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Abstract 

The path-dependence of the J-integral is investigated numerically, via the finite element 
method, for a range of loadings, Poisson's ratios, and hardening exponents within the 
context of J2-flow plasticity.  Small-scale yielding assumptions are employed using 
Dirichlet-to-Neumann map boundary conditions on a circular boundary that encloses 
the plastic zone.  This construct allows for a dense finite element mesh within the 
plastic zone and accurate far-field boundary conditions.  Details of the crack tip field 
that have been computed previously by others, including the existence of an elastic 
sector in Mode I loading, are confirmed.  The somewhat unexpected result is that J for 
a contour approaching zero radius around the crack tip is approximately 18% lower 
than the far-field value for Mode I loading for Poisson’s ratios characteristic of metals.  
In contrast, practically no path-dependence is found for Mode II.  The applications of T 
or S stresses, whether applied proportionally with the K-field or prior to K, have only a 
modest effect on the path-dependence. 
 
Keywords: elasto-plastic fracture mechanics, small scale yielding, path-dependence of the 
J-integral, finite element methods 
 
1. Introduction 

The J-integral as introduced by Eshelby [1,2] and Rice [3] is perhaps the most useful 
quantity for the analysis of the mechanical fields near crack tips in both linear elastic 
and non-linear elastic materials.  For non-linear elastic materials it is well known that 
the J-integral is equivalent to the energy release rate, [1-3].  Additionally, J has been 
used in several studies to characterize the intensity of the stress and deformation fields 
near cracks in power-law hardening materials, [3-8].  It is established that J is a path-
independent integral when the material is non-linear elastic [3,4].  As such, the path 
independence of J rigorously holds in elastic-plastic materials when the material 
response is governed by the deformation theory of plasticity, or when flow theory 
exactly mimics deformation theory (where proportional loading occurs at all points 
within the domain).  Rice [4,9] has demonstrated that, in fact, flow theory plasticity 
does perfectly mimic deformation theory near a stationary crack tip loaded in mode III 
in an elastic-power-law hardening material under small scale yielding conditions.  Hence 
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for mode III, the J-integral is path-independent for small scale yielding.  No such proof 
of the path-independence of J is available for the in-plane loading modes, and we will 
show that J is not path-independent in cases with a mode I component.   

In any situation where a significant amount of non-proportional loading occurs it is 
expected that the J-integral will not be path-independent.  For example, McMeeking 
[10] analyzed the effects of finite deformation near a mode I crack and found that the 
blunting of the crack tip causes unloading which results in the path-dependence of J.  
Rice and Sorenson [11] and Drugan et al. [12] have shown that for steadily growing 
cracks, where there is a significant amount of non-proportional straining including 
elastic unloading and plastic reloading, the strain singularity in an elastic-perfectly-
plastic material is    ! ln(1 / r)and hence J evaluated around a contour close to the crack 
tip is zero.  However, in this work we do not consider the effects of finite deformation 
and the crack tip remains stationary, yet J is found to be path-dependent.  Since 
proportional loading is not guaranteed for in-plane loading the finding that J is path-
dependent is not entirely unexpected, however the amount of path-dependence is an 
unforeseen result. 

We now proceed to the description of the material constitutive model.  Power-law 
hardening materials as described by Rice and Rosengren [5] are studied such that the 
uniaxial stress-strain behavior is described by, 
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The initial yield strength is   !0

, and the uniaxial strain at initial yield is   !0 .  These 

material parameters are related through the Young’s modulus, E, as     !0
= E"

0
.  The 

strain hardening exponent is N, with    N = 0  representing perfect plasticity and    N = 1  
linear elasticity.  The J2-flow theory of plasticity is used for the multi-axial 
generalization of the material constitutive response such that the increments of the 
Cartesian stress tensor components, 
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Here, the Poisson’s ratio is  ! , 

  
!

ij
 is the Kronecker delta, and the Cartesian components 

of the total strain and plastic strain increments are 
  
d!

ij
 and 

  
d!

ij
p .  Throughout this 

paper standard Einstein notation is used with summation over repeated indices 



assumed.   Within the context of J2-flow theory, the plastic strain increments are 
proportional to the stress deviator components, 
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Here the effective uniaxial stress is 
    
! = 3
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, and the effective uniaxial strain 

increment is 
    
d! p = 2
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p .  During continued plastic deformation the stress state is 

constrained to reside on the yield surface given by, 
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The current level of the yield strength, 

  
!

y
, satisfies the following nonlinear equation in 

order to be consistent with the uniaxial behavior described by Equation (1.1), 
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where the total effective plastic strain is simply the sum of all increments, 
   
! p = d! p! , 

throughout the history of loading. 
The study of the path-dependence of the J-integral will take place within the context 

of the small scale yielding boundary layer approach as described by Rice [3,4,13].  A 
semi-infinite crack with crack flanks along the negative x-axis and crack tip located at 
the origin is studied.  At sufficiently remote distances from the crack tip, the fields are 
governed by linear elasticity and the stresses approach the combined K-T field given as, 
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The coefficients   KI

,   KII
, and T are the mode I and mode II stress intensity factors, and 

the magnitude of the T-stress respectively.  In the out-of-plane direction generalized 
plane strain is imposed such that the out-of-plane axial strain is constant throughout 
the domain and given by, 
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with S as the far field out-of-plane axial stress   !zz

. 

Neglecting the S and T stresses, the characteristic size of the plastic zone around the 
crack tip is approximated as, 
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Using this mixed-mode definition of the plastic zone size, the maximum radial distance 
from the crack tip to the perimeter of the yielded region in an elastic-perfectly-plastic 
material is 

   
R

max
! 1.4R

p
 for all combinations of   KI

 and   KII
.  Details of the shapes of 

the plastic zones for perfect plasticity are shown in Figure 1.  The next section is 
devoted to the numerical solution procedure applied for the calculation of the fields and 
the J-integral. 
 
2. Numerical methods 

The calculation of the fields and the resulting path-dependence of the J-integral is 
carried out by separating the x-y plane into two regions, a small circular region of radius 
R that must encompass the entire plastic zone and the remainder of the plane composed 
of linear elastic material.  For the computations to be presented in this paper, the final 
plastic zone size, Rp, is approximately one half of R.  The inner circular region is 
represented by a radial mesh of 9-noded isoparametric elements with 4-point reduced 
integration for the hydrostatic strains, and full 9-point integration for the deviatoric 
strains.  The arc subtended by each element is   ! / 25 , and the radial length of the 
elements varies from   R / 400  for the first ring of elements around the crack tip to 

  R / 20  for the last ring.  For perfect plasticity, when    N = 0 , the crack tip elements are 
triangular elements created by collapsing one side of the 9-noded quadrilaterals and 
giving each of the crack tip nodes separate degrees of freedom.  We have found that, for 
perfect plasticity, moving the mid-side nodes along the rays to the quarter-points as 
suggested by Barsoum [14] is inferior to keeping them at the midpoint.  This is likely 

due to the fact that the   1/ r  strain field that exists in the quarter-point elements 
corrupts the   1/ r  singular strain field.  In fact, we were not able to obtain mode II 
solutions for perfect plasticity with the quarter-point elements.  The quarter-point 
elements are used, and provide very accurate results, for the linear elastic cases.  For 
the strain hardening cases the special 6-noded singular triangular elements developed by 
Stern [15] are implemented around the crack tip. 



The region   r > R  is represented by a Dirichlet to Neumann map for a semi-infinite 
crack.  The full derivation of these boundary conditions is given in Carka et al. [16], 
which builds upon prior work of Givoli and co-workers [17,18] and Hilton and 
Hutchinson [19].  The basic idea is that the region   r > R  adds both stiffness 
contributions and forces associated with the K-T field to the boundary of the finite 
element mesh.  The finite element connectivity of the infinite region stiffness mimics a 
super-element with stiffness interactions between each of the degrees of freedom on the 
arc   r = R .  However, if the node numbering of the finite element region proceeds first 
in the angular coordinate and then in the radial coordinate, the overall bandwidth of the 
full stiffness matrix is not increased by the fully-dense contribution of the infinite region 
stiffness.  Ultimately these boundary conditions allow for a very dense mesh in the 
plastic zone with no degrees of freedom expended by attempting to model the infinite 
region with a large but finite domain.  Furthermore, no finite size approximation, 
imposed by applying either traction or displacement boundary conditions at a finite 
radial distance, is needed to represent the far-field loading since the true infinite 
boundary conditions are enforced to within the same accuracy as the angular 
discretization on the arc   r = R  allows.  Landis [20] used similar boundary conditions to 
study mode III and analogous electrical mode E crack tip fields, and has shown that this 
numerical approach provides highly accurate agreement with the analytical results due 
to Rice [9]. 

Following the successful solution of the mechanical fields for a given combination of 
applied loading and material properties, the J-integral is computed along several circular 
arcs of different radii.  The J-integral is calculated with the domain integral method of 
Li et al. [21].  The derivation by Li et al. [21] is strictly valid only for non-linear elastic 
materials where the J-integral is path-independent, and not for materials obeying flow 
theory where non-proportional loading is present and J is path-dependent.  However, 
the domain integral method is still valid for obtaining the radial average of J over the 
domain.  The proof of this statement is as follows.  First, the definition of J for a 
counterclockwise path  !  encircling the crack tip is [3,4], 
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where  ni

 are the Cartesian components of the outward unit normal to the path, 
  
u

i, j
 are 

the Cartesian components of the displacement gradient, and W is the integrated 

material work density, 
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ij! .  Consider the associated domain integral 

introduced by Li et al. [21]. 
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Here A is an area that contains both the top and bottom crack faces as part of its 
boundary.  For our specific calculations A will be a circular annulus with inner radius 

 Ri
 and outer radius  Ro

.  For nonlinear elastic materials J is path-independent and 

  JA
= J  for any q that is unity along the inner boundary of A and zero along its outer 

boundary.  For the present radial average proof the function q must be,  
 

   
q =

r !R
o

R
i
!R

o

" q
, j

=
r
, j

R
i
!R

o

=
n

j

R
i
!R

o

. (2.3) 

 
Substituting (2.3) into (2.2) we obtain, 
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and hence  JA

 is the radial average of J over all circular paths between  Ri
 and  Ro

.  

Therefore, when   J(r)  is reported using a domain integral, r is taken as the average of 

 Ri
 and  Ro

. 

For any path  !  that does not pass through any part of the plastic zone it can be 
proven that the J-integral is equal to, 
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In the following section results will be reported for the shapes of the plastic zones, the 
stresses near the crack tip, and for the radial variation of the J-integral.  Dimensional 
analysis can be used to prove that normalized quantities like 
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are independent of the ratio of    !0
/ E , and hence the path-dependence of J only needs 

to be investigated over the following parameter space, 
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Results over a limited range of this parameter space are presented next.  
 
3. Results 

The first set of results 
presented in Figure 1 are the 
shapes of the plastic zones for 
mode I, mode II, and mixed 
mode loading with    KI

= K
II
 for 

an elastic-perfectly-plastic 
material with    ! = 0.3 , and 
   S = T = 0 .  The size of the 
plastic zones is dictated by the 
magnitudes of the intensity 
factors and is given specifically 
by Equation (1.8).  Note that 
the factor of 25/4 multiplying 
the   KII

 contribution to 
 
R

p
 

indicates that the mode II 
plastic zone size is significantly 
larger than the mode I zone for 
equivalent levels of the intensity 
factors.  Also note that the 
addition of hardening to the 
calculations does change the size 
and shape of the plastic zones.  
Our numerical results for the 
effect of N on the plastic zone 
are very similar to those shown 
in [7]. 

As observed by Rice and Tracey [22], and Du and Hancock [23], the mode I plastic 
zone does not entirely surround the crack tip.  Our calculations indicate that the elastic 
sectors extend from     !180! " ! <!148!  and     148! ! ! < 180! .  Given the differences in 
mesh density, this result is in agreement with these prior studies (recall that the arc 
covered by each element is   7.2!  in this work).  Calculations implementing the J2-
deformation theory of plasticity have also been performed and show that while the 
overall shape of the plastic zone is similar to that from flow theory, the elastic sector on 
the crack flanks does not exist.  Computations for pure Mode II indicate that the plastic 
zones predicted from the flow and deformation theories are nearly indistinguishable from 
one another.  An additional comparison between flow theory and deformation theory is 

 
Figure 1.  Plastic zone shapes for mode I (blue), 
mode II (red), and mixed mode loading with 

   KI
= K

II
 (green) for an elastic-perfectly-plastic 

material with    ! = 0.3 , and    S = T = 0 . 



shown in Figure 2.  Figure 2 plots 
the angular distribution of stresses 
near the crack tip for the same 
cases studied in Figure 1.  In each 
of these figures the solid lines 
correspond to flow theory and the 
dashed lines to deformation theory.  
Figure 2a shows that for mode I 
the deformation theory results 
follow the Prandtl crack tip field 
perfectly, while the flow theory 
results differ from the Prandtl field 
throughout the entire angular 
range.  We find that the flow 
theory results for the axial stress in 
the constant stress sector ahead of 
the crack tip is 

    
!

yy
= 2.85!

0
 when 

   ! = 0.3  and 
    
!

yy
= 2.89!

0
 when 

   ! = 0.49 , as compared to the 
values of   2.96!

0
 and   2.90!

0
 when 

   ! = 0.3  computed by Rice and 
Tracey [22] and Du and Hancock 
[23] respectively.  For deformation 
theory our computed result for 
stress ahead of the crack tip is 

    
!

yy
= 2.97!

0
, which is in nearly 

perfect agreement with the Prandtl 
slip-line field prediction.  In 
contrast, the flow and deformation 
theory results for mode II are 
practically identical to one another, 
as the dashed lines for the 
deformation theory results are 
hidden by the solid flow theory 
curves.  Finally, as for the mode I 
results, the mixed mode case shows 
a difference between the flow and 
deformation theories.  Note 
however, that for this case the two 
theories are coincident near the 

 

 

 
 
Figure 2.  Angular variations of the Cartesian 
components of the stress around a crack tip in an 
elastic-perfectly-plastic material with    ! = 0.3 , 
and    S = T = 0  for (a) mode I, (b) mode II, and 
(c)    KI

= K
II
.  Solid lines are the solutions for 

flow theory and dashed lines are for deformation 
theory. 
 



crack flank that bounds the plastic zone.  Given that the J-integral is path-independent 
for flow theory plasticity only in the cases where it mimics deformation theory, i.e. for 
proportional loading at all points in the plastic zone, these results suggest that the most 
significant cases of path-dependence should occur under predominantly mode I loading. 

Figure 3 illustrates the primary and perhaps the most intriguing result of this paper.  
Here, the path-dependence of the J-integral for mode I loading on an elastic-perfectly-
plastic material with    ! = 0.3 , and    S = T = 0  is demonstrated.  Included on this plot 
are results from four different   KI

 levels from the same simulation corresponding to 

plastic zone sizes that are 
12.5, 50, 112.5, and 200 
times the radial 
dimension of the first ring 
of elements surrounding 
the crack tip,   hmin

r .  The 

loading to the final   KI
 

level is broken into 400 
equal increments, such 
that these plastic zone 
sizes result from 100, 200, 
300 and 400 load steps 
respectively.  The results 
in Figure 3 demonstrate 
several features of the 
present numerical 
solution.  First, self-
similarity of the solution 
is achieved even when the 
plastic zone is relatively 
small compared to the 
finite element mesh size.  

A second test of the self-similarity of the solution is on the normalized crack tip opening 
displacement,     !t"0

/J
!

.  For this calculation with    ! = 0.3 , we find that 

    !t"0
/J

!
= 0.61 after the full 400 load steps, and that this normalized quantity is larger 

than 0.61 by 10% and 1% after 14 and 81 load steps respectively.  Hence again, self-
similarity of the numerical solution is achieved after approximately 100 of the 400 load 
steps to within a 1% level of convergence.  For comparison, the numerical results 
obtained by Rice and Tracey [22] and Levy et al. [24] are     !t"0

/J
!

= 0.54 and 0.47  

respectively, and an approximation due to Rice [3] is     !t"0
/J

!
= 0.67 .  Note that the 

quality of the self-similarity of the present results is a testament to the utility and 

 
Figure 3.  Values for the J-integral for a circular contour 
of radius r computed by the domain integral method near 
a crack tip under mode I loading in an elastic-perfectly-
plastic material with    ! = 0.3 .  The markers correspond to 
different points along the load history and different sizes of 
the plastic zone relative to the minimum radial dimension 
of the elements surrounding the crack tip. 



accuracy of the infinite boundary conditions that have been implemented.  The second 
feature of the numerical solution displayed in Figure 3 is the convergence of the results 
with respect to both mesh density and load increment refinement.  Here, both mesh 
density with respect to the plastic zone size and the load increments are effectively 
refined as the loading progresses.  We have also studied the convergence of the solution 
by fixing the mesh density and increasing the number of load increments, and by fixing 
the number of load increments and increasing the mesh density.  In both cases we find 
the same features that are shown in Figure 3.  Specifically, increasing either the mesh 
density or the number of load increments increases the computed level of J path-
dependence, i.e. the    J /J

!
 results converge to their final results from above.  The 

linearly extrapolated    J /J
!

 values at    r = 0  are 0.842, 0.824, 0.820, and 0.819 for 

  
R

p
/h

min
r  equal to 12.5, 50, 112.5, and 400 respectively.  Finally, note that since the 

largest radial extent of the plastic zone is approximately 
  
1.4R

p
 the J contour on 

  
r = R

p
 

actually passes through the plastic zone.  At 
  
r = R

p
 these calculations show that 

   J = 0.9997J
!

.  For all of the contours outside of the plastic zone the calculated J is less 

than 0.01% above the theoretical value of Equation (2.5). 
We find that for    ! = 0.3 , J 

evaluated along a contour of zero radius 
about the crack tip is 18% lower than 
its far field value.  The next sets of 
results illustrate the effects of the 
hardening exponent and the mode-mix 
on the path-dependence of J, again for 
   ! = 0.3  and    S = T = 0 .  With regard 
to the hardening exponent it is well 
known that J must be path-independent 
for    N = 1 , which corresponds to a 

linear elastic material.  This is in fact 
what the numerical results presented in 
Figure 4 show, with    !J /J

"
 decreasing 

monotonically from 18% for perfect 
plasticity to 0 for linear elastic behavior.  
Also displayed on Figure 4 is the effect 
of mode-mix on the path-dependence.  Here    cos! = 0  corresponds to pure mode II and 

   cos! = 1  is pure mode I.  The stress and strain fields for pure mode II have been 
analyzed to determine if proportional loading occurs at all points in the plastic zone, 
and this was found not to be the case.  Hence, this finding does not suggest that 

   !J /J
"

 should be zero in this case, however, at least to within the accuracy of the 

Figure 4.  The effects of the strain 
hardening exponent in mode I and the 
mode-mix for perfect plasticity on the 
relative decrease in J at the crack tip.  As 
for the previous results    ! = 0.3  and 
   S = T = 0 . 



present numerical results, it is not possible to claim that    !J /J
"

 is not equal to zero 

for pure mode II loading. 
As mentioned previously, it is possible 

to prove through dimensional analysis 
that the ratio    !0

/ E  has no effect on the 

results for the path-dependence of J, and 
this has been verified numerically as well.  
However, the Poisson’s ratio does have a 
mild effect on    !J /J

"
 for    ! > 0  and a 

much more marked effect for    ! < 0 .  
Figure 5 plots the relative decrease in J 
at the crack tip with respect to the far 
field value for mode I loading and 
   S = T = 0  over the full range of 
Poisson’s ratios in an elastic-perfectly-
plastic material.     !J /J

"
 ranges from 

17.5% when    ! = 0.49 , to 20.5% at    ! = 0 , and finally to 39.5% at    ! = !0.99 .  
Therefore, for properties characteristic of most ductile metals, Poisson’s ratio has little 
effect on the value of    !J /J

"
 which 

is close to 18% for    0.1 < ! < 0.4 .  
The final investigation to be 

presented is on the effects of the T 
and S-stresses.  Du and Hancock [23] 
performed a detailed study of the 
effects of the T-stress on the crack-
tip constraint, and Rice [13] has 
commented on issues associated with 
neglecting T-stresses.  Overall, our 
computations confirm Du and 
Hancock’s results about the effects of 
T on the extent of the elastic sector 
and the sizes and shapes of the 
plastic zones.  Here, we also 
investigate the effects of the non-
singular S-stress (the far field   !zz

 

component of the stress tensor), and 
again our focus is on the path-
dependence of J.  Note that for the 
mixed-mode loadings shown in Figure 

Figure 5.  The effects of Poisson’s ratio on 
the relative decrease in J at the crack tip 
for pure mode I loading in an elastic-
perfectly-plastic material. 

Figure 6.  The effects of the non-singular S and 
T-stresses on the relative decrease in J at the 
crack tip for pure mode I loading in an elastic-
perfectly-plastic material with    ! = 0.3 .  The 
red curves correspond to the existence of S with 
T=0, and the blue curves are for nonzero T 
with S=0.  The dashed lines represent solutions 
when the non-singular stresses are applied 
proportionally with KI, and the solid curves are 
for when S or T is applied prior to KI. 



4, KI and KII were applied proportionally.  For the T and S-stresses, we have studied 
both a proportional application of the transverse stresses with the K-field, as well as 
applying the transverse stress prior to the application of KI.  The proportional loading 
study is motivated by a monotonic loading of a specimen with an arbitrary three-
dimensional geometry and loading with mode I symmetry.  In such cases T, S and KI 
are each proportional to the loading parameter and are thus proportional to one another 
throughout the loading.  One issue that results from this type of loading is that the 
solution for the fields is not self-similar.  For very small applied loadings the non-
singular stresses are close to zero, but the K-field persists and produces a plastic zone 
like the one illustrated in Figure 1.  However, as the load is increased the S and T-
stresses grow and have a significant and ever-changing impact upon the plastic zone size 
and shape, the overall field distributions, and the path-dependence of the J-integral.  In 
contrast, if the non-singular stresses are applied prior to the K-field loading, then self-
similarity is maintained with the plastic zone and associated fields growing into an 
unvarying loaded environment.  The results for the path-dependence of J for either S or 
T acting in the absence of the other are shown in Figure 6.  Overall the effect of the 
non-singular stresses is relatively mild with compressive/tensile stresses tending to 
increase/decrease the amount of path-dependence (although the reverse occurs in the 
case of a proportionally applied S-stress). 

 
4. Discussion 

It is noteworthy that several pioneering researchers in the field of non-linear fracture 
mechanics have made very careful remarks about the path-independence of the J-
integral in the context of flow theory plasticity, [4-6,8,9,22-24].  However, a quantitative 
determination of the path-dependence of J under in-plane loading conditions has not 
appeared.  This manuscript has attempted to fill that gap with accurate numerical 
analyses.  Several of the results presented in this work are in rough quantitative 
agreement with prior works.  Additionally, in all of the cases presented here for flow 
theory, we have also performed the corresponding deformation theory calculations and 
have found J to be in agreement with the theoretical value of Equation (2.5) to within 
0.1% for all paths, including the ring of elements in contact with the crack tip.  Hence, 
our numerical methods yield accurate results for J in the case of deformation theory 
where path-independence is a rigorously proven result.  Finally, there is one other 
numerical study, [24], where it was noticed that the strength of the strain singularity 
near the crack tip was smaller than approximations based upon deformation theory 
plasticity.  Their rough approximation of the effect on the crack tip value of J was a 
25% reduction, which is certainly in qualitative agreement with the present result of 
18%. 
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