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Abstract

Electro-sensitive (ES) elastomers form a class of smart materials
whose mechanical properties can be changed rapidly by the appli-
cation of an electric field. These materials have attracted consider-
able interest recently because of their potential for providing rela-
tively cheap and light replacements for mechanical devices, such as
actuators, and also for the development of artificial muscles. In this
paper we are concerned with a theoretical framework for the analysis
of boundary-value problems that underpin the applications of the as-
sociated electromechanical interactions. We confine attention to the
static situation and first summarize the governing equations for a solid
material capable of large electroelastic deformations. The general con-
stitutive laws for the Cauchy stress tensor and the electric field vectors
for an isotropic electroelastic material are developed in a compact form
following recent work by the authors. The equations are then applied,
in the case of an incompressible material, to the solution of a number
of representative boundary-value problems. Specifically, we consider
the influence of a radial electric field on the azimuthal shear response
of a thick-walled circular cylindrical tube, the extension and inflation
characteristics of the same tube under either a radial or an axial elec-
tric field (or both fields combined), and the effect of a radial field on
the deformation of an internally pressurized spherical shell.
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1 Introduction

Electro-sensitive (ES) elastomers are also referred to as electro-active elas-
tomers, and they are a subset of the so-called electro-active polymers (EAPs).
These materials deform under the application of an electric field. They have
recently attracted growing interest because of their potential for use in ac-
tuators, for artificial muscles in robotics and for biomedical applications in
prostheses [1]. The mathematical modelling of the properties of such materi-
als, however, is at an early stage of development, partly because of a shortage
of sufficient experimental data that can be used for materials characteriza-
tion.

Even though the engineering applications of ES materials are quite recent,
the theoretical foundations of electromagnetic continua within a finite defor-
mation framework date back to the 1950s. We do not attempt to provide
a complete account of the relevant background, but instead refer the inter-
ested reader to the article by Truesdell and Toupin [16], the lecture notes by
Hutter and van de Ven [8], the more recent books by Maugin [11], Eringen
and Maugin [5] and Kovetz [10] and references therein. In a recent paper
(Dorfmann and Ogden [4]) we have developed a relatively simple but gen-
eral framework within which the static large deformation electromechanical
interaction of ES materials can be analyzed from the phenomenological view-
point. This involves the construction of a constitutive law for the material
expressed through a ‘total’ energy density function that depends on both the
deformation and the electric field (or electric displacement field). The theory
was illustrated in [4] by application to two prototype problems, namely the
simple shear of a slab (a homogeneous deformation) with the electric field
normal to the faces of the slab, and the axial shear of a circular cylindrical
tube (a non-homogeneous deformation) in the presence of a radial electric
field.

In this paper we build on the formulation of nonlinear electroelasticity in
[4] and illustrate the influence of an electric field on the mechanical response
of an incompressible isotropic ES elastomer for a number of boundary-value
problems.

In Section 2, following Dorfmann and Ogden [4], we summarize briefly
the basic electrical and mechanical balance laws for time-independent electric
fields. The general constitutive law for an isotropic electroelastic material
is then discussed in Section 3. This is based on an amended (or ‘total’)
free energy function for which expressions for the stress and electric field
variables assume particularly simple forms. Two alternative formulations
are considered. In the first approach the deformation gradient F and the
applied electric field E are the basic variables. In the second formulation,
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the electric field is replaced by the electric induction vector D. In particular,
we provide explicit expressions for the total stress tensor and the electric
polarization vector in Eulerian and Lagrangian forms for both compressible
and incompressible materials.

In Section 4 we examine two problems for a circular cylindrical tube of
incompressible isotropic electroelastic material. First, azimuthal shear in
the presence of an initially radial electric field, and second the extension
and inflation of a tube with either an axial or a radial electric field (or
both). In Section 5 the radial deformation of a spherical shell of the same
material in the presence of a radial field is considered. For each problem the
general results are illustrated by making a specific simple choice of the energy
function. Finally, Section 6 closes the paper with some concluding remarks.

2 Basic equations

2.1 Kinematics

Consider a reference configuration, denoted B0, of the material in which a
material particle is labelled by its position vector X. This configuration may
or may not be stress free. Let B denote the corresponding deformed config-
uration in which the particle X has position vector x and the deformation
is defined by the mapping x = χ(X) for X ∈ B0. The deformation gradient
tensor, denoted F, is

F = Gradχ, (1)

where Grad is the gradient operator in B0. We shall also use the notation
J = detF. By convention we take J > 0.

2.2 Electric balance equations

When the material is deformed, the electric field variables may be defined as
Eulerian quantities in the current configuration or as Lagrangian fields in the
reference configuration. In this paper we start with the current configuration
B and define the relevant electric field variables as the electric field E, the
electric induction D and the polarization density P. These vectors are related
by the standard equation

D = ε0E + P, (2)

where the constant ε0 is the vacuum electric permittivity (see, for example,
Kovetz [10]). In vacuo, P = 0 and equation (2) simplifies to D = ε0E. In
a material P measures the difference D − ε0E and is a material-dependent
property that has to be given by a constitutive equation.
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Here, initially, we take the basic variables to be the electric field E and the
deformation gradient F. Equation (2) then determines the electric induction
D in terms of F and the field E when P is given by a constitutive equation.

For time-independent phenomena and in the absence of magnetic fields,
free currents and free electric charges, the vectors E and D satisfy the equa-
tions

curlE = 0, divD = 0, (3)

obtained by appropriate specialization of Maxwell’s equations, where, respec-
tively, curl and div are the curl and divergence operators in B.

The Lagrangian counterparts of the electric field and the electric induc-
tion, denoted by El and Dl respectively, are given by

El = FTE, Dl = JF−1D. (4)

For details of the derivations of these connections we refer to, for example,
Dorfmann and Ogden [4] and references therein. Standard identities ensure
that equations (3) are equivalent to

CurlEl = 0, DivDl = 0, (5)

provided χ is suitably regular, where, respectively, Curl and Div are the curl
and divergence operators in B0.

No corresponding pull-back operation for P arises naturally in a similar
way. It is convenient, however, to define a Lagrangian form of P, here denoted
Pl, analogous to that for D, by

Pl = JF−1P. (6)

On using (4) and (6) in (2) we obtain

Dl = ε0Jc−1El + Pl, (7)

where c−1 is the inverse of the right Cauchy-Green deformation tensor c =
FTF.

2.3 Mechanical balance laws

Let ρ0 and ρ denote the mass densities in the reference and current con-
figurations, respectively. Then, in terms of the notation J = detF, the
conservation of mass equation has the form

Jρ = ρ0. (8)
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If the electric body forces are included with the ‘total’ (Cauchy) stress
tensor, denoted τ , the equilibrium equation in the absence of mechanical
body forces may be written in the simple form

divτ = 0, (9)

balance of angular momentum ensuring symmetry of τ , i.e. τ T = τ .
The counterpart of the nominal stress tensor in elasticity theory, denoted

here by T, for the total stress is defined by

T = JF−1τ , (10)

and the equilibrium equation (9) may then be written in the alternative form

DivT = 0. (11)

2.4 Boundary conditions

The electric field E and the electric induction vector D satisfy appropriate
continuity conditions across any surface within the material or the surface
bounding the considered material. In the deformed configuration, in the
absence of surface charge, the standard continuity conditions are

n · [D] = 0, n× [E] = 0, (12)

where a square bracket indicates a discontinuity across the surface and n is
normal to the surface. By convention, on the material boundary n is taken
to be the outward pointing normal. These equations may also be given in
Lagrangian form (see, for example, [4]), but we omit the details here.

For the mechanical quantities the function χ has to be continuous across
any surface, as has the total traction vector τn. The deformation x = χ(X)
may be prescribed on part of the bounding surface of the body, while the
total traction vector on the remaining part of the surface must be continuous.
The latter condition is given, in Eulerian form, by

[τ ]n = 0, (13)

where any applied mechanical traction contributes to the traction on the
outside. The Maxwell stress there, denoted τm, must also be accounted for.
If the exterior of the body is a vacuum, for example, then τm is given by

τm = ε0

[
E⊗ E− 1

2
(E · E)I

]
, (14)

where I is the identity tensor.
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3 Constitutive Equations

To complete the formulation of boundary-value problems we need, in addition
to the governing equations and boundary conditions, appropriate constitutive
laws for the total stress tensor τ and for the polarization vector P. Following
Dorfmann and Ogden [4], we base the construction of constitutive laws on
the existence of a free energy function, which may be regarded as a function
of the deformation gradient F and one of the electric field vectors. Here, we
take the independent variables initially to be F and El, and, in the notation
of Dorfmann and Ogden [4], we write the free energy (per unit mass) as

Φ = Φ(F,El). (15)

It then follows (see, for example, Kovetz [10] and Dorfmann and Ogden [4])
that the total Cauchy stress τ for a compressible material is given by

τ = ρF
∂Φ

∂F
+ τm, (16)

where τm is given by (14). The standard requirements of objectivity show
that Φ depends on F only through c = FTF, as in elasticity theory, and
symmetry of the first term on the right-hand side of (16) then follows au-
tomatically and ensures symmetry of τ . Note, however, that the τm inside
and outside the material are in general different since E is different. In the
absence of material Φ ≡ 0 and τ reduces to the Maxwell stress (14).

The expression for the polarization vector in Eulerian form is given in
terms of Φ by

P = −ρF
∂Φ

∂El

. (17)

The corresponding Lagrangian forms of the stress and polarization are
obtained on use of equations (10) and (6), respectively. However, rather
than giving these explicitly we now make use of a convenient alternative
formulation of the constitutive law introduced by Dorfmann and Ogden [4].
This requires the definition of an amended (or ‘total’) free energy function,
denoted Ω = Ω(F,El) and defined per unit reference volume (rather than
per unit mass) within the material by

Ω = ρ0Φ− 1

2
ε0JEl · (c−1El). (18)

(Note that F, and hence Ω, is not defined outside the material.) This allows
us to write the total stress tensors τ and T in the compact forms

τ = J−1F
∂Ω

∂F
, T =

∂Ω

∂F
. (19)
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While it is the polarization that is given by (17), it is now the electric displace-
ment that is given directly in terms of Ω. In Eulerian form the polarization
and electric displacement are given by

P = D− ε0E, D = −J−1F
∂Ω

∂El

, (20)

and their Lagrangian counterparts by

Pl = Dl − ε0Jc−1El, Dl = − ∂Ω

∂El

. (21)

The expressions listed above for the stresses require modification in the
case of incompressible materials, which are subject to the constraint

J = detF ≡ 1, (22)

so that (18) becomes

Ω = ρ0Φ− 1

2
ε0El · (c−1El). (23)

The total stress tensors (19) are replaced by

τ = F
∂Ω

∂F
− pI, T =

∂Ω

∂F
− pF−1, (24)

where p is a Lagrange multiplier associated with the constraint (22). The
expressions for the electric induction and the polarization fields given in
Eulerian and Lagrangian forms by equations (20) and (21), respectively, are
unchanged but subject to (22).

3.1 Isotropy

Application of an electric field to an isotropic ES elastomer introduces, lo-
cally, a preferred direction analogous to that arising for transversely isotropic
elastic solids. Following the analysis of such materials given in Spencer [14]
and Ogden [13], for example, we define an isotropic ES material as one for
which Ω is an isotropic function of c and El ⊗El. The form of Ω is then re-
duced to dependence on the six independent invariants, denoted I1, I2, . . . , I6,
of c and El ⊗El. For a compressible material, we choose the standard prin-
cipal invariants of c, namely

I1 = trc, I2 =
1

2

[
(trc)2 − tr(c2)

]
, I3 = det c = J2, (25)
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while for the invariants depending on El we set

I4 = |El|2, I5 = El · (c−1El), I6 = El · (c−2El), (26)

where tr is the trace of a second-order tensor. Note that I5 and I6 can also
be written, respectively, as E · E and E · (b−1E), where b = FFT is the left
Cauchy-Green deformation tensor. The choice (26) is not, of course, unique
and one could, for example, replace c−1 by c in I5 and I6. For incompressible
materials the invariant I3 ≡ 1 is omitted.

For an incompressible isotropic material, therefore, Ω = Ω(I1, I2, I4, I5, I6),
and the explicit forms of the total stress tensor τ and the electric induction
vector D are

τ = 2Ω1b + 2Ω2(I1b− b2)− pI

− 2Ω5E⊗ E− 2Ω6(b
−1E⊗ E + E⊗ b−1E), (27)

D = −2
(
Ω4bE + Ω5E + Ω6b

−1E
)
, (28)

where the subscripts 1, 2, 4, 5, 6 on Ω signify partial differentiation with re-
spect to I1, I2, I4, I5, I6, respectively, and wherein the left Cauchy-Green de-
formation tensor b is used.

3.2 Change of independent variables

In the solution of boundary-value problems involving non-uniform fields, it
may in some circumstances be more convenient to select Dl as the inde-
pendent electric variable instead of El. This can be done by defining an
energy function Ω∗ = Ω∗(F,Dl), complementary to Ω, via the Legendre-type
transform

Ω∗(F,Dl) = Ω(F,El) + Dl · El. (29)

The total stress tensor and the electric field in Lagrangian form, for com-
pressible materials, are then simply

T =
∂Ω∗

∂F
, El =

∂Ω∗

∂Dl

, (30)

and the polarization is still given by (21)1, but now with Dl as the indepen-
dent variable and El given by (30)2.

For an isotropic material, Ω∗ depends on the invariants I1, I2, I3 defined
in (25) and on three invariants based on Dl, for which we use the notation
K4, K5, K6. We choose to define these as

K4 = Dl ·Dl, K5 = Dl · (cDl), K6 = Dl · (c2Dl). (31)
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For an incompressible material, the Eulerian form of the total stress τ and
the electric field E based on Ω∗ have the explicit forms

τ = 2Ω∗
1b + 2Ω∗

2(I1b− b2)− pI

+ 2Ω∗
5D⊗D + 2Ω∗

6(D⊗ bD + bD⊗D), (32)

E = 2
(
Ω∗

4b
−1D + Ω∗

5D + Ω∗
6bD

)
. (33)

The polarization is again given by (20)1 with D = FDl. Here, we define Ω∗
i

to be ∂Ω∗/∂Ii for i = 1, 2 and ∂Ω∗/∂Ki for i = 4, 5, 6.

3.3 The reference configuration

If the material is not subject to any mechanical boundary tractions or me-
chanical body forces then, in general, application of an electric field will
induce the material to deform, a phenomenon known as electrostriction. Let
the resulting configuration be taken as the reference configuration, which we
now denote by Br to distinguish it from B0. These two reference configura-
tions can be taken to coincide if appropriate loads are applied to the body,
which will result in a (residual) stress distribution throughout the material.
In such a case we denote the values of τ ,E,D and P in this configuration by
τ 0,E0,D0 and P0, respectively. Again we focus on incompressible materials.
With I3 ≡ 1 and F = I the invariants (25), (26) and (31) reduce to

I1 = I2 = 3, I4 = I5 = I6 = E0 · E0, K4 = K5 = K6 = D0 ·D0. (34)

Then, in terms of Ω and Ω∗ the expressions for the total stress tensor τ 0

simplify to

τ 0 = [2(Ω1 + 2Ω2)− p ] I− 2(Ω5 + 2Ω6)E0 ⊗ E0, (35)

and
τ 0 = [2(Ω∗

1 + 2Ω∗
2)− p ] I + 2(Ω∗

5 + 2Ω∗
6)D0 ⊗D0, (36)

respectively, with Ωi and Ω∗
i evaluated for the appropriate subset of invariants

(34).
The corresponding expressions for the electric field vectors may be simpli-

fied by defining Ω0(I4) ≡ Ω(3, 3, I4, I4, I4) and Ω∗
0(K4) ≡ Ω∗(3, 3, K4, K4, K4).

Then, we obtain the specializations of D in (28) and P as

D0 = −2Ω′
0(I4)E0, P0 = D0 − ε0E0, (37)

where the prime signifies differentiation with respect to I4.
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Similarly, for E in (33) and P the specializations are

E0 = 2Ω∗
0
′(K4)D0, P0 = D0 − ε0E0, (38)

with the prime signifying differentiation with respect to K4.
In this configuration E0, D0 and τ 0 must satisfy the equations

CurlE0 = 0, DivD0 = 0, Divτ 0 = 0. (39)

4 Problems with cylindrical symmetry

We consider an incompressible isotropic ES material in the absence of me-
chanical body forces and subject to an (in general non-uniform) electric
field. The analysis is based on use of either the energy function Ω, re-
garded as a function of the invariants I1, I2, I4, I5, I6, or Ω∗, as a function
of I1, I2, K4, K5, K6. We work in terms of the Eulerian versions of the field
equations, which are collected together here as

divτ = 0, curlE = 0, divD = 0. (40)

For the formulation based on Ω the explicit expressions for the total stress
tensor τ and the electric displacement D are as given in equations (27) and
(28), with E = F−TEl, while for the formulation in terms of Ω∗, τ is given
by (32) and the electric field E by (33), with D = FDl.

We now specialize these equations for the geometry of a thick-walled cir-
cular cylindrical tube for which cylindrical symmetry is maintained during
deformation. We work in terms of cylindrical polar coordinates. In the refer-
ence configuration these are denoted by (R, Θ, Z) and in the deformed con-
figuration by (r, θ, z). We begin by considering the reference configuration,
in which equations (39)1,2 take the explicit forms

1

R

∂E0Z

∂Θ
− ∂E0Θ

∂Z
= 0,

∂E0R

∂Z
− ∂E0Z

∂R
= 0,

1

R

∂(RE0Θ)

∂R
− 1

R

∂E0R

∂Θ
= 0, (41)

and
∂D0R

∂R
+

1

R
D0R +

1

R

∂D0Θ

∂Θ
+

∂D0Z

∂Z
= 0, (42)

where (E0R, E0Θ, E0Z) are the components of the applied electric field E0 and
(D0R, D0Θ, D0Z) those of the electric induction D0.

Since we are assuming cylindrical symmetry there is no dependence on
either Θ or Z and the above equations may therefore be integrated to give

RD0R = constant, RE0Θ = constant, E0Z = constant. (43)
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The first thing to note, in the case of the component E0Θ, is that the
associated electrostatic potential has the form cΘ + d, where c and d are
constants. This function is not single valued, and hence, for a complete tube
(0 ≤ Θ ≤ 2π), must be discounted. Thus, we take E0Θ = 0 and in the
following consider only radial and axial electric fields.

A general comment is in order concerning the considered geometry. Strictly,
the analysis presented below applies only for a tube of infinite length since
the boundary conditions for E and D on the ends of a tube of finite length
are not in general compatible with those on the lateral surfaces of the tube.
Thus, end effects will be present. However, if the tube is of sufficient length
compared with its outer radius then the influence of such effects can be ne-
glected throughout most of the tube length.

4.1 Azimuthal shear

The cross-sectional geometry of the tube in the reference configuration is
specified by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, (44)

where A and B are the inner and outer radii, respectively. A (pure) azimuthal
shear deformation is defined by

r = R, θ = Θ + φ(R), z = Z, (45)

where φ is a function of R that has to be determined by solution of the
governing equations and application of the boundary conditions. For details
of this deformation for a purely elastic material, we refer to Jiang and Ogden
[9], for example, and references therein.

Referred to the two sets of cylindrical polar coordinate axes, the compo-
nent matrix of the deformation gradient F, denoted F, is given by

F =




1 0 0
rφ′(r) 1 0

0 0 1


 , (46)

where, since r = R, φ is now being treated as a function of r. For notational
convenience, we write γ = rφ′(r), with the prime indicating differentiation
with respect to r, and note that the deformation is locally a simple shear
with amount of shear γ. The corresponding matrices for b and c, written b
and c, are

b =




1 γ 0
γ 1 + γ2 0
0 0 1


 , c =




1 + γ2 γ 0
γ 1 0
0 0 1


 , (47)
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and the associated principal invariants are, from (25),

I1 = I2 = 3 + γ2, I3 ≡ 1. (48)

For the considered circular symmetry the equilibrium equation (40)1 re-
duces to the radial and azimuthal component equations

r
dτrr

dr
= τθθ − τrr,

d

dr
(r2τrθ) = 0. (49)

4.1.1 Electric (displacement) field

We work in terms of the energy function Ω∗ and identify the Lagrangian field
Dl with the initial field D0 in the reference configuration B0. (Because of
the incompressibility and the form of the considered deformation, there is no
electrostriction associated with D0 and Br = B0.) It follows that the field
D = FD0 in the deformed configuration B automatically satisfies the field
equation divD = 0. For definiteness we take D0 to be purely radial with
radial component D0R. The invariants K4, K5, K6 are then calculated from
(31) and (47)2 as

K4 = D2
0R, K5 = (1 + γ2)K4, K6 = (1 + 3γ2 + γ4)K4, (50)

which are functions of the radius r.
The components of D in the deformed configuration are calculated from

the component form of D = FD0 as

Dr = D0R, Dθ = γD0R, Dz = 0, (51)

while the components of the electric field E are given by (33) as

Er = 2[Ω∗
4 + Ω∗

5 + (1 + γ2)Ω∗
6]D0R, Eθ = 2γ[Ω∗

5 + (2 + γ2)Ω∗
6]D0R, (52)

with the axial component Ez = 0. Note, in particular, that F−TE0 is not in
general the same as E, i.e. El 6= E0, and hence E does not automatically
satisfy the field equation curlE = 0. Because of the cylindrical symmetry,
Eθ must vanish for the same reason as E0θ vanishes, and, hence, we must
have

Ω∗
5 + (2 + γ2)Ω∗

6 = 0. (53)

This condition also arises in the helical shear problem, which was discussed
briefly by Bustamante and Ogden [2] in the context of universal relations.

In general, for a given form of Ω∗, equation (53) will not be satisfied.
However, it can be satisfied for particular classes of energy function Ω∗.
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Bearing in mind that, for the considered deformation, we have I2 = I1 =
3 + γ2, one such class is given by

Ω∗ = G(I1, I2, K4) + H(I1, I2, K), (54)

where K = K6 − (I1 − 1)K5 and G and H are ‘arbitrary’, but suitably
well-behaved, functions.

Given that the above restrictions are satisfied, and hence Eθ = 0, the
components of the polarization are given by

Pr = D0R − 2ε0(Ω
∗
4 − Ω∗

6)D0R, Pθ = γD0R, Pz = 0, (55)

use having been made of (53) in the expression for Pr.
Restrictions, such as (53), on the energy function arise naturally because

of the assumptions on the form of geometry, deformation and electric (or
electric displacement) field, as demonstrated previously by Dorfmann and
Ogden [4] for electroelastic problems. Similar restrictions arise in magnetoe-
lastic problems, as discussed, for example, by Dorfmann and Ogden [3]. This
is a consequence of the semi-inverse approach adopted.

4.1.2 Stress components and equilibrium

Turning next to the stress components, we calculate the (non-zero) compo-
nents of τ from equation (32) as

τrr = −p + 2(Ω∗
1 + 2Ω∗

2) + 2[Ω∗
5 + 2(1 + γ2)Ω∗

6]K4, (56)

τθθ = −p + 2(Ω∗
1 + 2Ω∗

2) + 2γ2(Ω∗
1 + Ω∗

2) + 2γ2[Ω∗
5 + 2(2 + γ2)Ω∗

6]K4, (57)

τzz = −p + 2[Ω∗
1 + (2 + γ2)Ω∗

2], (58)

τrθ = 2γ(Ω∗
1 + Ω∗

2) + 2γ[Ω∗
5 + (3 + 2γ2)Ω∗

6]K4. (59)

In view of (48) and (50) the invariants can all be expressed in terms of
the independent quantities γ and K4. It is therefore convenient to define a
reduced form ω∗ of the energy function by

ω∗(γ, K4) = Ω∗(I1, I2, K4, K5, K6), (60)

where the right-hand side is evaluated for (48) and (50). The expressions for
τrθ and Er then simplify to

τrθ = ω∗γ, Er = 2ω∗4D0R, (61)

where ω∗γ = ∂ω∗/∂γ and ω∗4 = ∂ω∗/∂K4.
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The connection
τθθ − τrr − γτrθ = −2γ2K4Ω

∗
6 (62)

can also be shown to hold. Note that the right-hand side of (62) vanishes if
Ω∗ is independent of K6. Then, however, by (53), Ω∗ must also be indepen-
dent of K5. In this case equation (62) yields a ‘universal relation’ between
the components of stress, i.e. a relation independent of the form of energy
function within the restricted class of functions Ω∗ = Ω∗(I1, I2, K4), identical
to that arising in the corresponding purely elastic problem. Of course, if
K4 = 0 the elastic result is recovered.

Combination of the integration of equation (49)2 with (61)1 leads to

ω∗γ =
τθb

2

r2
, (63)

where τθ is the value of the shear stress τrθ on the boundary r = b. For a given
Ω∗, and hence ω∗, and for a known electric field component D0R, equation
(63) can in principle be solved for γ = rφ′(r), and then the deformation
function φ(r) is obtained by integration.

For the azimuthal shear problem considered here, we take the boundary
conditions to be

φ(a) = 0, φ(b) = ψ, (64)

which correspond to the inner boundary being held fixed and the outer
boundary rotated by a given angle ψ.

Equation (49)1 is not used here since, in conjunction with the Maxwell
stress on the tube boundaries r = a, b, it merely determines the radial traction
on the boundaries, which are subject to the placement boundary conditions
(64).

4.1.3 Illustration

To illustrate the effect of an electric field on the response of the considered
material under large azimuthal deformations, we consider the reduced energy
function

ω∗(γ,K4) =
µ∗(K4)

k

[(
2 + γ2

2

)k

− 1

]
+ ν∗(K4), (65)

where k is a constant and µ∗ is the shear modulus of the material in the
undeformed configuration (γ = 0) and depends on the electric field through
the invariant K4, as does the function ν∗. The latter function describes the
energy (per unit volume) in the material associated with the electric field
when γ = 0 and must satisfy the condition ν∗(0) = 0.
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From (61)1 we calculate the associated shear stress

τrθ = µ∗(K4)γ

(
2 + γ2

2

)k−1

, (66)

and we note, in particular, that this does not depend on the function ν∗(K4).
Also, from (61)2, we obtain

Er = 2
µ∗′(K4)

k

[(
2 + γ2

2

)k

− 1

]
D0R + 2ν∗′(K4)D0R, (67)

which reduces to
E0R = 2ν∗′(K4)D0R (68)

when γ = 0. The corresponding polarization component is, by (38)2,

P0R = [1− 2ε0ν
∗′(K4)]D0R, (69)

which shows that the function ν∗(K4), through its derivative, is a measure
of the polarization in the material.

In the absence of an electric field the energy function reduces to the
strain-energy function of an elastic material, given by

ω∗(γ, 0) =
µ∗(0)

k

[(
2 + γ2

2

)k

− 1

]
, (70)

for the considered deformation. Note that µ∗(0) corresponds to the shear
modulus of the elastic material in the reference configuration.

The strain-energy function (70) is one of the classes of energy functions
considered by Jiang and Ogden [9]. Thus, equation (65) can be seen as a
natural extension of this class to the electroelastic situation. More generally,
we can consider (65) as being derived from an Ω∗ = Ω∗(I1, K4) given by

Ω∗(I1, K4) =
µ∗(K4)

k

[(
I1 − 1

2

)k

− 1

]
+ ν∗(K4), (71)

although this is not the only possible form of Ω∗ that reduces to the particular
form of ω∗ given by (65). Note that the energy function (71) satisfies the
condition (53). As discussed in Jiang and Ogden [9], for the shear stress to
be a monotonic increasing function of γ we must have k ≥ 1/2.

For the energy function (65) the azimuthal shear response equation (63)
gives

µ∗(K4)γ

(
2 + γ2

2

)k−1

=
τθb

2

r2
, (72)
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and we recall that γ = rφ
′
(r).

For definiteness and for purposes of numerical calculation, we now take
k = 3/4 and µ∗(K4) to depend linearly on K4 in the form

µ∗(K4) = µ∗(0) + µ∗1K4, (73)

where µ∗1 is a positive material constant. We recall that K4 = D2
0R and that

D0R = c/r, where c is a constant quantifying the magnitude of the applied
electric field. It will be convenient in what follows to define the dimensionless
quantities

τ = τθ/µ
∗(0), r̄ = r/b, e = µ∗1c

2/µ∗(0)b2, (74)

and we note, in particular, that e reflects the material properties through the
ratio µ∗1/µ

∗(0) and the magnitude of the electric field through c.
Equation (72) now reduces to

γ

(
1 +

1

2
γ2

)−1/4

= x, (75)

where x is defined as
x =

τ

r̄ 2 + e
. (76)

This allows an explicit unique positive solution to be obtained for γ in
the form

γ =
1

2
x

[
x2 +

(
x4 + 16

)1/2
]1/2

. (77)

Next, using the connection γ = rφ′(r) and the boundary conditions (64), we
obtain the integral

ψ = φ(b) =
1

2

∫ b

a

x
[
x2 +

(
x4 + 16

)1/2
]1/2 dr

r
. (78)

On changing the variable of integration to x this becomes

ψ =
τ

4

∫ τ/(η+e)

τ/(1+e)

[
x2 +

(
x4 + 16

)1/2
]1/2 dx

τ − ex
, (79)

where η = a2/b2.
Equation (79) gives ψ as a function of τ when the values of η and e are

specified. In Figure 1, based on this equation, we plot τ as a function of
ψ for the case of no electric field (e = 0) and for the two values 0.2, 0.4 of
e. We have set η = 0.5 (b = a

√
2), which represents a moderate value of

the tube thickness. Note that the integral (79) can be evaluated in closed
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Figure 1: Plot of the dimensionless shear stress τ on r = b against the angle
of rotation ψ based on equation (79) for e = 0, 0.2, 0.4 and η = 0.5.

form for e = 0 (see Jiang and Ogden [9] for the result). Figure 1 shows how
the presence of an electric field stiffens the mechanical shear response of the
material, which reflects the choice of the specific form of the function µ∗(K4)
in (73).

Finally in this section we remark that the formulation based on Ω rather
than Ω∗ can equally well be used for this problem, with rather similar results,
except that the restrictions on Ω analogous to (53) are somewhat different.
We omit the details here and refer to the discussion in Bustamante and
Ogden [2] with reference to helical shear. A discussion on the consequences
of using formulations based on Ω and Ω∗ for the corresponding magnetoelastic
situation is provided by Dorfmann and Ogden [3]. A parallel analysis can
be conducted for an axial electric field instead of a radial field, but the
general pattern of the results is similar to that presented here so is not given
separately.

4.2 Extension and inflation of a tube

In this section we apply the theory of ES materials to a circular cylindrical
tube with reference configuration in cylindrical polar coordinates (R, Θ, Z)
given again by (44). The deformation consists of a combined uniform axial
extension (or contraction) and radial inflation (or deflation), with cylindrical
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symmetry maintained. All variables again depend only on the radius r. The
cross-section of the deformed configuration is described in the cylindrical
polar coordinates (r, θ, z) by the equations

a ≤ r ≤ b, 0 ≤ θ ≤ 2π. (80)

Again we are considering an incompressible material and the deformation is
therefore expressed in the standard form

r2 = a2 + λ−1
z (R2 − A2), θ = Θ, z = λzZ, (81)

where λz is the axial stretch, which is independent of r. The component
matrix of the deformation gradient F is diagonal with respect to the two
sets of cylindrical polar coordinate axes and its (r, θ, z) normal components
are (λ−1λ−1

z , λ, λz), respectively, where λ = r/R is the azimuthal stretch and
λ−1λ−1

z the radial stretch.
Because of the incompressibility condition, this deformation may be de-

scribed by two independent stretches, and for this purpose we use λ and λz.
The two independent invariants I1 and I2 defined in (25)1,2 have the forms

I1 = λ−2λ−2
z + λ2 + λ2

z, I2 = λ2λ2
z + λ−2 + λ−2

z (82)

in terms of the stretches.
For this problem we use the formulation based on Ω with the electric field

El as the independent variable. In the azimuthal problem we considered an
initial electric field in the (undeformed) reference configuration and this was
possible because of the confining lateral boundaries which did not allow de-
formation to result from application of the electric field (no electrostriction)
but, instead, generated a residual stress. In the present problem the bound-
ary conditions are different and application of an electric field (radial or axial)
will cause the material to deform. For this reason we consider the electric
field E in the deformed configuration and construct the independent vari-
able El from it via the formula El = FTE, with D then being given by the
constitutive equation (28).

4.2.1 Electric field components

As for the azimuthal shear problem there can be no azimuthal electric field.
Thus, we restrict attention to an electric field with radial and axial compo-
nents Er and Ez, respectively. Because of the form of the deformation, it
follows that Dθ = 0. Since the equations divD = 0 and curlE = 0 must hold
and there is dependence only on r we deduce that

rDr = constant, Ez = constant, (83)
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but no restrictions are placed on Dz and Er by these equations.
In view of the form of the deformation, from the connection El = FTE

we obtain the components

ElR = λ−1λ−1
z Er, ElZ = λzEz. (84)

The invariants I4, I5, I6 given by (26) now specialize to

I4 = E2
lR + E2

lZ , I5 = λ2λ2
zE

2
lR + λ−2

z E2
lZ , I6 = λ4λ4

zE
2
lR + λ−4

z E2
lZ , (85)

the components of the magnetic induction vector D are

Dr = −2(Ω4λ
−2λ−2

z + Ω5 + Ω6λ
2λ2

z)Er, (86)

Dz = −2(Ω4λ
2
z + Ω5 + Ω6λ

−2
z )Ez, (87)

and the corresponding components of the polarization are given by equation
(20)1. Note that, in view of (83)1, equation (86) can be regarded as deter-
mining Er when the form of the function Ω is given. Thus, no restriction on
Ω analogous to that on Ω∗ in the azimuthal shear problem, i.e. (53), arises
from this correlation.

4.2.2 Stress components and equilibrium equation

From equation (27) we obtain the non-zero components of the stress τ as

τrr = −p + 2λ−2λ−2
z [Ω1 + Ω2(λ

2 + λ2
z)]− 2(Ω5 + 2Ω6λ

2λ2
z)E

2
r , (88)

τθθ = −p + 2λ2[Ω1 + Ω2(λ
−2λ−2

z + λ2
z)], (89)

τzz = −p + 2λ2
z[Ω1 + Ω2(λ

−2λ−2
z + λ2)]− 2(Ω5 + 2Ω6λ

−2
z )E2

z , (90)

τrz = −2ErEz[Ω5 + Ω6(λ
2λ2

z + λ−2
z )]. (91)

The equilibrium equation divτ = 0 reduces to the two component equations

d

dr
(rτrr) = τθθ,

d

dr
(rτrz) = 0. (92)

The latter equation integrates to give rτrz = constant, which must be con-
sistent with the expression (91). This point will be considered in Section
4.2.5.

Suppose the exterior of the body is a vacuum, for example. Then, by
specializing equation (14), the Maxwell stress has non-zero components given
by

−τmrr = τmzz = τmθθ + ε0E
2
z = −1

2
ε0(E

2
r − E2

z ), τmrz = ε0ErEz. (93)

The loads associated with these stress components need to be accounted for
in considering the continuity of traction on the boundaries r = a, b.

In the following we consider separately an axial and then a radial electric
field, followed by a brief examination of their combined effect.
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4.2.3 Axial electric field

We now specialize to the case Er = 0, so that the invariants (85) reduce to

I4 = E2
lZ = λ2

zE
2
z , I5 = λ−2

z I4, I6 = λ−4
z I4, (94)

while I1 and I2 are unchanged and given by (82).
Since the invariants I1, I2, I4, I5, I6 depend only on the three independent

quantities λ, λz, I4, it is convenient, in parallel with the definition of ω∗ in
(60), to define a reduced energy function ω in the form

ω(λ, λz, I4) = Ω(I1, I2, I4, I5, I6), (95)

in which the right-hand side is evaluated for (82) and (94). This allows the
stress differences to be written in the simple forms

τθθ − τrr = λωλ, τzz − τrr = λzωλz , (96)

where ωλ = ∂ω/∂λ and ωλz = ∂ω/∂λz. In terms of ω equation (87) simplifies
to

Dz = −2λ2
zω4Ez, (97)

where ω4 = ∂ω/∂I4. The corresponding polarization component is obtained
from equation (20)1 and is given by

Pz = Dz − ε0Ez = −(2ω4λ
2
z + ε0)Ez. (98)

Since Er = Eθ = 0 it follows that Dr = Dθ = 0 and Pr = Pθ = 0.
The equilibrium equation (92)1 can now be written

r
dτrr

dr
= λωλ, (99)

while, since Er = 0 and hence, by (91), τrz = 0, equation (92)2 is satisfied
identically.

The Maxwell stress components (93) reduce to

τmrr = τmθθ = −1

2
ε0E

2
z = −τmzz. (100)

Now, according to the continuity condition (12)2, Ez must be continuous
across the boundaries r = a, b, and since it is independent of r within the
material it is spatially uniform for all r. Note that τmrr contributes to the
radial traction on the boundaries r = a and r = b and the axial stress τmzz

contributes to the resulting axial load on any cross-section of the tube.
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Let the tube be subjected to a pressure P on the inner surface r = a with
no mechanical loads applied to the outside surface r = b. The two boundary
conditions, including the radial Maxwell stress component τmrr, are

τrr = −P − 1

2
ε0E

2
z on r = a, τrr = −1

2
ε0E

2
z on r = b. (101)

Integration of equation (99) and use of the boundary conditions (101) leads
to

P =

∫ b

a

λωλ
dr

r
. (102)

Since, from (81), we have b2 = a2 + λ−1
z (B2−A2), equation (102) provides a

relationship between the pressure P and the inner deformed radius a when
λz is known. Note that this formula does not involve the Maxwell stress
since τmrr has the same value on each boundary. Thus, (102) has precisely
the same form as for a purely elastic material (see, for example, Haughton
and Ogden [7]) except that ω here depends on I4.

The resultant axial load N on any cross-section of the tube is calculated
from

N = 2π

∫ b

a

τzzrdr. (103)

Use of the expressions for the stress differences in (96), the equilibrium equa-
tion (92)1, the boundary conditions (101) and the expression in (100) for
τmzz gives, for the axial load N ,

N = π

∫ b

a

(2λzωλz − λωλ)rdr + πa2P − 1

2
π(b2 − a2)ε0E

2
z . (104)

For the corresponding expression in the purely elastic case, we refer to Ogden
[12], for example.

Suppose now we examine the influence of the electric field alone with no
mechanical tractions applied, i.e. we set P = 0. Consider the integrand in
(102), which, by (88), (89) and (96)1, gives

λωλ = 2λ−2λ−2
z (Ω1 + λ2

zΩ2)(λ
4λ2

z − 1). (105)

For an elastic material the term Ω1 + λ2
zΩ2 is usually taken to be positive

(this follows from the Baker-Ericksen inequalities, for example, and the term
is also closely related to the shear modulus of the material; for details see,
for example, Truesdell and Noll [15]). We therefore adopt this condition
also in the present context. Now, from equation (81)1 and the definition of
λ (= r/R), we obtain

(λ2λz − 1)R2 = (λ2
aλz − 1)A2, (106)

21



where λa = a/A. This shows that λ2λz − 1 is either positive, negative or
zero throughout the range A ≤ R ≤ B, and hence the integral (102) cannot
vanish unless λ2λz = 1 for A ≤ R ≤ B. The deformation must therefore be
homogeneous and the radial stress must be uniform and equal to the Maxwell
stress −ε0E

2
z/2. The resulting value of the axial load N is

N = π(b2 − a2)

(
λzωλz −

1

2
ε0E

2
z

)
. (107)

From equations (88), (90) and (96), on use of the connection λ2λz = 1,
we obtain

λzωλz = 2λ−1
z (Ω1 + λ−1

z Ω2)(λ
3
z − 1)− 2(Ω5 + 2λ−2

z Ω6)E
2
z , (108)

evaluated for λ2λz = 1.
One possible solution of interest arises when λ = λz = 1. Then, on use

of equation (108), equation (107) reduces to

N = −2π(b2 − a2)

(
Ω5 + 2Ω6 +

1

4
ε0

)
E2

z . (109)

This is the axial load required to maintain the undeformed configuration
in the presence of the applied axial electric field. If the sign of the term
Ω5 + 2Ω6 + 1

4
ε0 is positive (negative) then N is negative (positive) and the

electric field tends to lengthen (shorten) the tube.

4.2.4 Radial electric field

We now take Ez = 0 and consider a radial field with component Er. The
invariants (85) are then reduced to

I4 = E2
lR = λ−2λ−2

z E2
r , I5 = λ2λ2

zI4, I6 = λ4λ4
zI4. (110)

As in Section 4.2.3 we define the reduced energy function ω according to (95),
but now with I4, I5, I6 defined by (110). The expressions for the principal
stress differences in the material have the forms given by equation (96) and
are not be repeated here, and again τrz = 0. From equation (86) we obtain

Dr = −2λ−2λ−2
z ω4Er, (111)

and the corresponding polarization is

Pr = Dr − ε0Er = −(2ω4λ
−2λ−2

z + ε0)Er. (112)
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Outside the tube, the non-zero Maxwell stress components are given by

τmθθ = τmzz = −1

2
ε0E

2
r = −τmrr. (113)

In the present situation, since Er depends on r, the Maxwell stress influences
the pressure-radius relation, which, on integration of (99) again and use of
the expression for τmrr in (113), takes the form

P + τm(b)− τm(a) =

∫ b

a

λωλ
dr

r
, (114)

where τm(r) = ε0E
2
r/2.

The axial load N is obtained similarly to equation (104) and is given by

N = π

∫ b

a

(2λzωλz − λωλ)rdr + πa2P + π[b2τm(b)− a2τm(a)]. (115)

However, the latter term in (115) vanishes and the Maxwell stress does not
affect the axial load, as we now show.

First, we recall from (83) that rDr = c, where c is a constant. Also,
by the continuity condition (12), specialized to the present situation, we see
that Dr is continuous across the surfaces r = a, b. Moreover, since D = ε0E
outside the material, it follows that the values of Er required in the Maxwell
stress expressions (113) are c/aε0 and c/bε0 on r = a and r = b, respectively.
Hence, b2τm(b) = a2τm(a) (= c2/2ε0).

Now, with reference to (114), we calculate

τm(b)− τm(a) = −(b2 − a2)c2

2ε0a2b2
, (116)

which is negative. Hence, the effect of a radial electric field is to counteract
the effect of an inflating pressure (P > 0).

For this problem we have

λωλ = 2λ−2λ−2
z (Ω1 + λ2

zΩ2)(λ
4λ2

z − 1) + 2(Ω5 + 2λ2λ2
zΩ6)E

2
r , (117)

λzωλz = 2λ−2λ−2
z (Ω1 + λ2Ω2)(λ

2λ4
z − 1). (118)

If P = 0 and the electric field is applied in such a way that the reference
configuration λ = λz = 1 is maintained then

τm(b)− τm(a) = 2

∫ b

a

(Ω5 + 2Ω6)E
2
r

dr

r
, (119)
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which must be negative. The inequality Ω5 + 2Ω6 < 0 is consistent with this
requirement, and if it holds then

N = −2π

∫ b

a

(Ω5 + 2Ω6)E
2
r rdr (120)

is positive, i.e. a tensile axial load is required to prevent the tube shortening
under the influence of the electric field.

By contrast, if we consider an energy function of the form

Ω(I1, I4) =
1

2
µ(I4)(I1 − 3) + ν(I4) −→ ω(λ, λz, I4), (121)

where µ(I4) and ν(I4) are functions of I4 analogous to µ∗(K4) and ν∗(K4) in
(71) with k = 1, then, for λz fixed at 1, we obtain, for P = 0,

τm(b)− τm(a) =

∫ b

a

µ(I4)(λ
2 − λ−2)

dr

r
. (122)

For this to be negative (assuming µ(I4) > 0) we require λ < 1, and then

N = −π

∫ b

a

µ(I4)(λ− λ−1)2rdr (123)

is also negative, thus giving the opposite characteristics compared with the
previous example. The electric field tends to lengthen the tube. Clearly,
the issue of the choice of energy function is critical here and requires more
investigation in the light of experimental data, of which there is relatively
little available for the types of material envisaged.

4.2.5 Combined axial and radial electric fields

When Er 6= 0 and Ez 6= 0 the stress component τrz given by (91) is in general
non-zero. When it is combined with the solution of equation (92)2, we obtain

τrz = −2[Ω5 + Ω6(λ
2λ2

z + λ−2
z )]ErEz =

cτ

r
, (124)

where cτ is a constant. Similarly, for the radial component Dr we have, from
(86) combined with (83),

Dr = −2(Ω4λ
−2λ−2

z + Ω5 + Ω6λ
2λ2

z)Er =
cd

r
, (125)

where cd is a constant.
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The stress τrz must match the Maxwell stress τmrz given by (93) on r = a
and r = b if there is no applied mechanical shear traction. Now τmrz =
ε0ErEz, which, since D = ε0E outside the material, can also be written
DrEz. But Dr is continuous across any surface r = constant, so that, on
r = a, for example, we have τmrz = cdEz/a, while τrz = cτ/a. Since these
must be equal, we have the connection

cτ = cdEz (126)

(recall that Ez is a constant).
Using this latter connection and combining (124) and (125) we obtain,

after a little rearrangement, the restriction

Ω4 = λ2Ω6 (127)

on Ω. Thus, only energy functions satisfying this condition can support the
two-component electric field for the considered deformation.

It is interesting to write (127) in an alternative way. For this purpose we
note the connection

I6 = (λ2λ2
z + λ−2

z )I5 − λ2I4, (128)

which can be obtained from (84) and (85). This means that since there
are only two components of the electric field only two of the three invariants
I4, I5, I6 are independent, which prompts the introduction of another reduced
form of Ω. We denote this by Ω̂, which is a function of I1, I2, I4, I5 defined
by

Ω̂(I1, I2, I4, I5) = Ω(I1, I2, I4, I5, I6), (129)

with I6 on the right-hand side replaced by the expression in (128). A simple
calculation shows that Ω̂4 = Ω4−λ2Ω6 and equation (127) therefore becomes

Ω̂4 = 0, (130)

which is satisfied for any Ω̂ of the form Ω̂ = Ω̂(I1, I2, I5).

5 Inflation of a spherical shell

5.1 Kinematics

Consider a thick-walled spherical shell for which the reference configuration
B0 is described in terms of spherical polar coordinates (R, Θ, Φ) by

A ≤ R ≤ B, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π, (131)
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where A and B are the inner and outer radii of the shell. The shell is now
inflated (or deflated) radially and symmetrically. Since we are considering an
incompressible material, the deformation can be described in the standard
form

r3 = R3 + a3 − A3, θ = Θ, φ = Φ, (132)

with a ≤ r ≤ b, where (r, θ, φ) are spherical polar coordinates in the deformed
configuration and a and b the inner and outer radii of the deformed shell.

The deformation gradient with respect to the spherical polar coordinate
axes is diagonal and the associated principal stretches are given by

λ1 = λ−2, λ2 = λ3 = λ =
r

R
, (133)

λ being the (equibiaxial) principal stretch locally in the plane normal to the
radial direction. In terms of λ the associated principal invariants have the
forms

I1 = 2λ2 + λ−4, I2 = 2λ−2 + λ4. (134)

5.2 The electric and stress field components

Because of the spherical symmetry we consider only a radial electric field and
electric induction, with components Er and Dr, respectively, which depend
only on r. The equation curlE is then satisfied identically, and divD = 0
leads to

r2Dr = c, (135)

where again c is a constant.
We work now in terms of the formulation based on use of Dl = F−1D

as the independent electric variable, which has just the single component
DlR = λ2Dr. The associated invariants are then

K4 = D2
lR, K5 = λ−4K4, K6 = λ−8K4. (136)

The (isotropic) energy function Ω∗ is regarded as a function of I1, I2, K4, K5, K6.
The electric field component Er is obtained from equation (33) as

Er = 2(Ω∗
4λ

4 + Ω∗
5 + Ω∗

6λ
−4)Dr (137)

and the corresponding radial polarization is given by

Pr = Dr − ε0Er = [1− 2ε0(Ω
∗
4λ

4 + Ω∗
5 + Ω∗

6λ
−4)]Dr. (138)
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From equation (32) the total stress tensor has components

τrr = −p + 2
[
Ω∗

1λ
−4 + 2 Ω∗

2λ
−2 + (Ω∗

5λ
−4 + 2 Ω∗

6λ
−8)K4

]
, (139)

τθθ = τφφ = −p + 2
[
Ω∗

1λ
2 + Ω∗

2(λ
4 + λ−2)

]
, (140)

and the equilibrium equation (40)1 reduces, for the spherical symmetric de-
formation considered, to the radial component equation

dτrr

dr
=

2

r
(τθθ − τrr). (141)

For the spherically-symmetric deformation of the spherical shell subject
to a radial electric field all invariants can be expressed in terms of two inde-
pendent quantities, namely the stretch λ and the invariant K4. It is therefore
convenient to introduce again a reduced energy function ω∗, this time defined
by

ω∗(λ,K4) = Ω∗(I1, I2, K4, K5, K6), (142)

with I1 and I2 given by (134) and K4, K5, K6 by (136). The radial electric
field (137) and the polarization (138) are then given simply by

Er = 2λ4ω∗4Dr, Pr = (1− 2 ε0λ
4ω∗4)Dr, (143)

where ω∗4 = ∂ω∗/∂K4, and the stress difference via

2(τθθ − τrr) = λω∗λ, (144)

where ω∗λ = ∂ω∗/∂λ. The equilibrium equation (141) can now be written

r
dτrr

dr
= λω∗λ. (145)

Outside the material, assumed to be vacuum, the electric field is given
by Er = ε−1

0 Dr and, by (14), the radial component of the Maxwell stress is
obtained as

τmrr =
1

2
ε−1
0 D2

r ≡ τm(r), (146)

wherein the notation τm(r) is defined.
The boundary r = b is assumed to be free of mechanical traction and on

the inner boundary r = a a pressure P is applied. On accounting for the
Maxwell stress, it follows that the boundary conditions are

τrr = −P + τm(a) on r = a, τrr = τm(b) on r = b. (147)
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Integration of equation (145) and use of the boundary conditions (147) yields

P + τm(b)− τm(a) =

∫ b

a

λω∗λ
dr

r
. (148)

For details of the analysis of the inflation of an elastic spherical shell and its
stability we refer to, for example, Haughton and Ogden [6] and Ogden [12].

From (135) and (146) we obtain

τm(b)− τm(a) = −(b4 − a4)c2
d

2ε0a4b4
, (149)

which is negative. Hence, similarly to the corresponding problem of a tube
considered in Section 4.2.4, the radial field counteracts the effect of an inflat-
ing pressure.

From (139), (140) and (144) it follows that

λω∗λ = 4λ−4
[(

Ω∗
1 + λ2Ω∗

2

) (
λ6 − 1

)− (
Ω∗

5 + 2λ−4Ω∗
6

)
K4

]
. (150)

The reference configuration λ = 1 can be maintained by the combined action
of pressure and the electric field provided

P + τm(b)− τm(a) = −4

∫ b

a

(Ω∗
5 + 2Ω∗

6) K4
dr

r
. (151)

More particularly, if P = 0 then the right-hand side of (151) must be negative,
which suggests that it is reasonable to adopt the inequality Ω∗

5 + 2Ω∗
6 > 0.

Note, however, that this does not hold for restricted models of the form (71)
or for Ω∗ = Ω∗(I1, I2, K4).

6 Conclusions

In this paper we have summarized the equations for a theory of nonlinear
electroelasticity following the formulation of Dorfmann and Ogden [4] and
then applied them in the case of an incompressible isotropic material to three
problems that illustrate the effects of electroelastic interactions in electro-
sensitive materials that are capable of large deformations.

Two alternative constitutive formulations, based on different choices of
independent electric variable, have been used. The selection of the electric
field or the electric induction as the independent variable is an important
consideration. For certain combinations of deformations and electric fields
one choice of the independent variable may lead to restrictions on the admis-
sible class of constitutive laws while the other does not, as has been discussed
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by Bustamante and Ogden [2] and, in the context of magnetoelasticity, by
Dorfmann and Ogden [3].

A key issue is the selection of realistic forms of energy function Ω (or Ω∗)
to model the response of large deformation electro-sensitive materials, such
as ES elastomers. Here, in Section 4.1.3, in the reduced form of ω∗ given
by (65), we have introduced a prototype model, but further exploration of
the efficacy of specific models is needed from several perspectives. These
include mathematical aspects concerned with the properties of the governing
equations, the evaluation of stability inequalities, such as strong ellipticity,
and the assessment of large deformation material response against a body of
experimental data that catalogues the dependence of the mechanical response
on the electric field strength and direction for specific geometries. There is a
pressing need for comprehensive sets of data since data of the required kind
are not currently available.
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