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Abstract

A central tool of nonlinear anelasticity is the multiplicative decomposition of the deformation ten-
sor that assumes that the deformation gradient can be decomposed as a product of an elastic and an
anelastic tensor. It is usually justified by the existence of an intermediate configuration. Yet, this config-
uration cannot exist in Euclidean space, in general, and the mathematical basis for this assumption is on
unsatisfactory ground. Here, we derive a sufficient condition for the existence of global intermediate con-
figurations, starting from a multiplicative decomposition of the deformation gradient. We show that these
global configurations are unique up to isometry. We examine the result of isometrically embedding these
configurations in higher dimensional Euclidean space, and construct multiplicative decompositions of the
deformation gradient reflecting these embeddings. As an example, for a family of radially-symmetric de-
formations, we construct isometric embeddings of the resulting intermediate configurations, and compute
the residual stress fields explicitly.

Keywords: Riemannian Geometry, Anelasticity, Intermediate Configuration, Multiplicative Decomposi-
tion.

1 Introduction

The theory of nonlinear elasticity is a field theory that describes elastic deformations in continua. A motion
is modeled as a smooth isotopy, parameterized by time, such that for each time t, the induced diffeomorphism
ϕt : B → S gives an embedding of the body, modeled as a smooth manifold B into the fixed ambient space S.
When the kinematics is considered, a value of t is implicitly fixed, and the image of ϕt is denoted C. Hence at
each moment of time, a deformation is typically modeled as a diffeomorphism between an initial stress-free
configuration B and the current configuration C, both assumed to be smooth manifolds. In principle, C ⊂ S
depends on time, but for the remainder of this paper we shall suppress the time dependence, since we are
concerned with the kinematics at each moment in time, and not the dynamics of how a body evolves through
time. With a slight abuse of notation, we write this as

ϕ : B → C. (1)

The central object of nonlinear elasticity is the so-called deformation gradient F, which is determined by
the tangent map of ϕ. Technically, F(X) = Tϕ|π−1(X), where π is the natural projection in the tangent
bundle onto the base space; F(X) is the restriction of Tϕ to the fiber over X. Note that Tϕ is a vector
bundle morphism mapping the tangent bundle TB to the tangent bundle TC, hence it also includes ϕ as

∗To appear in the Proceedings of the Royal Society A.
†Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
‡Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
§School of Civil and Environmental Engineering & The George W. Woodruff School of Mechanical Engineering, Georgia

Institute of Technology, Atlanta, GA 30332, USA. E-mail: arash.yavari@ce.gatech.edu.

1



the map on the base space. Interested readers will find Husemöller [1994] to be an invaluable resource for
a complete treatment of vector bundles and vector bundle morphisms; this treatment is done in categorical
language, hence Riehl [2016] or Mac Lane et al. [1998] may be a useful resource to readers. Because the
manifolds B and C are parallelizable, their tangent bundles are trivial, hence we can write the vector bundle
morphism Tϕ as Tϕ = (ϕ,F), where here we consider F as a tensor field mapping tangent vector fields on
B to tangent vector fields on C. We consider F(X) as the restriction of this tensor field to the fiber over
X. Geometrically, F(X) is a linear map that sends the vector v ∈ TXB to F(X)v ∈ Tϕ(X)C, where in
coordinates {XA} : B → Rn and {xa} : C → Rn, one has

F(X) =

(
∂ϕa

∂XA

∣∣∣∣
X

)
∂

∂xa
⊗ dXA. (2)

The deformation ϕ maps points in B to points in C, and the deformation gradient F(X) maps tangent vectors
of B at the point X to tangent vectors of C at the point ϕ(X). To guarantee that matter does not penetrate
itself, it is required that detF > 0 everywhere, i.e., detF(X) > 0 for all X ∈ B, which ensures that ϕ is
locally invertible, and is orientation preserving.

An important tenet of the theory of elasticity is that there exists a reference configuration that is stress-
free. However, there are plenty of physical situations where either this configuration is not explicitly known
or stresses are created by other physical processes than elastic deformations. For instance, in a growth
process different elements of a body change in size or relative position which induces strains and associated
stresses even in the absence of applied loads or body force [Goriely, 2017]. Similarly, additional strains
appear in thermoelasticity [Sadik and Yavari, 2017b], accretion [Sozio and Yavari, 2017, 2019], and defect
mechanics [Yavari and Goriely, 2013, 2012a,b]. We call anelastic strains, strains that are not created through
elastic deformations. They are also known in various communities as eigenstrains [Mura, 1982], initial strains
[Kondo, 1949], inherent strains [Ueda et al., 1975], transformation strains [Eshelby, 1957] or residual strains
[Ambrosi et al., 2019].

A central assumption of nonlinear anelasticity is that the anelastic strains are solely created by a local
anelastic deformation tensor field and the deformation gradient can be decomposed multiplicatively as

F = AG, (3)

where the field G generates purely anelastic strain and the field A generates purely elastic strain. The
corresponding conceptual hypothesis, that anelastic contribution can be taken into account through a multi-
plicative decomposition of the deformation gradient, follows from early work in different communities [Sadik
and Yavari, 2017a]: The earliest work is due to Eckart [1948] who introduced a framework for anelasticity
based on “relaxability-in-the-small”. In polymer swelling it was first discussed by Flory [1956]; in the the-
ory of defects by Bilby et al. [1957]; in elastoplasticity by Kröner [1958], [Kröner and Seeger, 1959, p.100],
[Kröner, 1960, p.286]; and later was popularized by [Lee, 1969]. In the theory of thermoelasticity, it was
properly formalized by Stojanović et al. [Stojanovic, 1969, Stojanovic et al., 1964] and in the context of
biological tissues, the multiplicative decomposition was independently proposed in Russia by Kondaurov
and Nikitin [1987] and in Japan by Takamizawa et al. [Takamizawa, 1991, Takamizawa and Hayashi, 1987,
Takamizawa and Matsuda, 1990] who used it to characterize residual stresses in arteries. The same con-
ceptual ideas can also be found in the work of Tranquillo and Murray on wound healing [Tranquillo and
Murray, 1993, 1992]. It became a central concept of biomechanics following the seminal work of Rodriguez
et al. [1994] who showed how to translate growth processes in terms of the tensor field G. There has been
recent interest in understanding different aspects of this decomposition [Neff, 2008, Neff et al., 2009, Reina
and Conti, 2014, Casey, 2017, Del Piero, 2018, Du et al., 2018].

A typical conceptual sketch of the multiplicative decomposition is given in Fig. 1. From a practical point
of view, this decomposition is perfectly suitable to define all kinematic and mechanical quantities as well as
to obtain the governing equations for anelasticity, from which theoretical and computational progress can
be achieved. Over the years, it has become a popular tool in the mechanics of large deformations, especially
in the biological context where anelastic strains are generated by growth, remodeling, or active processes
[Goriely, 2017]. However, from a mathematical point of view there are a number of less-than-satisfactory
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Figure 1: The multiplicative decomposition: starting from a reference stress-free configuration in Euclidean
space, a local deformation G is applied to each material point, creating an intermediate configuration that
is further deformed by A, to recover the integrity of the body, into a residually stressed configuration in
Euclidean space.

aspects to this hypothesis. For instance, it was realized early [Casey and Naghdi, 1980] that a decomposition
generating the required strain is not unique, as for any isometry Q(X), the alternative decomposition
F(X) = (A(X)Q(X))(Q−1(X)G(X)), is equally valid. In practice, it is not a problem as the final solution
for the stress is independent of Q(X). A more serious criticism is related to the mathematical status of
this so-called intermediate configuration. Indeed, while the field F is the derivative of ϕ (or “gradient”
of ϕ), in general, by construction neither A nor G can be written as derivative maps (or “gradients”).
This property is called incompatibility or non-integrability and is at the heart of anelasticity: there are no
maps between the reference and intermediate configurations in Euclidean spaces and the usual picture of
a dislocated configuration viewed as a collection of sub-bodies or a disjoint union of vector spaces shown
in Fig. 1 is unsatisfactory as there could be infinitely many of these pieces and their connections must be
somehow specified.

The purpose of this paper is to show that, using the proper geometric setting, the intermediate configura-
tion can be properly defined. Since we want this intermediate configuration to be in some sense equivalent to
the multiplicative decomposition we begin with, we exploit the non-uniqueness of the multiplicative decom-
position to attempt to construct a different decomposition F = ÃG̃ satisfying the following two properties:

i) The new decomposition generates the same anelastic strain as the original, i.e.,

GTG = G̃TG̃. (4)

ii) The decomposition is induced by the composition of maps between Riemannian manifolds, i.e.,

ϕ = α ◦ γ : (B,M)
γ→ (M,K)

α→ (C,m) , with Tϕ = (ϕ,F), Tα = (α, Ã), Tγ = (γ, G̃). (5)

We seek to identify when this is possible, and when it is, to what extent the maps α and γ are uniquely defined.
The Riemannian manifold (M,K) we will ultimately construct is the intermediate configuration appearing
in geometric theories, hence the problem we seek to solve can be stated as follows: Given a multiplicative
decomposition F = AG of the deformation gradient field, does there exist an intermediate configuration
(M,K) such that the deformation ϕ can be factored through (M,K), with the tangent maps induced
by this factoring generating a multiplicative decomposition of the deformation gradient that generates the
same strain as the original decomposition? Whenever this is possible, theories based on the multiplicative
decomposition can be reformulated as equivalent theories based on Riemannian intermediate configurations.
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2 Preliminaries

We suppose that we are given a factorization of the tensor field F, and desire to construct a factorization of
ϕ : (B,M)→ (C,m) through some Riemannian manifold (M,K) that reflects this decomposition. We first
have to establish the nature of the objects G and A. When one writes, F = AG, very little is said about
G and A. We make a number of implicit assumptions about the structure of the configurations and these
tensors. As a first step, it is important to discuss these assumptions explicitly. Since F(X) is invertible at
each point X, we know that G(X) has a left inverse and A(X) has a right inverse: G(X) is injective and
A(X) is surjective. Explicitly, the right inverse of A(X) and the left inverse of G(X) are

(A)−1
R (X) = G(X)F−1(X), (G)−1

L (X) = F−1(X)A(X). (6)

Secondly, we have considered F(X) as the restriction of the tangent map Tϕ to the fiber over the point X,
so we ought to frame G(X) and A(X) as the restriction of vector bundle morphisms to fibers over the point
X as well. Doing this, we define the two vector bundle morphisms (idB,G) and (ϕ,A), the composition of
which yields the vector bundle morphism (ϕ,F), where again, the triviality of the tangent bundle of B lets
us decompose these morphisms into the component on the base space and the component on the fibers. In
principle, any two diffeomorphisms γ and α satisfying ϕ = α ◦ γ could be used to extend G and A into
vector bundle morphisms. The non-integrability of the fields G and A is equivalent to stating that these
vector bundle morphisms do not lie in the image of the tangent bundle functor.

Reframing the maps A and G as vector bundle morphisms has already solved one key problem with the
multiplicative decomposition, namely that we now preserve the underlying topology of the body throughout
the decomposition. In this language the requirement (5) can be interpreted as requiring the existence of
vector bundle morphisms (ϕ,F) = (α, Ã)◦(γ, G̃) such that (α, Ã) and (γ, G̃) are not arbitrary vector bundle
morphisms, but morphisms that lie in the image of the tangent functor. Further, Since we are interested
in the notion of strain, we require that the manifolds B and C are equipped with metrics say, M and m,
respectively. Therefore, we replace the smooth manifold B with the Riemannian manifold (B,M), and the
smooth manifold C with the Riemannian manifold (C,m). With this, we consider ϕ as the diffeomorphism

ϕ : (B,M)→ (C,m), (7)

which lets us compute the Lagrangian strain field induced by ϕ as

E =
1

2

(
FTF− I

)
, (8)

where I is the identity tensor. We emphasize that ϕ : B → C is viewed as a morphism in a different category
than ϕ : (B,M)→ (C,m), namely we consider the category whose objects are not merely smooth manifolds,
but Riemannian manifolds, and whose morphisms are smooth maps between Riemannian manifolds. In
this category, two Riemannian manifolds are isomorphic if they are diffeomorphic, even if they are not
isometric, much like how two vector spaces may be isomorphic as vector spaces, even if they have different
metric structures. Likewise, as general vector bundles can be given Riemannian metrics, two metrized vector
bundles may be isomorphic as vector bundles even if their respective metric structures do not agree. Since
G(X) can also generate strain, we require that its codomain has an inner product. Again, this inner product
is implicit in the definition of GT(X). Therefore, it must be initially prescribed along with the decomposition
F(X) = A(X)G(X), though in practice it is often implicitly taken to be the standard inner product on Rm.
Labeling the codomain of G(X) as UX , we have F(X) = A(X)G(X), with

G(X) : TX(B,M)→ UX , (9)

from the tangent space at X to some inner product space UX and

A(X) : UX → Tϕ(X)(C,m). (10)
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Because G(X) is injective, its image is a subspace of UX with the same dimension as TX(B,M). If we
consider

Ĝ(X) : TX(B,M)→ im(G), (11)

such that G(X) = ιX ◦ Ĝ(X) (ιX being the inclusion map im(G(X)) ↪−→ UX), we have an invertible linear
transformation. If we then restrict the domain of A(X) to im(G(X)), we obtain another invertible linear
transformation

Â(X) : im(G(X))→ Tϕ(X)(C,m). (12)

The composition of the field ÂĜ is another multiplicative decomposition of the field F, but consisting of
invertible factors. Each factor is still not generally integrable, so this is not the decomposition we ultimately
seek. Next, we turn our attention to the strain induced by the field G. The inner product structure on UX ,
being a positive-definite symmetric, bilinear map, admits a representation as a positive-definite symmetric
tensor

h : UX ⊗ UX → R. (13)

Since we can parameterize the disjoint union of inner products h by points in B, we can consider h as a field,
though it may be highly irregular. With this, we can now choose a basis {eα}, and its corresponding dual
basis {ϑα}, for UX and express the requirement (4) in components as

MADGαDhαβG
β
B = MADG̃αDhαβG̃

β
B , (14)

explicitly showing how the inner product structure on UX is implicitly required to examine the strain induced
by G. This structure generally varies from point to point. For now, we make no assumptions about the
smoothness of h, G, or A, other than noticing that the product AG is F, which is smooth, being the induced
tangent map of the diffeomorphism ϕ. Using h, we can write UX as the direct sum of orthogonal subspaces,
i.e.,

UX = im(G(X))⊕ im(G(X))⊥, (15)

and we can construct the orthogonal projection

πX : UX → im(G(X)). (16)

If we denote the inclusion ι⊥X : im(G(X))⊥ → UX and the inclusion ιX : im(G(X)) → UX as before, this
projection satisfies πX ◦ ιX = idim(G(X)), ιX ◦πX ◦G(X) = G(X), and πX ◦ ι⊥X = 0. With these definitions,
we have

Ĝ(X) = πX ◦G(X), Â(X) = A(X) ◦ ιX . (17)

The strain field induced by G is then

EG =
1

2

(
GTG− I

)
, (18)

where again I is the identity tensor field. Since G(X) is injective, the field EG is equal to the strain induced

by Ĝ, which is given by the expression (18) with G replaced by Ĝ. The main assumption for the rest of this
paper is that the field GTG is at least C1.

3 Construction of an Intermediate Configuration

We can now take advantage of the geometric structure described in the previous section to construct the
intermediate configuration. Given G and h, we can construct a positive-definite, symmetric tensor field H
on B by requiring

H(u,v) = h(Gu,Gv), ∀u,v ∈ Γ (T (B,M)) , (19)

where Γ (T (B,M)) is the space of sections of the tangent bundle of (B,M), i.e., the space of tangent vector
fields. The tensor field H = G∗h is the pull-back of h under G, hence can be used to compute the inner
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product fields of the vector fields u and v. Since G is injective, and h is positive-definite and symmetric, H
is a positive-definite and symmetric tensor field. If H is smooth with respect to X, it satisfies the definition
of a metric tensor field, and we can build the Riemannian manifold (B,H). We will show next that this
manifold is the intermediate configuration.

The minimal degree of smoothness required for the fundamental theorem of Riemannian geometry to
hold is C1 and the structures that can be defined on the intermediate configuration will depend on the
smoothness of H. Indeed, if H(X) is C1, we can construct the Levi-Civita connection on (B,H), if it is C2,
we can define the Riemann curvature, and if it is Ck with k ≥ 3, we can construct an isometric embedding
in a sufficiently high dimensional Euclidean space that is also Ck [Nash, 1956]. Here, we are interested in
the case where H is at least C1 which is guaranteed by our assumption that GTG is C1. Note that if the
anelastic strain EG is directly prescribed instead of a multiplicative decomposition, we instead examine the

smoothness of H = (2EG + I)
[
, and proceed mutatis mutandis. In general, (B,M) and (B,H) are different

Riemannian manifolds, since their specific geometric structures are encapsulated in the distinct metrics M
and H. However, their topologies are the same, since the metric topology of any Riemannian manifold agrees
with its underlying manifold topology [Lee, 2001], which is the same for both (B,M) and (B,H).

Having defined the two distinct but diffeomorphic Riemannian manifolds, (B,M) and (B,H), we need
to construct a map between them. Because they both have the smooth manifold B at their core, we can
begin with the identity morphism on B. We can then transform this morphism, which is a morphism in the
category of smooth manifolds, into a morphism in our category of Riemannian manifolds by equipping the
domain and the codomain with Riemannian metrics. It is important to note that even though our original
morphism is the identity, we need not use the same metric for the domain and the codomain. Doing this
with the two metric tensor fields M and H, we consider the map idB : (B,M)→ (B,H).

From a categorical perspective, there is a forgetful functor from the category of Riemannian manifolds
described earlier to the category of smooth manifolds that forgets the metric structures. The map idB :
(B,M)→ (B,H) is a morphism in the category of Riemannian manifolds which under this forgetful functor
becomes the identity map on B in the category of smooth manifolds. This mapping maps all subsets of
points to themselves but with a different geometry by replacing the metric tensor M by H. This map is
defined at the level of points and is smooth. The total deformation then factors as

(B,M)
idB−→ (B,H)

ϕ̃→ (C,m), (20)

where ϕ̃ is the same map as ϕ : (B,M) → (C,m) at the level of points, but with the manifold (B,H) as
its domain, i.e., ϕ maps from the Riemannian manifold (B,M), and ϕ̃ maps from (B,H), but both of these
morphisms become ϕ : B → C under the forgetful functor that forgets metric tensor fields. Additionally, by
construction, the map idB defined above induces the same strain as G, since H is the pullback of h under
G, as can be explicitly checked in components

δABHAC δ
C
D = GαBhαβG

β
D. (21)

This last expression is written in terms of the disjoint union of the frames {eα} [Sozio and Yavari, 2020];
the interpretation of these as a moving frame depends on the smoothness of G. Specifically, G can be
(highly) discontinuous in which case we just have a collection of frames, one frame for each tangent space,
with no general relationship between the frames at different points. As a pathological example, G could be
square and invertible on points with rational coordinates, and non-square (but still full rank) on the other
points, in which case {eα} at each point would not even have a consistent number of elements, let alone be
interpretable as a moving frame. In this case, h would not be consistently the same size, but H, its pull
back, would be, which is why the smoothness of H is the important criterion, not the smoothness of h or G
separately.

Note that the induced factorization Tϕ = T ϕ̃ ◦ T idB generates the same strain as the original multi-
plicative decomposition F = AG. As desired, it is induced by the composition of maps between Riemannian
manifolds. Therefore, taking

γ = idB, α = ϕ̃, (22)
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satisfies both of our desired conditions (4) and (5), since

(ϕ,F) = Tϕ = T (α ◦ γ) = Tα ◦ Tγ = (α, Ã) ◦ (γ, G̃) = (α ◦ γ, ÃG̃). (23)

Here, G̃(X) maps a vector in TX(B,M) to the corresponding vector in TX(B,H), which despite appearing
like the identity, generates strain because the inner product H(X) is typically different than the inner product
M(X). If these inner product structures are dropped, then G̃(X) does become the identity on TXB. The
other factor is therefore Ã(X) = F(X)G̃−1(X), which clearly exists since G̃(X) is trivially invertible.

We now wish to determine the precise relationship between G(X) and G̃(X). We have already seen that
they generate the same strain, but G̃(X) is induced by a map between Riemannian manifolds, while G(X)
is simply a linear map applied to the tangent space of (B,M) at X. Given a basis {Ei}, i = 1, ..., n for
TX(B,M), there is a natural induced basis for im(G(X)) given as

ēi = G(X)Ei, (24)

i.e., we use the images of the basis vectors of TX(B,M) as the basis for im(G(X)). On these bases, G(X)
has the particularly nice form

G(X) = δαA ēα ⊗EA, (25)

where {EA} is the dual basis of {EA}. The linear map

εX : im(G(X))→ TX(B,H),

ēi 7→ Ei,
(26)

is then an isometry for every X. Note that εX depends on the specific decomposition, but the composition
εX ◦ πX ◦ G(X) = G̃(X), only depends on the strain generated. Therefore, provided that H is smooth
enough for (B,H) to be a Riemannian manifold, we can take the disjoint images of the tangent spaces of
the manifold (B,M) under the maps G(X), and embed them isometrically into the tangent bundle T (B,H)
via the maps εX . These images then inherit the unique Levi-Civita connection based on the metric tensor
H. If εX are interpreted passively as a change of basis, the decomposition F(X) = Â(X)Ĝ(X) can be

interpreted as the same decomposition as F(X) = Ã(X)G̃(X) = (Â(X) ◦ ε−1
X )(εX ◦ Ĝ(X)), expressed

in terms of an anholonomic basis on (B,H). Notice that postcomposition by εX ◦ πX effectively removes

any nonsmoothness or discontinuities present in the field G. If Ĝ is C1, we can determine the object of
anholonomicity for the anholonomic basis on (B,H) described above, though this is superfluous to the main
result. The construction of the intermediate configuration and its associated maps is schematically shown
in Figure 2.

Next, we wish to see to what extent the factorization ϕ = α ◦ γ : (B,M)
γ→ (B,H)

α→ (C,m) is unique.
Suppose we have a different intermediate configuration, (M,K) that satisfies the two requirements (4) and
(5). We then write ϕ = α′ ◦ γ′ with

γ′ : (B,M)→ (M,K),

α′ : (M,K)→ (C,m).
(27)

Denoting the tangent maps as
Tγ′ = (γ′,G′) , Tα′ = (α′,A′) , (28)

the anelastic strain requirement (4) demands

G̃TG̃ = G′
T
G′, (29)

which in components reads

δABHAC δ
C
D = G′

A
BKACG

′C
D. (30)

This, however, is exactly the condition for (B,H) and (M,K) to be isometric under the map γ′ ◦ γ−1.
Hence, the intermediate configuration we constructed is unique up to isometry and it is sensible to speak of
the intermediate configuration rather than an intermediate configuration that may be one of many. Taken
together, we have established the main result:
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...

Figure 2: Construction of a global intermediate configuration. Starting from F = AG, and knowledge of the inner products
on UX , provided the pullback of h is C1, this diagram can be constructed. The maps εX and ιX are isometries, and all paths
commute, apart from those starting at UX .

Theorem (Isometric Integrability Theorem). Given a deformation ϕ : (B,M) → (C,m) with the tangent
map Tϕ = (ϕ,F) satisfying detF > 0, and a multiplicative decomposition F = AG, if the codomain of
G has an inner product, and the pullback of this inner product under G, or equivalently GTG, is at least
C1, there exists a Riemannian manifold (B,H), unique up to isometry, such that the composition of maps

ϕ = α ◦ γ : (B,M)
γ→ (B,H)

α→ (C,m) induces a factorization F = ÃG̃ satisfying GTG = G̃TG̃.

4 Isometric Embeddings of (B,H)

Considered intrinsically, we are finished, since we have constructed the intermediate configuration as an
abstract Riemannian manifold. However, the intrinsic approach to Riemannian geometry is notoriously dif-
ficult to visualize, hence one may want to produce an isometric embedding of this intermediate configuration
in some higher dimensional Euclidean space, much like how often (B,M) and (C,m) are thought of as iso-
metrically embedded submanifolds of the Euclidean space En. It is natural to ask under what conditions
the constructed manifold (B,H) permits an isometric embedding in Em as an n-dimensional submanifold
for some higher dimensional Euclidean space. In this situation, a natural multiplicative decomposition of F
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would provide pointwise a sequence of maps En → Em → En that not only gives the local change in geometry
caused by G, but also provides the local orientation under the embedding of (B,H) into Em. This would be
an example of a decomposition where A and G are not square, hence the projection onto the image of G is
nontrivial.

In general, the problem of isometrically embedding an arbitrary Riemannian manifold (M,K) in Eu-
clidean space Em is multifaceted, in that there may be topological obstructions in addition to the geometric
obstructions that must be overcome. The topological problem was solved by Whitney [1944], showing that
a manifold of dimension n can be embedded in Euclidean space of dimension 2n. Additionally, this bound
is sharp, as there are n-dimensional manifolds that cannot be embedded in Euclidean space of dimension
2n − 1; RP2p

cannot be embedded in E2p+1−1. Nash [1954] solved the geometric problem for C1 isometric
embeddings, and later for Ck isometric embeddings with k ≥ 3 [Nash, 1956]. Specifically to construct these
isometric embeddings, Nash assumes the existence of a smooth embedding of (M,K) in Em, and homoge-
neously scales it to obtain a short embedding, one where all distances are shorter than they need to be. He
then constructs an isometric embedding by successively applying corrections, with the minimal dimension
m needed depending on both the desired smoothness of the limit embedding, and the dimension of M.

For Ck isometric embeddings, Nash’s construction requires m ≥ n
2 (3n+ 11) for compact manifolds, and

m ≥ n
2

(
3n2 + 14n+ 11

)
for noncompact manifolds. The large number of dimensions required for these

constructions limits the usefulness of these embeddings, as they are difficult to visualize. However, for C1

embeddings, Nash only requires m ≥ n + 2, which, together with Whitney’s results, implies that all 2-
dimensional manifolds permit C1 isometric embeddings in E4. Kuiper [1955] sharpened Nash’s construction,
reducing the minimal number of extra dimensions to n + 1 by altering the iteration device. This does not
guarantee C1 embeddings of all 2-dimensional manifolds in E3, since as in the case of the Klein bottle,
topological obstructions may still be present. However, provided that a smooth embedding in E3 exists, an
isometric embedding can be constructed.

We seek to take advantage of this construction explicitly. When (B,M) , (C,m) ⊂ E2, the intermediate
configuration constructed is a two-dimensional manifold, and hence, topology allowing, the Nash-Kuiper
construction permits an isometric embedding in E3 that we can in principle visualize. We want to realize
extrinsically the geometry of the intermediate configurations obtained from multiplicative decompositions
of two-dimensional deformation gradients by obtaining such an embedding in E3, which would allow us
to interpret the map γ as a map into E3 yielding this embedding. To do this, we construct the intrinsic
geometry of the intermediate configuration as above to obtain (B,H), and if a smooth embedding of (B,H)
in E3 exists, so does a C1 isometric embedding. Specifically, in our case, assuming (B,M) ⊂ E2 we can
trivially construct a short embedding of (B,H) in E3 by considering (B,M) ↪−→ E2 as a smooth embedding of
(B,H). This embedding can then be appropriately scaled to become short, and then embedded into E3 via
the inclusion E2 ↪−→ E3. Hence, for two-dimensional deformations, we can always in principle isometrically
embed our constructed intermediate configuration (B,H) in E3, by the Nash-Kuiper algorithm.

These Nash-Kuiper embeddings are often difficult to construct in practice, and the resulting embeddings,
being the limit of increasingly complicated embeddings, are typically impossible to present in a closed form.
To circumvent this and for visualization purposes, we consider embeddings that can be solved by semi-
inverse methods, and simply acknowledge that, in general, C1 isometric embeddings exist, though they may
be prohibitively difficult to build explicitly. Additionally, to illustrate that the initial decomposition may be
particularly pathological, and yet generate a “nice” intermediate configuration, we will start on purpose with
a multiplicative decomposition with highly discontinuous factors, and a correspondingly pathological set of
inner products h, that generates a C1 metric tensor field H. The pathology we introduce here is admittedly
contrived; it serves to highlight the fact that the smoothness of H determines when an intermediate con-
figuration can be constructed, rather than the regularity of other quantities appearing in our analysis thus
far.
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4.1 A Radially-Symmetric Example

Consider a radially-symmetric deformation given as

r = f(R), θ = Θ, (31)

where r and R are the radial coordinates in the current and reference configurations, respectively, and θ and
Θ are the respective angular coordinates. We will prescribe a multiplicative decomposition of the associated
deformation gradient F that places the unknown function f(R) and its derivatives entirely in the elastic
factor A. This ensures that G is specified, and upon the imposition of a collection of inner products h, fully
specifies the data necessary to define the intermediate configuration. We will then impose zero boundary
traction, specify a strain-energy density function, and compute the residual stress. The factorization of
this map through an isometric embedding of the intermediate configuration yields the interpretation of this
factorization as the reference configuration anelastically evolving into the curved surface obtained from this
embedding, and this surface being subsequently smashed flat elastically.

Geometry. The deformation gradient generated by this map has components

[F aA ] =

[
df
dR 0
0 1

]
. (32)

Consider the factorization[
df
dR 0
0 1

]
=

[
df
dR (1 + IQ (R))

−1
0

0 R−1

] [
1 + IQ (R) 0

0 R

]
, (33)

where IQ is the indicator function of the rationals:

IQ (R) =

{
1 if R ∈ Q
0 if R 6∈ Q . (34)

Additionally, we impose the inner products

[
hαβ

]
=

[
(1 + IQ (R))

−2
0

0 1 + a
(
R2 −R

)] , (35)

with 0 < a < 4, a positive constant. Notice in particular, that each factor of this decomposition is nowhere
continuous, and that the collection of inner products is also nowhere continuous. This pathology is academic
in nature, since despite G and A being nowhere continuous, F is smooth, and by construction the disconti-
nuities in G are canceled by discontinuities in h. We do this to obtain the smooth metric tensor field H to
show that our construction is well defined so long as H is smooth, even when G, A, and h are not, though
in practice, all of these quantities will likely be smooth everywhere. Demonstrating this, we compute H,
which has components [

HAB = GαAG
β
Bhαβ

]
=

[
1 0
0 R2

(
1 + a

(
R2 −R

))] , (36)

and is continuous, and positive definite. Geometrically, the map idB : (B,M) → (B,H) generates angular
contraction within the unit disk and angular stretching outside the unit disk, while keeping radial distances
preserved. In terms of principal stretches, we have

λR = 1, λΘ = 1 + a
(
R2 −R

)
, (37)

the latter of which takes its minimum value of 1− a
4 at R = 1

2 .
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a = 1 a = 2 a = 3

Figure 3: Selecting values for a, the blue disk R ≤ R∗(a) gets mapped to the orange intermediate configuration. In the region
R > R∗(a), the symmetric ansatz breaks down, and some kind of wrinkling is necessary to accommodate the extra length in
the angular direction.

Embedding. The symmetry present in H suggests an isometric embedding in E3 may take the form

x = r(R)er(Θ) + z(R)ez. (38)

As we will soon see, the solvability of this ansatz depends on the value of a, and the domain chosen; we will
consider the disk shaped domains R ≤ R∗ for some R∗ yet to be determined (see Figure 3). Computing the
metric induced by this embedding, and demanding it be equal to H, one obtains

r = R
√

1 + a (R2 −R), z′(R)2 = 1− [2 + aR (4R− 3)]
2

4 + 4aR (R− 1)
. (39)

Notice that the denominator appearing in the equation for z′(R) is identically positive for 0 < a < 4. Hence
there is no singularity within that range. Additionally, z(R) must be a real function, so it is clear that when
the right-hand side of (39) becomes negative, our ansatz ceases to be valid. Collecting the right-hand side
of (39) yields the rational expression

z′(R)2 =
aR(−16aR3 + 24aR2 − 9aR− 12R+ 8)

4 [1 + a(R2 −R)]
. (40)

Clearly, the right-hand side vanishes at R = 0, and the remaining cubic factor is positive at R = 0.
Because the denominator is identically positive, this means that z′(R) is real valued in some finite sized disk.
Additionally, the discriminant in R of the cubic factor is −6912(a − 4)2a, which being negative, indicates
that the cubic factor only has one real zero, i.e., our ansatz is only solvable in some finite disk rather than
in a finite disk plus some larger annular region. We compute this real root R∗ and obtain

R∗ (a) =
1

4

[
2 +

4− a[
(a− 4)(a2 + 2a3/2)

]1/3 −
[
(a− 4)(a2 + 2a3/2)

]1/3
a

]
. (41)

Hence, we shall, for any particular value of a, restrict our attention to embeddings of the disk R ≤ R∗ (a).
Finally, we choose a sign for z′(R) and integrate it by quadrature to obtain the embeddings

x(R,Θ) = R
√

1 + a (R2 −R)er(Θ)±
∫ R∗

R

√
aρ(−16aρ3 + 24aρ2 − 9aρ− 12ρ+ 8)

4 [1 + a(ρ2 − ρ)]
dρ ez, (42)

with the choice of sign indicating a reflection across the plane z = 0, and the bounds on the integral chosen
so that the boundary of the embedded disk lies in the plane z = 0. Taking the gradient of this embedding
yields the nonsquare tensor Ḡ

Ḡ =

(
2 + aR(4R− 3)

2
√

1 + aR(R− 1)
er ±

√
aR(−16aR3 + 24aR2 − 9aR− 12R+ 8)

4 [1 + a(R2 −R)]
ez

)
⊗ER

+
√

1 + a (R2 −R)eθ ⊗EΘ,

(43)
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which, in components, reads

[
ḠαA

]
=

r′(R) 0
0 1

z′(R) 0

 =


2+aR(4R−3)

2
√

1+aR(R−1)
0

0 1

±
√

aR(−16aR3+24aR2−9aR−12R+8)
4[1+a(R2−R)] 0

 . (44)

We demand the corresponding factor Āaα be valid in that

F aA = ĀaαḠ
α
A, (45)

and that it also projects vector fields onto the tangent plane of the surface, i.e.,

Ān = 0, (46)

where n = r′(R)ez−z′(R)er is the normal vector to the embedding. We note that because Ḡ only maps into
the tangent spaces of our surface, this requirement is not strictly necessary, because only the action of Ā on
the range spaces of Ḡ matters. We add this requirement to uniquely determine Ā, with the acknowledgement
that another choice could be made for Ā that still yields F upon multiplication by Ḡ. This yields

[
Āaα

]
=

[
f ′(R)r′(R) 0 −f ′(R)z′(R)

0 1 0

]

=

f ′(R) 2+aR(4R−3)

2
√

1+aR(R−1)
0 ∓f ′(R)

√
aR(−16aR3+24aR2−9aR−12R+8)

4[1+a(R2−R)]

0 1 0

 , (47)

where the new inner product h̄αβ is the standard Euclidean inner product on E3, which in cylindrical
coordinates reads [

h̄αβ
]

=

1 0 0
0 r2 = R2

(
1 + a

(
R2 −R

))
0

0 0 1

 . (48)

Residual Stress. The total deformation in general depends on the choice of strain energy density, and
there will be residual stress when boundary tractions are removed, since the nonzero Gaussian curvature
present in the intermediate configuration indicates that additional strain is necessary to embed it in the
plane. The Cauchy stress σ for a two-dimensional isotropic hyperelastic solid with strain-energy density
function W (I1, I2) takes the form

σ =
2√
I2

(
∂W

∂I1
B + I2

∂W

∂I2
I

)
, (49)

where I1 = tr(B), I2 = det(B), and B is the left elastic Cauchy-Green tensor, which has components

Bab = F aAH
ABF dBmdb = Aaαh

αβAdβmdb = Āaαh̄
αβĀdβmdb. (50)

In this case, we have

[Bab ] =

[
f ′(R)2 0

0 f(R)2

R2(1+a(R2−R))

]
, (51)

hence, I1 = f ′(R)2 + f(R)2/(R2
(
1 + a

(
R2 −R

))
) and I2 = f ′(R)2f(R)2/(R2

(
1 + a

(
R2 −R

))
).

For incompressible materials, the Cauchy stress has the following representation:

σ = 2
∂W

∂I1
B− pI, (52)
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where p is the Lagrange multiplier associated with incompressibility.
For an incompressible two-dimensional neo-Hookean solid W = µ

2 (I1 − 2) and we find f ′(R)f(R) =

R
√

1 + a (R2 −R). This equation can be integrated to obtain

f(R) =

√
2

∫ R

0

ρ
√

1 + a (ρ2 − ρ)dρ. (53)

Having obtained the deformation mapping, we only have to solve for the residual stress. We insert the
deformation map into the equilibrium equations divσ = 0, and obtain the following expression for the radial
derivative of p, the Lagrange multiplier field corresponding to the incompressibility constraint:

dp

dR
= µf ′(R)

[
f(R)

R2 (1 + a (R2 −R))
− f ′(R)2

f(R)
− 2f ′′(R)

]
, (54)

which can be integrated by quadrature and coupled with the zero boundary traction condition to obtain the
full residual stress field, depicted in Figure 4.

(a) Residual hoop stress

a = 1 a = 2 a = 3

(b) Residual radial stress

a = 1 a = 2 a = 3

Normalized residual stress

-1.0 -0.5 0 0.5 1.0

Figure 4: Notice that the hoop stress and radial stress become equal at R = 0, indicating that the residual stress at the center
of the disk is a pure pressure, as would be expected by the symmetry of the problem.

In general to obtain the residual stress field, one needs to solve the traction-free boundary-value problem
divσ = 0, noting that the divergence operator depends on the local geometry of the ambient space of
the current configuration, and the Cauchy stress involves the elastic stretch generated by embedding the
intermediate configuration into this ambient space.

In summary, we started with a pathological multiplicative decomposition of a two-dimensional defor-
mation, with a fully specified anelastic factor, and obtained an intrinsic description of the geometry of the
intermediate configuration. We then visualized this configuration by isometrically embedding it in E3. From
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this embedding, we computed a different multiplicative decomposition with nonsquare factors that gives not
only the local strain, but also the local orientation of the embedded tangent spaces. More specifically, since
we have an embedding, we can identify each tangent plane as an affine subspace of E3, and in particular,
we know how this plane is positioned and oriented as a subspace. This is equivalent to knowing the normal
vector to the embedded surface at each point. We then assumed an incompressible neo-Hookean material and
computed the residual stress in the current configuration by solving the equilibrium equation divσ = 0 with
vanishing boundary tractions. This construction can be interpreted as “smashing” the isometric embedding
of the intermediate configuration into a flat plane, hence creating stresses in the process.

5 Concluding Remarks

In this paper, we presented a sufficient condition for global intermediate configurations to be constructed
together with an explicit construction to build it. We demonstrated that when this sufficient condition is
satisfied for decompositions of two-dimensional deformations, the resulting intermediate configurations can
in principle be isometrically embedded in E3, and provided an example. Additionally, we have shown that
these intermediate configurations are unique up to isometry, which may be interpreted passively as a change
of coordinates.

Here, we have made no assumptions on the nature of any particular source of anelasticity, as our discussion
was purely geometric in nature, and therefore is generally applicable to any particular anelastic process. Care
should be taken however, since we began with some notion of anelastic strain as the primitive quantity, that
if a different measure is taken to be primitive, such as residual stress, then the intermediate configuration is
only uniquely determined to the same extent that the anelastic strain is uniquely determined.

Alternatively, our construction could be repeated using elastic strain as the primitive strain measure
rather than the anelastic strain. The construction then proceeds as before, mutatis mutandis, and one
obtains an intermediate configuration as we have done. While this similar construction may appear to be of
no additional use, we note that it may be the case that H is not C1, while the analogous quantity obtained
by using the elastic strain is C1, hence gaining on regularity. For example, in the case of cavitation, there
is a subdomain on which F is singular. Suppose that under the factorization F = AG, where A and G
are square, these singularities exist only in G and not in A. Provided that the collection of inner products
h is well behaved, their pull back under G will not be C1, but their pull back under A−1 will be. This
approach allows one to construct an intermediate configuration based on the topology of C rather than B,
letting one distinguish between elastic and anelastic cavitation. This example, in addition to the fact that
in some experiments elastic strain may be easier to measure, demonstrates that this alternative construction
can be useful, despite being nearly identical in form, since in certain cases it confers advantages over the
construction utilizing G. This is done at the cost of having to (generalized-)invert A, which must be done
with care when A is not square since the generalized inverse A−1

g must map entirely into im(G) to accurately

capture the elastic strain. When detF > 0, using the right inverse A−1
g = (A)

−1
R = GF−1 ensures this.

Since the intermediate configurations constructed here are typically not Euclidean, they are not generally
preserved under a nontrivial action of the special Euclidean group. Hence, in the development of physical
theories involving this configuration, the requirement of equivariance under nontrivial actions of the special
Euclidean group is inappropriate, and should be replaced instead with equivariance under actions of the
symmetry group of the intermediate configuration, which may only be the trivial group. We further comment
on this notion of equivariance. Suppose we have a map f : A → B, where A and B are G-spaces for some
topological group G (G-spaces are those possessing a group action, i.e., a map G × A → A that agrees
with the group structure). The map f is a G-equivariant map if it “commutes” with the group action, i.e.,
choosing an element g ∈ G, and denoting the group action on A by ?A and the group action on B by ?B ,
we have

g ?B f(x) = f(g ?A x), ∀x ∈ A.

As an example, in Euclidean space the Cauchy Stress is an SE(n)-equivariant function of the deformation ϕ
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via the relation

σ((Q|c) ?A ϕ) = σ(Qϕ+ c) = Qσ(ϕ)QT = (Q|c) ?B (σ(ϕ)), ∀(Q|c) ∈ SE(n).

Notice how the action on ϕ ∈ Hom ((B,M) ,En) is different than the action on σ ∈ TEn⊗T ∗En (alternatively
σ ∈ TEn ⊗ TEn, σ ∈ T ∗En ⊗ T ∗En, or σ ∈ Ω1(En)⊗ Ωn−1(En) via application of musical and Hodge star
isomorphisms; see Kanso et al. [2007] for a discussion of these representations.) Both of these actions are
ultimately induced by the defining action of SE(n) on Euclidean space. The lack of such a global Euclidean
structure in the intermediate configuration is why the imposition of “invariance” under superposed rigid
body motions on the intermediate configuration in Casey and Naghdi [1980] is inappropriate. The proper
“invariance” requirements can be obtained by taking the action of the intermediate configuration’s isometry
group (which may be trivial) and prolonging it to actions on the configuration’s tangent bundle, cotangent
bundle, and the various vector bundles obtained by taking the tensor product bundles of these bundles. The
proper “invariance” requirements then amount to requiring that constitutive laws be group equivariant maps
with respect to these induced actions. Other examples of equivariance requirements are material symmetry,
where the group in question is the material symmetry group at each point, and all invariance requirements
are special cases of equivariance requirements where ?B is the trivial action g ?B x = x, ∀g ∈ G, ∀x ∈ B.
See Husemöller [1994] for a detailed treatment of G-spaces and group actions.

Finally, here we have only considered the regular case of C1 embeddings that prohibits explicitly singu-
larities in the anelastic deformation tensor. In particular, if the metric tensor H either becomes singular or
loses positive definiteness on some subset, the topologies of (B,M) and (B,H) no longer necessarily agree.
The singular case is particularly interesting as it can be used to treat a number of highly relevant problems in
mechanics such as cavitation, accretive growth, point defects, and fracture. All these effects can, in principle,
be modeled by using a singular multiplicative decomposition, though the construction of the appropriate
intermediate configuration is more involved and falls outside the scope of the analysis presented here.
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