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Abstract 

Channeling cracks in brittle thin films have been observed to be a key reliability issue for 

advanced interconnects and other integrated structures. Most theoretical studies to date have 

assumed no delamination at the interface, while experiments have observed channel cracks both 

with and without interfacial delamination. This paper analyzes the effect of interfacial 

delamination on the fracture condition of brittle thin films on elastic substrates. It is found that, 

depending on the elastic mismatch and interface toughness, a channel crack may grow with no 

delamination, with a stable delamination, or with unstable delamination. For a film on a 

relatively compliant substrate, a critical interface toughness is predicted, which separates stable 

and unstable delamination. For a film on a relatively stiff substrate, however, a channel crack 

grows with no delamination when the interface toughness is greater than a critical value, while 

stable delamination along with the channel crack is possible only in a small range of interface 

toughness for a specific elastic mismatch. An effective energy release rate for the steady-state 

growth of a channel crack is defined to account for the influence of interfacial delamination on 

both the fracture driving force and the resistance, which can be significantly higher than the 

energy release rate assuming no delamination. 
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1. Introduction 

Integrated structures with mechanically soft components have recently been pursued over a 

wide range of novel applications, from high performance integrated circuits in microelectronics 

(Ho et al., 2004) to unconventional organic electronics (Dodabalapur, 2006) and stretchable 

electronics (Wagner et al., 2004; Khang et al., 2006), along with the ubiquitous integration of 

hard and soft materials in biological systems (Gao, 2006). In particular, the integration of low 

dielectric constant (low k) materials in advanced interconnects of microelectronics has posed 

significant challenges for reliability issues resulting from the compromised mechanical 

properties. Two failure modes have been reported, one for cohesive fracture (Liu et al., 2004) 

and the other for interfacial delamination (Liu et al., 2007). The former pertains to the brittleness 

of the low-k materials subjected to tension, and the latter manifests due to poor adhesion between 

low-k and surrounding materials (Tsui et al., 2006). This paper considers concomitant cohesive 

fracture and interfacial delamination as a hybrid failure mode in integrated thin-film structures. 

One common cohesive fracture mode for thin films under tension is channel cracking 

(Figure 1). Previous studies have shown that the driving force (i.e., the energy release rate) for 

the steady-state growth of a channel crack depends on the constraint effect of surrounding layers 

(Hutchinson and Suo, 1992). For a brittle thin film on an elastic substrate, the driving force 

increases for increasingly compliant substrates (Beuth, 1992; Huang et al., 2003). The effect of 

constraint can be partly lost as the substrate deforms plastically (Ambrico and Begley, 2002) or 

viscoelastically (Huang et al., 2002; Suo et al., 2003). More recent studies have focused on the 

effects of stacked buffer layers (Tsui et al., 2005; Cordero et al, 2007) and patterned film 

structures (Liu et al., 2004). In most of these studies, the interfaces between the film and the 

substrate or the buffer layers are assumed to remain perfectly bonded as the channel crack grows 
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in the film (Figure 1a). However, the stress concentration at the root of the channel crack may 

drive interfacial delamination (Ye et al., 1992). While some experimental observations clearly 

showed no delamination (Tsui et al., 2005; He, et al. 2004), others observed delamination of the 

interface (Tsui et al., 2005; Suo, 2003). There are two questions yet to be answered: First, under 

what condition would the growth of a channel crack be accompanied by interfacial 

delamination? Second, how would the interfacial delamination (if occurring) affect the fracture 

condition or reliability in integrated thin film structures? To answer these questions, this paper 

considers steady-state channel cracking of an elastic thin film on an elastic substrate and 

theoretically examines the effect of concomitant interfacial delamination. Section 2 briefly 

reviews the concept of steady-state driving force for a channel crack growing without 

delamination. Section 3 analyzes interfacial delamination emanating from the root of a long, 

straight channel crack. In Section 4, the fracture driving force for the steady-state growth of a 

channel crack with interfacial delamination is determined. A finite element model is used to 

calculate the energy release rates for both the interfacial delamination and the steady-state 

channel cracking. Moreover, to account for the influence of interfacial delamination on the 

fracture resistance, we define an effective energy release rate that depends on the interface 

toughness as well as the elastic mismatch between the film and the substrate. In conclusion, 

Section 5 summarizes the findings and emphasizes the impact of interfacial delamination on the 

reliability of integrated structures with mechanically soft components. 
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2. Channel cracking without delamination 

As illustrated in Figure 1a, assuming no interfacial delamination, the energy release rate for 

the steady-state growth of a channel crack in a thin elastic film bonded to a thick elastic substrate 

is (Beuth, 1992; Hutchinson and Suo, 1992): 
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where fσ  is the tensile stress in the film,  is the film thickness, and fh ( )21 fff EE ν−=  is the 
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When the film and the substrate have identical elastic moduli, we have 0== βα  and 

. The value of Z decreases slightly for a compliant film on a relatively stiff substrate 

(

976.1=Z

sf EE <  and 0<α ). A more compliant substrate ( 0>α ), on the other hand, provides less 

constraint against film cracking. Thus, Z increases as α  increases. For very compliant substrates 

(e.g., organic low-k dielectrics, polymers, etc.), Z increases rapidly, with  for 30>Z 99.0>α  

(Beuth, 1992; Huang et al., 2003). The effect of β  is secondary and often ignored. 

In general, the steady-state energy release rate of channel cracking can be calculated from 

a two-dimensional (2D) model (Beuth, 1992; Huang et al., 2003) as follows: 
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where )(zδ  is the opening displacement of the crack surfaces far behind the channel front (see 

Fig. 1a). Due to the constraint by the substrate, the crack opening does not change as the channel 

front advances and the energy release rate attains a steady state, independent of the channel 

length. Three-dimensional analyses have shown that the steady state is reached when the length 

of a channel crack exceeds two to three times the film thickness for a relatively stiff substrate 

(Nakamura and Kamath, 1992), but the crack length to reach the steady state can be significantly 

longer for more compliant substrate materials (Ambrico and Begley, 2002). The present study 

focuses on the steady state. 

 

3. Interfacial delamination from channel root 

Now consider an interfacial crack emanating from the root of a channel crack at each side 

(Figure 1b). For a long, straight channel crack, we assume a steady state far behind the channel 

front, where the interfacial crack has a finite width, d. The energy release rate for the interfacial 

crack can be written in a similar form as Eq. (1): 
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where Zd is a dimensionless function that can be determined from a two-dimensional plane strain 

problem as illustrated in Figure 2a. In the present study, a finite element model is constructed to 

calculate the interfacial energy release rate. By symmetry, only half of the film/substrate 

structure is modeled along with proper boundary conditions (Figure 2b). The finite element 

package ABAQUS is employed and an example mesh near the interfacial crack is shown in 

Figure 2c. Close to the tip of the interfacial crack, a very fine mesh is used (Figure 2d), with a set 

of singular elements around the crack tip. Far away, infinite elements are used for both the film 
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and substrate to eliminate possible size effects of the model. The method of J-integral is adopted 

for the calculation of the interfacial energy release rate. In all calculations, we set 
3
1

== sf νν  

such that 4αβ = , while the mismatch parameter α  is varied. 

The dimensionless coefficient  is determined by normalization of the numerical results 

according to Eq. (4), which is plotted in Figure 3 as a function of the normalized delamination 

width, 

dZ

fhd , for different elastic mismatch parameters. The  function has two limits. First, 

when  (long crack limit), the interfacial crack reaches a steady state with the energy 

release rate 

dZ

∞→fhd /
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and thus . The steady-state energy release rate for the interfacial crack is independent 

of the crack length as well as the elastic mismatch. On the other hand, when  (short 

crack limit), the interfacial energy release rate follows a power law (He and Hutchinson, 1989a): 
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where λ  depends on the elastic mismatch and can be determined by solving the equation (Zak 

and Williams, 1963) 
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More details about the solution at the short crack limit as well as comparisons with the finite 

element results are given in the Appendix. Here we discuss three scenarios at the short crack 

limit, which would eventually determine the condition for channel cracking with or without 
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interfacial delamination. First, when 0== βα  (no elastic mismatch), we have 5.0=λ . In this 

case,   approaches a constant as . As shown in the Appendix, an analytical solution 

predicts that , which compares well with our numerical results (Figure A2). 

When 

dZ 0/ →fhd

9878.0)0,0,0( →dZ

0>α  ( 4αβ = ), we have 5.0>λ . Consequently, ∞→dZ  as . As shown in 

Figure 3, for both 

0/ →fhd

0=α  and 0>α , the interfacial energy release rate monotonically decreases 

as the delamination width increases. On the other hand, when 0<α , we have 5.00 << λ , and 

thus,  as . Interestingly, the numerical results in Figure 3 show that, instead of 

a monotonic variation with respect to the crack length, the interfacial energy release rate 

oscillates between the short and long crack limits for the cases with 

0→dZ 0/ →fhd

0<α . Such an oscillation 

leads to local maxima of the interfacial energy release rate, which in some cases (e.g., 6.0−=α ) 

can be greater than the steady state value at the long crack limit. 

Previously, Ye et al. (1992) gave an approximate formula for the  function based on 

their finite element calculations. Although the formula has similar asymptotic limits for long and 

short cracks as the analytical solutions, it gives inaccurate results for at least two cases. First, in 

the case of no elastic mismatch, the formula predicts that  as , about 25% 

lower than the analytical solution. Second, the interfacial energy release rates for intermediate 

crack lengths by the approximate formula in general do not compare closely with numerical 

results, especially for cases with 

dZ

748.0→dZ 0/ →fhd

0<α , where the oscillation and the maxima are not well 

captured by the approximation. As will be discussed later, the maximum interfacial energy 

release rate for 0≤α  is critical for determining the condition of interfacial delamination along 

side the channel crack. Another previous study by Yu et al. (2001) investigated interfacial 

delamination under two different edge conditions. While the steady-state interfacial energy 
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release rate is the same for all edge conditions, the short crack limit strongly depends on the edge 

effect.  

A necessary condition for steady-state channel cracking with concomitant interfacial 

delamination is that the interfacial crack arrests at a finite width. The delamination width can be 

determined by comparing the interfacial energy release rate in Eq. (4) to the interface toughness. 

In general, the interface toughness depends on the phase angel of mode mix (Hutchinson and 

Suo, 1992), which in turn depends on the delamination width, as shown in Figure 4. Due to the 

oscillatory nature of the stress singularity at the interfacial crack tip (Rice, 1988), a length scale 

has to be used to define the phase angle. Here we take the film thickness  as the length scale, 

and define the mode angle as 

fh
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where  is the complex stress intensity factor, and 21 iKKK += ⎟⎟
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imaginary parts of the complex stress intensity factor are calculated by the interaction integral 

method in ABAQUS. Figure 4 shows that the phase angle quickly approaches a steady state 

( )βαωψ ,=ss ,       (9) 

as given by Suo and Hutchinson (1990). When the film and the substrate have identical elastic 

moduli ( 0== βα ), we have ( ) o520,0 == ωψ ss . Considering the fact that the variation of the 

phase angle with respect to the delamination width is relatively small and confined within a 

small range of short cracks ( ), we take the constant steady-state phase angle, Eq. (9), in 

the subsequent discussions and assume that the interface toughness is independent of the 

fhd <
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delamination width, i.e., ( ssii )ψΓ=Γ . Then, the width of the interfacial delamination can be 

determined by requiring that  
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The right-hand side of Eq. (10) is the normalized interface toughness, independent of the 

interfacial crack length. In the following, we discuss possible solutions to Eq. (10) for different 

elastic mismatches. 

First, when 0== βα  (i.e., no elastic mismatch), the  function has a maximum, 

 as , and it approaches the steady state, , for long cracks.  

Consequently, when 

dZ

9878.0→dZ 0/ →fhd 5.0→dZ

9878.0≥Γi  (strong interface), the interfacial energy release rate is always 

lower than the interface toughness, and thus no delamination would occur (i.e., ). On the 

other hand, when 

0=sd

5.0≤Γi  (weak interface), the interfacial energy release rate is always higher 

than the interface toughness. In this case, the interfacial crack would grow unstably to infinity 

(i.e., ), causing spalling of the film from the substrate, unless the interfacial crack is 

arrested by other features such as geometric edges or material junctions. Only for an intermediate 

interface toughness with 

∞→sd

5.09878.0 >Γ> i , Eq. (10) has a finite solution, , in which 

case the channel crack grows with concomitant interfacial delamination of the width . The 

stable delamination width is plotted as a function of the normalized interface toughness 

∞<< sd0

sd

iΓ  in 

Figure 5.  

Next, when 0>α  (i.e., a stiff film on a relatively compliant substrate), the  function is 

unbounded as . Thus, for all interfaces with 

dZ

0/ →fhd 5.0>Γi , a stable delamination width  sd
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can be obtained from Eq. (10). This indicates that interfacial delamination would always occur 

concomitantly with the channel crack when the substrate is more compliant than the film. As 

shown in Figure 5, the delamination width increases as the normalized interface toughness 

decreases. When 5.0≤Γi , the interfacial crack grows unstably and the delamination width 

approaches infinity.  

When 0<α  (i.e., a compliant film on a relatively stiff substrate), the  function 

necessarily starts from zero at 

dZ

0/ =fhd , but has a local maximum ( ) before it approaches 

the steady state value. The value  decreases as 

dmZ

dmZ α  decreases, which is greater than 0.5 when 

89.00 −>> α  and lower than 0.5 when 89.0−≤α . Consequently, when 89.00 −>>α , no 

interfacial delamination occurs if dmi Z≥Γ , and stable delamination if dmi Z<Γ<5.0 . On the 

other hand, when 89.0−≤α , stable delamination cannot occur; the channel crack either has no 

delamination for 5.0≥Γi  or causes unstable delamination for 5.0<Γi . The stability of the 

interfacial delamination is dictated by the trend of the interfacial energy release rate with respect 

to the delamination width (Fig. 3). Although Eq. (10) has a finite solution for 0<α  and 

5.0<Γi , the interfacial crack is unstable because 0>
∂
∂

d
Zd  (the minor oscillation of the  

function has been ignored here). Moreover, for both the stable and unstable delamination, a 

critical defect size is required for the initiation of the interfacial delamination, since the energy 

release rate approaches zero for very short cracks ( ). This sets a barrier for the 

initiation of interfacial delamination from the channel crack when the substrate is mechanically 

stiffer than the film. 

dZ

0/ →fhd
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The above discussion is summarized in Figure 6 as an interfacial delamination map for 

different combinations of film/substrate elastic mismatch and interface toughness. Three regions 

are identified for (I) no delamination, (II) stable delamination, and (III) unstable delamination. In 

regions II and III, sub-regions for delamination without and with an initiation barrier are denoted 

by A and B, respectively. The boundary between Region I and Region II-B is determined from 

the present finite element calculations, corresponding the maximum interfacial energy release 

rate for 89.00 −>>α . In an experimental study by Tsui et al. (2005), no interfacial 

delamination was observed for channel cracking of a low k film directly deposited on a Si 

substrate, while a finite delamination was observed when a polymer buffer layer was sandwiched 

between the film and the substrate. These observations are consistent with the delamination map. 

In the former case, the elastic mismatch between the film and the substrate, 91.0−=α , thus no 

delamination when the normalized interface toughness 5.0≥Γi  (i.e., Region I in Figure 6). With 

a polymer buffer layer, however, the elastic mismatch between the low k material and the 

polymer is, 4.0=α . Although the polymer layer is relatively thin, it qualitatively changes the 

interfacial behavior from that for 0<α  (Region I) to that for 0>α  (Region II-A). More 

experimental evidences with different combinations of elastic mismatch, interface toughness, and 

film stress would be needed for further validation of the predicted delamination map. 

 

4. Channel cracking with stable delamination 

As the question regarding the occurrence of interfacial delamination from the root of a 

channel crack is addressed in the previous section, the next question is: how would the interfacial 

delamination influence the driving force for the growth of a channel crack? Again, we consider 

the steady-state growth. With a stable delamination along each side of the channel crack (Figure 
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2a), the substrate constraint on the opening of the channel crack is relaxed. Consequently, the 

steady-state energy release rate calculated from Eq. (3) becomes greater than Eq. (1). A 

dimensional consideration leads to 
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where *Z  is a new dimensionless coefficient that depends on the width of interfacial 

delamination ( fhd ) in addition to the elastic mismatch parameters. From an energetic 

consideration, we obtain that 
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where  is the steady-state energy release rate of the channel crack with no delamination as 

given in Eq. (1), and  is the energy release rate of the interfacial crack of width a as given 

in Eq. (4). When ,   or , recovering Eq. (1); when 

ssG

)(aGd

0/ →fhd ssss GG →* ZZ →* ∞→fhd / , 

. Furthermore, as ∞→*Z ∞→fs hd / , since the interfacial crack approaches the steady state 

(  and ), the increase of the energy release rate is simply d
ssd GG → 5.0→dZ

 dG
h

G d
ss

f
ss Δ=Δ

2* , or 
fh
dZ Δ

=Δ * ,     (13) 

which dictates that the coefficient *Z  increases with the normalized delamination width  

linearly with a slope of 1 at the limit of long delamination.  

fhd /

The same finite element model as illustrated in Figure 2 is employed to calculate *Z , by 

integrating the opening displacement along the surface of the channel crack as Eq. (3). Figure 7 
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plots the difference, ZZ −* , as a function of  for different elastic mismatch parameters. 

For a compliant film on a relative stiff substrate (

fhd /

0<α ), the increase due to interfacial 

delamination is almost linear for the entire range of delamination width. For a stiff film on a 

relatively compliant substrate ( 0>α ), however, the increase is nonlinear for short interfacial 

delamination and then approaches a straight line of slope 1 as predicted by Eq. (13). Apparently, 

with interfacial delamination, the driving force for channel cracking can be significantly higher 

than that assuming no delamination. 

As discussed in the previous section, the stable delamination width, , can be 

obtained as a function of the normalized interface toughness, 

fs hd /

iΓ  , by Eq. (10), as shown in Figure 

5. Thus, the coefficient *Z  in Eq. (11) may also be plotted as a function of iΓ , as shown in 

Figure 8. When 0>α ,  as ZZ →* ∞→Γi , and as ∞→*Z 5.0→Γi ; in between, *Z  

increases as iΓ  decreases, because the interfacial delamination width increases. When 0=α , 

ZZ =*  as 9878.0≥Γi (i.e., no delamination). When 89.00 −>> α , *Z  increases from Z  to 

infinity within a narrow window of iΓ , where stable delamination is predicted (Region II-B in 

Figure 6). For 89.0−<α , either ZZ =*  for no delamination or  for unstable 

delamination. Therefore, Figure 8 explicitly illustrates the influence of the interface toughness on 

the driving force of channel cracking in the film.  

∞→*Z

While the interfacial delamination, if occurring, relaxes the constraint on crack opening thus 

enhances the fracture driving force, it also requires additional energy to fracture the interface as 

the channel crack advances. An energetic condition can thus be stated: if the increase in the 

energy release exceeds the fracture energy needed for delamination, growth of the channel crack 

with interfacial delamination is energetically favored; otherwise, the channel crack grows with 
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no delamination. It can be shown that this condition is consistent with the delamination map in 

Figure 6. Considering the interfacial fracture energy, a fracture condition for steady-state growth 

of a channel crack can be written as 

  ,       (14) dfss WG +Γ≥*

where  is the cohesive fracture toughness of the film, and  is the energy required to 

delaminate the interface accompanying per unit area growth of the channel crack. For stable 

delamination of width  at both sides of a channel crack, the delamination energy is 

fΓ dW
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Again, the phase angle of the interfacial crack is approximately taken as a constant independent 

of the crack length. When , Eq. (14) recovers the condition for cohesive fracture of the 

film, i.e., . 

0=sd

fssG Γ≥

Equation (14) may not be convenient to apply directly, since both sides of the equation 

(driving force and resistance, respectively) increase with the interfacial delamination. By moving 

 to the left hand side and noting that the stable delamination width is a function of the 

interface toughness, we define an effective driving force for the steady-state channel cracking: 
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Using the effective energy release rate, the condition for the steady-state channel cracking is 

simply a comparison between  and eff
ssG fΓ , the latter being a constant independent of the 

interface. Figure 9 plots the ratio, ( )βα ,ZZeff , as a function of iΓ  for different elastic mismatch 

parameters. At the limit of high interface toughness ( ∞→Γi ),  and , which 

recovers the case of channel cracking with no delamination. The effective driving force increases 

as the normalized interface toughness deceases. Compared to Figure 8, the influence of 

interfacial delamination on the effective driving force is reduced after considering the interfacial 

fracture energy. 

0→sd ZZeff →

 

5. Summary 

This paper considers concomitant interfacial delamination and channel cracking in elastic 

thin films. Two main conclusions are summarized as follows. 

• Stable interfacial delamination along a channel crack is predicted for certain 

combinations of film/substrate elastic mismatch, interface toughness, and film stress, as 

summarized in a delamination map (Figure 6), together with conditions for no 

delamination and unstable delamination. 

• Interfacial delamination not only increases the fracture driving force for steady-state 

growth of the channel crack, but also adds to the fracture resistance by requiring 

additional energy for the interfacial fracture. An effective energy release rate for channel 

cracking is defined, which depends on the interface toughness (Figure 9) in addition to 

the elastic mismatch and can be considerably higher than the energy release rate 

assuming no delamination. 
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In particular, it is predicted that channel cracking in an elastic thin film on a relatively 

compliant substrate is always accompanied by interfacial delamination, either stable or unstable, 

depending on the interface toughness. This differs from the case for an elastic film on a relatively 

stiff substrate, in which channel cracks may grow without interfacial delamination (Region I in 

Figure 6). This difference may have important implications for reliability of integrated structures. 

As an example, for interconnect structures in microelectronics, the low-k dielectrics is usually 

more compliant compared to the surrounding materials (Liu et al., 2004). Therefore, fracture of 

the low-k dielectrics by channel cracking is typically not accompanied by interfacial 

delamination. However, when a more complaint buffer layer is added adjacent to the low-k film, 

interfacial delamination can occur concomitantly with channel cracking of the low-k film (Tsui 

et al., 2005). Moreover, a relatively stiff cap layer (e.g., SiN) is often deposited on top of the 

low-k film (Liu et al., 2007). Channel cracking of the cap layer on low-k could be significantly 

enhanced by interfacial delamination. Flexible electronics is another area of applications where 

compliant substrates have to be used extensively along with mechanically stiffer films for the 

functional devices and interconnects (Wagner et al., 2004; Khang et al., 2006). Here, interfacial 

delamination could play a critical role in the reliability assessment. As shown in a previous study 

by Li and Suo (2007), the stretchability of metal thin-film interconnects on a compliant substrate 

can be dramatically reduced by interfacial delamination. For brittle thin films on compliant 

substrates, as considered in the present study, interfacial delamination has a similar effect on the 

fracture and thus deformability of the devices.  
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Appendix: Short delamination crack from a channel root 

This Appendix summarizes asymptotic solutions from previous studies (He and Hutchinson, 

1989a & 1989b; Hutchinson and Suo, 1992) for short delamination cracks emanating from the 

root of a channel crack (i.e., 0→fhd  in Figure 2a), and presents comparisons with numerical 

results from the finite element model shown in Figure 2. 

 

A.1 Zero elastic mismatch ( 0== βα ) 

This is a case of crack kinking in a homogeneous solid. Without the interfacial delamination, 

the channel crack in the film is equivalent to a two-dimensional edge crack, with the stress 

intensity factor at the root 

ffI hK πσ1215.1= .      (A1) 

For a small crack segment ( ) kinking out of the plane of the edge crack, the stress 

intensity factors at the new crack tip are linearly related to the stress intensity factors at the tip of 

the parent crack (Hutchinson and Suo, 1992), namely 

fhd <<
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d
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where the coefficients, , depend on the kink angle, as given by Hayashi and Nemat-Nasser 

(1981). Following He and Hutchinson (1989b), the coefficients can be written as  

ijc

RR DCc +=11 , II DCc −=21 ,     (A3) 

where  and  are two complex valued functions, with the subscripts R 

and I denoting their real and imaginary parts, respectively. An approximation by Cotterell (1965) 

gives that 

IR iCCC += IR iDDD +=
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( )232/

2
1 ωω ii eeC −− += , ( )232

4
1 ωω ii eeD −= − ,   (A4) 

where ω  is the kink angle. Cotterell and Rice (1980) have shown that this approximation is 

asymptotically correct for small kink angles and is reasonably accurate for kink angles as large 

as 45° or even 90°, depending on the mode mix. 

For the present problem with a channel crack kinking into the interface, the kink angle is 

90° and . Under the plane strain condition, the energy release rate of the interfacial crack 

is 

0=IIK

( ) ( ) ( ) ( ) ( )
E
h

cc
E

KKdG ff
d
II

d
I

d

2
2
21

2
11

2
22

1215.10
σ

π +=
+

=→ .  (A5) 

A comparison between Eq. (A5) and Eq. (4) gives the dimensionless coefficient 

( ) ( )2
21

2
11258.10 ccdZd +=→ π .    (A6) 

Using the approximation (A4) with 2πω = , we obtain that 

4
2

11 =c , 
4
2

21 −=c .     (A7) 

Inserting (A7) into (A6) gives that 

9878.0)0( =→dZd .      (A8) 

This approximation agrees well with the numerical result shown in Figure 3, where 9923.0=dZ  

for 310−=fhd .  
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A.2 Crack deflection at a bimaterial interface 

For an interface between two elastic materials with general elastic mismatch, an asymptotic 

solution by He and Hutchinson (1989a) gives the energy release rate of the delamination crack 

emanating from a perpendicular channel crack (Figure 2a, fhd << ): 

( ) λ

πεπε
21

2

222
1

2

2
2

2
1

cosh2
]Re2[11

cosh2
11 −++

⎟
⎠

⎞
⎜
⎝

⎛
+=

+
⎟
⎠

⎞
⎜
⎝

⎛
+= d

CDDCk
EE

KK
EE

G
sfsf

d . (A9) 

where C and D are dimensionless, complex valued functions of α and β ,  is a real valued 

constant representing the stress intensity at the root of the channel crack, and 

1k

λ  is determined by 

Eq. (7). This asymptotic solution leads to a power-law dependence of the  function on the 

interfacial crack length as , namely 

dZ

0→d

λ

σ

21

2 ~
/

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ffff

d
d h

d
Eh

GZ  .     (A10) 

Figures A1 and A2 plot the numerical solutions of  from the finite element model 

(Figure 2), in comparison with the asymptotic solution. When 

dZ

0<α  ( 4/αβ = ), 5.00 << λ  and 

the log-log plot of  vs dZ fhd  (Figure A1) approaches a straight line of positive slope 

( 021 >− λ ) as 0→fhd . When 0>α , 5.0>λ  and the log-log plot (Figure A2) approaches a 

straight line of negative slope ( 021 <− λ ). When 0== βα  (no elastic mismatch), 5.0=λ  and 

 approaches a constant with zero slope in the log-log plot (Figure A2). The comparisons show 

good agreement between the numerical results and the asymptotic power law for short 

delamination cracks. 

dZ
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FIGURE CAPTIONS 

Figure 1. (a) Illustration of a channel crack with no interfacial delamination; (b) a channel crack 

with symmetric interfacial delamination of width d on both sides far behind the channel front. 

 

Figure 2. (a) Schematics of the 2D plane strain model of a steady-state channel crack with 

interfacial delamination; (b) geometry of the finite element model, with uniform normal traction 

( fσ ) acting onto the surface of the channel crack and a symmetry boundary condition for the 

substrate; (c) an example finite element mesh, with infinity elements along the bottom and right 

boundaries; (d) a detailed mesh around the tip of the interfacial crack. 

 

Figure 3. Normalized energy release rate of interfacial delamination from the root of a channel 

crack as a function of the normalized delamination width for different elastic mismatch 

parameters. 

 

Figure 4. Phase angle of the mode mix for interfacial delamination as a function of the 

normalized delamination width for different elastic mismatch parameters. The dashed line 

indicates of the steady-state phase angle (52°) for the case of zero elastic mismatch ( 0== βα ). 

 

Figure 5. The normalized stable delamination width as a function of the normalized interface 

toughness ΣΓ=Γ ii , where fff Eh2σ=Σ . 
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Figure 6. A map for interfacial delamination from the root of a channel crack ( 4αβ = ): (I) no 

delamination, (II) stable delamination, and (III) unstable delamination, where A and B denote 

delamination without and with an initiation barrier, respectively. 

 

Figure 7. Increase of the driving force for steady-state channel cracking due to concomitant 

interfacial delamination. 

 

Figure 8. Influence of the normalized interface toughness ( fff Eh2σ=Σ ) on the steady-state 

driving force for channel cracking. 

 

Figure 9. Effective driving force for steady-state channel cracking as a function of the 

normalized interface toughness ( fff Eh2σ=Σ ). 

 

Figure A1. Normalized energy release rate of interfacial delamination emanating from the root 

of a channel crack, for 99.0−=α  and 6.0−=α . The asymptotic power law, Eq. (A10), is 

represented by the straight lines at the short crack limit with slopes, =− λ21 0.376 and 0.224, 

respectively. 

 

Figure A2. Normalized energy release rate of interfacial delamination emanating from the root 

of a channel crack, for 0=α , 2.0=α , and 6.0=α . The asymptotic power law, Eq. (A10), is 

represented by the straight lines at the short crack limit with slopes, =− λ21 0, -0.084, and -

0.308, respectively. 
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Figure 1. (a) Illustration of a channel crack with no interfacial delamination; (b) a channel crack 

with symmetric interfacial delamination of width d on both sides far behind the channel front. 
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Figure 2. (a) Schematics of the 2D plane strain model of a steady-state channel crack with 

interfacial delamination; (b) geometry of the finite element model, with uniform normal traction 

( fσ ) acting onto the surface of the channel crack and a symmetry boundary condition for the 

substrate; (c) an example finite element mesh, with infinity elements along the bottom and right 

boundaries; (d) a detailed mesh around the tip of the interfacial crack. 
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Figure 3. Normalized energy release rate of interfacial delamination from the root of a channel 

crack as a function of the normalized delamination width for different elastic mismatch 

parameters. 
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Figure 4. Phase angle of the mode mix for interfacial delamination as a function of the 

normalized delamination width for different elastic mismatch parameters. The dashed line 

indicates of the steady-state phase angle (52°) for the case of zero elastic mismatch ( 0== βα ). 
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Figure 5. The normalized stable delamination width as a function of the normalized interface 

toughness ΣΓ=Γ ii , where fff Eh2σ=Σ . 
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Figure 6. A map for interfacial delamination from the root of a channel crack ( 4αβ = ): (I) no 

delamination, (II) stable delamination, and (III) unstable delamination, where A and B denote 

delamination without and with an initiation barrier, respectively. 
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Figure 7. Increase of the driving force for steady-state channel cracking due to concomitant 

interfacial delamination. 
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Figure 8. Influence of the normalized interface toughness ( fff Eh2σ=Σ ) on the steady-state 

driving force for channel cracking. 
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Figure 9. Effective driving force for steady-state channel cracking as a function of the 

normalized interface toughness ( fff Eh2σ=Σ ). 
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Figure A1. Normalized energy release rate of interfacial delamination emanating from the root 

of a channel crack, for 99.0−=α  and 6.0−=α . The asymptotic power law, Eq. (A10), is 

represented by the dashed straight lines at the short crack limit with slopes, =− λ21 0.376 and 

0.224, respectively. 

 

 

 

 

 

34 



 

0.001 0.01 0.1 1 10
0.5

1

10

d/h
f

Z
d

 

 

α=0.6 (λ = 0.654)

α=0.2 (λ = 0.542)

α=0 (λ = 0.5)

 

Figure A2. Normalized energy release rate of interfacial delamination emanating from the root 

of a channel crack, for 0=α , 2.0=α , and 6.0=α . The asymptotic power law, Eq. (A10), is 

represented by the dashed straight lines at the short crack limit with slopes, =− λ21 0, -0.084, 

and -0.308, respectively. 
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