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Abstract: The presented work depicts results of a two-scale approach to the problem of damage 

and failure prediction on laminated composite structures. Modeling on the micro-level has 

enabled insight into the underlying physical processes which lead to homogenized properties of 

the macro-scale material. In this work, micromechanical analysis has been performed by 

application of the High Fidelity Generalized Method of Cells theory (HFGMC), which is 

implemented into Abaqus via user material subroutine VUMAT. As result of the HFGMC analysis, 

micromechanical strain concentration tensors, which relate the strain tensor on the macro-level to 

the strain tensors of each subcell, have been computed. This enabled calculation of the stress field 

within the unit cell, based on the constitutive behavior of each subcell. The first stage of modeling 

damage prediction in composite structures is application of failure criteria in order to account for 

damage initiation. This work shows results of the application of the most commonly used 

micromechanical failure criteria applied for unidirectional composites. The micromechanical 

failure criteria have been compared to the failure criteria applied at lamina (macro) level. The 

structural model at the macro-scale is a stiffened composite panel, commonly used in aircraft 

structures. 

Keywords: Multiscale analysis, Composite materials, Abaqus/Explicit, High Fidelity Generalized 

Method of Cells.  

List of the most important symbols: 

( , )
A

  - strain concentration tensor of the ,   subcell  

( , )
C

  - elasticity tensor of the ,   subcell 

*
C - equivalent elasticity tensor 

hβ, lγ – subcell dimensions in 2 and 3 directions, respectively 

K – unit cell transverse stiffness matrix 

L – unit cell axial stiffness matrix 

Nβ, Nγ – number of subcells in 2 and 3 directions, respectively 

fV - fiber volume fraction 

( , )

iu    - displacement field approximation of the ,   subcell 
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( , )

iu   - displacement fluctuation field of the ,   subcell 

( , )
ε

  - strain tensor of ,   subcell 

ε - macroscopic strain tensor 

( , )
σ

  - stress tensor of ,   subcell 

1. Introduction 

Improvements in the manufacturing technologies resulted in the application of composite 

materials in primary structural items. A good example of advanced composite application is the 

wing front spar of the A400M transport aircraft, which is the first application of carbon 

composites for primary structures on a large transport aircraft wing (Reinforced plastics, 2004). 

An important contribution to the increasing confidence in composite materials is the improvement 

of numerical methods used in the virtual testing of composite structures. 

The presented work deals with the problem of numerical failure initiation criteria for complex 

composite structural components. The heterogeneity of composite materials is the source of 

numerous failure mechanisms which can develop in fiber reinforced composite materials. The 

most common failure modes are: fiber cracking, fiber pullout, matrix tensile and compressive 

failure, delamination etc. Apparently, failure of composite structures is a consequence of processes 

within the heterogeneous composite material. 

This fact has led to the idea of performing failure and damage analyses on the constituent level 

using micromechanical principles, as for example in (Pineda, 2009) and (Sun, 2011). Computing 

the stresses and strains at the fiber/matrix level enables understanding of the underlying physical 

processes which lead to damage initiation and progression within the material. 

 In order to apply the results of the micromechanical analysis in engineering problems, analyses 

are being performed on several scales. This concept is known as multiscale analysis and is used in 

many recent research papers on numerical simulation of composite materials, covering a wide 

range of micromechanical methods (FEM vs. analytical) and engineering problems (metal matrix 

composites, damage progression etc.) as for example in (Pineda2009) or (Bansal, 2002). The basic 

idea of the multiscale analysis concept is to transform the solution at the macro-scale to the scale 

of the fiber and matrix. Failure criteria and effective (macro) material properties are then predicted 

depending on the solution of the analysis on the micro-scale. Results of the micromechanical 

analysis, such as material homogenized properties, failure criteria and damage prediction, are 

afterwards returned to the finite element analysis on the macro-scale. 

In this work, computation at the micro-scale has been performed employing a modification of the 

High Fidelity Generalized Method of Cells (Aboudi, 2003), (Bansal, 2002). The HFGMC model 

has been included in the Abaqus/Explicit analysis via the user material subroutine VUMAT. The 

main drawback of the HFGMC, compared to preceding analytical micromechanical models (e.g. 

Generalized Method of Cells) is the increased computational time of the HFGMC method. As the 

micromechanical method in this work is being used within explicit finite element analyses, it is 

obvious that the micromechanical model cannot be used in every time increment, since the 

analysis in this case would require unacceptably large computation times to obtain final solution. 
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Therefore, the subject of this work is to compare the most widely used failure criteria on the 

macro-scale with micromechanical failure criteria found in the literature. 

2. Micromechanical model 

2.1 High Fidelity Generalized Method of Cells 

The micro-scale analysis in this work has been performed using the improved version of the High 

Fidelity Generalized Method of Cells, after (Bansal, 2002), (Bansal, 2005) and (Bansal 2006). 

This method belongs to the group of micromechanical models which originate from Aboudi’s 

Method of Cells micromechanical model introduced in (Aboudi, 1987). Aboudi’s Method of Cells 

discretizes a fiber reinforced material by a representative cell, or unit cell (Aboudi 1987). The 

representative cell is divided into four subcells, of which one represents the fiber while the matrix 

is represented by the remaining three subcells. An extension of the original model is the 

Generalized Method of Cells - GMC (Paley, 1992) which allows the composite material unit cell 

to be represented by an arbitrary number of subcells, enabling modeling of more complex 

composite materials. This model has been widely used as it enables relatively accurate micro-scale 

analyses with significantly shorter computational times compared to FEM micromechanical 

models, as stated in (Gan, 2000). In recent publications, the GMC has been used as a micro-model 

in multiscale analyses as for example (Pineda 2009). There are several drawbacks which limit the 

applicability of the GMC model in composite damage prediction analyses as addressed by 

(Bendarcyk, 2004) and (Bansal, 2006). The most important is the lack of “normal-shear coupling”. 

This means that application of macroscopic normal strains/stresses produces only normal subcell 

strains/stresses although each subcell is isotropic, transversely orthotropic or orthotropic. 

Accordingly, macroscopic shear strains/stresses produce only averaged shear subcell 

strains/stresses. As stated in (Bansal, 2006), this deficiency can potentially produce very 

inaccurate results in the presence of cracks, disbonds or porosities. A further drawback of the 

GMC theory is that the displacement field within the unit cell is linear, making it unsuitable for 

e.g. wave propagation analyses, as stated in (Aboudi, 1987). 

The lack of normal-shear coupling and the drawbacks caused by the linear displacement field 

approximation have been later solved by the High Fidelity Generalized Method of Cells as 

explained in (Aboudi, 2003) and (Arnold, 2004). HFGMC uses a Legendre type polynomial to 

approximate the displacement field within the subcell, leading to fundamental differences between 

the HFGMC and GMC, although they share the same concept of unit cell discretization. 

Comparison of GMC and HFGMC micromechanical analyses can be found for example in 

(Bendarcyk, 2004) and (Bansal, 2006). 

The micromechanical model in this work is based on the upgraded HFGMC model, which has 

been initially introduced in (Bansal, 2002). This micromechanical model is in the literature also 

known as the Finite Volume Direct Averaging Micromechanics (FVDAM), as for example in 

(Bansal, 2006). The main difference in comparison with the original HFGMC is that it departs 

from the concept of Generic Cells, significantly reducing the final system of equations by 60%, 

after (Bansal, 2005).  

As the theory of the reconstructed HFGMC micromechanical model is very complex, this work 

features only some basic equations which are necessary to get an insight into the procedure. More 
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detailed explanation and discussion on the original and reconstructed HFGMC models can be 

found in (Aboudi 2003) and (Bansal, 2005). 

The unit cell discretization is shown in Figure 1. The model for the unidirectional fiber-reinforced 

material is based on the assumption that fibers extend in the x1-direction and are arranged in a 

doubly periodic array in the x2 and x3 directions. The coordinate system used for the HFGMC 

model corresponds to the material coordinate system of the composite ply, as x1 is aligned with the 

fiber direction, x2 lies in the ply plane and x3 is perpendicular to the ply plane. The unit cell, 

having dimensions l x h, is divided into Nβ x Nγ subcells, respectively. Each subcell is occupied by 

either fiber or matrix material. 

 

Figure 1.  HFGMC model 

The aim of the micromechanical analysis is to determine the strain concentration tensor ( , )
A

  , 

which relates the strain tensor of each subcell ( , )
ε

   to the macroscopic strain field ε , after 

Equation 1. 

( , ) ( , )ε A ε
     (1) 

The displacement field within the unit cell is approximated using the same Legendre-type 

polynomial expansion of the original HFGMC, after (Aboudi, 2003): 
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

, , 1,2,3i j  . (2) 

The first term on the right side of Equation 2 represents the contribution of the homogenized 

(averaged) strain, while the rest represents the fluctuating displacement field ( ( , )

iu   ). The W 

variables in Equation 2 are microvariables which define the fluctuating displacement field within 

each subcell. These microvariables have to be determined in order to calculate the strain field 
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within the unit cell. The solution of the micromechanical model begins by defining subcell local 

stiffness matrices of each subcell. The tractions in the axial (1) direction are independent of 

tractions in the transverse directions (2 and 3), enabling separation of the stiffness matrix into axial 

stiffness matrix L and local transverse stiffness matrix K. These matrices relate surface averaged 

tractions t of each subcell to the corresponding fluctuating displacements u at subcell boundaries 

and macroscopic strains components as defined by Equations 3 and 4, after (Bansal, 2006). The 

components of vectors t and u are explained in Figure 1, while the components of stiffness 

matrices depend on subcell geometry and material elasticity matrix as explained in (Bansal, 2002) 

and (Bansal, 2005). The C values in Equations 3 and 4 are components of the subcell material 

elasticity matrix. 
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 (4) 

The global stiffness matrices of the unit cell are assembled after application of traction and 

continuity conditions at subcell interfaces and periodicity equations at unit cell boundaries as 

explained in (Bansal, 2002) and (Bansal, 2005). The global system of equations can be decoupled 

into axial and transverse sets of equations, after (Bansal, 2006). The components of strain tensor in 

Equations 5 and 6 are referred to homogenized or equivalent deformations of the complete unit 

cell. 



6                                                                                          2012 SIMULIA Community Conference 

2
1211 12 111

3
1321 22 221





        
       

        

L L Δc 0u

L L 0 Δcu
, (5) 

2
11 12 13 1111 13 14 2

2
24 2222 23 24 3

3
34 3331 32 33 2

3
41 42 43 2341 42 44 3









      
      
         

      
            

ΔC ΔC ΔC 0K 0 K K u

0 0 0 ΔC0 K K K u

0 0 0 ΔCK K K 0 u

ΔC ΔC ΔC 0K K 0 K u

. (6) 

The size of the global axial system of equations (Equation 5) is 2 2N N N N     , while the 

transverse system of equations (Equation 6) consists of 4 4N N N N     elements. Global L and 

K matrices are assembled from subcell local stiffness matrices as explained in (Bansal, 2006). The 

submatrices c (in Equation 5) and C  (in Equation 6) contain differences in elastic stiffness 

elements ( , )

ijC    between adjacent subcells, after (Bansal, 2005). The displacement vectors in 

Equations 5 and 6 are comprised of subcell fluctuating interface displacements. The solution of the 

global system of equations enables calculation of the displacement field within the unit cell. Once 

the solution of the unit cell displacement field has been obtained, microvariables W and strain 

tensors of each subcell can be computed as explained in (Bansal, 2005). Finally, the stress field 

within the unit cell is computed based on subcell constitutive model and subcell strain tensors 
( , )
ε

   

( , ) ( , ) ( , )σ C ε
      . (7) 

The unit cell macroscopic stresses can be obtained by averaging the microscopic stress over the 

unit cell using equation 

( , ) ( , )

1 1

1
N N

h l
hl  

 σ C A ε
 

   

 
 

, (8) 

while the equivalent elasticity tensor is calculated using Equation 9 

* ( , ) ( , )

1 1

1
N N

h l
hl  

 C C A
 

   

 
 

. (9) 

3. Numerical model  

3.1 Finite Element Model 

The finite element model on which multiscale analyses have been performed represents a 

composite panel with stringer reinforcements, shown in Figure 2. Such structures are typical 

structural elements in aeronautical structures. The dimensions and composite layup of the panel 

are taken from (Degenhardt, 2008). Length and arc length of the panel are 0.78 m and 0.56 m, 

respectively. The stringers are of a T profile, as shown in Figure 2. The panel skin is made of 

unidirectional composite plies having a layup [90/+45/-45/0]S, where the orientation of 
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unidirectional plies is measured with regard to the panel length direction (z axis in the Figure 2). 

The stringers are composed of two sets of [(+45/-45)3/06 ] laminates, as shown in Figure 2. The 

thickness of a single ply is 0.125 mm. The finite element model consists of 5270 S4R elements 

and 5418 nodes, having a total of 32508 degrees of freedom. 

 

 

Figure 2.  Numerical model and composite layup of the stringer. 

The material used for the stringer stiffened panel is carbon fiber reinforced epoxy matrix 

T300/5208. The constitutive model of the carbon fiber is transversely isotropic, with mechanical 

properties taken from (Tsai, 1992), (Springer, 2003) and (Hyer, 2009). The matrix is assumed to 

be isotropic with properties taken from (Tsai, 1992) and (Ehrenstein, 2006). Fiber and matrix 

properties are listed in Table 1. The homogenized ply material properties have been calculated by 

HFGMC model, using 30 x 30 subcells to discretize the unit cell and assuming a fiber volume 

fraction of 70%. Composite ply strengths and other variables needed for calculation of macro-level 

failure criteria are taken from (Springer, 2003).  

Table 1. Fiber and matrix properties 

Fiber properties – T300 

1
258.57 GPaE   

2 3
18.69 GPaE E   

12
0.2  

23
0.4  

12
19.68 GPaG   1 1.4%U

f 
 

3241 MPaU
ft
  

Matrix properties – 5208 

1
3.4 GPaE   

12
0.35  50 MPamT 

 
100 MPamC 

 
25 MPaT   

Table 2. Calculated lamina properties 

Homogenized material properties calculated by HFGMC, 70% fiber volume fraction 

1
182.61 GPaE   

2
11.29 GPaE   

12
6.10 GPaG   

12
0.237  

23
0.391  

3.2 Composite Failure Criteria 

The micromechanical HFGMC procedure has been included in the Abaqus/Explicit analysis using 

the user material subroutine VUMAT. Equivalent ply-level properties of the composite material 

have been calculated by HFGMC and these properties are used to define the linear elastic 

constitutive behavior of the composite plies. The macro-scale material properties have not been 

changed during this work, as damage progression has not been included in the analysis. Besides 

definition of material behavior and micromechanical calculation, the VUMAT subroutine has been 

used to calculate macro-scale composite failure criteria. The following macroscopic failure criteria 

have been implemented in the model: 
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1) Tsai–Wu criterion: 

2 2 2

1 1 2 2 6 6 11 1 22 2 66 6 12 1 2 16 1 6 26 2 62 2 2 1F F F F F F F F F                     (10) 

2) Tsai-Hill criterion: 

2 2 2

1 1 2 2 12

2 2 2 2
1

X X Y S
   

    
 (11) 

3) Hashin failure criteria : 

2 2

11 12
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   
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 

 - fiber tensile criterion (12) 
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11 1
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 
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 



 - fiber compressive criterion (13) 
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   
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 

 - matrix tensile criterion (14) 

2 2 2

22 22 12

23 23 12
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c
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         
       

  

 - matrix compressive criterion (15) 

4) Puck failure criteria: 

1f fTX  for 1 0f   and 1f fCX   for  1  0f   - fiber tensile and compressive failure (16) 

 

 

2 2
( ) ( )

21 2

21 1
A

A A AA

p p
R

R R RR

 

 

 

  

    
           
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 
  - inter-fiber failure, mode A (17) 

2 2

221

2 22 1
A

p p

R RR

     
             


   - inter-fiber failure, mode B  (18) 

   

2
2

21 2 1

( )
2 121

  1
2 1 S

C

C D

Y

Yp 



                  

  

 
- inter-fiber failure, mode C (19) 

Discussion on these failure criteria and explanation of symbols used in Equations (10-19) along 

with standard CFRP ply properties can be found in (Springer, 2003), (Hyer, 2009) and (Puck, 

2007). The Tsai-Wu, Tsai-Hill and Hashin criteria are already available in Abaqus, but had to be 

programmed in VUMAT in order to be able to use results of these criteria in combination with the 

HFGMC micromechanical analysis.  
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Micromechanical failure criteria determine failure initiation within the unit cell at the 

microconstituent level (fiber or matrix). Based on a literature survey on micromechanical 

composite failure criteria for unidirectional composites, the following criteria have been selected 

for implementation: 

1) 3-D Tsai –Hill criterion to predict matrix failure, after (Pineda, 2009) 
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

, (20) 

where Y is the matrix transverse strength (tensile or compressive), and T is matrix shear strength. 

According to (Ehrenstein, 2006), compressive strength of epoxy matrices is approximately twice 

as high as the tensile strength, while the shear strength is about 50% of the tensile strength value. 

The assumed epoxy matrix strengths are listed in Table 1. 

2) Maximal strain criterion for fiber, used in (Pineda, 2009) 

2
( , )

211 ,
fU

ft

d
 

 
 
 

 


11 0 , (21) 

where ( , )

11

   are subcell strains in the fiber direction, while U

ft  is the ultimate fiber deformation in 

fiber direction. 

3) Maximal stress for fiber 

2
( , )

211 .
fU

ft

d
 

 
 
 

 


 (22) 

Similarly to the maximal strain criterion, ( , )

11

   are subcell stresses in the fiber direction while 

U

ft  is the ultimate fiber tensile stress in the fiber direction. 

4) Fiber failure criterion defined in (Sun, 2011) 

( , )2

( , )11

11

1 1
1

f f f fT C T C

 
 


 

   
 
 

, (23) 

where Tf and Cf  are fiber tensile and compressive strengths, respectively. 

5) Matrix (inter-fiber) failure, after (Sun, 2011) 

( , )2

( , )

1

1 1
1VM

m m m m

I
T C T C

 
   

   
 

 (24), 
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 where ( , )

VM

   is the equivalent stress , while ( , )

1I
   is the first invariant of the stress tensor of the 

( , )   subcell. Variables Tm and Cm in Equation 24 are matrix tensile and compressive strengths, 

while Tf and Cf are the corresponding properties of the fiber. 

The failure criteria defined by Equations 23 and 24 are parts of the Micromechanics of Failure 

(MMF) criterion, as stated in (Sun, 2011). The maximal strain and maximal stress criteria for the 

fiber are straightforward criteria which compare the stress and strain in the fiber with relevant 

allowables. The 3D Tsai-Hill criterion has been used in (Pineda, 2009) to predict transverse 

cracking in matrix constituents. 

3.3 Micromechanical models 

The work described in this paper is currently in the initial phase of implementation of the 

multiscale computational model, in which the micro-model is used to compare results of macro-

scale composite failure criteria with micromechanically calculated failure criteria. At a later stage 

of this research will the HFGMC model be used to calculate equivalent composite material 

properties after damage progression. As the HFGMC model is computationally demanding, it 

should not always be called from the finite element model in order to achieve acceptable 

computation times. The main purpose of the failure criteria comparison in this work is to select a 

criterion which will initiate the HFGMC model within the explicit finite element analysis. The 

time dependent solution of explicit analyses is calculated at a very huge number of time steps, 

depending on properties of the model and analyzed total time. 

Since damage effects are not being evaluated in the current phase of the work, equivalent 

properties of the composite material have been calculated only at the start of the analysis. These 

equivalent properties have been used for the macroscopic constitutive equations within the 

VUMAT subroutine. The calculated properties for the T300/5208 composite ply with 70% fiber 

volume fraction are listed in Table 2, while the 30 x 30 unit cell used to predict these properties is 

shown in Figure 3 (left-hand image).  

The input variables for the HFGMC model are the current state of macroscopic strain, number of 

subcells (Nβ and Nγ), as well as parameters which define properties of the composite material – 

fiber and matrix mechanical properties and fiber volume fraction. Each subcell is selected to be a 

fiber or matrix subcell based on the fiber volume fraction ( fV ), number of fibers within the unit 

cell and position of fiber centers. Figure 3 depicts some unit cells which have been evaluated 

throughout this research. At the current phase of the methodology development dimensions of all 

subcells are equal, having dimensions 
h

h
N





 and 
l

l
N





. This aspect of the model will be 

improved in order to optimize computational time and enable more flexible unit cell discretization. 
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Figure 3.  Unit cells used for the HFGMC model. 

4. Analysis 

As already has been pointed out, this work evaluates the suitability of the HFGMC as a 

micromechanical model within explicit finite element analyses. Therefore, it has been tested on a 

relatively simple finite element model, loaded with only static nodal forces. Once the HFGMC 

subroutine is optimized, it will be used in the impact analyses on complex finite element models. 

Boundary conditions have been selected in order to replicate experimental conditions, used on 

axial testing of similar stiffened panels, as for example in (Degenhardt, 2008). Therefore, nodes at 

the middle of the panel have restricted degrees of freedom in the axial direction (z) and rotational 

degrees of freedom regarding the y direction. Additionally, nodes at the loaded ends of the panel 

have rigid body constraints, as to simulate the effect of the clamps used to load panels in 

experiments. The panel has been loaded with an tensile axial force of 255.2 kN (2900 N per node). 

In order to keep the computational time at a reasonable level, the micromechanical analyses use a 

20 x 20 unit cell model with a single fiber in the centre of the unit cell, as depicted on the central 

image in Figure 3.  

 

Figure 4.  Boundary conditions and loading of the model. 
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5. Results 

In the analyzed load case macroscopically predicted fiber failure criteria reach results below the 

critical values. Puck’s fiber tensile criterion takes the highest fiber failure initiation value (0.45), 

which is far less than fiber damage onset value. Matrix failure initiation criteria are shown in 

Figure 5. All failure theories predict matrix damage on a relatively large part of the panel. The 

Tsai-Hill, Hashin matrix tensile and Puck’s Mode A inter-fiber failure criterion predict very 

similar shapes and sizes of the failed surface, while the Tsai-Wu criterion predicts matrix failure 

on a significantly larger portion of the panel. This observation is in accordance with conclusions 

brought by the World Wide Failure Exercise, in which the Tsai-Wu criterion tended to be more 

conservative compared to more complex failure theories, as stated in (Hinton, 2004). As Puck’s 

failure theory achieved remarkable results in the World Wide Failure Exercise, it has been selected 

as the criterion which initiates computation of the HFGMC micromechanical model. 

Consequently, the HFGMC model is activated when the stress state in the finite element analysis 

of a material point satisfies Equation 17. 

 

Figure 5.  Macroscopic matrix failure criteria, maximal through thickness values 
are shown. 

Micromechaniclly predicted failure theories for matrix failure are shown in Figures 6 and 7. The 

3D Tsai-Hill criterion predicts matrix failure indexes between 0.63 and 0.68, as depicted in Figure 

6. As all macroscopic failure theories indicate matrix failure, the results of the 3D Tsai-Hill 

criterion are not consistent with generally accepted macroscopic failure criteria. In order to give 

insight into the distribution of failure criteria within the unit cell, results of the HFGMC analysis 

have been shown for particular material point within the finite element model. This material point 

has been the first to activate calculation on the micro-level with distribution of failure criteria 
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shown in Figures 6, 7 and 8.The maximal value of the 3D Tsai-Hill criterion has, at that time 

increment for this particular material point, been 0.655, as shown on the right-hand side image in 

Figure 6.   

 

Figure 6.  Maximal through thickness values of 3D Tsai Hill micromechanical 
criterion (left-hand image) and disribution of the criterion within the unit cell 

Contrary to the 3D Tsai Hill criterion, the MMF criterion for fiber failure initiation confirms the 

results of the macroscopic analysis. As shown in Figure 7, all material points predict matrix failure 

initiation with vaules of the criterion ranging from 1.2 to 1.267. The right-hand side image in 

Figure 7 shows the distribution of the criterion for the same material point at the same time step as 

for the one in Figure 6. The distribution of the MMF matrix failure criterion within the unit cell for 

the examined material point is shown in the right-hand side image of Figure 7. The subcell with  

maximal value of the criterion is located on a similar position as for the 3D Tsai-Hill criterion in 

Figure 6. The highest value of the criterion is 1.219.  

 

Figure 7.  Maximal values of Micromechnics of Failure theory matrix failure 
criterion in the unit cell. 
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Figure 8.  Maximal values of maximal stress criterion for the fiber and distribution 
of the criterion in the unit cell. 

All micromechanically calculated fiber failure criteria predict significantly lower values compared 

to macro-level failure criteria associated with fiber failure. Maximal through thickness values of 

the maximal stress criterion are shown in Figure 8. The distribution of the criterion within the unit 

cell for the evaluated material point is shown in the right-hand side image of Figure 8. 

6. Conclusion 

The work presented in this paper illustrates results of the initial phase of the HFGMC 

micromechanical model implementation into Abaqus/Explicit. Concerning the available 

computational resources, the HFGMC micromechanical model is not suitable for computation at 

all time increments of all material points during an explicit finite element analysis, as such an 

application of the model would lead to unacceptably high computational times. In the ongoing 

research, the HFGMC will be employed to predict equivalent composite properties after damage 

initiation. Therefore, the basic idea of the current research is to select a criterion which will initiate 

computation on the micro-level. Comparison of macroscopically predicted composite failure 

criteria revealed Puck’s mode A inter-fiber failure criteria as the best choice for HFGMC 

initiation.  

As indicated in Section 5, the 3D Tsai-Hill criterion and the MMF matrix failure criterion show 

significant discrepancies when indicating whether the matrix has failed or not. This result could be 

strongly influenced by the accuracy of estimation of strength values for the epoxy matrix. These 

material properties have been estimated according to guidelines given in (Ehrenstein, 2006). The 

fiber failure criteria on the micro-level predict that fiber failure does not occur in the analyzed load 

case, which is in accordance with the macroscopically predicted fiber failure criteria. 

As the multiscale analysis procedure presented in this work is still in the development and testing 

phase, this work gives only an overview of the applied model and therefore comparison with 

experimental results has not been carried out. The presented results and the research currently in 

progress are aimed at application of this methodology in other areas of damage analysis in 

composite aeronautical structures, such as effects of blast loads, high velocity /high strain 

phenomena and others, where Abaqus/Explicit will be employed. 
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