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Abstract

This paper presents a “first principles” atomistic study of the dynamics of detwin-
ning in a shape memory alloy. In order to describe the macroscopic motion of twin
boundaries, the continuum theory of twinning must be provided with a “kinetic
relation”, i.e. a relation between the driving force and the propagation speed. This
kinetic relation is a macroscopic characterization of the underlying atomistic pro-
cesses. The goal of the present atomistic study is to provide the continuum theory
with this kinetic relation by extracting the essential macroscopic features of the dy-
namics of the atoms. It also aims to elucidate the mechanism underlying the process
of detwinning.

The material studied is stoichiometric nickel-manganese, and inter-atomic inter-
actions are described using three physically motivated Lennard-Jones potentials.
The effect of temperature and shear stress on detwinning — specifically on the rate
of transformation from one variant of martensite to the other — is examined us-
ing molecular dynamics. An explicit formula for this (kinetic) relation is obtained
by fitting an analytic expression to the simulation results. The numerical exper-
iments also verify that transverse ledge propagation is the mechanism underlying
twin-boundary motion. All calculations are carried out in a two-dimensional setting.
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1 Introduction

Certain alloys such as Ni-Ti, Ni-Mn and Cu-Al-Ni possess the capability of
recovering from large and seemingly irreversible deformations if heated above
a certain threshold temperature. This effect, called the shape memory effect,
is possible because such materials are able to transform between two distinct
solid phases. At low temperatures, they prefer a crystallographic structure
with low-symmetry (e.g. tetragonal) called martensite, whereas at high tem-
peratures the stable crystal structure has high-symmetry (e.g. cubic) and is
called austenite. Each crystallographic structure is said to correspond to a
phase of the material.

The low-symmetry phase exists in a number of crystallographically equivalent
forms referred to as variants (of martensite). In the absence of stress, all of the
variants have the same free-energy and are therefore equally stable. Thus dif-
ferent variants can co-exist in a stress-free body; such a configuration is said to
be “twinned”, a pair of adjacent variants are called “twins”, and the kinemat-
ically compatible interface between them is called a “twin boundary”. Figure
1 shows an atomic scale photograph of a twinned region in a SiC nanoparticle
taken from Perrey et al. (2003). When the body is subjected to an applied
loading, the free-energies of the different variants are no longer equal and some
variants become energetically more favorable than others. Consequently the
twin boundaries move into the less favorable variants, thereby transforming
them into a more favorable variant. This process can lead to strains of up to
8 — 10%.

The transformation between variants at the macroscopic scale, the associated
load-deformation curve, the rate effects, and the hysteresis are all controlled by
the dynamics of the twinning process. Since this is a non-equilibrium process,
it means that the macroscopic response of the material is controlled by ingre-
dients additional to the free-energy that governs the equilibrium response of
the material, see e.g. Abeyaratne and Knowles (2006). Specifically, additional
information describing the nucleation and motion of interfaces are required,
and they must be derived from the dynamics of the transforming lattice (or
measured directly from experiments).

Those aspects of the lattice-scale dynamics that are relevant to the macro-
scopic scale must then be passed up to the continuum theory in the form
of a “nucleation criterion” and a “kinetic relation”. This paper describes an
attempt to obtain such information from a “first principles” atomistic study
using molecular dynamics. In particular we shall determine the critical shear
stress associated with nucleation as a function of temperature, and the trans-
formation rate as a function of both temperature and stress.



Figure 1. Atomic scale photograph of a twinned microstructure in a SiC nanopar-
ticle, Perrey et al. (2003). Reproduced with permission from C.B. Carter and S.L.
Girshick.

The starting point for this work arose from the ideas presented by Kast-
ner (2003, 2006), where he simulated the shape memory effect in a two-
dimensional setting using molecular dynamics. The interatomic interactions in
his study were modeled employing Lennard-Jones potentials with heuristically
constructed parameters. The three primary distinctions between our work and
his are that, one, we enforce certain essential group-subgroup lattice symme-
try relations (see, e.g. Bhattacharya (2003), Bhattacharya et al. (2004)); two,
we use physically motivated values for the Lennard-Jones parameters; and
three, our focus is specifically on deriving quantitative descriptions of the nu-
cleation and kinetics of detwinning. In addition, we are also interested in the
mechanism by which twin boundaries propagate.

Our molecular dynamics approach is based on (suitable modifications of) the
ideas developed by Yip and co-workers for studying structural transformations
of lattices, e.g. see Nguyen et al. (1992), Toukan et al. (1983). Related work
on the twinning of martensitic lattices have been carried out, for example, by
Rifkin and Clapp (1982), Pinsook and Ackland (2000) and Li and E (2005).
However, none of them specifically address the questions of nucleation and
kinetics. In addition some studies of phase transitions in the literature use
interatomic potentials that have multiple energy-wells, thereby building-in the
multiple phases into the model a priori. In contrast the interatomic potentials
we use have the classical form involving a single energy-well.

The material studied here is stoichiometric nickel-manganese and our analy-
sis is carried out for a two-dimensional lattice. The specimen is a strip that
is infinite in one dimension. The outermost atoms of the strip are subjected
to shear forces such that the associated continuum may be viewed as being
subjected to a uniform shear stress on the straight edges of the strip. A se-
ries of calculations are carried out, each corresponding to a different value of
force (stress) and different initial kinetic energy (temperature). In particular



we (a) determine bounds on the nucleation level of shear stress as a function
of temperature; (b) determine the kinetics of detwinning by calculating the
transformation rate as a function of stress and temperature; and (¢) exam-
ine the forward propagation of an interface and relate it to the transverse
propagation of a ledge along the interface.

We note two related recent studies where macroscopic kinetics have been in-
ferred from, in one case a discrete model (Purohit, 2002), and in the other case
a continuum model with internal structure (Dayal and Bhattacharya, 2006).
In Purohit (2002) a one-dimensional chain of identical particles, each pair
characterized by a two-well potential, is considered and the dynamic problem
corresponding to holding one end of the chain fixed and moving the other end
at a fixed velocity is studied. By examining a number of such problems cor-
responding to different pulling velocities, the kinetics of the transformation
from one well to the other is inferred. The work carried out by Dayal and
Bhattacharya (2006) concerns the so-called peridynamic theory of a contin-
uum. Again by studying a dynamic problem for a material characterized by a
two-well potential, the authors infer a kinetic relation for the transformation.
We note that both these studies introduced a two-well potential at the very
beginning as part of their ansatz.

Concerning the motion of ledges noted in item (c) above, a preliminary mech-
anistic model of this has been described by Hildebrand (2006) based on an
appropriate generalization of the classical Frenkel-Kontorowa model of dis-
locations, (Frenkel and Kontorowa, 1938; Hirth et al., 1982). The motion of
ledges has been observed in experiments, e.g. by Bray and Howe (1996), as
well as in molecular dynamic studies, e.g. by Li and E (2005). They have
been modeled previously using mass-spring models, e.g. by Truskinovsky and
Vainchstein (2003), Truskinovsky and Vainchtein (2005), Slepyan et al. (2005),
Abeyaratne and Vedantam (1997), Pouget (1991), and also using crystal elas-
ticity, e.g. by Abeyaratne and Vedantam (2003).

The paper is organized as follows: in Section 2 the basic atomistic model is
described. In particular we determine the parameters of the three Lennard-
Jones potentials that are used to describe nickel-nickel, manganese-manganese
and nickel-manganese interatomic interactions. In order to determine the lat-
tice structures allowed by these particular interatomic potentials, in Section
3 we determine the possible equilibrium configurations of the lattice and ex-
amine their stability by minimizing the total potential energy of the system.
We use molecular statics in this calculation and do not account for thermal
vibrations. The results are therefore valid at zero Kelvin only. We find that at
this temperature the two-dimensional lattice has access to either of two stable
tetragonal martensitic phases or to an unstable cubic austenitic phase.

In order to avoid edge effects in our subsequent molecular dynamic simulations,



it is necessary to orient the lattice correctly relative to the specimen. In Section
4 we therefore examine the kinematics of a configuration that involves two
variants of martensite, and calculate the angle that a twin boundary makes
with respect to the lattice. This allows us to orient the lattice in our molecular
dynamic simulations such that the twin boundary is parallel to the specimen
boundaries.

The essential aspects of our molecular dynamic method are described briefly
in Section 5. Since we study the response of a specimen in the form of a strip
that is infinite in one-dimension, we use fixed periodic boundary conditions
in that direction. It is essential that the spacing between a pair of periodic
boundaries be chosen correctly if we are to avoid unintended initial stresses.
In particular, since we will carry out calculations at various temperatures, it
is important that we have an a priori knowledge of the thermal expansion of
the lattice; this allows us to chose the spacing, at each temperature, in such
a way that no extraneous thermally induced stresses are present. In Section
5.6 we describe how we calculated the thermal expansion using the Parrinello-
Rahman method.

Finally in Section 6 we present the results of our molecular dynamic simula-
tions. In particular, Figure 10 shows upper and lower bounds on the nucleation
stress at various temperatures. Figure 12 shows a plot of the transformation
rate as a function of shear stress at various temperatures; Figure 13 shows
the transformation rate as a function of both shear stress and temperature;
and equations (37), (38) give an explicit formula for the kinetic relation that
fits the simulation data. Finally, Figure 15 shows a sequence of snapshots
which show that twin boundary motion is a consequence of transverse ledge
propagation.

2 Atomistic Model

The aim of this study is to better understand the mechanisms underlying
twin-boundary motion and to calculate a quantitative characterization of the
dynamics of detwinning. We seek to do this in the simplest framework that
is capable of modeling all of the relevant features without introducing un-
necessary parameters and intricacies. In this section we describe the basic
ingredients of our atomistic model.

First: Hildebrand (2006) has shown that if the interatomic potential between a
pair of atoms has the familiar form involving a single local minimum (energy-
well), then the corresponding continuum-scale energy function associated with
a mono- or diatomic one-dimensional chain of atoms (a 1-lattice or a 2-lattice)
also possesses a single energy well. Since multi-well macroscopic potentials are



essential if a continuum theory is to model phase transitions and/or twinning,
one concludes that such one-dimensional atomic chains whose interaction is
governed by single-well potentials are inadequate for our purposes. This was
also found to be true for monoatomic two-dimensional lattices. The simplest
system that exhibits a multi-well macroscopic potential is a two-dimensional
diatomic lattice as shown schematically in Figure 2. This will be the setting
for all further considerations.
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Figure 2. An example of a two-dimensional diatomic lattice. The filled circles rep-
resent one atomic species while the open circles represent a different species.

Second: we use the nearly stoichiometric shape memory alloy Ni —49at.% Mn
as the material in all of our calculations and model it as perfectly stoichiomet-
ric. This choice was motivated by the stoichiometry of the material and the
simple tetragonal martensitic structure it exhibits. It will become clear in the
course of this section why this structure is particularly convenient for our pur-
poses. Other materials that are nearly stoichiometric include Au—47.5at.%Cd,
Ni—49.75at.%Ti and CuZr, but they exhibit a more complicated martensitic
structure; e.g. see Bhattacharya (2003).

Third: we assume that the Born-Oppenheimer approximation holds and choose
pair potentials of the Lennard-Jones form to model interatomic interactions.
Although pair potentials are usually used to describe gases and liquids and
they overly simplify the interactions in solids, they can frequently capture
basic mechanisms and qualitative trends. For example, Elliott et al. (2002)
were able to quite accurately predict the stability of different phases in nickel-
titanium with temperature-dependent Morse pair potentials. In this paper we
choose three Lennard-Jones potentials
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where the potential ®*? describes the interaction between the atomic species
a and (. In the present study, a3 = NiNi, MnMn, and NiMn.

A setting similar to ours was used previously by Kastner (2003, 2006). How-
ever, the interaction parameters o,g, €44 in his work were chosen a priori so



as to yield the desired geometric configurations. As a consequence they do
not, for example, satisfy any of the usual combination rules, e.g. the Lorentz-
Berthelot rule (Allen and Tildsley, 1987) or the rules proposed by Kong (1973)
and Waldman and Hagler (1993). More importantly, the resulting structures
do not exhibit the essential group-subgroup relation between the symmetry
groups of austenite and martensite; e.g. see Bhattacharya (2003) or Bhatta-
charya et al. (2004). We circumvent these shortcomings as described below.

The values of the parameters onini and enin; for nickel-nickel interactions
were determined by Zhen and Davies (1983) and are given in the second col-
umn of Table 1. We were unable to find corresponding values for manganese-
manganese interactions in the literature, and so we linearly interpolated the
values corresponding to the neighboring elements in the periodic table, viz.
chromium and iron, which had also been determined by Zhen and Davies
(1983); see third, fourth and fifth columns in Table 1. Finally, to deter-
mine the parameters describing nickel-manganese interactions, we applied the
Lorentz-Berthelot combination rule (Allen and Tildsley, 1987) leading to the
values shown in the last column of Table 1. We also calculated the values of
ONiMn, ENiMn Using the two alternative combination rules proposed by Wald-
man and Hagler (1993) and Kong (1973), but the difference turned out to be
negligible (Hildebrand, 2006).

Table 1

Lennard-Jones parameters for nickel-nickel, (chromium-chromium, iron-iron,)
manganese-manganese, and nickel-manganese interactions in a three-dimensional
lattice; kg = 1.38044 x 10723 J/K is Boltzmann’s constant.

af NiNi CrCr FeFe MnMn NiMn

o3y x 10710 (m) 2.2808 2.3357 2.3193 2.3275 2.30415

esB ks (K) 6022.3 5789.1 6026.7 5907.9 5964.83

Fourth: A unit cell of the three-dimensional lattice is shown in Figure 3(a).
In order to carryout a two-dimensional simulation of this three dimensional
lattice, we replaced the actual lattice by the planar one shown in Figure 3(b).
The values of the Lennard-Jones parameters of the two-dimensional model are
different (but related) to those of the three dimensional model, and they were
determined as follows:

It is known from experimental observations that at low temperatures stoichio-
metric nickel-manganese forms a tetragonal martensitic structure (known as
a L1y(CuAl) structure; see, e.g. Kren et al. (1967). The nickel atoms form one
tetragonal lattice, while the manganese atoms form a second tetragonal lattice
that is translated from the nickel lattice. Figure 3(a) displays a unit cell of
the three-dimensional lattice with nickel atoms at the vertices of the tetragon



Ni

Mn b
€Y \
d
b

a

Ni

Mn
(b) 2

o

Figure 3. (a) A unit cell of a tetragonal martensite lattice with nickel atoms at the
vertices and a manganese atom at the center. (b) The associated two-dimensional
lattice.

and a manganese atom at the center. In the absence of thermal vibrations, the
lattice parameters are determined by minimizing the potential energy of the
crystal. If one minimizes the potential energy of one free pair of atoms a and
3, then for the Lennard-Jones potential (1) the energy minimizing separation
between the two atoms is 26035 If we use this formula as an estimate for
the spacing between nearest neighbor atoms, then in the case of the lattice
shown in Figure 3(a) we would take

b= 21/6 N1N17 d= 21/6 Nan (2>

Note that the edges of length a do not minimize the energy of the atoms
connected by that edge since they are not a nearest-neighbor pair; therefore
an equation analogous to (2) is not appropriate for calculating the value of
a. Instead from geometry, we have a = ((2d)? — 2b%)/2. Turning to the two-
dimensional lattice shown in Figure 3(b), the associated interaction parame-

ters Jgfﬁ) , Eilﬁ) and the dimensions bsp, dap, asp are similarly related by

bap = 2"/503i, dop = 2%, asp = ((2d2p)® — b3p)"2. (3)

If we require the two-dimensional lattice to be the projection of the three-
dimensional structure, then the two- and the three-dimensional lattices are
related geometrically by b = byp and a = asp from which we find using (2)
and (3) that

UI%IIDNI = O'lileNU UNan ~ 0. 868921O-Nan (4>
More precise calculations that took into account more distant neighbors in the
lattice were carried out by Hildebrand (2006) yielding 038, &~ 0.864674035,;. .



Similarly, by considering a unit cell of the lattice with manganese atoms at

the vertices of the tetragon and a nickel atom at the center one finds that
2D

OMnMn — Ulz\)’/llr)an‘
Thus in summary, the following parameter values will be used in the Lennard-
Jones potential in all calculations pertaining to a two-dimensional lattice:

TXiNi = ONiNi» TraMn = ONiaMn: TXintn = 0.8646T40% 0, (5)
where 038, o3P, and 038 are given in Table 1. Unless explicitly stated oth-
erwise, from hereon we will be concerned exclusively with a two-dimensional
lattice; therefore we shall drop the superscript “2D” henceforth.

For numerical purposes, all quantities will be nondimensionalized. To do so,
we use the Lennard-Jones parameters of nickel o, = o3y, for distances;
g, = e3by; for energies (the numerical values of both o, and ¢, are given
in Table 1); the unified atomic mass unit u, = 1.66011 x 1072"kg for masses;

and combinations thereof, specifically T, = /1,02 /e, for time. The nondimen-
sionalized Lennard-Jones parameters thus arrived at for the two-dimensional
nickel-manganese system are summarized in Table 2.

Table 2

Modified Lennard-Jones parameters for nickel-nickel, manganese-manganese, and
nickel-manganese interactions in nondimensional form for interactions in two di-
mensions.

af NiNi MnMn NiMn
T08/00 1.0 1.0205 0.8736
€aB/€o 1.0 0.9810 0.9905

In our model we imagine that the two-dimensional planar lattice corresponding
to Figure 3(b) is repeated identically on parallel planes in the direction normal
to the page. The separation between two adjacent planes is taken to be the
lattice spacing b, and during a deformation we assume that all planes deform
identically (as in plane strain).

3 Static Analysis

We begin our analysis of the two-dimensional nickel-manganese system by
determining the static equilibrium configurations of the system and examining
the stability of these structures. This is an essential first step before we account
for the additional complexity of temperature.



Figure 4. Generalized coordinates ({1,&2,£3,&4,&5) of a two-dimensional diatomic
lattice. The shaded region is a unit cell.

The two-dimensional diatomic lattice is a multi-lattice consisting of two sim-
ple sublattices that are congruent but shifted with respect to each other; see
Figure 4. Each sublattice can be described using the same three generalized co-
ordinates (&1, &2, £4); two additional generalized coordinates (3, &5) are needed
to describe the magnitude and direction of the shift of one sublattice relative
to the other. A configuration of the lattice is thus characterized by the vector

3
5 = <€17£27£37£47£5)' (6>

Let e; and e; be a pair of orthonormal unit vectors as depicted in Figure 4.
The lattice vectors (£, £;) of the nickel sublattice, and the shift vector p of
one sublattice relative to the other sublattice are:

by =&e, £y ==E(coséye +sinéyer), p=Es(cosése +sinésey). (7)

If we arbitrarily place the intersection of the zeroth row and the zeroth column
of the nickel sublattice at the origin, the position x™(m, n) of the nickel atom
on the mth column and the nth row is

xNM(m,n) = mly + nky (8)
where x denotes the position on a lattice without thermal vibration. Assuming
& > 0 and & < &4, the position xM?(m, n) of the manganese atom that lies
between the mth and (m + 1)th rows and the nth and (n + 1)th columns of
the nickel sublattice, is

Mn(

xM(m, n) = xN(m,n) + p = ml, +nkly + p. 9)

The potential energy of a unit cell (see shaded area in Figure 4) with four
nickel atoms at the corners and a manganese atom at the center can now be

10



calculated. To do so, we add the energy of the manganese atom to one fourth
of the sum of the four nickel corner atoms. The energy of each of the atoms
is determined accounting for interactions with all like and unlike atoms that
are less than or exactly M rows or columns away.

The potential energy of the nickel atom at position xN!(m, n) is then given by
M-1 1

UN(g,mn) = > §<I>NiMn(\xNi(€,m,n) —xM (& m+in —l—j)])
ij= M

+ Z cleNl( N(E m,n) = xN(Em +in+ ). (10)
=0)

Similarly, the energy of the manganese atom at xM"(m,n) is given by

M

UM mn) = Y SO (e, m,n) — X (€ m + 0 + )]
i,j=— M+12
by @M“M“( Mg, mon) = xMNEm i n+5)]). (1)
7,]_7
1(i=j=0)

Combining these, the energy of the unit cell is obtained from

U(&) = UM(€,0,0) + - Z UN(E, i, ), (12)

1]0

where the choice of m = 0 and n = 0 is arbitrary. Using the argument of
indistinguishability of lattice sites (see, e.g. Pitteri and Zanzotto (2003)), this
can be further simplified to

U(g) = UM (€,0,0) + UN(€,0,0). (13)

The same result would have been obtained had we chosen a unit cell with
manganese atoms in the vertices and a nickel atom in the interior.

To find equilibrium configurations of the lattice we find extrema of the energy
U with respect to the generalized coordinates &; by setting

oU(§)
3

Using M = 5 in (10) and (11) we carried out the preceding calculation and
found three equilibrium structures. The associated values of the parameters
£1,69,63,&, and &5 are summarized in Table 3. On recalling the geometric
significance of the generalized coordinates as shown in Figure 4, we conclude

=0 for i=12,...,5. (14)

11



Table 3

Values of the generalized coordinates associated with the different equilibrium con-
figurations of the two-dimensional nickel-manganese system. For the cubic lattice
one usually sets &1 = a,, & = a,, whereas for tetragonal variants-1 and -2 one sets
& =0, & =a and & = a, & = b respectively.

Parameter cubic tetragonal 1 tetragonal 2
&1/00 1.33603 1.14101 1.54110
&2/0, 1.33603 1.54110 1.14101
&3/00 0.94472 0.95870 0.95870

&4 /2 /2 /2
&s /4 0.29716 0.20284

that the three equilibrium configurations described in Table 3 correspond to
a cubic structure and two variants of a tetragonal structure.

The values of the two generalized coordinates & and & at the extrema of
U are the lattice parameters of the crystal; see Figures 4. In particular, for
the cubic lattice one usually sets & = a,, & = a,, whereas for the tetragonal
variants-1 and -2 one sets & = b, & = a and & = a, & = b respectively.

The lattice parameters a and b for tetragonal Ni-Mn have been experimentally
measured by Kren et al. (1967). Since the interaction parameters of our model
were constructed such that the two-dimensional lattice was a projection of
the three-dimensional nickel-manganese system, it is meaningful to directly
compare the calculated values of the lattice parameters a and b presented in
Table 3 with the experimentally measured values. At room temperature Kren
et al. found a = 1.543 0, and b = 1.159 0,,, as opposed to our calculated values

a=1541100,  b=1.141010, (15)

at OK according to Table 3. The agreement is rather good and is some indica-
tion of the physical relevancy of the simplified model that we have constructed
here.

The stability of these equilibrium configurations is determined by the positive
definiteness of the Hessian matrix

0’U (&)
9:9¢;

of the potential energy. Calculating the Hessian and evaluating it at the value
of &€ in the second column of Table 3 corresponding to the cubic phase leads
to a Hessian that is not positive-definite. The cubic lattice is thus unstable at
zero absolute temperature. However the Hessian is found to be positive-definite
when it is evaluated at the values of £ in the third and fourth columns of Table

(16)

12



3 showing that the two tetragonal lattices are stable in the present setting!. In
addition to this notion of “static stability”, “phonon stability” is also necessary
for the overall stability of the lattice. We did not investigate this explicitly in
this paper but took the fact that the tetragonal structures were observed in
the molecular dynamics calculations to be a strong indication of the overall
stability of the lattice.

1.6 T

T
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1.45 b
1.4
5
1.35
~
[a]
SV
1.3
125 ao
1.2
1151
1.1 1 1 1 1 1 1 a/
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Figure 5. Contour plot of the potential energy U(&1,&2,&3,84,&5) of the ni-
ckel-manganese system on the &1, &s-plane with &3,&4, &5 constrained according to

&3 = \E+£5/2, & = m/2, and & = arctan(&2/&1). O and O denote minima

corresponding to two tetragonal variants, [ corresponds to a cubic configuration.

A contour plot of the energy U (&1, &2, &3, &4, &5) is shown in Figure 5. In order
to draw a two-dimensional plot of the energy, we constrained the values of
the three parameters &3,&y, &5 and plotted the contours of U on the (&7, &s)-
plane; the figure corresponds to the case where the lattice remains rectangular
(&4 = 7/2) and the manganese atoms are always located at the center of the

nickel cells (&5 = arctan(&y /&) and & = /&2 + £2/2).

In summary, we conclude from the static analysis that the diatomic two-
dimensional nickel-manganese system has the basic properties necesssary for a

I Tt should be mentioned here that our search for minima was by no means ex-
haustive; there might well be additional extrema at other locations in the five-
dimensional parameter space. However in our molecular dynamic simulations the
system never “got stuck” (i.e. became equilibrated) in any energy-well other than
the two tetragonal ones described previously.

13



simplified study of twinning: most importantly, there is a low-symmetry, low-
temperature martensitic phase that has two variants which are energetically
equally favorable under stress-free conditions. This will allow for twinning and
detwinning. Furthermore, a high-symmetry cubic austenitic phase is present
but unstable at low temperatures. This phase could potentially be stabilized
by entropic effects at higher temperatures (though we have not explored this).
Finally, the symmetry group of the austenite and that of the martensite are
in a group-subgroup relation which is a necessary condition for a material to
exhibit the shape-memory effect; see Bhattacharya (2003), Bhattacharya et al.
(2004).

4 Twinning of a lattice.

As mentioned in Section 1, our molecular dynamic simulations will be carried
out on a horizontal strip of infinite length. Since the crystallographic charac-
teristics of a material determine the orientation of a twin boundary relative to
its lattice, and since we want to prevent the twin interfaces from intersecting
the boundaries of the specimen, it is necessary that the lattice be suitably
oriented relative to the specimen. For this reason, in this section, we briefly
review some basic concepts concerning the statics of twinning and apply them
to the nickel-manganese system.

A simple lattice is given by the infinite collection of points L(£1,£s, £3;0)
obtained from the translation of a basis point o by whole-numbered multiples
of the lattice vectors £1, £5 and £3:

£(£1,£2,£3; O) = {X ‘X =0+ n1£1 -+ 7”L2£2 -+ n3£3, ni,Na, N3 € Z} (17)

where Z is the set of integers. A more complex lattice that consists of two or
more simple sublattices, that are either shifted with respect to each other by
non-whole-numbered multiples of the lattice vectors or that consist of different
kinds of atoms, is called a multi-lattice. Specifically, a 2-lattice is a multi-lattice
formed of two simple sublattices, each of which is described by the same lattice
vectors, and which are translated relative to each other by a shift p. Thus a
2-lattice is the infinite set of points

£(£1,£27£3;0)U£(£1,£2,£3;0+p), (18)
where p is the shift between the sublattices, see Figure 6.

Consider two configurations of a 2-lattice: the first (reference configuration) is
characterized by the lattice vectors {€7, €5, €5} and shift vector p°, while the
second (deformed configuration) is characterized by lattice vectors {£;, €2, €3}

14
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Figure 6. A diatomic 2-lattice (left) and a monoatomic 2-lattice (right) in
two-dimensions described by the lattice vectors £1,£> and the shift p. In each case,
a unit cell of the lattice is shown shaded. Filled circles represent one atomic species
while open circles represent a different species.

and shift vector p. Since lattice vectors are linearly independent, there exists
a unique non-singular linear transformation F that relates them:

6 =Fe, i=123. (19)

By the polar decomposition theorem we can write F = RU where R denotes a
rigid rotation and the symmetric positive definite tensor U denotes a stretch.
If the reference lattice corresponds to unstressed austenite and the deformed
lattice corresponds to unstressed martensite, the stretch tensor U is referred
to as the Bain tensor.

In the particular case of cubic austenite, with lattice parameters a, X a, X a,,
corresponding lattice vectors £ and shift p, = £ (€7 + €5+ £3), and tetragonal
martensitic variants with lattice parameters a x b x b, lattice vectors £; and
shift p = %(fl + £y + £3), there are three possible Bain tensors corresponding
to the three possible variants of martensite. The components of these Bain
tensors, in an orthonormal basis aligned with the cubic austenite directions,
are

a00 600 600
[Ul]: Oﬂo ) [UQ]: 0a0 ) [US]: OBO ) (20>
0043 0043 00a

where the lattice stretches are given by o = a/a, and 5 = b/a,.

If two variants of martensite, characterized by Bain tensors Uy and U, I # J,
are both present in the same configuration of a body, they are said to form
a twin and the planar interface between them is called a twin-interface, see
Figure 7. In the absence of any defects along the interface, the requirement of
kinematic compatibility must be satisfied in order to ensure that the lattice
is coherent, i.e. given U; and U}, there must exist rotation tensors Ry, R;; a
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vector a; and a unit vector n such that
R/U;-R,U,=a®n, a#0, [n|=1, (21)
where ® represents the dyadic product.

Two implications of the twinning equation (21) are important for our purposes:
first, we can write (21) in the form

F, = (I+74@m)F, (22)

where F; = R;U,,F; = R;U;,4a = a/lal,m = F;7a/|F;7n| and v =
|a||U;'A|. The term in paranethesis on the right hand side of (22) represents
a simple shear on a plane normal to m, in the direction a by an amount of
shear v; see Figure 7. Therefore the deformation of the lattice associated with
variant-1 relative to the lattice associated with variant-J is a particular simple
shear. The unit vector m is said to define the twin plane and the unit vector
a defines the twinning direction.

Second, the solution of the twinning equation (21) has been given by Ball
and James (1987) as follows: let Ay, Ay, A3 with Ay < Ay < A3 be the ordered
eigenvalues of the tensor U' U2 U;'(# I). Then the twinning equation (21)
has a solution if and only if Ay < 1, Ay = 1, A3 > 1, and when these conditions
are satisfied, n and a are given by

- \p@;( (VT AU+ w3~ 10 )

M(l— ). Mg —1).
_ Al — 1) p
a p( N n U + K NN us |, (23)

where k = £1, p is obtained from the normalization |n| = 1, and q; is the
unit eigenvector corresponding to the eigenvalue \;.

We now apply this result to the two-dimensional nickel-manganese system
where we have two variants characterized by the Bain tensors

vi=(55). ©=(g0) 1)

One solution of the corresponding twinning equation RU; = (I +7a® rh)U1
is readily found to be

Oé2—52

(25)
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where all components are taken with respect to an orthonormal basis {e;, es}
aligned with the cubic austenite axes. The unit normal n to the image of the
twin plane in the reference configuration is found to be

1/v2
Al = : 27
{n} . (27)

see Figure 7, while the rotation tensor R has components

o 2 2
[R]=<(;§’jj Sjj;ji), tan(p:awﬁ, 0€(0.7/2).  (28)

The numerical values of the stretches a and § may be calculated from the
lattice parameter values given in Table 3. They are found to be o = 1.153492
and = 0.85403.

A geometric interpretation of this solution is depicted in Figure 7. The marten-
site lattice L4 is obtained by subjecting the austenite lattice £, to a pure
stretch U;. The martensite lattice L5 can be obtained in either of two equiva-
lent ways: either, by first subjecting the austenite lattice £, to a pure stretch
U, followed by rotating the resulting lattice counter-clockwise by the angle ¢;
or, by subjecting the martensite lattice £; to a simple shear of magnitude ~
on the plane normal to m in the direction a.

When we carry out our molecular dynamic simulations in the following sec-
tions, these geometric results inform us on how we should orient the lattice
L, if we want the twin boundary to be oriented in some specific direction.

A second solution of the twinning equation is given by the symmetric coun-
terpart of the preceding solution.

5 Molecular Dynamic Simulations.

We now carry out molecular dynamic simulations of the nickel-manganese
system in order to study the dynamics of the process of detwinning including
its thermomechanical complexities. This section outlines some general fea-
tures of the model and the methods employed including the aspect of thermal
expansion; for more details see Hildebrand (2006). The main results of the
simulations will be described in Section 6.

We consider a two-dimensional lattice that is infinite in the horizontal direction
and has height H in the vertical direction; at the initial instant, the lattice
contains a single straight twin boundary a distance h from the bottom as
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Figure 7. One of the two possible twin-interfaces for nickel-manganese in two dimen-
sions. The unit vectors n and m are normal to the twin boundary in the reference
and deformed configuration respectively.
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Figure 8. A two-dimensional nickel-manganese lattice of infinite width in the hor-
izontal direction and height H in the vertical direction. Computations are carried
out on a cell of dimensions B x H. Periodic boundary conditions (PBC) are applied
in the horizontal direction. The lattice involves two martensite variants separated
by an interface initially located at a distance h from the bottom. The atoms in the
outermost rows are subjected to shear forces F' as shown.

depicted in Figure 8. The material above this interface is associated with
martensite variant-1 while the material below it is associated with variant-2.
Forces, F' > 0, are applied on each atom of the outermost rows, creating a shear
as shown in the figure. Under these conditions, variant-1 is energetically more
favorable than variant-2. Consequently, the amount of material associated with
variant-1 will increase at the expense of the less favorable variant, variant-2.
Our goal is to calculate the rate at which this transformation happens and to
observe the mechanism underlying it.
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5.1  FEquations of Motion.

As discussed previously, despite its drawbacks, we use Lennard-Jones pair
potentials % (r) to characterize the interaction between the ith and jth atoms.
The force on the 7th atom due to a surrounding cluster of N — 1 atoms is

I (r) Vi —Yi
(97’ Tij ’

-

F, = Tij = ’yj - Yi|; (29)

JLagen
3
Il
4
S
<.

S
Nl

where y;(t) is the position of the ith atom at time ¢ during a dynamical process
(in contrast to x; which referred to a position at a lattice point on a perfect
lattice). The equation of motion of this atom is given by Newton’s equation:

m;y; = F; forall ¢=1,2,...,N. (30)

The masses of the two species of atoms are my; = 58.69u, and myp, = 54.93u,
where 11, is the unified atomic mass introduced in Section 2; see Hildebrand
(2006).

To permit the use of periodic boundary conditions, and for numerical effi-
ciency, in all our calculations we employ a cut-off radius of r. = 4.50,. To
avoid numerical difficulties associated with discontinuities, the Lennard-Jones
potential is replaced in the standard way by a so-called shifted-force Lennard-
Jones potential, see for example Berendsen and van Gunsteren (1986). This
guarantees the continuous evolution of both the potential energy and the forces
in the system.

5.2 Integration of equations of motion.

The equations of motion (30) are integrated using the simple but reliable
Verlet algorithm (Verlet, 1967),

A2 XL 0V (r) yi—yi
m; = or . r

r=rn

j#i g

yitt =2y} —yi Tt +

+ O(AtY). (31)

n
]

In order to reduce the computational time associated with keeping track of the
atoms that enter and exit the cut-off sphere we use a so-called Verlet neighbor
list (Verlet, 1967) with a list radius of 7, = r. + Ar. and Ar, = g,.
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5.8  Periodic boundary conditions.

Due to computational limitations, the size of any simulated system must be
limited to a relatively small number of atoms. The implication of this is that
either, we can only study very small bodies such as nanocrystals, or, that we
can study periodic structures provided we use appropriate periodic boundary
conditions (see for example Born and von Karman (1912)). We shall adopt
the latter approach. We want to prevent the interaction of the twin interfaces
with the boundaries of the body. Since the twin boundary (at least initially)
is parallel to the horizontal axis, and because we apply loading on the two
outermost rows of atoms, we implement periodic boundary conditions along
vertical lines in the body spaced a distance B apart; see Figure 8. In order
to prevent the interaction of any atom with its image in neighboring copies
of the simulation cell as well as the simultaneous interaction of two copies
of an atom with the same third atom, the dimensions of the simulation cell
should exceed 2r, — twice the cut-off radius — in the direction of the periodic
boundary conditions.

5.4  Thermostat.

In order to simulate isothermal processes, different so-called thermostat algo-
rithms have been suggested in the literature. Among these are the somewhat
unphysical rescaling method (e.g. Woodcock (1971)), stochastic approaches
where the particles interact with a fictitious heat bath (e.g. Andersen (1980)),
extended Hamiltonian approaches which incorporate a degree of freedom rep-
resenting a surrounding heat bath (e.g. Nosé (1984)), and constraint methods
which modify the equations of motion in such a way that kinetic energy is con-
served (e.g. Evans (1983), Hoover et al. (1982)). Although we wish to study
the kinetics of detwinning at different temperatures, we do not employ a ther-
mostat since its use generally yields physically meaningful results only after
the system has reached equilibrium. Since we are interested in the dynamic
response of the system during its evolution, the use of such algorithms is not
appropriate for our purposes. By not using a thermostat we derive the advan-
tage of having the correct dynamics during the process but pay the price of
having to let the temperature of the system evolve as it wishes to (without,
for example, constraining it to be isothermal).

5.5  Initial conditions.

The macroscopic system we want to simulate is to be at rest at a temperature
0, prior to loading. In order for the atomistic system to be in a corresponding
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microscopic state, we must first perform a preliminary equilibration calcula-
tion. The initial positions of the atoms in this calculation are chosen to coincide
with some perfect lattice. If this lattice is taken to be the one that minimizes
the energy at zero temperature (as determined by the static analysis of Section
3), large initial stresses will be induced at temperatures in the range of interest
to us because the packing of the atoms is too dense and the lattice cannot
relax in the direction of the rigid periodic boundaries. Therefore, we instead
place the atoms on a uniformly expanded lattice obtained from the zero tem-
perature lattice, where the amount of the (temperature dependent) stretching
is calculated using the methods described in Section 5.6 below. Placement of
the atoms on the sites of this stretched lattice prevents internal stresses at
nonzero temperatures. However, this underestimates the initial value of the
potential energy since deviations from the ideal sites due to thermal excita-
tion are neglected. We compensate for this by giving the system an additional
amount of initial kinetic energy that transforms to potential energy as the
system evolves towards equilibrium. Once in equilibrium, the system has the
temperature #,, where from statistical mechanics

2K,
° " Nkgd

(32)

where d is the dimension of the system, K, is the kinetic energy in that state,
kg is Boltzmann’s constant and N is the total number of atoms in the simula-
tion cell. In order to prevent a rigid translation of the atoms, initial velocities
are assigned such that the resultant momentum of the atoms within the simu-
lation cell is zero. It is not necessary to require that the initial velocities obey
a certain distribution (e.g. a Maxwell distribution) since their correlation time
with the initial conditions is only a few hundred time steps.

5.6 Thermal expansion.

Here we describe how we calculated the averaged dimensions of the lattice
over the temperature range of interest using the so-called Parrinello-Rahman
algorithm (Parrinello and Rahman, 1980, 1981). In this method one analyzes
a periodically repeating simulation cell that is flexible in size and shape. As
mentioned above, knowledge of the thermal expansion of the lattice is indis-
pensable when studying the dynamics of detwinning as fixed periodic bound-
ary conditions will be used in the horizontal direction, and the choice of the
correct spacing between a pair of periodic boundaries at each temperature
level is important in order not to induce unwanted internal stresses.

It should be mentioned at the outset that the Parrinello-Rahman method is
based on a Hamiltonian (34) involving ansatz-terms introduced to account for
the variability of the simulation cell. As a result it does not describe physically
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meaningful dynamical processes of the system. However, once equilibrium is
reached, the Parrinello-Rahman system simulates a physically meaningful sys-
tem (the so-called NPH ensemble) with an accuracy of 3/N, where N is the
number of particles in the simulation (800 in our case), see Parrinello and
Rahman (1981), Klein (1985). This has been proven for a similar system by
Andersen (1980). Since the only goal of the present section is the determination
of the equilibrium lattice parameters at various temperatures, it is expected
that the results of the Parrinello-Rahman algorithm will be accurate.

The basic idea of the method (explained here for a two-dimensional lattice)
is the following: Let h' and h? be vectors that span the simulation cell. If y;
denotes the position vector of the 7th atom in the simulation cell we can write
y: = s;h! + s?h? = yle! + y?e? where {e!,e?} is a fixed orthonormal basis.

Then we have
1 1
Y; Hyy Hio S;
5] = 51, 33
() = i) () <>
where Hy1, Hi5 and Hyy, Hyy are the components of h! and h? in the basis
{e!,e?}. As the simulation cell deforms during a calculation, the positions of

the atoms (described by s} and s?), the vectors h! and h? and (hence) the
components H,z of the so-called metric tensor all evolve with time.

In order to account for the variability of the cell geometry, the Parrinello-
Rahman method postulates the following extended Hamiltonian:

1N N
*522 Y (ly; —

)

\H\m

(z %S Haﬁﬂmsfsz) 33 Wi

a=1pg=1~v=1

[\D\H

where ®¥ is the pair potential between the ith and jth atoms. It should be
noted that WH o3 H,3 replaces all terms in the Hamiltonian that involve time
derivatives of the metric tensor. The equations of motion for the positions of
the atoms, as well as for the components of the metric tensor H,gs, are derived
from this extended Hamiltonian, e.g. see Toukan et al. (1983) for a similar
two-dimensional system. Here W is the fictitious mass of the cell walls and is
introduced for purely numerical purposes; its numerical value is usually chosen
to be of the same order of magnitude as the mass of an atom.

We applied the Parrinello-Rahman method to the two-dimensional nickel-
manganese system to find the equilibrium lattice spacings a and b of the
martensitic variants at different temperatures 6. To do so, an ideal lattice
of variant-1 with 800 atoms per simulation cell was equlibrated over 400, 000
time steps. In particular, we took At = 0.0017, and W = 250.0 p,; the ini-
tial lattice spacings for all calculations were chosen to be a = 1.5383 ¢, and
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b = 1.1905 0,, which is slightly larger than their values at absolute zero (see
Table 3). Here, and in what follows, we took At = T,/1000 and note that
T, has the same order of magnitude as the characteristic period of atomic
vibrations. The initial kinetic energy was chosen such that the temperature at
equilibrium would be close to the desired equilibrium temperature 0.

The filled squares in Figure 9 show how the thermal expansion of the lattice
varies as a function of the temperature. Note that the thermal expansion of
the two lattice directions are unequal; in particular the thermal expansion of
the larger lattice parameter a (dotted line) is smaller than that of the smaller
lattice parameter b (solid line). For purposes of comparison we also carried out
an analysis based on classical statistical mechanics as described in Hildebrand
(2006), the results of which are depicted by the open squares. Observe that
the results from the Parrinello-Rahman simulation show the same trends as
the (less accurate) predictions of statistical mechanics.

The figure also illustrates a limitation of our model: as we noted previously our
energetic model only involves stable martensite and no stable austenite at zero
Kelvin. Kren et al. (1967) have measured two transformation temperatures for
the martensite to austenite transformation, 965 K and 1168 K. The thermal
expansion graphs in Figure 9 suggest that our model is not able to predict the
tetragonal to cubic transformation properly. One of many possible reasons for
this could be our projection of all phenomena into two dimensions.

6 Results

We now proceed to study the kinetics of shear-induced detwinning using
the set-up shown previously in Figure 8. Consider a two-dimensional strip
of nickel-manganese of height H in the vertical direction and infinite length in
the horizontal direction. At the initial instant there is a twin boundary at a
distance h = 2H/3 from the bottom. The regions above and below the inter-
face are composed of martensitic variant-1 and variant-2 respectively, and the
associated lattices are oriented appropriately, using the theory outlined in Sec-
tion 4, to ensure that the twin interface is in the horizontal direction. Forces,
F > 0, are applied on each atom of the outermost rows in the directions shown
in Figure 8. Under these conditions, variant-1 is energetically more favorable
than variant-2. Periodic boundary conditions are used in the horizontal direc-
tion and a simulation cell has dimensions B x H. Each simulation cell contains
a total of 70 rows of atoms, each row involving an alternating arrangement of
20 nickel and 20 manganese atoms. The total number of atoms in a simulation
cell is therefore 70 x 40 atoms.

The first step in each calculation involves equilibrating the unstressed lat-
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Figure 9. Thermal expansion of the lattice parameters as determined using the
Parrinello-Rahman method (filled squares) and statistical mechanics (open squares).
Observe that the thermal expansion of a (dotted lines) is smaller than that of b (solid
lines).

tice (see also Section 5.5). We do this by carrying out a molecular dynamic
simulation over 200,000 time steps with At = 0.0017, and F = 0. In or-
der to ensure the absence of thermally induced stresses it is essential that
the temperature after equilibration be close to the temperature correspond-
ing to the chosen spacing of the rigid periodic boundary conditions. This is
achieved by supplying the system with additional initial kinetic energy equal
to the difference between the equilibrium potential energy obtained from the
Parrinello-Rahman simulations and the potential energy of the initial ideal
(uniformly thermally expanded) lattice.

The equilibrated system is now sheared by applying constant shear forces F'
in the range from 0 to 0.030e,/0, as described previously. For each value of
force (at each temperature) molecular dynamic simulations are carried out
over 300,000 time steps with At = 0.0017,.

The applied shear stress T on the strip is taken to be the shear force I’ on each
atom divided by the area of the free surface associated with that atom. This
area is equal to the length § (see Figure 8) times the depth b (recall that the
distance between atomic planes in the direction perpendicular to the page is
b where a x b x b are the lattice parameters). Since 6 = v/a? + 0?/2 this yields

oF
I 35
V- (35)
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6.1 Nucleation.

We find from the calculations that every cell of the lattice remains in its initial
variant when the applied shear stress is less than some critical value 7,,,.. When
the critical shear stress is exceeded, a second twin boundary typically nucleates
at the bottom of the specimen (recall that the lower part of the specimen is
composed of the energetically less favorable variant). Our calculations yield
upper and lower bounds for this critical shear stress?. The results are shown
in Figure 10 for various initial temperatures. Observe that the threshold value
for twinning decreases with increasing temperature.
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Figure 10. Upper and lower bounds for the critical shear stress . for the onset of
detwinning at various temperatures 6.

6.2 Transformation kinetics.

When the applied shear stress 7 exceeds the nucleation shear stress 7, and the
second twin boundary has nucleated, the original and new twin interfaces then

2 During a calculation we apply a shear stress, say 71, and carry out a simulation.
Suppose that we find no nucleation. We then apply a higher stress 7 and repeat
the calculation. Suppose that we now observe nucleation. This does not mean that
7o is the nucleation stress. It simply implies that the nucleation stress has some
value greater than 7 and less than or equal to 7. This is why we speak in terms
of “upper and lower bounds” on the nucleation stress. Since the increment in shear
stress 7o — 71 from one calculation to the next was always the same, the curves in
Figure 10 are necessarily parallel to each other. This is not a consequence of the
physics. The actual nucleation curve could meander between these two bounds.

25



start to propagate towards each other and the unfavorable variant transforms
to the favorable variant. Depending on the value of the applied shear stress,
additional layers of the energetically favorable variant may also nucleate and
grow in between the approaching boundaries. Figure 11 shows a sequence of
snapshots of the specimen during a particular calculation.

Figure 11. Snapshots at various times during the detwinning process: ¢t = 0 (upper
left); ¢ = 100,000 At (upper right); ¢t = 200,000 At (lower left); and ¢ = 300,000 At
(lower right). In this particular calculation the force on each outermost atom was
F = 0.020e,/0, and the initial temperature was 6, ~ 500K . The grey and white
bar along the right hand vertical edge of each sub-figure provides a measure of the
amount of the two variants: the grey segment(s) correspond to the favorable variant,
variant-1, and the white segment(s) correspond to variant-2.

Since the transformation involves a number of simultaneously propagating
twin-boundaries it is more meaningful to focus on the overall transformation
rate in the initially unfavorable part of the simulation cell rather than on
the motion of any one specific interface. Let v denote the rate of change of
mass fraction of the favorable variant, or more precisely, the rate of increase
of the mass of the favorable variant per unit initial mass of the unfavorable
variant. Thus v = M/M where M is the rate of increase of mass of the
favorable variant during the simulation and M is the total initial mass of the
unfavorable variant (both in a single simulation cell). To calculate v we use
y—M_ _mN_ (36)
M M-n-At
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where m is the mass of one row of atoms and n is the number of time steps
necessary for the transformation of N rows of atoms.

The transformation rate v = v(7, ) from the unfavorable to the favorable vari-
ant was calculated through a series of molecular dynamic simulations. For each
simulation, a different combination of shear stress 7 and initial temperature
0, was chosen. The transformation rate was averaged over the time from the
onset of detwinning to its completion (or the end of the simulation, whichever
came first). The corresponding temperature was similarly averaged over the
simulation. This is necessary as the temperature of the strip rises (and does
not remain uniform) during the detwinning process. In order to do this cal-
culation appropriately without introducing errors due to the kinetic energy
associated with the macroscopic shearing motion, the average horizontal ve-
locity of each row of atoms was subtracted from the velocity of its constituents
in calculating the temperature using (36).

A plot of the transformation rate v versus the shear stress 7, at various ini-
tial temperatures 6,, is shown in Figure 12. Observe that v(7,6,) increases
monotonically with 7 at each fixed 6,. Note that this dependence has the ap-
proximate square root form v ~ /7T — 7.. A variety of different square-root
forms for kinetic relations at the continuum scale have been developed in the
literature, e.g. Abeyaratne et al. (1996), Fath (1998), Abeyaratne and Vedan-
tam (2003), Carpio and Bonilla (2003).

0.035 ‘
> 0,~1100K
003l ™ GFO00K |
' < 9~700K
¢ 0,~500K
0.025[1 4 g ~300K 1
e ,~100K
—~ 0.02F 1
E
<
2 0.015- .
0.01f 1
0.005|- , 1
/
¥
L4
0 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03

3
o (80/00)

Figure 12. Transformation rate v as a function of the shear stress 7 for different
initial temperatures 6,. The points marked on the figure correspond to the results of
the molecular dynamic simulations; the straight line segments simply connect these
points.

A plot of the transformation rate v as a function of both the applied shear

27



stress 7 and the average temperature 6 is shown in Figure 13 where the points
in the figure correspond to the results of the molecular dynamic simulation.
Observe that v(7,0) increases monotonically with both 7 and 6.

In order to obtain an approximate analytic form for the kinetics, we fit the
simulation results to the form

v(T,0) = v\ /T — 7e(0) (37)

using a least squares algorithm and assuming that v, was constant and 7, was
linear in 6. In all calculations, the numerical values of the nondimensionalized
quantities were used, i.e. 7 (and 7.) had the units €,/03, 6 had units K, and v
(and v,) had units 1/7,. This led to

v, =0.3718,  7.(6) = 0.0136 — 6.8362 - 10~°6. (38)

A graph of the surface v = v(7,0) corresponding to this analytic fit is also
shown in Figure 13.
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Figure 13. Transformation rate v as a function of the shear stress 7 and the average
temperature 6. The points correspond to the results of the molecular dynamic sim-
ulations, while the grid represents the analytical approximation v = v,\/7 — 7.(0)
given by (37), (38). The vertical bold lines represent the error in the v-direction
between the simulation and the curve fit.

We close this section with a remark about our measure of the transformation
rate v. Note that we calculated the rate by averaging over the entire simulation.
It is natural to wonder whether this is justified since this effectively assumes a
linear evolution of the mass with time during the simulation. Such a measure
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of transformation rate would be unsatisfactory if the rate of change of the
favorable mass was itself a function of the mass fraction, since in that case
the mass fraction would be a nonlinear function of time. In such an event we
would have to calculate the transformation rate over every few time steps and
consider v = v(7,0, \) where the mass fraction A(t) is the ratio of the current

mass of the favorable variant to the initial mass of the unfavorable variant;
and v = \.

To investigate this we plotted graphs of the mass fraction A of the favorable
variant versus the number of time steps at different temperatures and different
force levels. The results are shown in Figure 14. Observe that the evolution of
A is nearly linear in time, thus justifying our approach of averaging over the
entire simulation.
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Figure 14. Evolution of the mass fraction A of the favorable variant versus the
number of time steps at different temperatures and different force levels. For each
initial temperature 6,, the different curves represent different levels of applied shear
stress using the following symbols. (») 7 = 0.00449¢,/03; (€4) 7 = 0.00899¢,/03;
(o) 7 = 0.01348¢,/03; (O) 7 = 0.01797¢,/03; (W) 7 = 0.02246¢,/03; and (A)
7 = 0.02696¢,/03.
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6.3 Propagation Mechanism

In the preceding subsections we viewed the detwinning transformation at a
scale where the transformation evolved through the forward motion of inter-
faces in directions normal to themselves. In this subsection we take a more
detailed view, and focus attention on the atoms just ahead of the interface
and examine the mechanism by which each of these atoms individually trans-
forms from the unfavorable to the favorable variant, which in turn tells us how
exactly the twin boundary moves forward.
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Figure 15. Transformation along a row of atoms; see the text for an explanation of
this figure.

Figure 15 shows the transformation along a row of atoms, where the fig-
ure is composed of snapshots at seven different time instants during a cal-
culation corresponding to 6, ~ 500K and F = 0.015¢,/0,. Each snapshot
shows rows 43 to 48 (where the 43rd row is at the bottom). Time increases
upwards with the bottom snapshot corresponding to ¢t = 198, 000At, fol-
lowed by snapshots at t = 203,000At, ¢t = 205,000At, t = 207,000At,
t = 210,000At, t = 216, 000At and ending with the top subfigure correspond-
ing to t = 224,000At¢. To make the transformation clear, transformed atoms
have been placed in a grey background; for both variants, black denotes nickel
and white denotes manganese. Additionally, atoms in row 45 that have already
undergone the transformation?® are depicted as squares as opposed to circles.

3 In order to explain the sense in which we speak of the “transformation of a single
atom”, it is easiest to consider a specific example: consider the one atom that has
transformed in row ¢ = 203, 000A¢ in Figure 15 (second row from the bottom). The
horizontal position of the transformed atom (black square) is slightly to the left of
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In this sequence of snapshots it is only the atoms in row 45 that undergo the
transformation. At the initial instant every atom in row 45 is untransformed
while at the final instant they are all transformed. The sequence of snapshots
show how individual atoms on this row transform at different times. From
the figure it is clear that the transformation of row 45 occurs one atom at a
time. In the case being considered, a single atom transforms (second plot from
the bottom) and the transformation propagates in both directions along that
row, transversely in the horizontal direction. Due to the periodic boundary
conditions, the transformation reenters the simulation cell from the left when
it leaves the cell on the right. Over this time period, the twin interface has
therefore advanced from row 46 to row 45, and the intermediate snapshots
show the detailed process by which this happens.

This mechanism is made even more clear in Figure 16 which shows (the trans-
forming) row 45 only. Each row in the figure corresponds to this same row
of atoms but at different times. The bottommost row corresponds to time
t = 199,000At and time increases upwards in increments of 1000 steps. Atoms
in the untransformed variant are black, transformed particles are white. The
mechanism depicted is often referred to as transformation by the transverse
propagation of a “ledge” (or “step”)?.

As observed previously the transformation proceeds primarily by the nucle-
ation and subsequent propagation of new interfaces rather than by the mo-
tion of the pre-existing interface. It is likely that, had we added a pre-existing
ledge to the initial interface, that would have facilitated the propagation of
the original pre-existing twin boundary. However, since finding the underlying
mechanism was one of the questions we wanted to probe, we felt that seeding
that particular mechanism with a pre-existing ledge would be favoring one
mechanism over other possibilities.

As described in the introduction, such ledges have been previously observed
in experiments and molecular dynamic simulations, and have been modeled
in various different ways.

the closest white atom in the row above it. In the previous snapshot (shown below
it and corresponding to t = 198,000At), this atom is positioned on the right of
this same nearest white neighbor. The black atom has thus horizontally passed its
nearest neighbor of opposite kind in the row above it. This is what we mean when
we speak of the transformation of an atom.

4 Observe from Figures 15 and 16 that atoms seem to oscillate between two variants
before they settle into the new variant. This is an artifact of our definition of a
variant in the context of the transformation of a sinlge atom along a row. Since we
did not allow for a transition region in our definition, an atom must either be in
variant-1 or in variant-2. Simple thermal vibration of an atom can thus lead to an
apparent oscillation between the variants.
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Figure 16. Snapshots of the horizontal positions of the atoms in row 45 during
detwinning at 6, ~ 500K with F' = 0.015-¢,/0,. The bottommost row corresponds
to t = 199,000A¢ and time increases upwards in increments of 1000 steps. The filled
circles represent the energetically unfavorable variant, while the open circles denote
atoms in the favorable variant.

7 Conclusions

In this paper we have used the methods of molecular dynamics to study the
nucleation and kinetics of shear induced detwinning. The goal of our study was
to examine these phenomena as a function of temperature and shear stress.
The principal results are as follows:

Figure 10 shows upper and lower bounds on the nucleation stress at various
temperatures; it shows in particular that the stress-level needed for nucleation
decreases with increasing temperature. Figure 12 shows a plot of the transfor-
mation rate as a function of shear stress at various temperatures, Figure 13
shows the transformation rate as a function of both shear stress and tempera-
ture, and equations (37), (38) give an explicit formula for the kinetic relation
that fits the simulation data. They all show that the transformation rate is an
increasing function of shear stress and temperature.

Our study also aimed at reaching a better understanding of the underlying
microscopic processes and was able to verify the transverse motion of ledges
as the mechanism governing twin boundary motion; see Figures 15 and 16.

The analytical form of the kinetic relation obtained here has application more
generally in the constitutive modeling of detwinning on the continuum scale.
However, it should be kept in mind that the findings here are based on a
simplified two-dimensional model. Calculations should be conducted in three
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dimensions, and using more sophisticated interaction potentials, to confirm
and/or modify the results of this paper. Similar simulations could also be
carried out for phase boundary motion.

Acknowledgements

The authors gratefully acknowledge stimulating discussions with Ryan Elliott,
Nicolas Hadjiconstantinou and Richard James. Felix Hildebrand wishes to fur-
ther thank Olaf Weckner, Gerd Brunk and the Dr. Jiirgen Ulderup foundation
for their support. We thank Professors C.B. Carter and S.L. Girshick for per-
mitting us to reproduce their photograph in Figure 1.

References

Abeyaratne, R., Chu, C., James, R., 1996. Kinetics of materials with wiggly
energies: theory and application to the evolution of twinning microstructures
in a Cu-Al-Ni shape memory alloy. Philosophical Magazine A 73, 457-497.

Abeyaratne, R., Knowles, J., 2006. Evolution of Phase Transitions: A Contin-
uum Theory. Cambridge University Press.

Abeyaratne, R., Vedantam, S.; 1997. Propagation of a front by kink motion -
from a discrete model to a continuum model. In: Argoul, P., Fremond, M.,
Nguyen, Q. (Eds.), Variations of Domains and Free Boundary Problems in
Solid Mechanics. Kluwer, pp. 77-84.

Abeyaratne, R., Vedantam, S., 2003. A lattice-based model of the kinetics of
twin boundary motion. J. Mech. and Phys. Solids 51, 1675-1700.

Allen, M., Tildsley, D., 1987. Computer Simulation of Liquids. Oxford Uni-
versity Press.

Andersen, H., 1980. Molecular dynamics simulations at constant pressure
and/or constant temperature. J. Chem. Phys. 72 (4), 2384-2393.

Ball, J., James, R., 1987. Fine phase mixtures as minimizers of energy. Arch.
Rat. Mech. Anal. 100, 13-52.

Berendsen, H., van Gunsteren, W., 1986. Practical algorithms for dynamics
simulations. In: Ciccotti, G., Hoover, W. (Eds.), Molecular-Dynamics Sim-
ulation of Statistical-Mechanical Systems. North-Holland, pp. 43-65.

Bhattacharya, K., 2003. Microstructure of Martensite: Why it forms and how
it gives rise to the shape memory effect. Oxford University Press.

Bhattacharya, K., Conti, S., Zanzotto, G., Zimmer, J., 2004. Crystal symmetry
and the reversibility of martensitic transformation. Nature 428, 55-59.

Born, M., von Karman, T., 1912. Uber Schwingungen in Raumgittern. Physik.
Z. 13, 297-309.

Bray, D., Howe, J., 1996. High-resolution transmission electron microscopy

33



investigation of the face-centered cubic/hexagonal close-packed martensite
transformation in Co-31.8 wt pct Ni alloy: Part 1. plate interfaces and
growth ledges. Metallurgical and Materials Transactions A 27A, 3362-3370.

Carpio, A., Bonilla, L. L., 2003. Depinning transitions in discrete reaction-
diffusion equations. SIAM J. Appl. Math. 63, 1056-1082.

Dayal, K., Bhattacharya, K., 2006. Kinetics of phase transformations in the
peridynamic formulation of continuum mechanics. Journal of the Mechanics
and Physics of Solids 54, 1811-1842.

Elliott, R., Shaw, J., Triantafyllidis, N., 2002. Stability of thermally-induced
martensitic transformations in bi-atomic crystals. J. Mech. Phys. Solids 50,
2463-2493.

Evans, D., 1983. Computer experiment for nonlinear thermodynamics of Cou-
ette flow. J. chem. Phys. 78, 3297-3302.

Fath, G., 1998. Propagation failure of traveling waves in discrete bistable
medium. Physica D 116, 176-190.

Frenkel, J., Kontorowa, T., 1938. On the theory of plastic deformation and
twinning. Phys. Z. Sowjet Union 13, 1-10.

Hildebrand, F., 2006. Thermomechanical analysis of the kinetics of phase
boundaries in shape memory alloys. Master’s thesis, Technische Universitat
Berlin.

Hirth, J., , Lothe, J., 1982. Theory of Dislocations. Wiley, New York.
Hoover, W., Ladd, A., Moran, B., 1982. High strain rate plastic flow studied
via nonequilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818-1820.
Kastner, O., 2003. Molecular-dynamics of a 2D model of the shape memory
effect - part I: Model and simulations. Continuum Mechanics and Thermo-

dynamics 15 (5), 487-502.

Kastner, O., 2006. Molecular-dynamics of a 2D model of the shape memory
effect - part II: thermodynamics of a small system. Continuum Mechanics
and Thermodynamics 18 (1-2), 63-81.

Klein, M., 1985. Computer simulation studies of solids. Ann. Rev. Phys. Chem.
36, 525-548.

Kong, C., 1973. Combining rules for intermolecular parameters. II. Rules for
the Lennard-Jones (12-6) potential and the Morse potential. J.Chem.Phys.
59 (5), 2464-2467.

Kren, E., Nagy, E., Nagy, 1., Pal, L., Szabo, P., 1967. Structures and phase
transformations in the Mn-Ni system near equiatomic concentration. J.
Phys. Chem. Solids 29 (1), 101-108.

Li, X., E, W., 2005. Multiscale modeling of the dynamics of solids at finite
temperature. Journal of the Mechanics and Physics of Solids 53, 1650—-1685.

Nguyen, T., Ho, P., Kwok, T., Nitta, C., Yip, S., 1992. Thermal structural
disorder and melting at a crystalline interface. Phys. Rev. B. 46 (10), 6050
6060.

Nosé, S., 1984. A molecular dynamics method for simulations in the canonical
ensemble. Mol. Phys. 52, 255-268.

Parrinello, M., Rahman, A., 1980. Crystal structure and pair potentials: A

34



molecular dynamics study. Phys. Rev. Lett. 45 (14), 1196-1199.
Parrinello, M., Rahman, A., 1981. Polymorphic transitions in single crystals:
A new molecular dynamics method. J. Appl. Phys. 52 (12), 7182-7190.
Perrey, C., Thompson, R., B., C. C., Gidwani, A., R., M., Renault, T., Mc-
Murry, P., Heberlein, J., Girshick, S. L., 2003. Characterization of nanopar-
ticle films and structures produced by hypersonic plasma particle deposition.

In: MRS Symp. Proc. Vol. 740. pp. 133-138.

Pinsook, U., Ackland, G., 2000. Atomistic simulation of shear in a martensitic
twinned microstructure. Physical Review B 62 (9), 5427-5434.

Pitteri, M., Zanzotto, G., 2003. Continuum Models for Phase Transitions and
Twinning in Crystals. Chapman and Hall/CRC.

Pouget, J., 1991. Dynamics of patterns in ferroelastic-martensitic transforma-
tions. I. Lattice model. Phys. Rev. B 43, 3575-3581.

Purohit, P., 2002. Dynamics of phase transitions in strings, beams and atomic
chains. Ph.D. thesis, California Institute of Technology, Pasadena, Califor-
nia.

Rifkin, J., Clapp, P., 1982. Molecular dynamics studies of martensitic nucle-
ation and growth in two dimensions. J. de Physique 43, 157-162.

Slepyan, L., Cherkaev, A., Cherkaev, E., 2005. Transition waves in bistable
structures. II. analytical solution: wave speed and energy dissipation. J.
Mech. Phys. Solids 53, 407-436.

Toukan, K., Carrion, F., Yip, S., 1983. Molecular dynamics study of structural
instability of two-dimensional lattices. J. Appl. Phys. 56 (5), 1455-1461.
Truskinovsky, L., Vainchstein, A., 2003. Peierls-Nabarro landspace for marten-

sitic phase transitions. Phys. Rev. B 67, 172103.

Truskinovsky, L., Vainchtein, A., 2005. Kinetics of martensitic phase transi-
tions: Lattice model. STAM J. Appl. Math. 66, 533-553.

Verlet, L., 1967. Computer ‘experiments’ on classical fluids. I. Thermodynam-
ical properties of Lennard-Jones molecules. Phys. Rev. 159, 98-103.

Waldman, M., Hagler, A., 1993. New combining rules for rare gas van der
Waals parameters. J.Comp.Chem. 14 (9), 1077-1084.

Woodcock, L., 1971. Isothermal molecular dynamics calculations for liquid
salts. Chem. Phys. Lett. 10, 257-261.

Zhen, S., Davies, G. J., 1983. Calculation of the Lennard-Jones n-m potential
energy parameters for metals. Physica Status Solidi A 78 (2), 595-605.

35



