

)−T = 0, and J̄
(2)

0

(
J̄

(2)

0 − 1
)(

F̄(2)

0

)−T = 0. (46)

The first equation implies that F̄(2)

0 is an orthogonal matrix denoted by

F̄(2)

0 = R̄(2), (47)
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while, recalling the definition J̄
(2)

0 = det F̄(2)

0 , it can be seen that the second equation is iden-
tically satisfied as well. This result implies that the reinforcement undergoes an average rigid
rotation R̄(2), as expected on physical grounds. This result is also consistent with the expec-
tation that the stress S(2) given in (32) should remain bounded in the extreme case of rigid
particles. In this connection, it is interesting to note that the average balance equation (36)
is automatically satisfied due to the orthogonality result (47).

In turn, in the limit of rigid particles (ι → 0), the average deformation gradient in the
matrix phase can be written as

F̄(1) = F̄(1)

0 = 1

1 − c

(
F̄ − cR̄(2)

)
, (48)

where c = c
(2)

0 . Accordingly, Eq. (45) reduces to

T
(
F̄ − R̄(2)

)+ c
[
S(1)

(
F̄(1)

)− S(2)

0

]= 0, (49)

which can be solved for S(2)

0 to obtain the result that

S(2)

0 = c−1T
(
F̄ − R̄(2)

)+ S(1)
(
F̄(1)

)
. (50)

Making use of the above relation together with Eqs. (44), (47) and (50), the second-order
estimate (38) can now be shown to reduce to

Ŵ (F̄) = (1 − c)W(1)
(
F̄(1)

)+ 1

2

(
F̄ − R̄(2)

) · T
(
F̄ − R̄(2)

)
. (51)

In order to obtain the associated equation for the average rotation tensor R̄(2) of the rigid
particles, we make use of (47) in (34) to find the following expression for S(2)

0

S(2)

0 = F̄(2)

1 + R̄(2)
(
F̄(2)

1

)T
R̄(2) + αJ̄

(2)

1 R̄(2). (52)

Substituting this expression in Eq. (49) and then multiplying it by (R̄(2))T from left-hand
side, we arrive at the following equation

(
R̄(2)

)T [
T
(
F̄ − R̄(2)

)]+ c
(
R̄(2)

)T
S(1)

(
F̄(1)

)

= 2c
{(

R̄(2)
)T

F̄(2)

1

}
Sym

+ αcJ̄
(2)

1 I, (53)

where the subscript Sym stands for the symmetric part of the relevant tensor. (We also
define the skew-symmetric part {A}Skew of a second-order tensor A via the relation A =
{A}Sym +{A}Skew .) Thus, by taking the skew-symmetric part of both sides of expression (53),
the tensorial equation for the three (generally) independent components of R̄(2) is easily ob-
tained with the result that

{(
R̄(2)

)T [
T
(
F̄ − R̄(2)

)]+ c
(
R̄(2)

)T
S(1)

(
F̄(1)

)}
Skew

= 0. (54)

The resulting estimates (51) and (54) for the rigid-reinforced elastomers can be special-
ized for “particulate” microstructures [37, 40]. To this end, we make use of the following
Willis-type estimate for the effective modulus tensor

L̃ = L(1) + c

1 − c
P−1, (55)
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where the subscript 0 has been dropped from L̃0 for convenience. Thus, substituting this
estimate for the LCC, it follows that the second-order estimate (51) specializes to

Ŵ (F̄) = (1 − c)W(1)
(
F̄(1)

)+ 1

2

c

1 − c

(
F̄ − R̄(2)

) · E
(
F̄ − R̄(2)

)
, (56)

where

E = P−1 − L(1). (57)

Accordingly, the associated kinematical equation (54) for R̄(2) can be written as

{(
R̄(2)

)T [
E
(
F̄ − R̄(2)

)]+ (1 − c)
(
R̄(2)

)T
S(1)

(
F̄(1)

)}
Skew

= 0. (58)

Having computed the tensor R̄(2) from (58), the second-order estimate can be calculated
via (56).

The second-order estimate (56) is completely specified, except for the choice of L(1)

in the LCC. Consistent with (10), in the earlier version of the TSO method [36], L(1) was
chosen to be equal to the tangent modulus tensor of the matrix phase, evaluated at the matrix
average of the deformation F̄(1), i.e., L(1) = L(1)

t (F̄(1)). In this work, the prescription

L(1) = L(1)
t (F̄) = ∂2W(1)

∂F∂F
(F̄) (59)

will be adopted instead. This choice is motivated by the considerable simplification in the
computation of L̃, which is an essential element in the effective energy (51) (through T).
Indeed, the computation of L(1) by means of the prescription (59) is completely explicit, and
does not require the calculation of the tensor R̄(2), unlike the case for the earlier prescription.
On the other hand, the resulting estimates can still be shown to be exact to second-order
heterogeneity contrast (for non-rigid particles).

4.2 Energy Decomposition Approximation

The second-order method developed in the previous section can be applied to general com-
pressible hyperelastic composites. For the special case of the composites made up of in-
compressible phases, the overall (exact) incompressibility constraint (J̄ = det(F̄) = 1) must
be satisfied. However, it can be verified that by taking the incompressibility limit of the ef-
fective energy function (51), the constraint J̄ = 1 is, in general, not satisfied. The failure
to meet this constraint in the incompressibility limit, which is unacceptable, was already
discussed in some detail by Ponte Castañeda and Tiberio [36]. In particular, for the special
case of 2-D circular inclusions, they investigated the effect of the inclusion volume fraction
on the deviation of the “approximate” macroscopic incompressibility constraint from the
exact constraint J̄ = 1. The aim of this subsection is to propose a modification of method
described in the last section to be able to ensure exact attainment of the exact constraint
J̄ = 1 in the incompressibility limit for the composites. As mentioned before, in the earlier
TSO method, the reference modulus tensor L(1) in the LCC was set to be equal to L(1)

t . In
this work, as described in the previous section, we will make use instead of the prescrip-
tion (59) for L(1). Indeed, making use of this prescription, it can be shown that the second
term in the RHS of the estimate (51) is consistent with the constraint J̄ = 1 in the incom-
pressibility limit. However, the first term in the estimate is still inconsistent with the exact
incompressibility constraint. To address this issue, we propose to split up the energy func-
tions of the constituent phases into “dilatational” and “distortional” parts, and homogenize
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them, separately. In this way, the dilatational contribution to the effective energy function
can be obtained exactly, while the distortional contribution may still be computed approxi-
mately using the tangent second-order procedure, presented in Sect. 3. Despite the fact that
the splitting of the energy functional in general entails an approximation in the calculation
of the effective stored-energy function, satisfaction of the exact incompressibility constraint
can be ensured. With this objective in mind and without loss of generality, it proves help-
ful to introduce the following form for the strain-energy function of the constituent phases,
namely,

W(r)(F) = W(r)
μ (F) + 1

2
μ′(r)(J − 1)2, (60)

where the parameter μ′(r) denotes the Lamé modulus of the phases in the infinitesimal strain
regime, which in order to recover incompressible behavior (J → 1), will be taken to tend
to infinity. Also, W(r)

μ is that part of the stored-energy function W(r) not depending on μ′(r).
The effective stored-energy function of the nonlinear composite, defined by Eq. (3), may
then be approximated as

Ŵ (F̄) ≈ Ŵμ(F̄) + Ŵμ′(F̄), (61)

where

Ŵμ(F̄) = stat
F∈K(F̄)

N∑

r=1

c(r)
〈
W(r)

μ (F)
〉(r)

, (62)

and

Ŵμ′(F̄) = 1

2

(
stat

F∈K(F̄)

N∑

r=1

c(r)μ′(r)〈(J − 1)2
〉(r)

)
. (63)

Making use of results from [32] for “elastic fluid” composites, the expression for Ŵμ′
can be evaluated exactly as

Ŵμ′(F̄) = 1

2
μ̃′

R(J̄ − 1)2, (64)

where

μ̃′
R =

[
N∑

r=1

c(r)
(
μ′(r))−1

]−1

(65)

is the effective dilatational modulus in the ground state of the composite.
Now, by restricting attention to the two-phase rigidly reinforced composite, we apply the

second-order procedure, developed in the prior subsection, to the distortional part of energy
in (61). Thus, making use of the estimate (51) for Ŵμ(F̄), it follows that

Ŵμ(F̄) = (1 − c)W(1)
μ

(
F̄(1)

)+ 1

2

(
F̄ − R̄(2)

) · T
(
F̄ − R̄(2)

)
, (66)

where, by means of (54), the kinematical equation for R̄(2), associated with (62), can be
written as

{(
R̄(2)

)T [
T
(
F̄ − R̄(2)

)]+ c
(
R̄(2)

)T
S(1)

μ

(
F̄(1)

)}
Skew

= 0, (67)
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where S(1)
μ (F) = ∂W(1)

μ (F)/∂F. Moreover, we need an appropriate prescription for the mod-

ulus tensor L(1) in the expression T = L̃ − (1 − c)−1L(1) used in the estimates (66) and (67).
Motivated by the choice (59), here we will use the prescription

L(1) = L(1)
μ (F̄) + 1

2
μ′(1) ∂

2[(J − 1)2]
∂F∂F

∣∣∣∣
F=F̄

, (68)

where L(1)
μ (F) = ∂2W(1)

μ (F)/∂F∂F. Note that the second term (depending on μ′(1)) is needed
to be able to enforce the incompressibility constraint in the LCC.

Next, specializing to rigid behavior for the inclusions in the “dilational” part of the effec-
tive stored-energy function of the two-phase composite, we have that μ̃′

R = (1 − c)−1μ′(1),
and accordingly, the following estimate is obtained for Ŵμ′(F̄)

Ŵμ′(F̄) = 1

2(1 − c)
μ′(1)(J̄ − 1)2. (69)

Finally, making use of expressions (66) and (69) for the two-phase, rigidly reinforced
elastomers, the second-order estimate (61) reduces to

Ŵ (F̄) = (1 − c)W(1)
μ

(
F̄(1)

)+ 1

2

(
F̄ − R̄(2)

) · T
(
F̄ − R̄(2)

)+ 1

2(1 − c)
μ′(1)(J̄ − 1)2. (70)

Note that the approximate equality has been replaced here by a standard equality, and that
the particle rotation R̄(2) is still given by (67). Naturally, the expression (70) for the effective
stored-energy function of the reinforced elastomer can be used, in particular, together with
the Willis estimate (55) for the LCC, to obtain the result

Ŵ (F̄) = (1−c)W(1)
μ

(
F̄(1)

)+ 1

2

c

1 − c

(
F̄−R̄(2)

) ·E(F̄−R̄(2)
)+ 1

2(1 − c)
μ′(1)(J̄ −1)2, (71)

where
{(

R̄(2)
)T [

E
(
F̄ − R̄(2)

)]+ (1 − c)
(
R̄(2)

)T
S(1)

μ

(
F̄(1)

)}
Skew

= 0, (72)

and E is given by expression (57).
At this point, it is expedient to make the following remarks concerning some features of

the estimates (71) and (72) for rigidly reinforced elastomers:

1. As was also the case for the earlier tangent second-order estimate in [36], the new esti-
mate (71) may blow up at some finite values of F̄. Depending on the inclusion volume
fraction and initial configuration of the microstructure, the quantity J̄ (1) = det(F̄(1)) can
become zero at finite values of the deformation (see relation (48)), causing certain terms
in the expression W(1)

μ (F̄(1)) for the estimate (71) to blow up. As discussed by Ponte
Castañeda and Tiberio [36], this phenomenon can be interpreted as lock up for the com-
posite, which is due to the fact that sufficiently large deformations would be expected
to bring the rigid inclusions into contact with each other leading to strong stiffing of the
composite.

2. In the limit of infinitesimal strains (F̄ → I), the estimate (71) recovers the corresponding
linear-elastic Willis estimate [37, 40]. The resulting energy can be written as Ŵ (F̄) =
1/2ε̄. L̃L · ε̄, where ε̄ denotes the macroscopic infinitesimal strain tensor and L̃L is the
effective moduli tensor in the context of linear elasticity. Also, in this limit, the solution
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of Eq. (72) agrees exactly with the corresponding prediction for the infinitesimal rotation
of the particles [19], as given by

R̄(2)
L = I + ω̄ − RLP−1

L ε̄, (73)

where ω̄ stands for the macroscopic infinitesimal rotation tensor, and RL and PL are the
well-known Eshelby tensors in the context of small strains and rotations (see Eqs. (15)
and (19) in [19]).

4.2.1 Incompressible Matrix

The estimate (70), together with (67), and relation (68) for L(1) (used in expression (43)
for T) holds for composites with a compressible matrix phase characterized by the stored-
energy function (60). However, in the limit of incompressible behavior for the matrix, i.e.,
when μ′(1) → ∞, the estimate (70) (unlike the earlier estimate (51)) is found to be consistent
with the exact overall incompressibility constraint (J̄ = 1), and reduces to

Ŵ (F̄) = (1 − c)W(1)
μ

(
F̄(1)

)+ 1

2

(
F̄ − R̄(2)

) · TI
(
F̄ − R̄(2)

)
, (74)

where

TI = lim
μ′(1)→∞

[
L̃ − (1 − c)−1L(1)

]
, (75)

while the equation for R̄(2) reduces to

{(
R̄(2)

)T [
TI

(
F̄ − R̄(2)

)]+ c
(
R̄(2)

)T
S(1)

μ

(
F̄(1)

)}
Skew

= 0. (76)

For the special case of the Willis estimate for L̃, the expression (74) further simplifies to

Ŵ (F̄) = (1 − c)W(1)
μ

(
F̄(1)

)+ 1

2

c

1 − c

(
F̄ − R̄(2)

) · EI
(
F̄ − R̄(2)

)
, (77)

where

EI = lim
μ′(1)→∞

(
P−1 − L(1)

)
, (78)

while the corresponding equation for the rotation R̄(2) reduces to

{(
R̄(2)

)T [
EI

(
F̄ − R̄(2)

)]+ (1 − c)
(
R̄(2)

)T
S(1)

μ

(
F̄(1)

)}
Skew

= 0. (79)

For completeness, we note that the macroscopic stress tensor S̄(F̄) = ∂Ŵ (F̄)/∂F̄ associated
with the effective stored-energy function (77) may be written as

S̄(F̄) = S(1)
μ

(
F̄(1)

)(
III − cḡ(2)

)+ · · ·

+ c

1 − c

{[
EI
(
F̄ − R̄(2)

)]
Ḡ(2) + 1

2

(
F̄ − R̄(2)

)[(
F̄ − R̄(2)

)
YI

]}− pF̄−T , (80)

where p stands for the arbitrary hydrostatic pressure associated with the incompressibility
constraint, and YI is the sixth-order tensor with components

Y I
ijklpq = ∂Eijkl

∂F̄pq

∣∣∣∣
μ′(1)→∞

= −
(

P −1
ijmn

∂Pmnrs

∂F̄pq

P −1
rskl +

∂L
(1)
ijkl

∂F̄pq

)∣∣∣∣
μ′(1)→∞

. (81)
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In addition, Ḡ(2) is a fourth-order tensor with the following indicial representation

Ḡ
(2)
ijkl = Iikj l − ḡ

(2)
ijkl, (82)

where ḡ
(2)
ijkl = ∂(R̄(2))ij /∂F̄kl . Note that a tensorial equation for the components of the fourth-

order tensor ḡ(2) can be deduced from the kinematical equation (79), which can be written
in indicial form as

{
ḡ

(2)
piklE

I
pjrs

(
F̄rs − R̄(2)

rs

)+ R̄
(2)
pi Y I

pjrskl

(
F̄rs − R̄(2)

rs

)+ R̄
(2)
pi EI

pjrsḠ
(2)
rskl

+ [
(1 − c)ḡ

(2)
pikl

(
S(1)

μ

)
pj

+ R̄
(2)
pi

(
L(1)

μ

)
pjrs

(
Irskl − cḡ

(2)
rskl

)]}∣∣
[ij ]kl

= 0, (83)

where Aijkl|[ij ]kl = (Aijkl − Ajikl)/2, and the tensors S(1)
μ and L(1)

μ are evaluated at F̄(1). On
the other hand, the derivatives ∂Pijkl/∂F̄pq in (81) are calculated via

∂Pijkl

∂F̄pq

= 1

4π |Z0|
∫

|ξ |=1

∂Hijkl

∂F̄pq

[
ξT
(
ZT

0 Z0

)−1
ξ
]−3

2 dS. (84)

In turn, in this expression the derivatives ∂Hijkl/∂F̄pq can be evaluated by recalling the
relation between the tensor H and L(1) to obtain the result

∂Hijkl

∂F̄pq

= ∂Bik

∂F̄pq

ξj ξl = −Bim

∂Kmn

∂F̄pq

Bnkξj ξl = −BimBnkL
(1)
mrnspqξj ξlξrξs, (85)

where LLL(1) is the sixth-order elastic modulus tensor defined by LLL(1)(F) = ∂3W(1)(F)/

∂F∂F∂F [30] evaluated at F̄.

4.3 Dilute Concentrations

Relations (74) and (76) provide TSO estimates for (rigid) particle-reinforced elastomers
under general loading in the finite concentration regime. In this subsection, we specialize
these results for dilute concentrations of the particles, which is an important limiting case
both for theoretical and practical reasons. Mathematically speaking, we carry out an asymp-
totic expansion of the estimates (74) and (76) for c  1. To this end, we assume a regular
perturbation expansion for F̄(1) in c, as given by

F̄(1) = F̄ + c
(
F̄ − R̄(2)

0

)+ c2
(
F̄ − R̄(2)

0 − R̄(2)

1

)+ O
(
c3
)
, (86)

which is obtained by assuming that R̄(2) = R̄(2)

0 + cR̄(2)

1 + O(c2) and employing Eq. (48)
for F̄(1). In addition, keeping in mind that the tensor L(1) is evaluated at F̄, and is therefore
independent of the volume fraction, the tensor L̃ can be assumed to have the following
asymptotic expansion about c = 0:

L̃ = L(1) + c L̃1 + O
(
c2
)
. (87)

Next, substituting (86) and (87) into (74), and expanding the resulting expression for small
values of c, yields the result
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Ŵ Dilute(F̄) = W(1)
μ (F̄) + c

{(
F̄ − R̄(2)

0

) · S(1)
μ (F̄) − W(1)

μ (F̄)

+ 1

2

[(
F̄ − R̄(2)

0

) · (L̃1 − L(1)
)(

F̄ − R̄(2)

0

)]}+ O
(
c2
)
. (88)

Similarly, the kinematical constraint (76) leads to

{(
R̄(2)

0

)T · [(L̃1 − L(1)
)(

F̄ − R̄(2)

0

)]+ (
R̄(2)

0

)T
S(1)

μ (F̄)
}

Skew
+ O(c) = 0. (89)

Moreover, using the Willis estimate (55) for the LCC, the TSO estimate (88) specializes to

Ŵ Dilute(F̄) = W(1)
μ (F̄) + c

{(
F̄ − R̄(2)

0

) · S(1)
μ (F̄) − W(1)

μ (F̄)

+ 1

2

[(
F̄ − R̄(2)

0

) · EI
(
F̄ − R̄(2)

0

)]}+ O
(
c2
)
, (90)

where the equation (89) for R̄(2)

0 takes the form

{(
R̄(2)

0

)T [
EI
(
F̄ − R̄(2)

0

)]+ (
R̄(2)

0

)T
S(1)

μ (F̄)
}

Skew
+ O(c) = 0. (91)

It is worth mentioning that these results can be regarded as a generalization of Eshelby’s
results [11] for a composite material consisting of dilute concentrations of aligned, rigid
ellipsoidal inclusions in a nonlinear hyperelastic matrix. As is well known, these dilute es-
timates depend only on the volume fraction (to first order), shape and orientation of the
ellipsoidal inclusions, but not on the relative positions of the inclusions. In other words,
the interactions between inclusions is neglected by the estimates (90) and (91). As a con-
sequence, the effective stored-energy function (90) does not exhibit lock up at finite strains
(unless the matrix does).

The corresponding expressions for the macroscopic stress tensor S̄Dilute(F̄) = ∂Ŵ Dilute(F̄)/

∂F̄ are given by

S̄Dilute(F̄) = S(1)
μ (F̄) +

{[
S(1)

μ (F̄) + EI
(
F̄ − R̄(2)

0

)]
Ḡ(2)

0 + L(1)
μ (F̄)

(
F̄ − R̄(2)

0

)

− S(1)
μ (F̄) + 1

2

(
F̄ − R̄(2)

0

)[(
F̄ − R̄(2)

0

)
YI

]}
c − pF̄−T + O

(
c2
)
, (92)

where (Ḡ
(2)

0 )ijkl = Iikj l − (ḡ
(2)

0 )ijkl , and where the quantities (ḡ
(2)

0 )ijkl = ∂(R̄
(2)

0 )ij /∂F̄kl are
determined by the equations

{(
ḡ

(2)

0

)
pikl

EI
pjrs

[
F̄rs − (

R̄
(2)

0

)
rs

]+ (
R̄

(2)

0

)
pi

Y I
pjrskl

[
F̄rs − (

R̄
(2)

0

)
rs

]

+ (
R̄

(2)

0

)
pi

EI
pjrs

(
Ḡ

(2)

0

)
rskl

+ (
ḡ

(2)

0

)
pikl

(
S(1)

μ

)
pj

+ (
R̄

(2)

0

)
pi

(
L(1)

μ

)
pjkl

}∣∣[ij ]kl
= 0, (93)

where the tensors S(1)
μ and L(1)

μ are now evaluated at F̄

4.4 Computation of the Tensor EI

The calculation of the effective stored-energy function for incompressible, particulate elas-
tomeric composites, as well as the associated microstructure evolution (Eqs. (77) and (79))
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under general (isochoric) loading conditions, requires the computation of the fourth-order,
major-symmetric tensor EI . This tensor can in principle be estimated (approximately) by
setting μ′(1) sufficiently large (compared to the initial shear modulus of the matrix μ(1)) in
the definition (78) for EI . Nevertheless, it is possible to perform a general asymptotic analy-
sis for the computation of the tensor EI in the incompressibility limit (μ′(1) → ∞), as shown
next. This analysis leads to closed-form expressions for the components of the tensor EI for
specific microstructures and/or loading conditions; more generally, numerical computation
of the resulting integrals may be required.

Without loss of generality, and consistent with the definition of the stored-energy function
for the matrix phase as given by (60), the modulus tensor L(1) can be decomposed into
incompressible and compressible parts, denoted by L(1)

μ and L(1)

−1 respectively, such that

L(1) = ε−1L(1)

−1 + L(1)
μ , (94)

where, by definition, ε = 1/μ′(1) is a small parameter, L(1)
μ = ∂2W(1)

μ /∂F∂F(F̄) and L(1)

−1 is
given by

L(1)

−1 = [
J (2J − 1)F−T ⊗ F−T + J (J − 1)XXX

]∣∣
F=F̄. (95)

It follows from (23) that the acoustic tensor associated with (94) takes the form

K = ε−1K−1 + Kμ, (96)

where K−1 and Kμ are the parts of the acoustic tensor associated with L(1)

−1 and L(1)
μ , respec-

tively. The inverse of the (symmetric) acoustic tensor, B = K−1, can then be calculated by
means of the identity

Bik = K−1
ik = 1

2 det(K)
eirsekpqKrpKsq, (97)

where eijk is the permutating tensor of the third-order, and det(K) is given by

det(K) = 1

6
eijkepqrKipKjqKkr . (98)

Substituting (96) into (97) together with (98), after some algebra, we find the following
expression for B,

B = εD1 + D0

εd1 + d0
, (99)

where d0 and d1 are given by

d0 = 1

6
eijkepqr

[
(Kμ)ip(Kμ)jq(K−1)kr + (Kμ)ip(K−1)jq(Kμ)kr + (K−1)ip(Kμ)jq(Kμ)kr

]
,

d1 = det(Kμ) = 1

6
eijkepqr (Kμ)ip(Kμ)jq(Kμ)kr , (100)
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and the tensors D0 and D1 have components

(D0)ik = eirsekpq(Kμ)rp(K−1)sq,

(D1)ik = 1

2
eirsekpq(Kμ)rp(Kμ)sq .

(101)

Then, expanding Eq. (99) to second order in ε, we obtain

B = B0 + εB1 + ε2B2 + O
(
ε3
)
, (102)

from which it is straightforward to deduce that

B0 = 1

d0
D0,

B1 = 1

d0

(
D1 − d1

d0
D0

)
,

B2 = d1

(d0)3
(d1D0 − d0D1). (103)

The corresponding expansion for the tensor P can be obtained by making use of Eq. (102)
in the definition (22) for P, leading to

P = P0 + εP1 + ε2P2 + O
(
ε3
)
, (104)

where the tensors P0, P1, and P2 are given by

(Pq)ijkl = 1

4π |Z0|
∫

|ξ |=1
(Bq)ikξj ξl

[
ξT
(
ZT

0 Z0
)−1

ξ
]− 3

2 dS, q = 0,1,2. (105)

In general, a Gaussian quadrature technique can be implemented for the numerical integra-
tion over the surface of the unit sphere, |ξ | = 1. Note that the leading-order term in (104) is
the limiting value of P in the incompressible matrix limit. Next, we turn to the computation
the tensor EI , as defined by expression (78).

In this connection, it is important to remark that the tensor P0 is not of full-rank, meaning
there is no fourth-order tensor (P0)

−1 such that P0(P0)
−1 = (P0)

−1P0 = I. Hence, to deter-
mine EI it is necessary to carry out an asymptotic analysis for Q = P−1, about ε = 0. For
the sake of continuity, the pertinent derivations are given in Appendix A, and here we only
spell out the final result of the asymptotic analysis, which is given by

EI = Q0 − L(1)
μ , (106)

where

Q0 = P†
0(III − P1Q−1) +

3∑

i=1

Wi ⊗ V(1)
i , (107)

with

Q−1 =
3∑

i=1

Wi ⊗ V(0)
i . (108)

In the above equations, {W1,W2,W3} is a set of second-order tensor spanning the null space
of P0, while the second order tensors V(0)

i and V(1)
i are defined by [4]

V(0)
i = 1

Wi · P1Wi

Wi (109)
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and

V(1)
i = − 1

Wi · P1Wi

{(
P1P†

0

)T
Wi + [

Wi .
(
P2 − P1P†

0P1

)
Wi

]
V(0)

i

}
, (110)

where i = 1,2,3 (no sum), and where the superscript T denotes the usual transpose of a
fourth-order tensor (i.e., (·)T

ijkl = (·)klij ). In addition, P†
0 is the Moore-Penrose generalized

inverse of P0 satisfying the properties

P0P†
0P0 = P0, P†

0P0P†
0 = P†

0,

(
P0P†

0

)T = P0P†
0,

(
P†

0P0

)T = P†
0P0.

(111)

5 2-D Application: Reinforced Elastomers with Elliptical Fibers

In the previous section, we presented a general homogenization procedure to estimate the ef-
fective stored-energy function and the associated evolution of the microstructure for rigidly
reinforced elastomeric composites in both the dilute and non-dilute concentration regimes.
In this section and the next, we make use of this procedure to obtain some explicit esti-
mates of the Willis-type for two specific classes of composites: (1) elastomers reinforced
with aligned, cylindrical fibers subjected to general (transverse) plane-strain loading, and
(2) elastomers reinforced with spherical particles subjected to general tri-axial loading.
In this section, we will study the first class of composites, while the second class will be
discussed in Sect. 6. (More general, non-spherical particle shapes will be considered else-
where.) The variational estimates (77) and (79) can be employed for fairly general matrix
behavior. Indeed, the stored-energy function W(1), characterizing the constitutive behavior
of the matrix, is assumed to be objective, isotropic, strictly rank-one convex (strongly el-
liptic) function of the deformation gradient tensor F. In this work, attention is restricted to
stored-energy functions of the generalized neo-Hookean type

W(1)(F) = g(I) + h(J ) + 1

2
μ′(1)(J − 1)2, (112)

where I = tr(C) and the material functions g(I) and h(J ) are assumed to be twice contin-
uously differentiable satisfying the conditions: g(3) = h(1) = 0, gI (3) = μ(1)/2, hJ (3) =
−μ(1), and 4gII (3)+ hJJ (1) = μ(1), in which the subscripts I and J stand for partial differ-
entiation with respect to the invariants I and J , respectively. The energy form (112) has been
shown to provide reasonably good agreement with experimental data for rubberlike materi-
als [30]. A well-known example of the general form (112), which captures the limiting chain
extensibility of elastomers, is the (compressible) Gent model [13], expressed by

W(1)(F) = −Jmμ(1)

2
ln

(
1 − I − 3

Jm

)
− μ(1) ln(J ) + 1

2

(
μ′(1) − 2

μ(1)

Jm

)
(J − 1)2, (113)

where the dimensionless parameter Jm is the limiting value for I − 3 at which the elastomer
locks up. It should be remarked that the strong ellipticity of the Gent model (113) is satisfied
for all deformations by the conditions: μ(1) > 0, Jm > 0, μ′(1) > 2μ(1)/Jm. Note that the
Gent model (113) reduces to the compressible neo-Hookean model, which never locks up,
in the limit as Jm → ∞.

It should be emphasized that, different from the previously discussed lock-up phe-
nomenon for the composite, the lock up associated with the parameter Jm is due to the
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elastomeric character of the matrix stemming from the fact that polymeric chains of the rub-
bery matrix become inextensible when they experience a certain strain level. Henceforth, for
definiteness, we will refer to the former lock up as geometric lock up (GL), and to latter as
material lock up (ML). By the same token, the macroscopic deformation gradients at which
the geometric and material lock up occur are, respectively, denoted by F̄GL and F̄ML. It is
emphasized that the ML is already present in a homogeneous (Gent) matrix and enhanced
with the reinforcement; however, the GL disappears in the limit of dilute particle concen-
tration. It can be verified that the blow-up in the estimate (77) because of the GL or ML is
caused only by the first term in (77), and, consequently, for a composite with a Gent matrix,
the GL and ML respectively take place, when the following conditions are satisfied

det
(
F̄ − cR̄(2)

) = 0, (114)

tr
[
C̄ − 2cF̄T R̄(2) + c2I

] = (1 − c)2(Jm + 3), (115)

where C̄ = F̄T F̄. It should be remarked that both lock-up phenomena are affected by the mi-
crostructure evolution thorough R̄(2). It is obvious that the lock-up strain for the composite is
determined by F̄lock = min{F̄GL, F̄ML}. In fact, depending on the underlying microstructure
in the undeformed configuration and extensibility of the rubbery matrix (characterized by
the parameter Jm), the composite may lock up because of either condition (114) or condi-
tion (115). It is remarked that for composites with a neo-Hookean matrix (where Jm → ∞)
F̄lock = F̄GL. It is also worth mentioning that, for dilute concentration conditions, the ef-
fective stored-energy function (90) for reinforced Gent elastomers locks up at the same
deformation as the Gent matrix, as given by the condition tr(C̄) = Jm + 3.

5.1 Plane-Strain Loading of Fiber-Reinforced Elastomers

In this section, we obtain estimates for the effective behavior of hyperelastic composites
made of a rubbery matrix and rigid and axially aligned fibers. It is assumed that the cylin-
drical fibers have an elliptical cross-section and are distributed with elliptical symmetry in
the plane transverse to the fiber direction. Consistent with earlier discussions, the aspect ra-
tio of both the fiber cross-section and distribution are taken to be given by ω. Furthermore,
attention is restricted to macroscopic plane-strain deformation. Assume that the composite
undergoes a uniform deformation gradient F̄ with the following matrix representation

[F̄ij ] =
(

cos(ψ̄) − sin(ψ̄)

sin(ψ̄) cos(ψ̄)

)(
cos(θ̄) − sin(θ̄)

sin(θ̄) cos(θ̄)

)

×
(

λ̄1 0
0 λ̄2

)(
cos(θ̄) sin(θ̄)

− sin(θ̄) cos(θ̄)

)
, (116)

with respect to the fixed Cartesian basis {ei}, i = 1,2. In the above relation, λ̄1 and λ̄2

are the principal stretches and θ̄ denotes the angle (positive anticlockwise) of the in-plane
Lagrangian stretch axes relative to the basis {ei}. Also, ψ̄ serves to quantify the rigid-body
rotation (or “continuum spin”). A schematic representation of the composite microstructure
and loading parameters is depicted in Fig. 1a for ψ̄ = 0. The corresponding 3-D illustration,
Fig. 1b shows a typical (embedded) long cylindrical fiber under the plane-strain loading.

It should be remarked that constitutive models for this class of fiber-reinforced elas-
tomers have already been derived by Lopez-Pamies and Ponte Castañeda [26] making use
of the second-order (GSO) homogenization theory. Analytical results were given for general
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Fig. 1 Rigidly-reinforced composite under plane-strain loading. (a) Two-dimensional representation in the
transverse plane. (b) Three-dimensional representation of a typical reinforcing fiber

matrix behavior of the form (112) in the limit of an incompressible matrix. These results,
which will be spelled out later, have been shown to be in good agreement with correspond-
ing FEM numerical results available in the literature for special types of loading conditions
[29]. Hence, to gain some insight into the accuracy of the variational TSO estimates, de-
scribed in the previous section, we will also show comparisons with the GSO estimates and
FEM results for this class of composites in this section.

The constitutive behavior for the matrix phase is assumed to obey the Gent model given
in (113). The computation of the TSO estimate (56), requires the calculation of the compo-
nents of the tensor P for the cylindrical microstructure. The components of P, in the rect-
angular Cartesian basis {ei}, i = 1,2,3, when the fibers are aligned in the direction N = e3,
are given by

Pijkl = ω

2π

∫ 2π

0

Hijkl(ξ1, ξ2, ξ3 = 0)

ξ 2
1 + ω2ξ 2

2

dθ , (117)

where Hijkl = (L
(1)
ipkqξpξq)

−1ξj ξl with ξ1 = cos(θ), and ξ2 = sin(θ). In general, it is not
possible to obtain analytical expressions for the components of the P tensor associated with
matrix form (113) and loading condition (116). But it is easy to compute numerically the
tensor P, as well as the associated tensor E.

In this section, we will focus our attention to incompressible Gent matrix phases obtained
from expression (113) in the limit as μ′(1) → ∞. This requires the computation of the ten-
sor EI via the procedure given in Sect. 4.3. Then, the calculated components of the tensor
EI can be substituted in Eqs. (77) and (79) to obtain the numerical values of the effective
stored-energy function and the associated fiber rotation. It should be remarked that for the
aligned loading case (θ̄ = 0), the components of the tensor EI can be expressed explicitly,
since in this case the integrals in (105) can be calculated analytically. This leads to a closed-
form expression for the effective energy, but the expression is quite lengthy and will not be
included here for brevity. It is also important to mention that when the Gent behavior (113)
is specialized to neo-Hookean behavior (equivalent to the limit of Jm → ∞), the associated
integrals in (105) can be performed analytically. In this case, derivations of closed-form ex-
pressions for the EI -tensor components and subsequently for the effective potential energy
are feasible as discussed next.
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5.2 Explicit Results for an Incompressible, neo-Hookean Matrix

In this subsection, we assume that the matrix phase behavior is characterized by a compress-
ible neo-Hookean stored-energy function, given by

W(1)(F) = 1

2
μ(1)(I − 2) − μ(1) lnJ + 1

2
μ′(1)(J − 1)2, (118)

where the parameters μ(1) and μ′(1) denote the standard Lamé moduli of the matrix at zero
strain. As mentioned earlier, (118) is the reduced form of (113) for the plane-strain loading
when Jm → ∞. In this case, all the in-plane components of the tensor P can be computed
analytically and the results are provided in Appendix B. These results can then be used to
perform an asymptotic expansion for the components of the tensor E = (P−1 − L(1))|F=F̄
in the incompressibility limit (i.e., μ′(1) → ∞), leading to the following expressions for the
components of EI , as defined by expression (78), namely,

EI
1111 = 1

2

μ(1)

λ̄1λ̄2ω
Ω1, EI

2222 = 1

2

μ(1)ω

λ̄1λ̄2
Ω2, EI

1212 = 1

2

μ(1)ω

λ̄1λ̄2
Ω1,

EI
2121 = 1

2

μ(1)

λ̄1λ̄2ω
Ω2, EI

1121 = −1

2

μ(1)

λ̄1λ̄2ω
Ω3, EI

2212 = −1

2

μ(1)ω

λ̄1λ̄2
Ω3,

EI
1122 = EI

1221 = EI
1112 = EI

2221 = 0, (119)

where

Ω1,2 = (λ̄1 + λ̄2)
{
λ̄1 + λ̄2 ∓ (λ̄1 − λ̄2) cos

[
2(ψ̄ + θ̄ )

]}
,

Ω3 = [
(λ̄1)

2 − (λ̄2)
2
]

sin
[
2(ψ̄ + θ̄ )

]
.

(120)

It then follows from expression (77) that the effective stored-energy function Ŵ (F̄) of
the rigidly reinforced composite reduces to

Ŵ (F̄) = (1 − c)W(1)
(
F̄(1)

)

+ μ(1)c(1 + λ̄2
1)

4ω (1 − c)λ̄2
1

{
2
(
1 + ω2

)(
λ̄2

1 − 2λ̄1 cos(φ) + 1
)

+ (
ω2 − 1

)(
λ̄2

1 − 1
)[

cos(2θ̄ − 2φ) − cos(2θ̄ )
]}

, (121)

where

W(1)
(
F̄(1)

)= μ(1) λ̄
4
1 − 2cλ̄1(1 + λ̄2

1) cos(φ) − 2λ̄2
1 + 4cλ̄2

1 + 1

2λ̄2
1(1 − c)2

− μ(1) ln

[
(1 + c2)λ̄1 − c(1 + λ̄2

1) cos(φ)

λ̄1(1 − c)2

]
.

In these relations, the angle φ, denoting the in-plane rigid body rotation of the fibers relative
to the macroscopic rotation (i.e., φ = ψ̄(2) − ψ̄ ), is obtained from the kinematical relation

2ω(1 − c)λ̄2
1 cos(φ)�1 + 2λ̄1

[(
λ̄2

1 + 1
)(

1 + ω2
)+ ω (1 − c)λ̄1�2

]
sin(φ)

+ (
λ̄4

1 − 1
)(

ω2 − 1
)

sin(2θ̄ − 2φ) = 0, (122)
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where

�1 = −2c2 sin(φ)[(1 + λ̄2
1) cos(φ) − 2λ̄1]

(1 − c)[(1 + c2)λ̄1 − c(1 + λ̄2
1) cos(φ)] ,

�2 = c
[cos(φ)(1 + λ̄2

1) − 2λ̄1][2cλ̄1 cos(φ) − λ̄2
1 − 1]

(1 − c)λ̄1[(1 + c2)λ̄1 − c(1 + λ̄2
1) cos(φ)] .

It is emphasized that the estimate (121) is consistent with the overall incompressibility con-
straint, which in this case reduces to λ̄1λ̄2 = 1. It is also remarked that the energy func-
tion (121) is independent of the angle ψ̄ , which is consistent with the objectivity of the en-
ergy function Ŵ (F̄), requiring that Ŵ (F̄) = Ŵ (U), where U = (F̄T F̄)1/2 is the macroscopic
stretch tensor.

The above results can be easily specialized for dilute concentrations by expanding about
c = 0. Thus, keeping terms of order c in Eq. (121), the estimate for the effective stored-
energy function Ŵ (F̄) is given by

ŴDilute(F̄)

= 1

2
μ(1)

(
λ̄2

1 + λ̄−2
1 − 2

)

+ 1

2
μ(1)

{
1

λ̄2
1ω

[
2ω

(
1 + λ̄4

1

)+ (
1 + ω2

)(
1 + λ̄2

1

)[(
1 + λ̄2

1

)− 2λ̄1 cos(φ0)
]

+ (
λ̄4

1 − 1
)(

ω2 − 1
)

sin(φ0) sin(2θ̄ − φ0) − 4ωλ̄2
1

]− (
λ̄2

1 + λ̄−2
1 − 2

)}
c + O

(
c2
)
,

(123)

where φ0 = ψ̄
(2)

0 − ψ̄ (where the angle ψ̄
(2)

0 denotes the total in-plane rigid body rotation of
fibers in the dilute concentration regime) is given by

2λ̄1

(
1 + ω2

)
sin(φ0) − (

λ̄2
1 − 1

)(
ω2 − 1

)
sin

[
2(φ0 − θ̄ )

]+ O(c) = 0. (124)

The estimates (123) and (124) are valid for arbitrary aspect ratios ω ≥ 1 of fibers. For
the special case of the circular cross-section (ω = 1) for the fibers (which also implies an
isotropic distribution of the fibers), the in-plane behavior of the composite is isotropic and
the stored-energy function (123) no longer depends on the loading angle θ̄ . In this case, it is
a simple matter to deduce that, the TSO estimate (123) reduces to

ŴDilute(F̄) = 1

2
μ(1)

[(
λ̄2

1 + λ̄−2
1 − 2

)+ (
2λ̄−1

1 + 3λ̄−2
1 + 3

)
(λ̄1 − 1)2c

]+ O
(
c2
)
. (125)

For comparison purposes, we recall in the next subsection the GSO results [26]. Although
the GSO estimates are expected to be more accurate in general, they are more difficult to
implement, and thus far results are only available for 2-D cases. On the other hand, as we will
see in Sect. 6, the TSO can be used for general 3-D microstructures and loading conditions.

5.3 Generalized Second-Order Estimate

Lopez-Pamies and Ponte Castañeda [26] derived an expression for the effective stored-
energy function of the class of fiber-reinforced composites described earlier with matrix
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behavior (112) and transverse loading conditions (116). In the limit of incompressible be-
havior for the elastomeric matrix phase (μ′(1) → ∞), the result simplifies to

ŴGSO(F) = (1 − c)g(Î ), (126)

where

Î = 1

(1 − c)2λ̄2
1ω

{
c
(
1 + λ̄2

1

)2 + [
1 + 2c(c − 2)λ̄2

1 + λ̄4
1

]
ω + cω2

(
1 + λ̄2

1

)2

− c
(
λ̄4

1 − 1
)(

ω2 − 1
)

sin(φ) sin(φ − 2θ̄ ) − 2cλ̄
(
1 + λ̄2

1

)(
1 + ω2

)
cos(φ)

}
.

In this expression, the relative particle rotation angle φ is determined by

2λ̄1

(
1 + ω2

)
sin(φ) − (

λ̄2
1 − 1

)(
ω2 − 1

)
sin

[
2(φ − θ̄ )

]= 0. (127)

The GSO estimate (126) is known [26] to be consistent with the exact incompressibility
constraint and expected to be fairly accurate for small to medium concentrations of fibers.

In the dilute-concentration regime, the GSO estimate (126) can be expanded about c = 0
to obtain the result that

ŴDilute
GSO (F̄)

= g(Ī ) +
{

1

λ̄2
1ω

g′(Ī )
[
2ω

(
1 + λ̄4

1

)+ (
1 + ω2

)(
1 + λ̄2

1

)[(
1 + λ̄2

1

)− 2λ̄1 cos(φ0)
]

+ (
λ̄4

1 − 1
)(

ω2 − 1
)

sin(φ0) sin(2θ̄ − φ0) − 4ωλ̄2
1

]− g(Ī )

}
c + O

(
c2
)
, (128)

where Ī = tr(C̄). The kinematical equation (127) is independent of the volume fraction of
fibers and also provides the rotation of fibers in the dilute concentration regime.

Specializing the estimate (128) for a neo-Hookean matrix, the same second-order esti-
mate is obtained as the dilute TSO estimate (123). Moreover, the estimates (124) and (127)
for the particle rotation also agree exactly in this case. Consequently, the agreement of the
TSO estimates (123) and (124) with the corresponding GSO results in the dilute concentra-
tion regime strongly suggests that the TSO estimates should be also be quite accurate for
incompressible, rigidly-reinforced composites with more general microstructures (at least)
in the dilute concentration regime. As we will see in the next subsection, differences can
arise between the new TSO and GSO estimates for finite volume fractions, but only at suf-
ficiently large stretches.

5.4 Discussion of the Results

In the remainder of this section, we present some illustrative results for the new TSO esti-
mates for plane-strain loading of 2-D fiber-reinforced elastomers. For comparison purposes,
the corresponding GSO results of Lopez-Pamies and Ponte Castañeda [26] are also included
in the figures and shown with dashed curves. For simplicity, we restrict our attention to
incompressible (μ′(1) → ∞) Gent and neo-Hookean matrix phases, circular fibers (ω = 1)

and pure shear loading (θ̄ = ψ̄ = 0, λ̄1 = λ̄−1
2 = λ̄). Results are provided for several volume

fractions, c, and are normalized by μ(1).
Figure 2 shows the new TSO estimates for the effective response of the reinforced neo-

Hookean elastomers, as well as the corresponding GSO estimates. Results are shown for
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Fig. 2 New tangent second-order (TSO) and generalized second-order (GSO) estimates for the effective
response of a rigidly fiber-reinforced elastomer with an incompressible neo-Hookean matrix under pure shear
loading. The results are shown as a function of the applied stretch λ̄ for different values of the fiber volume
fraction. (a) The effective energy Ŵ . (b) The corresponding macroscopic stress S̄ = dŴ/dλ̄

three different fiber volume fractions c = 0.1, 0.2, 0.3, as a function of the macroscopic
stretch λ̄. Part (a) shows the effective energy Ŵ , and part (b), the corresponding macroscopic
stress S̄ = dŴ/dλ̄. The new TSO results are seen to be quite close to the GSO estimates for
a range of λ̄, but they start to deviate from the GSO results, as the average stretch approaches
the “geometric” lock-up condition (114) for the TSO estimates (i.e., λ̄ → 1/c). For instance,
it is seen for c = 0.1 (where the lock-up stretch is 10), the TSO model predicts very similar
results for the effective energy as well as the macroscopic stress to those for the GSO in
the range 1 ≤ λ̄ ≤ 6. On the other hand, for c = 0.3 (where the lock-up stretch is 3.33), the
agreement is very good only up to a stretch of 2.5.

Figure 3 shows a more detailed comparison of the new TSO estimates with earlier ana-
lytical estimates and numerical simulations for neo-Hookean elastomers reinforced by rigid
fibers of circular cross section. Results are provided for two volume fractions: (a) c = 0.2,
and (b) c = 0.3. The GSO (2006) estimates correspond to the stored-energy function (126),
while the GSO (2004) and TSO (2000) estimates correspond to earlier versions of the GSO
[24] and TSO [36] estimates, respectively. On the other hand, the LAM estimates refer to the
sequentially laminated results of deBotton [9], while the FEM results refer to the finite ele-
ment simulations of Moraleda et al. [29]. The main observation from these plots is that while
the GSO estimate provides the best agreement with the FEM simulations, the new TSO es-
timate also provides excellent agreement with the FEM results (up to the point where the
simulations were carried out), especially for the smaller fiber concentrations. For the higher
volume fraction (c = 0.3) the new TSO estimates tend to overestimate the FEM results at
sufficiently large stretches, but are still quite good for stretches of less than 1.5. On the other
hand, the LAM estimates tend to underestimate the response of the reinforced elastomers
for sufficiently large strains, even if the differences relative to the FEM are relatively small.
Finally, it can be seen that the new TSO estimates are much improved relative to the earlier
version [36] of the TSO estimates, and even compared to an earlier version [24] of the GSO
estimates. The main conclusion from these comparisons is that the new way of handling the
matrix incompressibility limit presented in Sect. 4.2 actually works quite well at least when
the fiber concentrations and/or stretches are not too large.
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Fig. 3 The effective response of a rigidly fiber-reinforced elastomer with an incompressible neo-Hookean
matrix under pure shear loading. The macroscopic stress S̄ = dŴ/dλ̄ is plotted as a function of the ap-
plied stretch λ̄ for (a) c = 0.2, and (b) c = 0.3. Comparisons between the new TSO estimate (121), the
estimate (126) of Lopez-Pamies and Ponte Castañeda [26] “GSO (2006)”, the earlier GSO results of Lopez–
Pamies and Ponte Castañeda [24] “GSO (2004)”, the earlier TSO results of Ponte Castañeda and Tiberio [36]
“TSO (2000)”, the laminate results of deBotton [9] “LAM”, and the FE simulations of Moraleda et al. [29]
“FEM”

Fig. 4 New tangent second-order (TSO) estimate, generalized second-order (GSO) estimate (126), and the
FE simulations of Moraleda et al. [29] (FEM) for the effective response of a fiber-reinforced elastomer with
an incompressible Gent matrix under pure shear loading. The macroscopic stress S̄ = dŴ/dλ̄ is depicted as
a function of the applied stretch λ̄, for (a) different values of the fiber volume fraction c with Jm = 50, and
(b) different matrix lock-up parameters Jm with c = 0.1

Next, for completeness, we consider fiber-reinforced composites using the Gent model
for the matrix and the same loading conditions as the previous case. The results for the
macroscopic stress S̄ = dŴ/dλ̄ are presented in Figs. 4a and 4b versus the applied stretch λ̄.
Figure 4a shows the results for composites with fiber concentrations c = 0.1, 0.2, 0.3 for
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Fig. 5 The microstructure evolution in a rigidly fiber-reinforced elastomer with an incompressible
neo-Hookean matrix under pure shear loading. The relative fiber rotation φ is plotted as a function of the
applied stretch λ̄ for three different stretching angles θ̄ = 5◦, 45◦, and 85◦ . (a) Comparisons between the
new TSO estimate (122) and the estimate (127) of Lopez-Pamies and Ponte Castañeda [26] for the volume
fraction c = 0.1, and aspect ratios ω = 2, and 10. (b) Comparisons between the new TSO estimate, the GSO
estimate and the FEM simulations of Moraleda et al. [29] for c = 0.3, and ω = 2

a fixed lock-up parameter (Jm = 50), while Fig. 4b shows results for Gent matrices with
Jm = 50,100,500,∞ for fixed volume fraction (c = 0.1). The responses of the unreinforced
matrix with Jm = 50 and Jm = ∞ are included respectively in Figs. 4a and 4b for compari-
son purposes. In addition, the results of the finite element simulations of Moraleda et al. [29]
for Jm = 50 are also included for comparison purposes. As can be seen from Fig. 4a, the
agreement of the new TSO estimates for reinforced elastomers of the Gent type with the
FEM results (and GSO estimates) is quite good for the range of deformations achieved in
the numerical simulations. It should be noted, however, that the TSO (and GSO) predictions
slightly underestimate the response, especially at the higher volume fractions. On the other
hand, as show in Fig. 4b, the agreement of the new TSO and earlier GSO estimates for rein-
forced Gent elastomers is also quite good, even for fairly large stretches. However, the TSO
estimates are slightly stiffer for intermediate stretches, but eventually become softer than the
GSO estimates as the “constitutive” lock-up condition (115) is approached.

Finally, Fig. 5 presents results for the evolution of the particle orientation under non-
aligned applied loadings for neo-Hookean elastomers reinforced by rigid fibers of elliptical
cross section. Results for the (average) relative rotation φ (see Fig. 1) are shown for three
different stretching angles (θ̄ = 5◦, 45◦, and 85◦). Figure 5a shows comparisons of the new
TSO estimates with the GSO estimates [26] for two different fiber aspect ratios (ω = 2 and
10), and given fiber volume fraction (c = 0.1). The results show that the largest rotations
are generated for the larger aspect ratio (i.e., for ω = 10), when the compressive direction
is most closely aligned with the long fiber axis (i.e., for θ̄ = 5◦), although relatively large
stretches are needed. In addition, the results show excellent agreement between the new
TSO and GSO estimates at this fairly small value of c. This is consistent with the fact that
the TSO and GSO equations ((127) and (124), respectively) for the fiber rotations agree
precisely for a neo-Hookean matrix in the dilute concentration limit. Figure 5b presents
additional comparisons of the new TSO estimates with the GSO estimates [26], as well as
with the FEM numerical simulations of Moraleda et al. [29] for a volume fraction c = 0.3,



166 R. Avazmohammadi, P. Ponte Castañeda

and aspect ratio ω = 2. It can be seen from this plot that the agreement between the TSO
homogenization results, on the one hand, and the FEM numerical results, on the other, is
quite good for θ̄ = 45◦ and 85◦, but less good for θ̄ = 5◦. This may be a consequence of the
fact that the FEM results made use of equisized particles, which at this relatively high value
of the fiber concentration may lead to stronger interactions among the fibers than the TSO
results (corresponding to polydisperse distributions of fibers) can account for. In addition,
it is not clear that a sufficiently large number of configurations has been used in the FEM
simulations to generate accurate results by ensemble averaging. Be that as it may, the TSO
homogenization estimates, which were also found to be consistent with the corresponding
GSO results at this higher value of the fiber concentration, are at least qualitatively consistent
with the results of the numerical simulations. Clearly, more extensive numerical work will
be necessary to be able to assess the accuracy of the homogenization results in the future.

6 3-D Application: Reinforced Elastomers with Spherical Particles

As we have seen in the previous section, the new TSO procedure can be used to obtain ac-
curate estimates for the macroscopic response and microstructure evolution for transverse
loading of fiber-reinforced elastomers at finite strains, even when the fibers are rigid, corre-
sponding to infinite contrast, and when the matrix is incompressible, leading to a strongly
nonlinear incompressibility constraint for the composite (which can be recovered exactly
by the theory). Although the GSO procedure [25] is expected to lead to even more accurate
predictions, it is more difficult to implement because it makes use of additional informa-
tion about the field fluctuations in the linear comparison composite. For this reason, it has
not yet been implemented for general (3-D) ellipsoidal particles, especially in the limit of
incompressible behavior for the matrix phase. On the other hand, the new TSO estimates
of Sect. 4 for the effective stored-energy function of particle-reinforced (incompressible)
elastomers are applicable for rigid particles with general ellipsoidal shape and distribution.
However, for simplicity, in this section we will focus on an application of the TSO theory
to particle-reinforced elastomers consisting of a random and isotropic distribution of spher-
ical rigid inclusions in an isotropic, incompressible matrix phase, leaving for future work an
in-depth investigation of more general ellipsoidal shapes for the particles.

We begin by remarking that, in view of objectivity and the assumed isotropy of the re-
inforced elastomer, it suffices to restrict attention to pure stretch deformations F̄ = Ū (i.e.,
R̄ = I), which, in the Cartesian basis {ei}, i = 1,2,3, can be expressed in the form

F̄ = Ū = λ̄1e1 ⊗ e1 + λ̄2e2 ⊗ e2 + λ̄3e3 ⊗ e3, (129)

where λ̄i is the principal stretch in the ei -direction, and the overall incompressibility con-
straint λ̄1λ̄2λ̄3 = 1 holds. Under these hypotheses, it can be shown that R̄(2) = I satisfies
identically equation (79) for the particle rotation (as expected from the symmetry of the
problem), and the TSO estimate (77) for the effective stored-energy function of the rein-
forced elastomer can be shown to reduce to

Ŵ (F̄) = (1 − c)W(1)
μ

(
F̄(1)

)+ c

2(1 − c)

[
Λ̄11E

I
1111 + Λ̄22E

I
2222 + Λ̄33E

I
3333

+ 2
(
Λ̄12E

I
1122 + Λ̄13E

I
1133 + Λ̄23E

I
2233

)]
, (130)

where Λ̄ij = (λ̄i − 1)(λ̄j − 1) (i, j = 1,2,3).
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In this section, we will confine our attention to stored-energy functions of the generalized
neo-Hookean form (112) for the matrix phase. As discussed in Sect. 4.3, the computation
of the microstructural tensor EI requires the computation of the tensors Pi (i = 0,1,2), as
defined by (105), which in turn require the determination of the tensors Bi via the tensors D0,
D1 and the scalars d0, d1, as provided by relations (103). After some algebraic manipulation,
it is straightforward to deduce that the components of the symmetric, second-order tensors
D0 and D1 for the matrix behavior (112) and the loading condition (129) reduce to

(D0)11 = 2λ̄2
1

[(
λ̄2

2ξ
2
3 + λ̄2

3ξ
2
2

)
gI + 2�2

23gII ξ
2
2 ξ 2

3

]
,

(D0)22 = 2λ̄2
2

[(
λ̄2

1ξ
2
3 + λ̄2
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2
1

)
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13gII ξ
2
1 ξ 2

3
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(D0)33 = 2λ̄2
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(D0)12 = −2[λ̄3gI + 2ξ 2
3 �13�23λ̄1λ̄2gII ]ξ1ξ2,

(D0)13 = −2[λ̄2gI + 2ξ 2
2 �12�23λ̄1λ̄3gII ]ξ1ξ3,
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(131)

where �ij = (λ̄2
i − λ̄2

j ), i, j = 1,2,3. In addition, the expressions for d0 and d1 are given by
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I gII . (132)

For general matrix behavior, the integrals involved in the calculation of the tensors Pi

in expressions (105) cannot be performed analytically. Therefore, the double integrals are
computed numerically via Gaussian quadrature, with a sufficiently high numbers of Gauss
points. Thus, using expressions (131) and (132), and setting Z0 = I for the spherical inclu-
sions, the integrals may be easily computed by means of polar cylindrical coordinates

ξ1 =
√

1 − z2 cos(θ), ξ2 =
√

1 − z2 sin(θ), ξ3 = z, (133)

which vary over the intervals 0 ≤ θ ≤ π and 0 ≤ z ≤ 1. After calculation of the tensors
Pi , the tensor EI can be calculated via the relations (106) to (110) (see also Appendix A).
Finally, the computation of the effective stored-energy function (130) may be completed by
means of the relevant components of the tensor EI .

Although the integrals (105) for the tensors Pi require numerical integration in general,
they can actually be computed analytically at least for Gent behavior (113) for the matrix
phase and axisymmetric loading conditions. In this case, a closed-form estimate may be
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obtained for the macroscopic stored-energy function (130) of the particle-reinforced elas-
tomer. However, the expressions are too lengthy to be included here. Instead, closed-form,
analytical results are provided for the special case of neo-Hookean behavior for the matrix
phase in the next subsection.

6.1 Analytical Results for (Incompressible) neo-Hookean Elastomers

In this section, we provide the specialization of the second-order estimate (130) for compos-
ite elastomers with incompressible neo-Hookean matrix phases. In fact, the microstructural
tensors P and E, as defined by expressions (22) and (57), respectively, can be computed
analytically [27, 28] for compressible neo-Hookean behavior, and are given in Appendix C.
Therefore, the incompressible limit (μ′(1) → ∞) of the tensor E to obtain EI can be evalu-
ated directly in this case, without the more general procedure outlined in Sect. 4.3. In any
event, having obtained the components of EI , the corresponding expression for the TSO
estimate for the effective stored-energy function of the composite with incompressible neo-
Hookean matrix phase is obtained by substitution into (130). The result may be written in
the form
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where
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and the abbreviations
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(a barred subscript/superscript indicates the corresponding negative coefficient) have been
introduced for simplicity. In addition, Ξf and Ξe are given in terms of the incomplete elliptic
integrals of the first and second kind [1], respectively, via
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where the functions F and E are defined by
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It is emphasized for completeness that the above estimate is consistent with the macro-
scopic incompressibility constraint λ̄1λ̄2λ̄3 = 1, and linearizes properly. Note also that the
estimate locks up whenever any of the stretches λ̄i = c. In addition, it is well worth consider-
ing the specializations of this expression for Pure Shear, Uniaxial Tension and Equibiaxial
Tension loading conditions, as schematically represented in Fig. 6.

6.1.1 Pure Shear (PS)

For pure shear loading in the 1–3 plane (cf. Fig. 6a), λ̄3 = 1 and λ̄2 = 1/λ̄1, and the TSO
estimate (134) for Ŵ (F̄) simplifies to
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Fig. 6 Schematic representation
of a matrix reinforced by
spherical inclusions subjected to
(a) Pure Shear (PS) loading,
(b) Uniaxial Tension (UT)
loading, and (c) Equibiaxial
Tension (ET) loading
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Ξf − 2

(
2λ̄2

1 + λ̄1 + 2
)(

λ̄2
1 − 1

)3
Ξe

}

+ {
λ̄2

1

[
Φ

0,1
1̄,1̄

+ 4λ̄1
(
λ̄4

1 + λ̄2
1 + 1

)][
3Ξ 2

e − 2
(
λ̄2

1 + 2
)
ΞeΞf + (

λ̄2
1 + 1

)
Ξ 2

f

]

+ (
λ̄2

1 − 1
)[

L3

(
2λ̄4

1 − λ̄2
1 + 2

)− 2λ̄1Φ
1,2
0,2

]}√
1 − λ̄−2

1

}}
, (139)

where L3 = (λ̄2
1 − 1)2(λ̄2

1 + 1), and the compound symbols Φ
a,b
c,d = aλ̄8

1 + bλ̄6
1 + cλ̄4

1 +
dλ̄2

1 + 1 are introduced for brevity (a, b, c, d are positive integer numbers, and a bar above
the number indicates a negative sign). Also, Ξf and Ξe reduce to

Ξf = F
(√

1 − λ̄−2
1 ,

√
−λ̄2

1

)
, Ξe = E

(√
1 − λ̄−2

1 ,

√
−λ̄2

1

)
,

where the functions F and E have been defined in (138). (Note that although b =
√

−λ̄2
1 is

complex, the actual integrals in these expressions depend on b through b2 = −λ̄2
1, which is

real.)

6.1.2 Uniaxial Tension (UT)

For uniaxial loading in the e1-direction (cf. Fig. 6b), λ̄2 = λ̄3 = λ̄
−1/2
1 , and the TSO estimate

(134) for Ŵ (F̄) reduces to

Ŵ (F̄) = (1 − c)W(1)
μ

(
F̄(1)

)− c

1 − c
μ(1)

× {
λ̄

7/2
1

[−3λ̄3
1Υ tanh−1(Υ )2 + (

λ̄3
1 − 1

)2
tanh−1(Υ ) + (

λ̄3
1 + λ̄6

1 − 2
)
Υ
]}−1

× {[
2λ̄5

1

(
2λ̄3

1 − 6λ̄2
1 − 3λ̄1 + 1

)− λ̄
7/2
1

(
2λ̄6

1 − 3λ̄5
1 + 3λ̄4

1 − 15λ̄3
1 + 1

)]
Υ tanh−1(Υ )2

+ (λ̄1 − 1)2
(
λ̄2

1 + λ̄1 + 1
)2[

2λ̄2
1(λ̄1 + 1)(2λ̄1 − 1)

−
√

λ̄1
(
λ̄5

1 − λ̄4
1 + 5λ̄3

1 − 1
)]

tanh−1(Υ )
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+ (λ̄1 − 1)
(
λ̄2

1 + λ̄1 + 1
)[

2λ̄3
1

(
2λ̄4

1 + λ̄3
1 − 3λ̄2

1 + 4λ̄1 + 2
)

− λ̄
7/2
1

(
λ̄5

1 − λ̄4
1 + 3λ̄3

1 + 2λ̄2
1 − 2λ̄1 + 9

)]
Υ
}

(140)

where Υ =
√

(λ̄3
1 − 1)/λ̄3

1.

6.1.3 Equibiaxial Tension (ET)

For equibiaxial loading (cf. Fig. 6c), λ̄3 = λ̄−2
2 = λ̄−2

1 , and the TSO estimate (134) reduces
to

Ŵ (F̄) = (1 − c)W(1)
μ

(
F̄(1)

)− c

1 − c
μ(1)λ̄−4

1

×
{

3λ̄6
1

√
λ̄6

1 − 1
[
tan−1

(√
λ̄6

1 − 1
)]2 + (

λ̄6
1 − 1

)2
[
tan−1

(√
λ̄6

1 − 1
)]

− (
λ̄6

1 − 1
)3/2(

2λ̄6
1 + 1

)}−1{
λ̄4

1

√
λ̄6

1 − 1
(
λ̄12

1 − 2λ̄9
1 + 6λ̄7

1 − 15λ̄6
1 + 12λ̄5

1 + 3λ̄4
1

− 4λ̄3
1 − 3λ̄2

1 + 2
)[

tan−1
(√

λ̄6
1 − 1

)]2

+ (
λ̄6

1 − 1
)2(

λ̄10
1 − 2λ̄7

1 + 2λ̄5
1 − 5λ̄4

1 + 4λ̄3
1 + λ̄2

1 − 1
) [

tan−1
(√

λ̄6
1 − 1

)]

− (
λ̄6

1 − 1
)3/2

(λ̄1 − 1)2
(
4λ̄9

1 − λ̄8
1 + 2λ̄7

1 + 7λ̄6
1 + 6λ̄5

1 + 3λ̄4
1

+ 2λ̄3
1 − 2λ̄2

1 − 2λ̄1 − 1
)}

. (141)

It is worth emphasizing that for UT and ET loadings, the expressions for the effective stored-
energy functions do not contain elliptic integrals. Moreover, it should be mentioned that the
effective stored-energy functions (139) to (141) are all strongly elliptic (strictly rank-one
convex). This observation can be verified by means of the conditions provided by Zee and
Stenberg [41] for strong ellipticity of isotropic hyperelastic materials.

6.2 Results for Gent Elastomers and Discussion

In this subsection, we present some specific results for the stress-stretch relations arising
from the TSO estimates for general triaxial loading of elastomeric composites consisting
of Gent (or neo-Hookean) elastomers reinforced by isotropic distributions of spherical par-
ticles. As discussed in the previous section for the three particular loadings (PS, UT, ET),
there is only one loading parameter, and we will depict all results here as functions of λ̄1 = λ̄.
The results correspond to several volume fractions, c = 0.1, 0.2, 0.3, lock-up parameters,
Jm = 50,100,500,∞, and are normalized by the ground-state shear moduli (μ(1) = 1). It is
recalled that the case Jm → ∞ corresponds to an incompressible neo-Hookean matrix, so
that the corresponding results are calculated by making use of the explicit expressions (139)
to (141).

Figures 7, 8 and 9 show plots for the new TSO estimates for the macroscopic stress S̄ =
∂Ŵ/∂λ̄ in the particles-reinforced elastomers, as functions of the applied stretch λ̄, for pure
shear, uniaxial tension and equibiaxial tension, respectively. Parts (a) of the figures show
the results for composites with neo-Hookean matrices at various particle volume fractions,
while parts (b) shows the corresponding results for composites with Gent matrices with
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Fig. 7 New tangent second-order (TSO) estimates for the macroscopic stress S̄ = dŴ/dλ̄ in particle-rein-
forced elastomers under pure shear loading (λ̄3 = 1, λ̄2 = 1/λ̄1), as functions the applied stretch λ̄1 = λ̄.
(a) neo-Hookean matrix for different values of the fiber volume fraction. (b) Gent matrix for different matrix
lock-up parameters

Fig. 8 New TSO estimates for the macroscopic stress S̄ = dŴ/dλ̄ in particle-reinforced elastomers under

uniaxial tension loading (λ̄2 = λ̄3 = λ̄
−1/2
1 ), as functions the applied stretch λ̄1 = λ̄. (a) neo-Hookean matrix

for different values of the fiber volume fraction. (b) Gent matrix for different matrix lock-up parameters

several values of Jm, for a given volume fraction of particles c = 0.1. It is seen from these
figures that the volume fraction of the reinforcing particles has a strong effect on the overall
response of the reinforced elastomer, for all three loading types. On the other hand, the
strain-locking parameter Jm in the Gent elastomers can also be seen to have a strong effect on
the macroscopic response of the reinforced elastomer. In addition, it should be emphasized
that the differences observed in the response of the three different loadings are due in part
to the different ways in which the results are presented. Of course, the results are consistent
in the limit of small strains with the results of linear elasticity, and therefore independent
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Fig. 9 New TSO estimates for the macroscopic stress S̄ = dŴ/dλ̄ in particle-reinforced elastomers under
equibiaxial tension loading (λ̄3 = λ̄−2

2 = λ̄−2
1 ), as functions the applied stretch λ̄1 = λ̄. (a) neo-Hookean ma-

trix for different values of the fiber volume fraction. (b) Gent matrix for different matrix lock-up parameters

Fig. 10 TSO estimates for the
macroscopic stretch, λ̄lock

1 , at
which an particle-reinforced
incompressible Gent elastomer
locks up under three different
loadings: Pure shear (PS),
Uniaxial tension (UT) and
Equibiaxial tension (ET). The
results are shown as a function of
particle concentration c for
different values of the matrix
lock-up parameter Jm

of the loading conditions. However, as we will see below, there is an intrinsic effect of the
loading conditions for large strains.

Figure 10 shows plots for the “lock-up” stretch in particle-reinforced, Gent elastomers.
As already mentioned in the context of the fiber-reinforced elastomers in Sect. 5, the com-
posite may undergo either “geometric” or “material” lock up. Thus, Fig. 10 shows plots
of the stretch λ̄lock

1 at which lock up first takes place for a given loading path. The results
are given for three particular loadings: Pure shear (PS), Uniaxial tension (UT) and Equibi-
axial tension (ET). The corresponding geometric lock up condition are given by λ̄1 = c−1,
λ̄1 = c−2 and λ̄1 = c−1/2, respectively, while those for material lock up are given by

λ̄4
1 − 2λ̄3

1c − [
(1 − c)2Jm − 4c + 2

]
λ̄2

1 − 2λ̄1c + 1 = 0,

λ̄3
1 − 2λ̄2

1c − [
(1 − c)2Jm − 6c + 3

]
λ̄1 − 4c

√
λ̄1 + 2 = 0, (142)

2λ̄6
1 − 4λ̄5

1c − [
(1 − c)2Jm + 3 − 6c

]
λ̄4

1 − 2cλ̄2
1 + 1 = 0,
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Fig. 11 NewTSO estimates for the effective response of a rigidly particle-reinforced elastomer with an in-
compressible neo-Hookean matrix. (a) The effective energy Ŵ versus the macroscopic invariant Ī1 under
three different loadings: Pure shear (PS), Uniaxial tension (UT) and Equibiaxial tension (ET). (b) The effec-
tive energy Ŵ versus the invariant Ī2 for two different values of the invariant Ī1

respectively. The results are shown as functions of the particle volume fraction, for fixed
values of the Gent lock-up parameter Jm = 50, 100, 500. The main observation in this figure
is the transition from material lock up to geometric lock up as the particle concentration is
increased. Thus, for smaller volume fraction the lock-up stretch is associated with the ma-
terial lock up (depicted as “straight” lines). On the other hand, for sufficiently large volume
fraction (depending on the specific loading), the lock up switches to the geometric (curved
lines). It is also seen that the addition of rigid particles enhances the material lock-up effect,
with respect to the homogeneous matrix phase. This is related to the fact that the rigid phase
cannot deform under deformation and all the deformation must be “concentrated” in the
matrix, leading to a smaller effective lock-up stretch for the composite.

As discussed in Sect. 5.4, the accuracy of the TSO results is expected to deteriorate as
geometric and material lock-up conditions are approached. For this reason, Fig. 10 could
be interpreted as providing an estimate for the range of validity of the TSO results in terms
of the maximum applied stretch λ̄ for given particle concentration and loading condition.
Clearly, the range of validity of the estimates decreases with increasing the particle volume
fraction. Thus, it is evident from the plot that UT loading has a relatively larger range of
validity, while the range of validity for ET loading is more restricted with increasing values
of c. For instance, for composites with a Gent matrix and fixed particle volume fraction
c = 0.2 and lock-up parameter Jm = 500, the range of validity for PS, UT and ET loadings
can be estimated as 1 ≤ λ̄ ≤ 4.5, 1 ≤ λ̄ ≤ 17 and 1 ≤ λ̄ ≤ 2.3, respectively.

Finally, Figs. 11a and 11b present plots of the effective stored-energy function of the
composite versus the macroscopic invariants Ī1 = λ̄2

1 + λ̄2
2 + λ̄2

3 and Ī2 = λ̄2
1λ̄

2
2 + λ̄2

2λ̄
2
3 + λ̄2

3λ̄
2
1

of the deformation, respectively. The matrix is assumed to be neo-Hookean and results for
a non-reinforced matrix are also included for comparison. It is observed in Fig. 11a that
the effective behavior for the composite differs noticeably for the three particular loading
conditions (i.e., for PS, UT and ET loadings), while the corresponding behaviors for a ho-
mogeneous neo-Hookean matrix are all identical. More specifically, it can be seen that the
response for ET loading becomes increasingly stiffer with the deformation, while the re-
sponses for PS and UT loadings remain close to each other and are more compliant. Given
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that the material response (as gauged by the matrix response) is the same, the differences ob-
served in the response of the composite must be attributed to the differences in the evolution
of the microstructures for the different loading conditions. Figure 11b shows results for the
effective stored-energy function of the composite as a function of the second invariant Ī2, for
two different, fixed values of the first invariant Ī1. The corresponding results for the matrix
phase are also included for comparison purposes. Thus, it can be seen that Ī2 has a strong
effect on the macroscopic response of the composite, while the matrix material exhibits no
such effect. This phenomenon is a consequence of the nonlinear response of the composite,
leading to dependence on the second invariant of the deformation. (Note that dependence
on third invariant would also be expected in general, but it is excluded here due to overall
incompressibility of material.)

7 Concluding Remarks

In this paper, we have developed new constitutive models for the macroscopic response of
composites with hyperelastic phases and particulate microstructures, subjected to general,
three-dimensional, finite deformations. For this purpose, we have made use of a suitable ex-
tension of the tangent second-order (TSO) homogenization theory of Ponte Castañeda and
Tiberio [36], which is capable of accounting for the strongly nonlinear overall incompress-
ibility constraint (for incompressible behavior of the phases), as well as for the reorientation
of the particles with the deformation. Thus, for incompressible elastomers reinforced with
random distributions of aligned, ellipsoidal, rigid inclusions, the expression (77) was derived
for the macroscopic stored-energy function Ŵ (F̄) in terms of Eq. (79) for the evolution of
the particle orientation R̄(2), the stored-energy function W(1)

μ of the elastomeric phase (with
ground-state shear modulus μ(1)), the initial concentration of the particles c, and a certain
microstructural tensor EI , serving to characterize the particle shape, and defined by ex-
pression (106). In particular, closed-form, analytical results were obtained for neo-Hookean
rubbers reinforced by isotropic distributions of spherical particles under general loading
conditions (see expressions (134) to (141)). For this case, it was found that the macroscopic
stored-energy function exhibits dependence on the second invariant of the right Cauchy–
Green deformation tensor (even when the matrix response is assumed to depend only on the
first invariant), in agreement with theoretical expectations. In addition, it was also found that
the macroscopic response of Gent-type elastomers reinforced with isotropic distributions of
spherical particles is strongly elliptic, and therefore shear-band localization instabilities of
the type found by Lopez-Pamies and Ponte Castañeda [26] and Agoras et al. [3] for fiber-
reinforced composites loaded in compression along the long axis of the fibers were not found
in this case.

The TSO theory was also tested for a model 2-D problem consisting of transverse shear
loading of elastomers reinforced with cylindrical fibers of elliptical cross-section, where it
was found to recover exactly the generalized second-order (GSO) results of Lopez-Pamies
and Ponte Castañeda [25] for dilute concentration of elliptical fibers in a neo-Hookean elas-
tomeric matrix. For more general material behavior (e.g., Gent) and non-dilute conditions,
the new TSO theory is still in relatively good agreement with the GSO predictions, although
it can lead to much stiffer predictions for neo-Hookean matrix behavior, when the TSO
theory predicts “geometric” lock up, at sufficiently large deformations. However, for more
realistic situations, when lock up due to the matrix behavior is present, the differences are
relatively minor. In any case, comparisons with FEM simulations for realistic values of the
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matrix locking strain and macroscopic stretches, are in excellent agreement even for rela-
tively high concentrations (i.e., up to 30 %).

It should be emphasized that while there are presently other homogenization theories for
hyperelastic composites (e.g., the GSO [25] and sequentially laminated [9] homogenization
methods), the new TSO method developed in this work offers a good balance of generality
and accuracy. Indeed, to the best of our knowledge, the TSO estimates developed in this
work are the first homogenization estimates for reinforced elastomers with general particle
shape. While only the case of spherical inclusions has been developed in detail here, results
are also available for the response of elastomers reinforced with ellipsoidal inclusions under
general (non-aligned) loading conditions. Due to the anisotropy of these material systems
and the important effects of particle reorientation, which can lead to loss of ellipticity of the
macroscopic response, the analysis of these results is quite a bit more involved and will be
considered in detail in a future publication.

Acknowledgements This material is based upon work supported by the National Science Foundation un-
der Grant No. CMMI-0969570.

Appendix A: On the Calculation of the Tensor EI

In this appendix, we present a brief outline of the asymptotic analysis associated with ob-
taining the limiting value of the tensor E (= P−1 − L(1)) in the incompressibility limit (i.e.,
in the limit as ε → 0). We first spell out the main steps necessary to carry out the asymptotic
expansion for Q = P−1 about ε = 0. For this purpose, we assume that the incompressibility
constraint holds, and that the tensor Q can be expanded in the form

Q = ε−1Q−1 + Q0 + εQ1 + O
(
ε2
)
, (A.1)

where Q−1 �= 0. In order to compute the unknown, tensorial coefficients Q−1 and Q0, we
need to first find the null-space of P0 (the first term in the expansion (104)), defined by

null P0 = {N|P0N = 0}. (A.2)

By solving P0N = 0 for the second-order tensor N, we will have

null P0 = span{W1,W2,W3}, (A.3)

where {W1,W2,W3} stands for an orthogonal basis for the set of skew-symmetric, second-
order tensors such that Wi + WT

i = 0 and Wi · Wj = 0 (i �= j), i, j = 1,2,3. Using the
major symmetry of the tensor P0 ((P0)ijkl = (P0)klij ), Eq. (A.3) indicate that

(P0)ijkl(Wp)kl = (P0)klij (Wp)kl = 0, p = 1,2,3. (A.4)

By substituting the asymptotic expansions (104) and (A.1) into the identity PQ = QP = III ,
and collecting coefficients of the same power as ε, the following system of equations is
obtained

Q−1P0 = P0Q−1 = 0, (A.5)

P0Q0 + P1Q−1 = Q0P0 + Q−1P1 = III, (A.6)

P0Q1 + P1Q0 + P2Q−1 = Q1P0 + Q0P1 + Q−1P2 = 0. (A.7)
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Thus, this system of linear equations for Q−1, Q0, and Q1 uniquely determines the coeffi-
cients in the expansion (A.1). Noting that det(Q−1) = 0, the general solution to the tensorial
equation (A.5) can be written as [4]

Q−1 =
3∑

i=1

Wi ⊗ V(0)
i , (A.8)

where the arbitrary matrices V(0)
i are determined using (A.6). To this end, by transposing

(A.6) (meaning (·)T
ijkl = (·)klij ) and then right-multiplying it with Wi , it follows that

(P1)ijkl(Q−1)klrs(Wp)ij = (Wp)rs, p = 1,2,3, (A.9)

where use has been made of the relations (A.4). Substituting (A.8) into (A.9), it leads to

[
(P1)ijkl(Wp)ij (Wp)kl

](
V 0

p

)
rs

= (Wp)rs, p = 1,2,3, (A.10)

from which it is concluded that

V(0)
i = 1

Wi · P1Wi

Wi , i = 1,2,3. (A.11)

Next, the general solution of (A.6) can be represented as [4]

Q0 = P†
0(III − P1Q−1) +

3∑

i=1

Wi ⊗ V(1)
i , (A.12)

By the same token, in order to find V(1)
i , we take the transpose of (A.7) and then right-

multiply it with Wi , which leads to

(P1)ijkl(Q0)klrs(Wp)ij + (P2)ijkl(Q−1)klrs(Wp)ij = 0, p = 1,2,3, (A.13)

where, again, use has been made of relations (A.4). Substituting (A.12) and (A.8) into the
above equation, and doing some algebra, Eqs. (110) for V(1)

i are obtained. Finally, in the limit
as ε → 0, we recover Q−1 = L(1)

−1 (when the isochoric deformation condition is satisfied),
and the tensor EI = (P−1 − L(1))|μ′(1)→∞ reduces to EI = Q0 − L(1)

μ .

Appendix B: In-plane Components of the Tensor P for Cylindrical Inclusions with
Elliptical Cross-Section Embedded in a Compressible neo-Hookean
Matrix

In this appendix, we present explicit expressions for the (in-plane) components of the ten-
sor P, associated with a cylindrical fiber of elliptical cross-section embedded in a general-
ized linear-elastic material with modulus tensor L(1). It is recalled that the tensor P, defined
by (117), makes use of the tangent modulus tensor L(1) = (∂2W(1)/∂F ∂F)|F=F̄. Since L(1)

is characterized by the objective and isotropic stored energy function W(1), the following
condition is known [26] to be satisfied by L(1)

L
(1)
ijkl(F̄) = Q̄rmQ̄jnQ̄spQ̄lq R̄ir R̄ksL

∗
mnpq(D̄), (B.1)
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where R̄ and Q̄ are the macroscopic orthogonal tensors in the decompositions F̄ = R̄Ū =
R̄Q̄D̄ Q̄T , given by Q̄ = cos(θ̄) (e1 ⊗ e1 + e2 ⊗ e2) + sin(θ̄)(e2 ⊗ e1 − e1 ⊗ e2) and R̄ =
cos(ψ̄) (e1 ⊗ e1 + e2 ⊗ e2) + sin(ψ̄)(e2 ⊗ e1 − e1 ⊗ e2), with respect to the 2-D laboratory
frame of reference, and D̄ is a diagonal, second-order tensor with matrix representation
D̄ = λ̄1 e1 ⊗ e1 + λ̄2 e2 ⊗ e2. The tensor L∗ is orthotropic relative to {ei} and, recalling
that it exhibits major symmetry L∗

ijkl = L∗
klij , it follows that it generally has five in-plane,

independent components. However, in order to obtain simple analytical expressions for the P
tensor components, following Lopez-Pamies and Ponte Castañeda ([26]), we take advantage
of the following constraint for the components of L(1)

L
(1)

1221 =
√(

L
(1)

1111 − L
(1)

1212

)(
L

(1)

2222 − L
(1)

1212

)− L
(1)

1122, (B.2)

which is satisfied by the tangent modulus of a neo-Hookean material (but not for more
general hyperelastic materials including Gent).

Following Lopez-Pamies and Ponte Castañeda [24, 26], the four independent compo-
nents of L(1) are chosen to be L

(1)

1111 = l∗1 , L
(1)

2222 = l∗2 , L
(1)

1122 = l∗3 , L
(1)

1212 = l∗4 . It can then be
deduced from relation (B.1) that

Pijkl(F̄) = R̄ipR̄kqP
∗
pjql(Ū). (B.3)

Now, making use of this choice of L(1) along with the constraint (B.2), it follows that the
in-plane components of P∗, after some algebra, can be expressed in terms of the variables
Cj (j = 1, . . . ,13), and the functions Pi (i = 1,2,3), via

P ∗
1111 = P1(C1,C2,C3), P ∗

2222 = P2(C4,C5,C6), P ∗
1122 = P3(C7,C8,C9)

P ∗
1212 = P2(C1,C2,C10), P ∗

1112 = P3(C1,C2,C11), P ∗
1121 = P1(C7,−C8,C12)

P ∗
2212 = P2(C7,−C8,C12), P ∗

2221 = P3(C4,C5,C6),

P ∗
1221 = P3(C7,C8,−C2/2), P ∗

2121 = P1(C4,C5,C13)

where

C1 = 2L∗ cos4(θ̄) + (
3l∗1 − 4l∗4 + l∗2 − 4l∗

)
cos2(θ̄) + l∗4 − l∗1 ,

C2 = [
L∗ cos2(θ̄) + l∗1 − l∗ − l∗4

]
sin(2θ̄ ),

C3 = −L∗ cos4(θ̄) + 2
(
l∗1 − l∗ − l∗4

)
cos2(θ̄) + l∗1 ,

C4 = 2L∗ cos4(θ̄) + (
3l∗2 − 4l∗4 + l∗1 − 4l∗

)
cos2(θ̄) + l∗4 − l∗2 ,

C5 = [
L∗ cos2(θ̄) + l∗2 − l∗ − l∗4

]
sin(2θ̄ ),

C6 = L∗ sin2(θ̄) cos2(θ̄) − l∗4 ,

C7 = L∗ sin(4θ̄ )/4, C8 = L∗ sin2(2θ̄ )/2 − l∗,

C9 = [
l∗1 − l∗ − l∗4 − L∗ cos2(θ̄)

]
sin(θ̄) cos(θ̄),

C10 = L∗ cos4(θ̄) + 2
(
l∗4 + l∗ − l∗1

)
cos2(θ̄) + l∗1 ,

C11 = 2
(
l∗4 + l∗ − l∗1

)
cos2(θ̄) − L∗ cos4(θ̄) + l∗1 ,
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C12 = [
L∗ cos2(θ̄) + l∗1 − l∗ − l∗4

]
sin(θ̄) cos(θ̄),

C13 = L∗ sin2(2θ̄ )/4 − l∗4 ,

and

P1(A1,A2,A3)

= ϑ
{{

�(A1a1 + A2a2)s2 − k
(
a2

1 + a2
2

)[
(ka1 − 1)A3 + k(ka1 − 1)A1

+ k(ka2 − a2)A2

]}
s1

+ {(
a2

1 + a2
2

)[
k
(
2a1 + a2

2

)− 2
]
A3 − a2

[
3ka2

1 − a2
2k + [(

a2
2 − 4

)
k − 1

]
a1 + 2

]
A2

+ [
2ka2

1 + 2
(
2a2

2k − 1
)
a1 + ka4

2 − (2k + 1)a2
2

]
A1

}
s2

}
,

P2(A1,A2,A3)

= −ϑ
{{

�(A1a1 + A2a2)s2 − (k − 1)
(
a2

1 + a2
2

)[
(ka1 − 1)A3 + k(ka1 − 1)A1

+ k(ka2 − a2)A2

]}
s1 + {(

a2
1 + a2

2

)[
k
(
2a1 − 2a2

1 − a2
2

) + 2a1 + a2
2 − 2

]
A3

+ a2

[
ka3

1 + (1 − 5k)a2
1 + (1 + 4k)a1 + (1 − k)a2

2 − 2
]
A2

+ [(
2 + 2k − ka2

2

)
a2

1 + 2
(
ka2

2 − 1
)
a1 + (1 − 2k)a2

2 − 2a3
1k
]
A1

}
s2

}
,

P3(A1,A2,A3)

= ϑ
{{

�(A1a2 − A2a1)s2 − k(k − 1)
(
a2

1 + a2
2

)[
a2kA1 + (1 − ka1)A2 + a2A3

]}
s1

+ {
a2

[
2a3

1k + (
a2

2k − 2 − 2k
)
a2

1 + 2
(
1 − a2

2k
)
a1 + (2k − 1)a2

2

]
A2

− a2

[
3a2

1k + (
a2

2k − 4k − 1
)
a1 + 2 − a2

2k
]
A1 − a2

(
a2

1 + a2
2

)
(ka1 − 2k + 1)A3

}
s2

}
.

In the above expressions,

a1 = (
l∗1 − l∗2

)
cos(2θ̄ )/a, a2 = (

l∗1 − l∗2
)

sin(2θ̄ )/a, a = −[
l∗1 sin2(θ̄) + l∗2 cos2(θ̄)

]

� = (ka1 − 1)2 + k(k − 1)a2
2, ϑ = 2πa

{
�
(
a2

1 + a2
2

)
s1s2

}−1
,

L∗ = 2l∗4 + 2l∗ − l∗2 − l∗1 , s1 =
√

4 − 4a1 − a2
2, s2 =√

k(k − 1),

l∗ =
√(

l∗1 − l∗4
)(

l∗2 − l∗4
)
, k = ω2

/(
ω2 − 1

)
.

For the special case of compressible neo-Hookean materials, the expression for the com-
ponents of the tensor P are obtained by substituting the following expressions for l∗1 , . . . , l∗4
into the above relations

l∗i = λ̄−2
i

[
μ(1)

(
λ̄2

i + 1
)+ μ′(1)J̄ 2

]
(i = 1,2),

l∗3 = μ′(1)(2J̄ − 1), and l∗4 = μ(1),
(B.4)

where J̄ = det(F̄) = λ̄1λ̄2.
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Appendix C: The Tensors P and E for Spherical Inclusions Embedded in a
Compressible neo-Hookean Matrix

In this appendix, explicit analytical expressions are given for the components of the tensors
P and E for spherical inclusions embedded in generalized linear-elastic material with moduli
tensor L(1), whose components are assumed to satisfy [2] the constraints

L
(1)

1212 = L
(1)

1313 = L
(1)

2323

L
(1)

1221 =
√(

l∗1 − l∗7
)(

l∗2 − l∗7
)− l∗4 , L

(1)

1331 =
√(

l∗1 − l∗7
)(

l∗3 − l∗7
)− l∗5 ,

L
(1)

2332 =
√(

l∗2 − l∗7
)(

l∗3 − l∗7
)− l∗6 ,

(C.1)

where the variables l∗i (i = 1, . . . ,7) have been identified with the seven remaining “inde-
pendent” components of L(1) (relative to the basis {ei}) via

l∗1 = L
(1)

1111, l∗2 = L
(1)

2222, l∗3 = L
(1)

3333, l∗4 = L
(1)

1122, l∗5 = L
(1)

1133,

l∗6 = L
(1)

2233, l∗7 = L
(1)

1212.
(C.2)

In this connection, it should be noted that the conditions (C.1) are satisfied by the tangent
modulus of a neo-Hookean material, but not more generally.

Recalling that the composite is statistically isotropic in the undeformed configuration,
the expression for P in the basis {ei} can be expressed as

Pijkl = 1

4π

∫ π

0

∫ 2π

0

(
L

(1)
imknξmξn

)−1
ξj ξl dθ dφ, (C.3)

where ξ1 = sin(φ) cos(θ), ξ2 = sin(φ) sin(θ), and ξ3 = cos(φ). Now, making use of the
above choice for L(1), it can be shown that the components of the microstructural tensor
P are given by the analytical expressions

P1111 = − 1

3l∗7 (l∗1 − l∗3 )3/2(l∗1 − l∗2 )2

{√
l∗2
(
l∗1 − l∗7

){
2χ1Ξe + l∗3

(
l∗2 − l∗1

)
Ξf

}

−√
l∗1 − l∗3

{(
l∗3 + l∗7 + l∗2

)(
l∗1
)2 − [(

3l∗2 + 2l∗3
)
l∗7 − (

l∗2
)2 + 2l∗3 l∗2

]
l∗1

+ l∗2 l
∗
3

(
4l∗7 − l∗2

)}}
,

P2222 = − 1

3l∗2 l∗7 (l∗2 − l∗1 )2(l∗2 − l∗3 )2
√

l∗1 − l∗3

×
{(

l∗2 − l∗7
)√

l∗2
{
2l∗2

(
l∗1 − l∗3

)
χ2Ξe + l∗3

(
l∗2 − l∗1

)[
2l∗3 l∗2 + l∗1

(
l∗2 − 3l∗3

)]
Ξf

}

− l∗2
(
l∗2 − l∗3

)√
l∗1 − l∗3

{(
l∗1 + l∗7 + l∗3

)(
l∗2
)2 − [(

3l∗1 + 2l∗3
)
l∗7 + 2l∗3 l

∗
1 − (

l∗1
)2]

l∗2

− l∗1 l
∗
3

(
l∗1 − 4l∗7

)}}
,

P3333 = 1

3l∗7 (l∗2 − l∗3 )2(l∗1 − l∗3 )(3/2)

{√
l∗2
(
l∗7 − l∗3

){
2χ3Ξe − [

l∗1 l∗3 + l∗2
(
2l∗3 − 3l∗1

)]
Ξf

}

+√
l∗1 − l∗3

(
l∗2 − l∗3

)[(
l∗7 − l∗1 − l∗2

)
l∗3 + l∗1 l∗2

]}
,
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P1122 = 1

3l∗7 (l∗2 − l∗1 )2(l∗2 − l∗3 )
√

l∗1 − l∗3

(
l∗4 + L

(1)

1221

)

×
{√

l∗2
{
l∗3
(
l∗2 − l∗1

)
Ξf − χ3Ξe

}+ (
l∗1 + l∗2

)(
l∗3 − l∗2

)√
l∗1 − l∗3

}
,

P1133 = l∗1 − l∗7
3l∗7 (l∗1 − l∗2 )(l

∗
2 − l∗3 )(l

∗
1 − l∗3 )3/2(l∗4 + L

(1)

1221)

×
{√

l∗2χ2Ξe −√
l∗2 l∗3

(
l∗2 − l∗1

)
Ξf − l∗1

(
l∗2 − l∗3

)√
l∗1 − l∗3

}
,

P2233 = − l∗6 + L
(1)

2332

3l∗7 (l∗1 − l∗2 )(l∗2 − l∗3 )2
√

l∗1 − l∗3

×
{√

l∗2
[
χ1Ξe + 2l∗3

(
l∗2 − l∗1

)
Ξf

]− l∗2
(
l∗2 − l∗3

)√
l∗1 − l∗3

}
, (C.4)

where

Ξf = F

(√
l∗1 − l∗3

l∗1
,

√
l∗1 (l∗2 − l∗3 )
l∗2 (l∗1 − l∗3 )

)
, Ξe = E

(√
l∗1 − l∗3

l∗1
,

√
l∗1 (l∗2 − l∗3 )
l∗2 (l∗1 − l∗3 )

)
,

and χ1,2,3 = l∗1,2,3(l
∗
2,1,1 + l∗3,3,2) − 2l∗2,1,1l

∗
3,3,2. The functions F and E denote the incomplete

elliptic integrals of the first and second kinds, respectively [1] which are defined in (138). It
is also remarked that the other non-zero components of the tensor P do not enter the TSO
expression (130).

Then, the components of the tensor E may be computed from the corresponding compo-
nents of the tensor P by means of the following relations

E1111 = (
P2222P3333 − P 2

2233

)
Π − l∗1 , E2222 = (

P1111P3333 − P 2
1133

)
Π − l∗2

E3333 = (
P1111P2222 − P 2

1122

)
Π − l∗3 , E1122 = (P2233P1133 − P1122P3333)Π − l∗4

E1133 = (P1122P2233 − P1133P2222)Π − l∗5 , E2233 = (P1122P1133 − P2233P1111)Π − l∗6 ,
(C.5)

where

Π = (
P1111P2222P3333 + 2P1122P1133P2233 − P1111P

2
2233 − P2222P

2
1133 − P3333P

2
1122

)−1
.

Next, it is noted that the seven independent components l∗1 , l
∗
2 , . . . , l∗7 (defined by (C.2))

for a compressible neo-Hookean material are given by

l∗i = λ̄−2
i

[
μ(1)

(
λ̄2

i + 1
)+ μ′(1)J̄ 2

]
, i = 1,2,3,

l∗i = μ′(1)λ̄i (2J̄ − 1), i = 4,5,6,
(C.6)

and l∗7 = μ(1), where J̄ = det(F̄) = λ̄1λ̄2λ̄3 = 1.
Finally, the expression for the relevant components of the tensor EI may be obtained

by substituting the expressions (C.6) for the l∗i (i = 1, . . . ,7) into the components of the
tensor E (C.5) and taking the limit as μ′(1) → ∞. The final expressions are not included
here for brevity.
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