
 

 

IOSO Multilevel RDO Methodology 

Here we present our methodology of solving RDO problems. This methodology is based on a 
combination of various fidelity analysis tools (for example 3D CFD simulation as a high-fidelity tool 
and adaptive surrogate model as a low-fidelity tool). Adaptive surrogate model tool is used for the 
evaluation of probability objectives during optimization which allows sufficiently speed-up the 
optimization problem solution and makes it possible to solve an RDO problem within the appropriate 
time limits [1].  
 
Introduction 

Designing a complex technical system in present-day conditions is difficult without the use of 
optimization techniques. In fact, design and optimization processes are intimately related. While 
designing a technical system and determining its parameters, an experienced designer is implicitly 
assessing the practical implementation of the system. 

However, the rise of the complexity of systems as well as the number of parameters needed to be 
coordinated with each other in an optimal way have led some to consider the use of mathematical 
modeling combined with numerical optimization techniques. In this situation the designer focuses on 
developing an adequate mathematical model and on analyzing the results obtained. Choosing optimal 
parameters for the system being designed is done through the use of formal mathematical optimization 
procedures. The use of such an automated design approach exempts the designer of routine work 
required to select optimal combinations of variable parameters, allowing him to set and solve extremely 
complex problems with large numbers of variables. However, solutions obtained by means of 
mathematical modeling and optimization techniques in many cases are hard to implement in real life. 
This is largely due to the fact that while stating and solving optimization tasks by traditional 
(deterministic) approach, as a rule, various uncertainties influencing the efficiency of the designed 
system in real life conditions are not taken into consideration. 

An extremum value of efficiency obtained from an optimization problem solved in a deterministic 
way may sometimes be a non-optimal design from a practical implementation point of view. In recent 
years, probabilistic design analysis and optimization methods have been developed to account for 
uncertainty and randomness through stochastic simulation and probabilistic analysis (see, for example, 
[2]-[13]). These methods can be classified as a new scientific direction named “Robust Design 
Optimization” (RDO). The distinct feature of this direction is the use of probabilistic objectives to evaluate 
the technical system quality. Despite a great variety of problem statements and the methods to solve 
optimization problems in conditions of uncertainty, there are a number of common problems that should 
be addressed by the investigators. These problems are as follows: 

• Identifying the main uncertainties affecting the design (i.e. uncertainties in variables in real 
operating environment; uncertainties in environmental conditions; uncertainty in mathematical 
model accuracy). 

• Selecting the probabilistic objectives (for example: mean value of efficiency; magnitude of 
efficiency value deviation; probability that efficiency value is no worse than the one given; 
efficiency value ensured with probability no less than the one given). 

• Selecting of procedure for probability objectives evaluation (analytical approach; Monte-Carlo 
technique and so on). 

• Selecting the optimization method. 
 
 
 
 



 

 
The challenge of RDO problem 

Let’s start the considering of RDO problem from questions “why do we need RDO?” and “what is 
RDO?” The problem of Robustness appears when any random variable considerably influences on the 
efficiency indexes of your object. For example on the Fig. 1 we show how radically some small change in 
the geometry parameter of a compressor blade may influence on the efficiency of real-life compressor. 
This influence has obviously random nature. 

 
Fig. 1 Stochastic distribution of compressor efficiency indexes due to geometry variations 

 
That means while solving an optimization task we don’t know the exact values of efficiency 

indexes, so the efficiency values are random ones. To handle optimization problems having random 
peculiarities of efficiency index values we have to involve probabilistic assessments of these efficiency 
indexes that is we need to use probabilistic optimization objectives. As probabilistic objectives we may 
use: 

- mean value of efficiency; 
- magnitude of efficiency value deviation; 
- probability that efficiency value is no worse than the one given; 
- efficiency value ensured with probability no less than the one given, and so on. 
Fig. 2 shows some important example of the critical difference between optimization approaches 

in deterministic and RDO ways. 

 
Fig. 2 Examples of probability objectives. 



 

 
It is obvious that in this case the minimum of given deterministic solution is reached at 1x . But 

if we take into consideration the random uncertainties in design parameter x  values and consider the 
objective with the involvement of probabilistic approach, we can see that the minimum of the objective 
mean value would be at 6.4x and it would be different from the deterministic minimum. It would be 
the same if the probabilistic objective is mean square deviation as well. The considered example leads 
to an important conclusion that an RDO problem should not be reduced to the problem of 
“correction” of solution obtained through deterministic approach since extremums of probabilistic 
objectives may substantially differ, by design parameters, from extremum of deterministic objective. 

So, we need to set up a RDO task in full stochastic statement with the involvement of probabilistic 
objectives (see Fig. 3). The optimization software must be capable of solving multi-objective 
optimization tasks and the solution of RDO task is a trade-off compromise Pareto-set between the 
efficiency indexes and probability indexes. 

 
Fig. 3 The statement of multiobjective RDO task 

 
 The problem occurring while solving robust design optimization tasks is determining of 

probabilistic objective values. There exist various approaches. The simplest and the most universal and 
reliable method of evaluation of probabilistic objective is the Monte-Carlo method. The main advantage 
of this method, as applied to RDO problems, is no necessity of setting of any a priori assumptions about 
the goal function peculiarities (smoothness, monotony, continuity, differentiability, and so forth). 
However the true Monte-Carlo method requires dozens of thousands of your model simulations during 
optimization and is absolutely inapplicable in case when one uses full 3D CFD models. For this case we 
use our multilevel optimization scheme. 
 
 
 
 
 
 
 



 

 
Automatic IOSO Multilevel Optimization Scheme for RDO Tasks 

The typical situation, while solving a problem of optimization of complex engineering systems, is 
that the user has several tools of various degree of fidelity to perform the analysis. These tools differ 
according to their levels of complexity of modeling the actual physical phenomena and their different 
levels of numerical accuracy. The high-fidelity tools could be represented by detailed non-linear 
mathematical models of the researched systems (for example 3D CFD simulations) or even by the 
experimental samples of such systems. However, the use of such tools in optimization is associated with 
significant time expenditures. The low-fidelity (surrogate) models also allow carrying out optimization 
search, but the reliability of the obtained results can be rather low. Therefore, within the framework of 
the development of RDO methodology for complex systems, our method is based on a combination of 
various fidelity analysis tools. The objective here is to offer a procedure of multi-objective optimization 
of complex systems based upon the adaptive use of analysis tools of various levels of complexity. The 
intention is to minimize the solution time of optimization problem. This approach ensures the 
possibilities to search Pareto-optimal set of solutions, and also ensures the improvements of the 
surrogate mathematical model. The simplified scheme of work for the multilevel optimization procedure 
can be represented as follows (see the Fig. 4): 

I. Building of low-fidelity (surrogate) model on the basis of data set previously obtained by high-
fidelity analysis tool. 

II. Solving the multi-objective optimization problem based upon a surrogate model. 
III. For the obtained Pareto-set the objectives and constrained parameters are updated using the 

high-fidelity analysis tool. 
IV. The refinement of the surrogate model is performed. 
V. Replacement of the surrogate model and the return to step II). 

The information stored during the search is used to improve the surrogate models. However, this 
model is correct not for the entire initial search area but only for a certain neighborhood of the obtained 
Pareto-set. This ensures purposeful improvement of approximating properties only in the area of 
optimal solutions that noticeably reduce the computing effort to construct surrogate models.  

It is important to mention that from our point of view popular methods of one-shot 
construction of surrogate models are insufficient for real-life problems. 

 
Fig.4 Multilevel IOSO Scheme 



 

 
IOSO design optimization software by Sigma Technology is used as an optimizer in this 

methodology. Approx software by Sigma Technology is used for the construction of adaptive surrogate 
models. The main features of Approx surrogate model construction software: 

1. Building of surrogate models for functional dependencies data, where float-type parameters 
depend on up to 80 float-type arguments. 

2. Making it possible to call a “fast” surrogate models instead of time-consuming simulation 
applications. 

3. Additional functions (response surfaces data loading/saving, mean error analysis, batch 
tasks support etc)  

RSM technologies used:  
1. Regression approaches, based on the Least Squares Method, providing free selection of 

resulting polynomial structure (presence of constant, linear, covariance or square terms) 
and adaptive transformation of arguments values; 

2. Modified regression model expanding the set of arguments by means of adding transformed 
variables and selecting optimum structure of the polynomial; 

3. Radial-basis functions techniques,  
4. Weighted approximation  
5. Neural networks.   
6. Krigging.  

 
 
Conclusion 

Our RDO approach is a multiobjective optimization approach offering a compromise trade-off 
between the efficiency indexes and probability indexes as a result. It implies the automatic usage of 
various fidelity models (3-D CFD simulation as a high-fidelity model and an adaptive surrogate model as 
a low-fidelity model). The involvement of adaptive surrogate model allows a user to sufficiently increase 
the solution speed of RDO problem in full stochastic statement and makes it possible to handle it in the 
appropriate time limit without the use of extraordinary hardware resources. 
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