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Recently, among other smart and multifunctional materials, magneto-electric soft materials
are expected to open a new horizon with myriad of potential applications such as wireless
energy harvesting, spintronics and nonvolatile memories, magneto-electric random access
memory, to mention a few. Magneto-electric coupling can be defined as the ability of a
material to electrically polarize upon the application of a magnetic field and conversely, to
magnetize under the application of an electric field. In contrast to traditional multi-ferroic
hard materials, magneto-electric soft materials are of largely deformable where electric
and magnetic fields and mechanical deformations are intricately coupled at finite strians.
In this contribution, we will emphasis to formulate generalised mathematical frameworks
of finitely deformed magneto-electric soft materials. After elaborating fundamental and

governing equations, some homogeneous and non-homogeneous classical boundary value
problems are studied under magneto-electrically coupled loads.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, smart and functional materials have attracted considerable attention among cross-boundary research
communities due to their wide range of potential applications. These fast growing innovative materials can change their size,
shape, stiffness, and other mechanical properties upon the application of external fields (temperature, pH, light, electric and
or magnetic field). Among other functional materials, magneto-active polymers (MAPs) and electro-active polymers (EAPs)
are promising candidates for use in various engineering applications, for example, as mini- or micro-scale soft, biodegrad-
able, and flexible robots in targeted drug delivery, stretch sensors in wearable devices and in structural health monitoring
systems, actuators in artificial muscles, biomedical devices, biomimetic systems, and energy harvesters generating power
by using ambient motions (Dang et al., 2012; Hu, Lum, Mastrangeli, & Sitti, 2018; Jolly, Carlson, & Mufoz, 1996; Lu et al.,
2018). An external electric field or electric potential difference in EAPs can result in extremely large deformations in contrast
to traditional piezoelectric materials that have only small-scale actuations (Amjadi, Pichitpajongkit, Lee, Ryu, & Park, 2012;
Bednarek, 1999; Bellan & Bossis, 2002; Bica, 2012; Boczkowska & Awietjan, 2009; Bose, Rabindranath, & Ehrlich, 2012; Bose,
2007; Hossain, Chatzigeorgiou, Meraghni, & Steinmann, 2015a; Hossain, Saxena, & Steinmann, 2015b; Hu et al., 2018; Kim,
Yuk, Zhao, Chester, & Zhao, 2018; Vu, Possart & Steinmann, 2007; Saxena, Hossain, & Steinmann, 2013; 2014). In the case of
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MAPs, a remotely applied magnetic field can deform soft materials filled with magnetites (iron oxide particles). While EAPs
can either be pure polymers or polymers filled with high permittivity fillers, in MAPs, micron-size iron particles are mixed
to prepare polymeric composites that are responsive to external magnetic fields. For an exhaustive review on experimen-
tal study of MAPs, see Bastola and Hossain (2020). In contrast to EAPs, MAPs are normally actuated remotely without any
physical attachment of the external field to the surface of an actuated body (Danas, Kankanala, & Triantafyllidis, 2012; Deng
& Gong, 2008; Farshad & Le Roux, 2004; Ghafoorianfar, Wang, & Gordaninejad, 2013; Ginder, Nichols, Elie, & Tardiff, 1999;
Kim et al., 2018; Ma, Hu, Li, & Nan, 2011; Mehnert, Hossain, & Steinmann, 2016; 2017; 2018; Vu et al., 2007; Varga, Filipcsei,
& Zrinyi, 2006).

In comparison to research efforts in MAPs and EAPs separately, interests in smart materials, where a combined magneto-
electrically (ME) coupling occurs, have increased significantly in the last decade. Most of the earlier works in ME are in
the areas of multi-ferroic hard materials (i.e., ceramics and metals) that have small field-responsive deformations. Thanks
to some high-tech applications of ME materials such as the design of magneto-electric random access memories (MERAM),
a significant amount of research efforts as well as device making processes have been achieved in ME for hard materials,
see for example Eerenstein, Mathur, and Scott (2006),Etier et al. (2013),Fiebig (2005),Gich et al. (2014),Spaldin and Fiebig
(2005),Scott (2007),Velev, Jaswal, and Tsymbal (2011). In the case of MERAMs, a short electric signal causes an enduring
change of magnetization that is a very desirable property. In contrast to the traditional magnetic RAM (random access
memory) technology, the new class of storage devices made of MERAM would enable electric-write magnetic-read mem-
ories which outperform the former one (Barthelemy & Bibes, 2008). Further applications of ME coupled material is the
measurement of magnetic fields and also electric current, particularly in the low-frequency range as, for instance, docu-
mented by Fetisov, Bush, Kamentsev, Ostashchenko, and Srinivasan (2006). For an overview of the vast amount of research
and possible applications in this wide field, see for example, Nan, Bichurin, Dong, Viehland, and Srinivasan (2008), Pyatakov
and Zvezdin (2012).

Although magneto-electric materials were discovered in the middle of the last century, in contrast to small-strained hard
ME materials, an interesting finite strain alternative has been very recently proposed by Liu and Sharma (2013), Krichen, Liu,
and Sharma (2017). This new class of smart materials has been appeared exploiting the strain-mediated magneto-electric
coupling in soft composites. ME coupled materials mimic the concepts from multi-ferroics hard-matter composites. The ba-
sic idea behind this approach is to combine the magneto- and electro-mechanical responses of composites consisting of
a soft matrix carrying magnetic inclusions. Magneto-electric coupling in a soft material can be explained in the following
way. A soft deformable dielectric thin film coated with two compliant electrodes under a potential difference will deform
and polarise thanks to an electric Maxwell stress. If the compressed thin film with the pre-existing electric field is exposed
to an external magnetic, it will further deform due to the magnetic Maxwell stress and the film will polarise addition-
ally. The latter form of deformation will alter the pre-existing electric field and such a change in the electric field can be
measured as current. Note that such a mechanism does not require creating complex composites (neither piezoelectric nor
magnetostrictive) and can be universally employed for all soft materials. Despite that such composites are straightforward to
manufacture and have cheap constituents, they did not gain much attention up to now. Rambausek and Keip (2018) demon-
strate that ME coupling induced by finite deformations could be of significant magnitude. Furthermore, Liu and Sharma
(2013), Liu (2014) and Krichen et al. (2017) highlighted that the ME coupling effect through soft-matter composites is a
plausible candidate mechanism for magneto-reception in certain biological contexts.

The mathematical foundations of the coupling of electromagnetic fields in finite strains are well documented in some
earlier publications, see for example the works of Pao (1978), Eringen and Maugin (1990), Maugin (1988), Brown (1966),
Monk (2003) and Kovetz (2000) and the references therein. In a series of papers and monographs, Dorfmann and Ogden
developed constitutive frameworks for the coupling of magnetic, electric and mechanical fields which are based on the so-
called total energy (Brigadnov & Dorfmann, 2003; Dorfmann & Brigdanov, 2004; Dorfmann & Ogden, 2003; 2004a; 2004b;
2005). Their modelling frameworks mainly assume isotropy of the polymeric composites. It has been shown that the total
stress tensor and the magnetic field can be expressed as simple derivatives of the total energy function with respect to the
deformation gradient and the magnetic induction. They presented analytical solutions of some classical non-homogeneous
boundary value problems in which it has been shown that any of the magnetic variables, i.e., the magnetic induction vector,
the magnetic field vector or the magnetization vector can be used as an independent variable in the problem formula-
tion. A significant amount of contributions on the modelling of magneto-mechanically coupled problems were published by
Bustamante and coworkers (Bustamante, 2009; 2010; Bustamante, Dorfmann, & Ogden, 2008; 2011; Bustamante & Shariff,
2016) extending the work of Dorfmann and Ogden (2003) by a constitutive model for transversely isotropic MAPs. In con-
trast to the Dorfmann, Odgen and Bustamante’s constitutive frameworks expressed in terms of the classical invariants of
Spencer (1971), recently Shariff (2008, 2011, 2013, 2015); Shariff, Bustamante, Hossain, and Steinmann (2017) reformulated
constitutive models of MAPs and EAPs that are based on a class of spectral invariants.

Regarding the nature of the constitutive equations proposed in the works mentioned above, the main assumption has
been to expresses the stress and one of the electric or magnetic variables, in terms of the strains and the other (inde-
pendent) electromagnetic variables, but recently some new types of implicit relations have been proposed for electro- and
magneto-elastic bodies, wherein the stresses, strains and electromagnetic variables are obtained from an implicit tensor
relations and an implicit vector relation, see Bustamante (2020); Bustamante and Rajagopal (2013, 2015).

Mathematical frameworks and constitutive modelling of magneto-electro-mechanically coupled soft materials at finite
strain are limited in the literature. Santapuri, Lowe, Bechtel, and Dapino (2013) develop thermodynamically consistent fully-
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coupled finite deformation thermo-electro-magneto-mechanics of multifunctional materials. In that article, they develop a
comprehensive catalogue of free energies, state variables, and state equations. Liu (2014) presents an energy formulation of
continuum magneto-electro-elasticity based on the principle of minimum free energy, where he proposes a form of total free
energy of the system in three dimensions, and then systematically derive the theories for a hierarchy of materials including
dielectric elastomers, piezoelectric ceramics, ferro-electrics, flexoelectric materials, magnetic elastomers, magneto-electric
materials, piezo-electric-magnetic materials among others. Sfyris, Sfyris, and Bustamante (2016) constitutively characterize
electro-magneto-mechanical interactions of graphene at continuum level using the classical theory of invariants for the spe-
cific class of graphene’s symmetry. In a very recent contribution, Rambausek and Keip (2018) demonstrate that ME coupling
induced by finite deformations could be of significant magnitude in soft-matter-based magnetic and electric composites.
They realise shape effects as a special non-local phenomenon in magneto- and electro-elasticity.

The aims of the current contribution are two-folds. First, we present a comprehensive mathematical framework illus-
trating the relevant and fundamental equations that present magneto-electro-mechanical coupling at finite strains, under
the assumption that the stresses are functions of the strains and one of the electric and magnetic variables (independent
variables), and that the other electric and magnetic variables are also functions of the strains and the independent electric
and magnetic variables. An important ingredient of our formulation is the use of the theory of spectral invariants of Shariff
for the energy function in the case of a transversely isotropic body (Shariff, 2008; 2011; 2013; 2015; Shariff et al., 2017).
Another contribution of this article is to present in detail the results for some few boundary value problems considering ho-
mogeneous and non-homogeneous deformations, for the above constitutive equations, with particular relevance to problems
that can be used in the future in experimental research to obtain expressions for the constitutive equations.

In Section 2 we present a brief summary of the most important equations of the theory of electromagnetic interactions
with elastic solids. In Section 3 spectral invariants are formulated for the total energy function in the case of a transversely
isotropic magneto-electro-elastic body, and constitutive equations are obtained for the total stress, the magnetic field and the
electric displacement. In Section 4 some boundary value problems are studied, namely, the uniform extension/compression
of a cylinder, the uniform extension of a thin slab, the biaxial deformation of a thin plate, the shear of a slab and the non-
uniform deformation of a cylindrical annulus under inflation and extension. In Section 5 a simplified expression for the total
energy function is proposed, and the behaviour of a cylinder in tension is studied. In Section 6 some final remarks are given.

2. Basic equations
2.1. Kinematics and balance of mass

Let X € # denote a point in a body 4, the position of that point in the reference configuration %, is denoted as X,
while the position in the current configuration %; is denoted x. It is assumed that there exists a one-to-one function x such
that x = x(X, t), where t is time. The deformation gradient, the left and right Cauchy Green tensors, and J, respectively, are
defined as

F=%, B=FF, C=FF, J=detF, (1)
oX
where it is assumed that ] > 0 always.

The balance of mass can be stated as p + div (pv) =0, where p is the density of the body and v = x is the velocity in
the current configuration. From now on it is assumed that v = 0. In this article repetition of index does not mean summation
in that index, and all index go from 1 to 3 unless it is stated otherwise. More details about kinematics see, for example,
Truesdell and Toupin (1960) and Ogden (1997).

2.2. Field equations for electro-magneto active bodies

In this section, we review briefly the basic concept and equations for continua media interacting with electromagnetic
fields. Details about the different equations and relations presented in this section can be found, for example, in Eringen
and Maugin (1990), Griffiths (1998), Maugin (1988), Monk (2003) and Pao (1978).

2.2.1. Maxwell equations
The Maxwell equations in the case there is no time dependence! are:

divB=0, curlE=0, divD=0, curlH=0, (2)
where B is the magnetic induction, E is the electric field, D is the electric displacement, and H is the magnetic field. For a
vector field A, the equations curl A=0 and div A =0 in cylindrical coordinates (r, 8, z) become:

10A, dhy aAr  OA; A,

d
T8 "9 =% o =0 535 =0 G)

1 As well as this, it is assumed that the volumetric electric current J and the volumetric distribution of electric charges in the body q. are zero, i.e.,
J=0q=0.
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and

19 198, A,

[ AR T P “

respectively.
For vacuum the following relations between the electric variables and the magnetic variables are valid

D =gk, B=uoH, (5)

where g, is the electric permittivity and u, is the magnetic permeability in vacuum, respectively. For condensed matter,
two extra fields are necessary, which are the electric polarization P and the magnetization M that are defined as

D=¢gkE+P, B=po(H+M). (6)

2.2.2. Equation of equilibrium
The equation of equilibrium is

divo+f.+f=0, (7)

where o is the Cauchy stress tensor, f. corresponds to the body forces caused by the electromagnetic interactions, and f rep-
resents the body forces that are not caused by electromagnetic fields. The vector fe. is given as f. = ( grad E)P + ( grad E)M.
The balance of angular momentum gives

€ijkOjk = —Li, (8)

where € is the permutation symbol and [; are the components of the vector field L =P x E+M x B. It is possible to see
that o is in general a non-symmetric second order tensor. The following identities hold (see, for example, Dorfmann and
Ogden (2003),Dorfmann and Ogden (2004b),Dorfmann and Ogden (2004a),Dorfmann and Ogden (2005) and Dorfmann and
Brigdanov (2004)) ( grad E)'P = div [D®E — Jeo(E-E)I], (grad B)™M = div { - [B®B - 5(B-B)I]+ (M-B)I-BaM],
from where the ‘total stress’ tensor T can be defined as

1 1 1
T=0+DOE - e D+ M—[IB@IB— E(IB-[B)[} LM BI-BoM, 9)
0
where 1 is the second order identity tensor. Using this in (8) we obtain 7 = 7. On the other hand using (9) in (7) we have

div T +f=0. (10)

2.3. Continuity conditions

For a body that can react to electromagnetic fields, the boundary conditions are not trivial, since the Maxwell Eq.
(2) must be satisfied for the body, and also for the exterior surrounding space, which for simplicity we assume is vac-
uum. Considering the notation [[a]] = a© — a®, where (0) means outside the body and (i) means inside the body (in both
cases very close to the surface of the body), for the electromagnetic variables we have the following continuity conditions
(see, for example, Eringen & Maugin, 1990; Maugin, 1988):

n-[B]=0, nx[E]J]=0, n-[[D]=0, nx[H]=0, (11)

where n is the outward unitary normal vector to the surface of the body, and it is assumed that there is no sur-
face free electric charges and electric current, recalling also that v=0. In the case of the Cauchy stress tensor o, it
should satisfy the continuity condition [0 — oy ]J]n =0, where o), is called the Maxwell stress tensor and is given by
om =% (g -E+ ﬁIB B—2M -B)l - (¢)EQE+PQE + iIB ®B —B®M). Using (9) in the above continuity condition we
obtain

[zIn=0. (12)

The above equation is equivalent to (7(® — t)n = 0, where T can be identified simply as 7 the total stress tensor inside
the body and

7O — 7y = SD[E«» S E© _ %([E(m ~IE(°))1] 4 ML[B(O) 2 B© _ %(IB“) -[B(O))I], (13)
0
where Ty is the total Maxwell stress outside the body, where P(® = 0, M(© =0 in vacuum.

4
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2.4. Constitutive equations

We revisit some basic equations and relations for continuum media interacting with electromagnetic fields, by present-
ing constitutive equations that are derived from the first and second laws of thermodynamics. In terms of the Helmholtz
function ¥ = ¥ (F,E, B, 0) the following constitutive equations are found (see details in Eringen & Maugin, 1990; Maugin,
1988)
oy oy Y oy
P=—ps=, M=—p—-—, S=——F, 14
F’ P3E P 3B 30 (14)
where s and 6 are the entropy and the absolute temperature, respectively. From now on it is assumed that € is constant.

The Lagrangian magnetic induction, magnetic field, electric field, and the electric displacement, are defined as (see, for
example, Dorfmann & Brigdanov, 2004; Dorfmann & Ogden, 2003; Dorfmann & Ogden, 2004a; Dorfmann & Ogden, 2004b;
Dorfmann & Ogden, 2005)

B, =JF'B, H =FH, E =FE D =JF'D, (15)

Flo=p—

respectively. Let us express v in terms of a function ® as v (F,E,B) = ®(F, Ef, IBL), then from (14); we obtain o = pF"'/’
,oF%—‘}> - M-B)I+B®M-D®E, and from (9) we have 7 = pF8 +L [lB QB — (IB . B)I] + 80[[ QE— (IE IE)I]. Let us de-
fine the total nominal stress tensor T as T=JF~17 = pg 4% + JF- Y [BeB- 3B -B)I|+&[EQE - %(IE -E)I]}, where pg

is the density at the reference configuration. From the above results it is possible to define the total energy function 2 (see
Bustamante, 2010; Dorfmann & Brigdanov, 2004; Dorfmann & Ogden, 2005) as

QUF.BLEL) = o+ 5B (CB) - TEL (€. (16)
The Lagrangian polarization Py is defined as

P, =JF'P, (17)
as a results from (6);, (15)3 4 we obtain

DL = SOC‘IIEL + Py. (18)
Then using (16)-(18) in (14)3, we have

02 10 082
=— =] 1lF=—. 1

D=-3g D= Fsg- (19)
Let us define the Lagrangian magnetization M; as

M, =F'M, (20)
and from (6),, (15); , we obtain

J7IOBL = po(Hy +My). (21)
Furthermore, from (16), (20), (21) in (14); we have

Q2 T89

Finally, considering that J~1B; - (CB;) = JB - B, and from the connections (see Dorfmann & Brigdanov, 2004; Dorfmann & Og-
den, 2004a) % (JB-B) =JF'[2B®B — (B-B)I] and J[E, - (C'EL)] = —JF'[2EQ E - (E-E)I], from (14);, (16) we obtain

982 10082
T=%F "=/ For (23)
In the case of incompressible bodies ] = 1 from (19),, (23) we have
982 0Q2
T= FW pl, D= _FBTIL’ (24)

where p is the Lagrange multiplier connected with the constraint of incompressibility.
3. Spectral constitutive equations

In most of the applications concerning magneto-electro-elastic soft solids, the magneto-electro-elastic effects can be in-
creased considering transversely isotropic bodies, where there is a preferred direction (when the body is free of electromag-
netic fields) commonly associated with particles aligned in that direction, where the electromagnetic effects are stronger,
see Bastola and Hossain (2020) and Garcia-Gonzalez and Hossain (2020). If that direction is the unit vector field ag, then for
the total energy function we have Q(F, By, E;, ag). This function incorporates as a special case the situation when the body

5
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is isotropic. Since the above function must be frame-invariant and should be independent of the sign of the vectors fields
we have

Q(F, B, E,a0) =W(C,beb,e®e,ap ® ag, B, Ey), (25)
where

=4/BL-B, E.=+E.-E, Br=Bb, E =Ee, (26)

and b, e are unit vector fields used for the definition of the magnetic and electric field variables, respectively.

If U is the right stretch tensor, we have the spectral representation U = ZL A @u;, C=U2% = Z;L] Aizui ® u;, where
Ai, w;, i=1,2,3 are the principal stretches and principal directions, respectively. Then, from the spectral invariant theory
developed by Shariff and co-workers (Bustamante & Shariff, 2015; 2016; Shariff, 2008; 2011; 2015; Shariff et al., 2017), we
have

W =W (X123, 8123, 3123, 3123, BL, E1), (27)
where the notation A; ; 3 represents the set A1, Ay, A3, and where we have defined
Ni=ao~ui, jf=b~lli, J,-=e~ui, (28)

where

3 3 3
doRZ=1, Y 2X=1 Y F=1 (29)
i=1 i=1 i=1

Note that only 11 of the 14 invariants in (27) are independent. Since W partially depends on the tensors b®b, e ® e and
ap ® g, instead of the invariants in (27), the appropriate invariants for W are

Mo o=RZ Bi=2% yi=1L &= (a-b)Nb;, (30)
ki=(ap-e)N;e;, ©;j=(b-e)be;, 7= (ap-b)(ag-e)bse;, (31)
Xi=@o-b)(b-e)Ne;., (i=(b-e)@-e)N;b;, By, Ep. (32)

We strongly emphasize that W must satisfy the P-property as described in Shariff (2008),Shariff (2011),Shariff (2015) and
Shariff et al. (2017).
Using (27) in (22),, (24) we obtain (for an incompressible solid)

oW . T OW Il
T= FWF - pl, =F 3B, D= _FE)T-ZL' (33)
The following expressions are needed in (33);
ow 1 0w
(M)ii:mem’ (34)
w 1 aw ow .
(ac)ij = 72()»?—)»?) (811,-.1”_3“]““1)’ L# ). (35)
As well as this, for (33), 3 we need
ow ow 1 TE)W
(aBL)l = 8BLﬂ1+BL|:(l |b®|b) i| -, (36)
w oW
(8":]_)1 = 8EL C, LI:(I—G@‘B) ae] - ;. (37)

In terms of the invariants (30)-(32) the components (%—ch)ij, i # j become

W 1 ow  ow ow  ow
(%)ifu%—m[(aaz a5 33 oo

ow oW ow oW
+<8yi ay])®1®]+ (ap - b)<8§i 8§]>(N[b+k~<[bl)

6




R. Bustamante, M.H.B.M. Shariff and M. Hossain International Journal of Engineering Science 159 (2021) 103429

+;(a0_e)<3W ow )(N,aa]-i-Nje,)-i- (b- e)<aw aW)([b,e]—i-[bJe,)

8/(,' 8@
1 ow W
+ 2(30'33)(30'3)(87% an; )(blej+b]®l)

+ 2@ b) b )(3‘;’ aw)m,e]mﬁ,)

1

3W ow .
f(ao &) (b- e)( = )(ma,+x [b)] it (38)
1
On the other hand
w
b qus (39)
k=1
where we have defined
3
aw
q =2 Z 8;31 big;, Q=) Tc[&'[biao + (a0 - b)Nju;], (40)
i=1 0!
> aw > aw
QG=) Tg[bieie +(b-eewt], qs=) Tn(ao -e)[bie;ao + (ap - b)eju], (41)
i=1 &t i=1
2w > 9w
=) TX[(ﬂ)'e)ao + (@ -bleNie;, qe=) 7, (@0 -e)[Ribe + (e b)Ny]. (42)
i=1 M =1 O
Finally
6
w_ > sk (43)
€ k=1
where
3 3
ow ow
s1=2 1=Z1 T%@iui’ Sy = 1=21 Tm[xi@iao + (2o - e)Njuy], (44)
> 9w > 9w
$3 = ; TQi[[bilEilb +(b-e)bw], s4= ; Tm(ao -b)[bie;ap + (g - &)bju;], (45)
3
aw ow
5=, 5 “[(b-e)a0 + (e-a0)bINibi, 56 = Z o (@0 D)[Rieb + (b- )R] (46)

i=1 i=1
4. Boundary value problems

We study five boundary value problems, four of them correspond to problems wherein the strains, stresses and electro-
magnetic variables are homogeneous inside the body, and one problem with non-homogeneous distributions. In all these
cases we only study incompressible bodies. In the case of bodies with homogeneous deformations and electromagnetic field,
the Maxwell Eq. (2) and the equation of equilibrium (when there is no mechanical body load) (10) are satisfied automati-
cally.

4.1. Uniform extension/compression of a cylinder

Consider a cylinder defined in the reference configuration in cylindrical coordinates as
O<R<R,, 0<O®<2m, 0<Z<IL, (47)
where it is assumed that

dap = Ez, E= Egez, B = Boez, (48)
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and E, and B, are constants. The deformation is
r=MR 0=0, z=21Z (49)

where A > 0 and A, > 0 are constants. The deformation gradient is

F=)e QEr+Arey @ Eg + A€, E;. (50)
Therefore
)L] = )\.2 = }\.r, )\.3 = }\.2, u = ER, u = E@, us = Ez, (51)
where detF = 1 implies that A, = ﬁ Using (48) and (51)3 4.5 in (28), (30)-(32), it is obtained
N]ZNzZO, N3=1, :123220, :321, 3123220, :[321, (52)
ar=0=0, az3=1, B1=p=0, B3=1, y1=y2=0, p»=1, (53)
61=06=0, &3=1 kKi=Kk=0, k3=1, 01=02=0, ©3=1, (54)
m=m=0, nm=1, x1=x2=0, x3=1, y1=0=0 =1 (55)
Using (48) and (50) from (15), (26), we have
BL=A;'BoEz, Bi=A;'Bo, b=Ez;, E.=AEE;, E =XsE, e=E;. (56)

From (3), (34), (35) and (38), we obtain
w aw
Trr = Thg :)HTM - D, Tzz=k387)\3 - D (57)
where 7;; = 0 if i # j. On the other hand from (39) and (43), we have
aﬂ—z 87W+87W+87W+87W+87W+87W E
b~ “\9Bs " AL Aoz  Oms  dxs o )
and

W _ (W oW aW oW oW W\
e \dys ks dos  0ms dxs 0u )

i imnli ow ow aw w ow aw ow w
and from (36), (37) this implies that (m>] = (W)z =0, (W)3 = 55, and (E)l = (E)z =0, (ﬁ)3 =95 - Further-
more, from (33); 3 it is obtained

ow ow
=Al——e, D=De,=—-A3;~——e,. 58
3 aBL 4 z%z 3 BE]_ z ( )
Regarding the continuity conditions, assuming that L > R,, the conditions are only studied for the surface R = R,, where

n = e;. Considering (48); 3, let us assume that the electric field and magnetic induction outside in vacuum are

H = H,e,

E® =Ee,, B© =B e, (59)

where Eéo) and B,(,") are constants. From (48)3, (59), the continuity condition (11); is satisfied automatically, whereas from
(48),, (59); the continuity condition (11), is satisfied if

EY® = E,. (60)
On the other hand from (59); and (5), we have
1
H© = —Be,. 61
TR (61)

From (58);, (61) the continuity condition (11),4 is satisfied if H, = ﬁBff’) which from (58) means that

ow 1
-1 _ (0)
2 9B ,lLoBO . (62)

The above equation can be used, for example, to obtain B, for a given Bff’).

8
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Regarding the electric field inside the cylinder, from the practical point of view it can be generated with electrodes
attached on the surfaces Z =0 and Z = L by placing an electric potential ® = ®(Z) such that E, = —w = —AT‘D.

(0)2
Finally, from (59) and (13) the radial component of the Maxwell stress is Ty, = —8"253 - BZDIJ.D . As a result, if on the lateral

surface R = R, there is no mechanical load, from (12) we obtain 7, = 7y, and from (57); we have

2
OW  gE2 BV
=M e S
P=Ma 2 Tom
Regarding the surfaces Z=0 and Z =1, it is assumed that an external ‘total’ load f,e, is applied, which incorporates the
effect of the Maxwell stresses, therefore, from (12) we obtain 7,, = f, and using (63) in (57),, finally it is obtained

(63)

W . OW  gE2 B’

=Asm— — Ao — =0 _ 64
T T 2 2m (64)
4.2. Uniform extension of a thin slab
Consider the prismatic bar
L; L .
_fl gxigjl, i=1,2,3, (65)

where it is assumed that L3 « L; and L3 <« L,. In this problem the external mechanical load is applied on the surfaces
X3 = i%, Regarding the electric field and magnetic induction it is assumed that

B = B,e;, [E =Ese;, (66)
where B, and E, are constants. For the vector field ay two cases are studied:

ao=E;, ap=E;. (67)
The motion is assumed to be

Xi=AX, i=1,2,3, (68)

where A; > 0 and A1A A3 =1, then

3
F= Z}\.ie,‘ ®E;, u;=E,. (69)
i=1
From (15), (66) and (69), (26) we have

BL=X;'B,, EL=X3E, b=E; e=E;. (70)
From (33) to (35), it is easy to show that
ow .
Tii=)~i87)w—l?, Tij=0 i#]j (71)

4.2.1. Case ag = E3
Using (67); and (70), (69), in (28), (30)-(32) the same invariants as in (52)-(55) are obtained. On the other hand, from
(33),.3 considering (36), (37), (39), (43) and (66), we have

w

aw ad
H=Hses =A;'-—e3, D=Dse3=—Az3—e3. 72
3€3 3 9B, 3€3 39E, & (72)
Let us assume that the electric field and magnetic induction outside the slab are given as
[E(O) = E£0)83, |B(O) = 330)83, (73)

where Eé(’) and Bf,") are constants. Accordingly, for the surfaces X5 = ﬂ:’% the continuity condition (11), is satisfied auto-
matically, while (11); from (73),, (66); is satisfied if

B{®) = B,. (74)
From (73) and (5) we obtain
HO = L p0e;, DO — g E0e,, (75)

0
and the continuity condition (11)3 is satisfied if

_)\‘BTEL = SDEo s (76)
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whereas (11), is satisfied automatically.
In the expressions for the components of the total stress (71) we have p, which should be obtained from the boundary
conditions. Let us assume that for the surface X; = i%l, there is no mechanical load, then considering (73) from (13), we
2
have 7y, = —SDZED - %. Furthermore, the continuity condition (12) becomes ty; = 7, and from (71) using the above
condition, we obtain the Lagrange multiplier as

AW gE2 By
P=XM m + P 2/110.
Ly

On the surfaces X3 = =, if the external load is f3e3 (which we assume it incorporates the Maxwell stresses), from (12) we
have 33 = f3, from where the following expression is finally obtained (see (71))

2 2
)L337W_)\187W_ €oky _BL_ (78)
A3

4.2.2. Case ag = E;
In this case, several of the equations presented in Section 4.2.1 are the same, in particular (72) and (78). The difference
corresponds to the values of some of the invariants, which are:

R]Z], N2=R3=O, (X]:], a2=Ol3=0, Cl’:O, K','ZO, (79)

(77)

-

ni=0 xi=0 =0 (80)
4.3. Biaxial deformation of a thin plate

For the same body described in (65) now under the assumption that L; « L, L1 <« L3 (which means it is a thin plate),
we consider the following cases

Eq, Fe Boeq,
dp = Ez, E = {Eoe]’ B = BDEZ, (81)
Es, o3 Boes,

where E, and B, are constants. In this problem, the same motion is assumed as in (68) x; = A;X;, where A{AyA3 =1, as a
result u; = E;.

4.3.1. case ag = E3, E = Ege3 and B = Byes

This problem is very similar to the case presented in Section 4.2.1, in particular the relations (71) and (72) are the same.
The difference corresponds to the continuity conditions. Because of the assumption L « L, and L; « L3, the continuity
conditions are only analyzed for the surfaces X; = i%. Considering that E = E,e3 and B = Bye3 we assume that (see (73))

E® =E”e;, B© =B{e;. (82)
Then the continuity condition (11); is satisfied automatically, while (11), is satisfied if
E® = E,. (83)
From (5) and (82), we have
1
D© = g,Fe3, H® = —B e, (84)
Mo
and the continuity condition (11)3 is satisfied automatically, whereas (11)4 implies that
aw 1
-1 (0)
—=—B8;". 85
3 8BL Mo 0 ( )

goE2 B}]O)Z
27 2no "

ing that on the surfaces X; = + 5 there is no external mechanical load, from (12) this results in t4; = T),,. Furthermore,
g 1 2 11 My,

considering (71) we obtain

From this, it can be obtained, for example, B, in terms of Bf)o). Using (82) in (13), we have 7y, = — Assum-

2
OW  gE2 BV
=AM ° 2
P=Mat 2 Tom
Let us assume that on the surfaces X; = i% and X3 = i%, we apply external loads (that as before incorporate the Maxwell
stresses) f,e, and f3es3, respectively. Then from (12) we have 1, = f, and 133 = {3 and considering (71) and (86), we finally
obtain

(86)

2 2
B\7% oW  gE2 BT . ow OW  gE2 BY

fr=Aym — f3=A3o — Ao — 20 — ,
2 28)\.2 8)\.] 2 Z,LLO7 3 38)\.3 18)\.] 2 Z[LO

(87)
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4.3.2. case ag = E3, E = Ese3 and B = Byeq
In this problem (70); 256, (53)1.2.4,6. (54) and (55) are the same, while

Ji=1, 2=33=0, Bi=1 Br=p3=0. (88)
Similarly from (15) and (26), we have
BL = )\171301‘:2, B, = )»17130, b=E;, E_ =MEE3, E =A3E, e=E;. (89)
On the other hand, from (39) and (43) we obtain ¥ =2 d}‘év and 2% = 2("W + 8,( )E3 This implies that (8—W) = STWL*
1
(gTV{)z = (%)3 =0 and (g%i) = (g%:)z =0, (gl‘g) = gg‘: Furthermore, from (36), (37), (33); 3 we have
ow 8W
H=2;" - 90
3B ° T (90)
The continuity conditions (11) are analyzed for the surfaces X; = i%. Let us assume that
B® =B\"e;, E® =E{e;, (91)
then (11), is satisfied if E*) = E,, and (11); holds if B’ = B,. From (5) we obtain
1
H® = —Bye;, D© =g.Eqe3, (92)
Ho
and (11)3 4 are satisfied automatically.
Finally, using (91) in (13) we obtain 7y, = —%Eﬁ + 2%1033 which can be replaced in (12) assuming that on the surfaces

X = i% there is no mechanical traction. Moreover, using (71) (which are the same for this problem) we can obtain p. In a
similar manner as the problem studied in the previous section, we obtain for the traction applied on the surfaces X, = i%,
X3 =+ 3, respectively:

ow W g 1

ow W g 1

fHh=2x M — —E2 4+ — B2, f3=A — M — —E? B2 93
2= Mg T Mg, T 2t T, BTG, T Mga, T 2o Ty, (93)
4.3.3. Case ay = E3, E = Eyeq and B = Byeq
For this case from (28), (30)-(32), we have
N1=R,=0, N3=1, J1=1, J=T3=0, J1=1, I, =1=0, (94)
ap=0=0, az=1, Bi=1 B=p=0, =1, y,=y3=0, (95)
=0, k=0, 01=1, 0=03=0, 7,=0, x;=0, ;=0 (96)
From (33)7, (34), (35) the same expressions (71) for the components of the total stress are valid. On the other hand, from
(39), (43) we obtain % _Z(gg: + dg )El and 3 = 2(61’ + dg )E1, and from (33), 3, (36), (37) we have
8W ow
1 — D —
H= )\. 83 D= )\,1 8EL (3] (97)
Let us assume that the magnetic induction and electric field outside the plate are given as
B© =B{”e;, E© =Ee, (98)

where B{”), and E{*) are constants, then (11); is satisfied if
B® =B, (99)

while (11), is satisfied automatically. From (5) and (98) we have D© = g,E{”e; and H© = %Boel. Then, it is easy to see
that (11)4 is satisfied automatically, whereas (11)3 holds if

ow
—A = g,E?, 1
180 3E, =& (100)
2
from where we can obtain, for example, E, in terms of Eéo). Finally, from (98) and (13) we have 1y, = —%’Eé") - ZB—EO and

using this in (12) following the same procedure as in the previous Section 4.2.1 we obtain the external total loads on the
surfaces X, = i%z and X5 = i% that are necessary to produce the deformation

ow ow E(O)z N B . ow ow E(o)z B2

Mg, Mo T . B=Man Mgt 2ty (101)

b=

1
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4.3.4. case ag = E3, E = Eye; and B = Byes
In this problem from (28), (30)-(32), we obtain

N1 =R,=0, R3=1, J1=0=0, »=1 I1=1, I =313=0, (102)
ar=a;=0, az=1, B1==0 p=1 =1 y,=y=0, (103)
=1 &H=8=0, =0 =0 n=0 x=0 =0 (104)

As in the previous problems the same expressions for the components of the total stress (71) are valid here. As well as this
from (39), (43) we have 3 = 2<3ﬂ3 + 3§ )E3 and 2% = 23W "LE;. Therefore, from (33);3 we obtain

de
aw aw
H=2A;" , D=—Ajqp 105
3 3B B, €3 15 E, € ( )
Let us assume that the magnetic induction and electric field in vacuum are
B® =B e;, E© =E1e, (106)

then (11);, are satisfied automatically, and from (5) we obtain H® = iB§°)e3 and D© = g,E{”e;, and from (105) the
continuity conditions (11); 4 are satisfied if
ow 1

At —B(")

3 8BL O —)LlaiEngoEo ) (107)

2
from where we can obtain, for example, B, and E, in terms of Bgo) and Eéo). Using (106) in (13) we have 7y, = %Eéo) -

2
LB(O) . Assuming that on the surfaces X; = i%, there is no external mechanical traction, for which, from (12), (71) w

obtam pP=A 3W - SOE(O) + 21 B(") Therefore, the external total traction that is necessary to apply on the surfaces X, =
% and X3 =+ are
A 8W 8W 2 1 2 . ow ow 2 1 2
fr=2A —A E<°> B, f=A —A E(°> B 108
2=M, Mg T 2o v BEMEL T Man Tt 240 ° (108)
respectively.
4.3.5. Case ag = E3, E = Eye3 and B = Bye,
In this case from (28), (30)-(32) we obtain
N1 =N,=0, R3=1, J1=0, =1, I3=0, J1=3=0, I3=1, (109)
ar=a;=0, az=1, B1=0, Bo=1 B3=0, y1=0=0, y=1, (110)
;i=0, k1=k=0, k3=1, ©;=0, r],-:O xi=0, (=0. (111)
Eq. (71) is the same and from (39), (43) we have W _ 2 d/‘;‘/ E, and Ba%/ = 2(3—]‘?/3 + B—W)El Furthermore, from (33); 3, we
obtain
ow 8W
H=A;1— D= 112
2 5, % 3 5E (112)
Let us assume that
B® =B”e,, E© =E,es, (113)

then (11); , are satisfied automatically. On the other hand from (5) we have H©® = iBf,o)ez and D@ = g,E,e3, and (11)3 is
also satisfied automatically. In a similar way, from (11)4 we have

ow 1
;1o— = —B{, 114
2 8BL Mo ( )
2
which can be used to find B, as a function of B{”’. Using (113) in (13), it can be obtained that vy, = —$EZ - ﬁBff’) , and
from (12) and (71) for the surfaces X; = 2 we have p = A W iy EOEZ + 2# B(O) Furthermore, from (71) we have
. ow W g 1 2 . oW ow ¢ 1 2
f=x M — 2E2— —BY, f=2A — A — 2E2— — B, 115
250 Mo T 20 2w, 0 3TN Mo T 20 2 ° (115)

For the sake of brevity the following cases are presented in Appendix A.1: Case ag = E,, E = E;e3 and B = Bye;, Case
ap = E;, E =Eye; and B = Byeq, and Case ag = E3, E = Eye3 and B = Bye;.

12
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4.4. Shear of a slab

In this problem for the same slab described in Section 4.2, we assume
Xx1=X1, Xo=Xo+kX3, X3=2Xj3, (116)
where « is a constant. For the electric field and the magnetic induction we consider only one case, wherein
EL = E,E3, B =BEs, (117)
where E;, and By, are constants. For the direction ag, three cases are studied, namely
ao=E3;, ap=E,;, ag=cE;+sE;s, (118)

where ¢ = cos&, s =siné&, and & is the angle between ap and X,. From (116) and (1) we obtain F = 2?11 e; ®E; + ke, ® Es.
Moreover, using detF =1 and the previous condition, we obtain

c:E]®E]+E2®E2+(1+K2)E3®E3+K(E2®E3+E3®E2). (119)

Using the above relations, the following expressions are obtained

1 1
M=1, A= ﬁ\/2+K2—K\/4+K2, A3 = ﬁ\/2+K2+K\/4+K2 (120)

and
1 1
u =E;, w=—(ME+E), u3=_—(T3E +E3), (121)
Uz U3

where

1 1
To= -+ VA2, V3= (—k+/A+K2), (122)
U2=\/1+T2, U3=\/1+T32. (123)

Finally from (117) and (15), (28) we obtain
B=«B e, +Be3, E=E_,e;, b=E;, e=E; (124)
and B]_ = B]_O, E]_ = ELa'

4.4.1. Case ag = E3
From (28), (30)-(32) and (121) for the invariants we obtain

1 1 1 1

N =0, szu—z, Ng:u—3, J; =0, :lz:U—z, 33:U—3, (125)
1 1 1 1
11 =0, JZ:UZ’ 33:U3’ oy =0, UZZF%, a3=@7 (126)
1 1 1 1
=0, = —, = —, =0, = —, = —, 127
Bi B2 U22 B3 U32 12! V2 U22 V3 U32 ( )
1 1
C]ZO, (220, ;-3:7’ K1=K2=0, K3 = —, Q1:Q2=0, Q3=1, (128)
U3 U3
1 1
m=m=0, m=1, x1=x=0, 3=-, 1=0=0, 3=—. (129)
U3 U3

From (38) we have (%—"g)u =0, (%—VX)B =0 and
Wy __ 1 (W _awh 1 179w W) 1
aC 23 - (}\.% — )\.%) 80[2 80[3 U,Us 2 8(2 8§3 U,
(W aw\1 1w w1
2 8/(2 8K3 U2 2 8)(2 8)(3 Uz

1/0W oW\ 1
+2(&28Q)w}' (130
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Furthermore, for the nonzero components of the total stress from (33);, we have

w w w w
rn=28——p, T22=2[a +K<2a + 0 )}—p,

0Cn Gy 9Cy3 o 0Cs3
T33 = 2a—w T3 =2 w + Ka—w
ST b= 0Cy3 0Gs3 )’
where 3% can be obtained from (34). From (39) we have
ow
e Loy + £3u3 + gEs,

where
o L(W W
2= U2 852 3[2 ’

ow 1<aw aw) ow W

“=298, "0\ 55 T 95 ) T o0s Ty

ps " Us

o (ow ow aw) ow ow
Y=\ 05 T 0 T o dos  dns’

Taking into account that I—-b ®b)" = E; ® E; + E; ® E,, from (36) we obtain
Hy, =0,

oo (W) _aW 11 (0 s\
o \oe ), BLUZ B\ U U5 )T

o (W) W11 e\
b= 8|BL 3_831_ U?% By U, Us U3-

Furthermore, from (33), (see (22)) the following relations are obtained

H = He; + Hze; = [HLzeZ + (K[H]_z + [H[_B)e3.
On the other hand, from (43) we obtain

w - _
e = £ouy + £3u3 + gE3,

o L(w, w
Z_Uz 8K2+8X2’

_ aw 1<8W aw) w  aw

B3=27— 4 (o o |+ + s
’ dys  Us\0dks  dx2 dos I3

= (A2t )
Y= Us \ ks di3  dx3 dos O3

From (37) (see (24)) we obtain
DL, =0,

—Dy. = aiw —Ml+l T26_2+T3Z3 E
PTNOE ), TRV TE\ G U )0y

o= (W) w1 10D ME\T
PNoE ), 9E U2 TE\ U Us ) Us’

1(aw ow aw) w  aw

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)
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Similarly, from (33); we have

D = Dye; + D3e3 = (D, + kD, )e; + Dy, es. (148)
For the electric field and magnetic induction outside the slab it is assumed that

E© =Ee;. B =Be, +Bes, (149)

and from (5) we have
1
D© = &,EPe;, HO = M—(Béj)ez +Bes). (150)
0

For the surfaces X5 = i% using (11); 3 4. the continuity conditions are satisfied if

BY) =By

0

1
B =tz eE” = Ds, (151)
o

while (11), is satisfied automatically. From (151), 3, we can obtain, for example, Eéo) and Bg‘:) in terms of By, and Ef,.
Let us assume that for the surfaces X; = i%, there exists no external mechanical traction. Hence, using (149) in (13) we

have 7y, = —%"Eéo) Zug (B(O) +BZ ) and considering (12) and (131); we obtain p = ax + SDE(O) + 2# (B(O) +B? ). For
the surfaces X3 = 7, let us assume that the total external load is of the form t®) :t2(3)e2 +t§3)e3. Then from (12),
(132) and considering the above expression for p, we obtain

A A 10W oW ¢ 2 1 2

(3) (3) 0r(0) (0) 2

=13, L' =T3=—5——-—5——=E B Bf ). 152

) 23, I B T o 2 Mo( . +B) (152)
It is necessary to mention that the surfaces X, = %2 are not in general traction free. The unit normal vector to those
surfaces is n = —1—e e; and assuming that the total external traction is 2 = t(z)e t(z)e from (12), (131),,

m \/7 3 g + 3 ( ) ( )2

(132) we obtain

« 1 A 1

2) (2)

67 = ——= (T —kT23), 57 = ———=(T23 —KT33). (153)

VI+k? P V11«2

4.4.2. Case ag = E,
In this case from (125)-(129) we obtain:

T T

2 Ry3=-2, =0, k=0 17=0 x;=0 (=0, (154)
U, Us

and the rest of the invariants are the same as in the previous case. On the other hand from (38) we obtain

aﬂ - 1 aﬂ _ aﬂ RPRE (155)
aC 23 - ()\2 — )\.2) aaz 80{3 U,Us ’

and the rest of the expressions for ( ac) are indentical as in Section 4.4.1. Similarly, the formulae for 7;; are the same as

N1=0, Ry,=

in (131) and (132). From (39) we obtain 2 ﬁ = (343 + 3)(3 +23,53 + 393) 3E, + [393 (2 gg + ag3>u3]E3 Consequently,
from (36) (see (22)) we have

My, =0, (156)
aw 1 w oW W W \ 13
Hi, = mo- 5 + | 30 + 3o + 232 + 2 ) 7o, 157
2~ 9B, U2 ( 93~ dxs  9ps 3@3) UUs (157)
W 1 (W oW oW W
Hy = o5+ | 7 + 50— + 2742 158
b = 9B, 02 (aga oxs 20 a@3> (158)

In the case of (43), we obtain 4% = (ng; + ?TVZ + 2(,1,3 + dg3> 3E, + [()Qg + (2— + 3—W>UL]E3 Furthermore, due to
(37) (see (24)), we have
L, =0, (159)

0 oW 1 (g\;v w W aw)nn (160)
3

TR U i "y e ) Ul
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D W 1 <aw ow oW aw)wrg
DL — |2

=902 "\ T s T2ays e

(161)

The expressions for the components of H and D in terms of the components of H; and D; are the same as in (140) and
(148), and the analysis of the continuity conditions is identical as in the previous section, therefore, these are not repeated

here.

4.4.3. Case ag = cE; + SE;
In this last case, the expressions for the invariants in (28), (30)-(32) are:

1 1 1 1
Ny =0, N2=UZ(T2C+S), N3=U3(T3C+S), 31 =0, 32=U2, 33=U3,
T =0, hel, Lol 020, a4 (Tt a3 = (Tsct5)?
1=VY, Z_UZ’ 3_U3’ 1=Y, 2_U22 2 s 3_U32 3 5
1 1 1 1
=0, =—, = —, =0, =—, =—,
B B2 T B3 T V1 2) T V3 0

S N
01=0, =0, 3=—(V3c+5), k1=ky=0, Kk3=—(T3c+5),
Us Us

2
01=02=0, 035=1, m=m=0, n3=5% x1=x2=0, X3=U3(T3C+S),

S
11 =1t =0, L3=U3(T3C+S).

For (TW) the formulae are the same as in Section 4.4.1 with the exception of (38) that becomes

W\ _[(W 0w\ (Nuc+s) (oW oW ow ow

0C 23 - 8012 h 80[3 U3 + 2 8{2 B 8{3 + 8/<2 a 8K3
w  aw oW (Tzc+s)
8X2 8)(3 8[2 8L3 Uz

From (36) and (22), for the components of H;, we obtain

8W 1 Zsz BW 1 eZTE

-0, H , :
L= Thk= 9B UZ ' BLUs L= 9B UZ * BiUs

where

o [ W (W W W W\ Ty [L0W W
2= o oG T )T e T )T, T T9A T des

aw BW BW T3
+<8§3N3+ 8L RB) }U3

o [ W, aw+aw s (W W sN2+ LW W
T ons 083 } 05 duy B3 o3
8WN BWS BWR Sl W w ow e
M IR T TR b [T ol W P T M

Finally for the components of D; using (37) and (19), we have

ow 1 6_2 T, ow 1 5_2 T3

Dy. = = —— _ — = —— _
L=0 L= gE TR, P T R T RDs

1

where

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)
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2= oo T 8l3 3 3)(2 2 dys 003
ow BW T3
+ (81735+ W R3>si| 0, (173)
- ow aw SN, aw oW
£3—<ax Mt A +) (axz axZ) +[zay3 90;
aw  Iw aw 1Y% oaw oW
H oS+ N3+ +—R3s|—++—+| 57— + sN3. 174
(3773 Iy dxs 3) ]U3 903 (3t3 aX3) ’ (174)

The above expressions can be used to calculate the components of H and D from (15); 4. The rest of the analysis on the
continuity conditions ((11) and (12)) is the same as presented in Section 4.4.1, hence, it is not repeated here.

4.5. Cylindrical annulus under inflation and extension

In this last problem, let us consider a cylindrical annulus described in cylindrical coordinates

Ri<R<R,, 0<®<2m, 0<Z<I,

where it is assumed that

Er
E-(r)e; By (1)e,
aOZ{Ej ’ ‘E:{Ezmez ’ BZ{Bf(r)ef

(175)

(176)

There are three possible cases for ay and two cases for E and for B. It is assumed that the motion is given by

r=f(R), 6=0, z=2AZ

(177)

where A > 0 is a constant. The deformation gradient and the right Cauchy-Green tensor are F = f'(R)e; @ Eg + @eg ®Eg +

re; QEz, C=[f (R)]*Egr ® Eg + [f(R#]ZE@ ® Eg + A2E; ® E, respectively. From detF = 1 we obtain
1
=f(R) = X(RZ—R?)-HE, (178)
where r; is the inner radius of the annulus in the current configuration. The principal stretches and directions are
R r
)\,1 ZH, )\2: E, )\3:)\,, u; =Ez;, u=Eg, u3=E; (179)
4.5.1. Case ag = Eg, E=E;(r)e,, B=By(r)ey
In this case from (15); 3 and (26), we have
RE, __ RE; _ __ 1By __ 1By _
ﬂ':]_ o ER, EL— )\J_, e_ER, |B]_— R E@, B]_— R s |b—E@). (]80)
From the Egs. (28) and (30)-(32) for the invariants, we obtain
Ni=1, Ry =R83=0, J1=1, Tp=33=0, J1=1, I,=13=0, (181)
ar=1, op=a3=0, Bi=1, Br=p3=0, »1=1, y,=y3=0, (182)
;i=0, k1=1, kp=k3=0, 0;=0, 17,=0, x=0, (=0 (183)
From (38) it is possible to show (ac) =0, therefore, 7;; = 0, i # j. Moreover, from (34) and (33);, we have
ow aw aw
Trr=)\.]87)\1—p, T@gZ)\zT)\'Z—p, TZZZ)\.Q;T)\?’—p. (184)
Since A; = )L-(R) = A;(r), from (10) it is possible to show that p = p(r) and (10) becomes
drt
=+ — (frr Tgg) =0 (185)

dr

17
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If we assume that on the inner surface of the tube there is a radial traction P (that incorporates the Maxwell stress), then
the solution is

"1 aw ow
win = [ g[xz(s)%@.) —M@)M@)} dg —P. (186)
/A (r2—r?)+R?
where from (178) we have A{(r) = % and A,(r) = ——L—. Let us assume that on the outer surface of the

[A(r2=r2)+R?
tube there is no mechanical load, then from (12) we obtain t;+(ro) = Tw,, (ro). Furthermore, from (186), it can be obtained

Toq aw oW
[ g[xz@)%(s)—ms)ah(s)} d§ — P =T, (1o), (187)

where ro = /1 (RZ — R?) + r2. The above equation can be used to find r;.
From (36) and (33), we have

ow
dB,

Then in this case from (2)4 considering (3) we obtain

Hy, =H, =0, Hy, = = Hr=H,=0 Hy=2"Hp,. (188)

d

(1) = 0. (189)
The solution of the above equation is

Hg = ; (190)

where c is a constant. From (188) and (190), it follows

ow c
A ) 191
dB.  R(r) (191)
From (37) and (33)3, we obtain
ow ow
*[DLR=TEL, D, =D, =0 = Dr:ik]ail:]’ Dy =D, =0, (192)
and in this case (2)3 considering (4) becomes
g(rlD )=0 (193)
dr 77T
whose solution is
Dy = <, (194)
r
where C is another constant. From (192) and (194), we obtain
ow CA
- . 1
J0E, R(r) (195)

Egs. (191) and (195) can be used to find E;(r) and By (r) as functions of r, ¢ and ¢. In those expressions from (178) we have
R(r) = /A2 — riz) +R12. If the electric field is produced due to the action of electrodes attached on the inner and outer
surfaces of the tube, then the electric potential ¢ can be calculated as —[¢(ro) — @ (i) = —Ap = f,r_'a E (&) d&.

Assuming that L > R,, the continuity conditions (11) are analyzed only for the surfaces r =r;, r - To. Let us assume that

E© — E© Ne, = D@ — EOE(O) (Ne;. (196)

Hence, the Maxwell equation (2), considering (3) becomes

%(rﬁﬁ‘” ) =0, (197)
whose solution is
;)

(= (198)
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where ¢(© is a constant. There is a constant for r < r; that can be denoted Ego), and a different constant for r > ry that is

=0)
denoted 51(30)' From (198), the continuity condition (11), is satisfied automatically, whereas (11)5 is satisfied if D,(r;) = @

(0)
and Dy (ry) = C$—0 which from (192) become

W & W ¢
—A1 (TI)TEL(H) = 807’ —A1 (ro)T&(ro) = 807, (199)

respectively. The above equations can be used, for example, to find Eé") and El()o).
For the magnetic induction outside the tube we assume

B® =B (e, + B (Ne; = H = Ml[Bg’) (r)eg + B (Ne;]. (200)

0

The Maxwell Eq. (2)4 (see (3)) is satisfied if B (r) = Bg’), where Bg’) is a constant and

(0)
(5

whose solution is

©) C(O)
B, (r) = Tﬂw (202)
B .
Due to (200);, we have H©® = @eg + ez, where the constant ¢(© can take a value for r < r; that is denoted c{*, and
a different value for r > r, that is denoted clgo). From (188), (200); and the previous expression for H® the continuity

condition (11),4 is satisfied if Bg’) =0 ((11); is satisfied automatically), and if Hy(r;) = 2

(0)
: and Hy (ro) = % which from
(188) are equivalent to

To ’

aw LW el
T&(ri) =T A (ro)TBL(rO) =T (203)

A (1)

which can be used to find, for example, ¢ and cl(f’).

Using (196); and (200); in (13) we obtain ty,, =

eof©@?  (0?

2r2 2r2 °

which should be used in (187).

4.5.2. Case ag = Eg, E = E;(r)e;, B=B,(r)e,
In this problem (180); , 3 are the same, while

B, = A" 'B,E;, b=E (204)

and from (28), (30)-(32) the invariants that are different from (181) to (183) are
N1 =N,=0, R3=1, J1=3=0, 3=1, (205)
Ol1=0[2=0, C(3=1, ,31:,32:0, ﬂg:l. (206)

From (33); and (37), the expressions for the components of the electric displacement are the same as in (192), while from
(33)3, (36) and (39), we obtain

aw

Hy, = H, =0, Hy, = 38 = Hr=Hg =0, H(r)=A3"Hi,. (207)
Using (207) in (2)3 (see (3)), we obtain
dH,
& - 0 = H(r)=c, (208)
where c is a constant. From (207) and (208), the following expression can be obtained
ow
197" _
3B, c. (209)

Regarding the electric field outside the tube, we have (196), while for the magnetic induction considering (204) and
(207), we have

B =B (re, + B (Ne;, H© = Mi[Bg’) (reg + B (ney], (210)
0

19
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then (2)4 (see (3)) becomes
dB”
dr

where B(o) and ¢ are constants. Those constants are in general different for r < r; and r, > 0, but we avoid using a different
notation for them. The continuity conditions (11), are satisfied if

211)

=1 0

d
=0 = BY(=By. L0B)=0 = B (=

B©)
= 0. (212)
Mo
Finally using (196);, (210); in (13) we obtain ty,, = 5"25;;) 2r2’ which should be replaced in (187).

4.5.3. case ag = Eg, E = E;(r)e;, B=By(r)ey
In this case the expressions for the magnetic induction are given in (180)4 5 g, whereas for the electric field we have

ﬂ‘:L = )\.EZEz, e = Ez, (213)
and (2), (see (3)) is satisfied if
E(r) = Ez, (214)
where E, is a constant. In this problem, the invariants from (28), (30)-(32) are
J1=0, =1, J3=0, 11=1=0 I3=1, (215)
Bi=0, Br=1, B3=0, y1=9=0, =0, (216)
{i = 0, Ki = O, Ki = 0, 0i = 0, ni= O, Xi= 0, L= 0. (217)
From (33)3, (37) and (43), we obtain
ow oW
[D]_R = |DL® =0, —[D]_Z =+ = Dr=Dg= 0, D,= )‘3[DLZ = A (218)
0E, J0E. "

Outside the tube, the expression for B©) can be assumed to be the same as (200), and from the continuity conditions
(11)4, the same restrictions on B are found. Regarding the electric field outside, we assume

E® =EFE,e, = D© =¢gFE,e,, (219)
and the continuity condition (11); 3 are satisfied automatically. Finally using (200); and (219); in (13), we obtain Ty, =

8"5 5 2# which should be replaced in (187).
In the rest of the cases described in (176), many of the different expressions for the electromagnetic variables are the
same as in the previous sections. Therefore, for the sake of brevity, we do not repeat such calculations here. The major

difference corresponds to the expressions for the invariants (28), (30)-(32), which are presented in Appendix A2.

5. An example for the total energy function W

It is necessary to remark that there is no enough experimental data available in the literature in order to propose a final
expression for the function W. The purpose of this article and in particular of the previous section on the boundary value
problems, is to have a model that can be used to design some experiments that give results useful for such a fitting. But,
with the purpose of facilitating the understanding of the kind of coupling we can observe for this model, in this section
we propose a simplified expression for the total energy function W, following the work of Shariff (2017) for transversely
isotropic elastic solids. We propose the specific form (in this section round brackets are reserved for the arguments of
functions):

W= WT+N1+N2—ﬁZ—+—Zﬂ, (220)
where
wT—uTZnuHmZarz(AH [Zars(k)} (221)
i=1 i=1

20
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Fig. 1. Axial stress t,, vs axial stretch A, for various values of the electric field E, when the magnetic induction B, = 0 [Tesla].

400
B, =0.002 Tesla

300

-
(kPa)
200

B, =0.001 Tesla

100

By=0 Tesla

A,

z

Fig. 2. Axial stress 7., vs axial stretch A, for various values of the magnetic induction B, when the electric field E, = 0 [V/m].

3 3
Ni = co(E) Y yira(hi), Np=ci(Br) ) Birs(Ai), (222)

i=1 i=1

where ur, 1y and B are constants, and in the case of the analysis of a cylinder in tension «;, B;, ¥;, i =1,2,3 are given in

(53). To be consistent with infinitesimal elasticity, the single variable functions rp, p=1,2,...,5 must satisfy
rp(1) =0, r(1)=r(1)=r,(1) =r5(1) =0, r3(1) =1, (223)
) =ry)=rj(1)=ri(1) =2. (224)
From (6), (33),.3, (36), (37) and (220)-(222) it is clear that
oN; IN;
D=¢€E—-F+—, P=-F-— 225
“f -F3E - 3E, (225)
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T T 1
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Fig. 3. Axial stress 7., vs axial stretch X, for various values of the electric field E, and the magnetic induction B,.

and
dN, dN,
B=po|H-FT==|, M=-FT2=2. 226
M0|: 9B, ] 3B, (226)
In vacuum N; = N, = 0 and we recover the relations
D® = E®, B® = poH©®. (227)
In order to obtain the plots presented in this section we use the functions and constants
) =nE =r® =[nEP, rE=InK), K =rk =[x-1], (228)
B

ﬂ = O[kPa] , MT =M1 = 5 [kPa] s Co(EL) = O.]GoEE , (€ (BL) =

, 229
0.01140 (229)
and €p = 8.85 x 10~ 12[Fm~1], g = 4w x 10~7[H/m]. From the results shown in Section 4.1 the axial component of the stress
for the problem of the extension of a cylinder becomes

282 1
T = [ir + pa Pha’ (h) + 0.2€0E223 s — 1] + quo[] _ E]

1 €E? B
M) %, P (230)
Vi VA 2 2
In Figs. 1-3 results for t,, are presented. It is clear from Figs. 1 and 2, for the model given in this section, the application
of either the electric field or the magnetic induction, increases the magnitude of the axial stress 7, at a given axial stretch.
The application of both the electric field and the magnetic induction further increases the magnitude of the axial stress as
shown in Fig. 3.

6. Final remarks

In this article we have presented constitutive equations for nonlinear magneto-electro-elastic bodies, where there are
potential applications in the modelling of some types of soft rubber-like materials. One of the novel aspects of this work
is the use of spectral invariants for the energy function. Such invariants can facilitate the work of fitting experimental data
to find expressions for the energy function. A second contribution of this paper is to provide details of different boundary
value problems, which can be used immediately for such experimental research. In a future work after obtaining some ex-
pressions for the total energy function from actual experimental data, it is planned to study more boundary value problems,
in particular considering inhomogeneous deformations. One limitation of the theory presented here and also in many sim-
ilar previous works in the literature (see the review in the Introduction), is the assumption of time-independent processes.
In a body that can react to electric and magnetic fields moves, there is a coupling between such fields, from where it is

22



R. Bustamante, M.H.B.M. Shariff and M. Hossain International Journal of Engineering Science 159 (2021) 103429

necessary to use something called the effective electric field and magnetization (see, for example, Eringen & Maugin, 1990;
Kovetz, 2000). Such fully time-dependent model will be analyzed in a future work as well.
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Appendix A. Additional cases for the boundary value problems
Al. Other cases for the biaxial deformation of a thin plate

Al.1 Case ag = E,, E = Ey,e3 and B = Byeq
In this problem from (28), (30)-(32), we have

N1=0, Ry=1, K3=0, 21=1, Ip=23=0 J1=1=0 Iz3=1, (231)
Ol1=0, 052:1, Ol3=0, ﬂ]:], /32:,33:0, )/]:}/220, }/3=1, (232)
;i=0, k=0, 0;=0, =0, x=0 ¢=0. (233)

From (39), (5) we obtain ¥ = ngle‘ and 3¥ = 25’7"‘;&. As (71) are the same, repeated calculations are skipped here.

Al.2. Case ag = Eq, E = Ese3 and B = Byeq
In this case the expressions, (71) and (89)-(93) are the same. However, the differences appear on the values of some of
the invariants, which for this problem from (28), (30)-(32) are:

Ry =Ry=0 Ny=1, Jy=1, Ty=T3=0 I=1 JH=J=0 (234)
aj=0;=0, az=1, Bi=1, B=p=0, yi=1 y,=y3=0, (235)
é‘i = 0, Ki = 0, 01 = ], 02 =03 = 0, ni= O, Xi= 0, L= 0. (236)

Al.3. Case ag = E3, E = Eyse3 and B = Bye,q
In this last case from (28), (30)-(32) we obtain

N1=R,=0, N3=1, J1=1, Tp=03=0, I1=5=0, I3=1, (237)
ar=a;=0, awv=1, B1=1, Bo=p=0, »1=1=0 pyp=1, (238)
;i=0, k1=k3=0, k3=1, 0;=0, 1n,=0, x=0, (=0 (239)

The rest of the expressions are the same as in Section 4.3.2.
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For the extra cases for the behaviour of the cylindrical annulus the only difference corresponds to the expressions of

some of the invariants, which are listed below.

Case ag = Eg, E = E;(r)e;, B=B,(r)e;:
Ri=1, Ny=R3=0, J1=0=0 =1 51=5=0 I3=1,

ar=1, amy=a3=0, B1=p=0, B3=1 yi=y=0 y3=1,
§i=0, k=0, 01=02=0, 03=1, 7,=0, x;=0, =0

Case ag = Eg, E=E;(r)e;, B=By(r)ey:
N1=0, Ry=1, R3=0, J1=0, p=1, I3=0, J1=1, 1, =13=0,
a1=0, ay=1 o3=0, B;=0, Br=1 pB3=0, y»1=1 y,=y3=0,
§1=0, é’z:], §3=0, Ki=0, Qi=0, r)i=0, Xi=0, Li=0,

Case ag = Eg, E = E/(r)e;, B = B;(r)e;:
N1=0, R;y=1, N83=0, I21=3=0 I3=1, I1=1, J,=313=0,
a1=0, ax=1, a3=0, Bi=H,=0, B3=1, =1 »=y;=0,
=0, k=0, 0;=0, =0, xi=0, =0

Case ag = Eg, E=E;(r)e;, B=By(r)eg:
Ni=0, Ry=1, N83=0, I21=0, Tp=1, J3=0, J1=1

Il
e

I3

Il
—_

a;=0, ay=1, az3=0, B1=0, =1, B3=0, y1=yp=0, y3=1,
6=0, &H=1 =0 =0 0=0 n=0 x=0 =0

Case ag = Eg, E = E;(r)e;, B=B;(r)e;:
N1 =0, Rpy=1, R3=0, J1=2=0, »3=1, J1=1=0, I3=1,
a1=0, aa=1 a3=0, B1=H=0, =1 y1=1n=0 y=1,
i=0, K,=0, 01=02=0, 03=1, n;=0, =0 (=0

Case ag = E;, E=E;(r)e;, B=By(r)eg:
N1=N,=0, R3=1, J1=0, =1, I13=0, J1=1, I, =13=0,

ar=0a,=0, az=1, B1=0, Br=1, B3=0, y1=1 y=y3=0,

=0, =0, 0;=0, 17,=0, x;=0, =0.

(240)

(241)

(242)

(243)

(244)

(245)

(246)

(247)

(248)

(249)

(250)

(251)

(252)

(253)

(254)

(255)

(256)

(257)
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Case ag =Ez, E=E;(r)e;, B=B,(r)e;:

Ry =Ry =0, Ng=1, Jy=2=0 I3=1, J=1 L=J=0, (258)
aj=0=0, az=1, B1=H=0 Bz=1 =1 y,=y3=0, (259)
G1=6=0 &=1 =0 0=0 n=0 x=0 =0 (260)

Case ag = E;, E=E;(r)e;, B=By(r)ey:

N1=N,=0, R3=1, J1=0, =1, 13=0, J1=1 =0, Iz3=1, (261)
ar=a;=0, az=1, B1=0, fo=1 B3=0, y1=9%=0, y3=1, (262)
§i=0, K1=k2=0, Kk3=1, Qizo, 7],‘:0, X,‘:O, tizo. (263)
Case ag = Ez, E=E;(r)e;, B=B,(r)e;:
N1 =NR,=0, R3=1, J1=2=0, 3=1, ;1=5 =0, Iz3=1, (264)
ar=a;=0, az=1, B1=p=0 B=1 y=y=0 yy=1, (265)
Gi=0=0, &3=1 ki=k=0 x3=1 ©0=0=0 o03=1, (266)
m=m=0 n=1x1=x=0 )y3=1, 1 y=1=0, =1 (267)
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