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Morphogenesis, commonly found in leaves,[1–3] flowers,[4,5]

cones,[6] seed pods[7,8] and other biological systems, is typically
driven by differential growth, swelling, or shrinkage[6,9,10] that
occurs within multilayered components of species. For example,
the opening and closing of pine cones are attributed to the
tissue’s self-bending, which undergoes three states of humidity-

driven deformation.[6] As these morpholog-
ical changes in nature result from the
variation of the surrounding environment,
it is desirable to mimic these natural exam-
ples to fabricate multilayered structures
that can spontaneously respond to various
external stimuli, such as temperature,
pH, biochemical enzymes, magnetic fields,
and solvent composition,[11–14] which
can find a variety of applications, such as
semiconductor nanotubes,[15–18] soft robot-
ics,[19–22] snapping surface,[23] and micro/
nanoelectromechanical systems.[24–26]

For a multilayer structure, the misfit
strain across layers can lead to some inter-
esting phenomena such as multistability,
where more than one stable state exists
with the same boundary conditions or con-
trol parameters of the system. One specific
case is called neutral stability, in which the
system can stay stable at each point in a
continuous path of shape change. In such
a case, the system is said to have zero stiff-
ness because the potential energy of the

system keeps unchanged during the shape change and theoreti-
cally no external force is needed. Various cases that incorporate
neutrally stable (zero stiffness) systems have been studied.
Guest et al.[27,28] discovered neutral stability of a heated copper
beryllium strip, the shape of which depended on the residual
stresses. The strip has zero stiffness for finite deformation along
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Self-assembly of three-dimensional (3D) structures, through bending, twisting,
folding, and buckling, has garnered broad interest among physicists, mathe-
maticians, chemists, and biologists. Herein strain engineering and geometric
frustration as an on-demand strategy for fabricating spontaneous rolling
“origami” structures with programmable multistability across multiple length
scales are exploited. Through experiments, theory, and finite element simula-
tions, it is demonstrated that a strain-engineered bilayer structure can make
a transition from a monostable, doubly curved shape to a neutrally stable,
developable configuration, depending on a dimensionless parameter that is
determined through the plate’s geometry and misfit strain. In addition, the
doubly curved region near the edge can play a significant role in deciding the final
bending direction of the strained bilayer due to edge effects. A strain-engineering
approach is further proposed to generate various 3D structures by programming
the geometry, misfit strain, and mechanical properties of the bilayer units,
for instance, a self-folding buckyball structure. These design principles have
promising broad applications in constructing self-deploying, stimuli-responsible,
and multifunctional devices across multiple length scales.
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a twisting path. Holmes et al. exploited the nonhomogenous swell-
ing[29] and isotropic in-plane expansion[30] to drive the dynamical
deformation of soft materials that undergo rapid bending and
buckling instabilities. In the case of a swelling disc, both the theory
and experiments captured the bifurcation and relaxation that
occurred when multiple equilibrium states were accessible.
Upon bifurcation, a large-amplitude transverse travelling wave
rotated azimuthally around the disc with multiple curvatures.[29]

Although neutral stability allows the structure to adopt
numerous configurations ideally, many factors, including the
geometry, edge effect, and loading history, can affect the final
rolling direction.[31–34] For example, Stoychev et al.[33] investi-
gated the folding of rectangular, stimuli-responsive, hydrogel-
based, polymer bilayers that can roll along the long side, diago-
nal, and all sides. They demonstrated that the rolling direction
varied depending on different aspect ratios of length to width and
relative thickness from experiments and numerical modeling.
Although many theoretical and computational works have been
performed regarding this topic, the transition between multiple,
stable configurations when the bilayer becomes neutrally stable
is seldom discussed. Therefore, the general mechanical principle
that governs the shape selection of a bilayer with equally biaxial
misfit strain needs to be well addressed.

In this study, through a combination of experiments, theory,
and finite element simulations, we study the mechanism
of the complex rolling behavior and programmability of these
neutral stable 3D morphologies generated from flat 2D bilayer
precursors. By utilizing the obtained results, we present a strain-
engineered approach for creating versatile 3D self-folding struc-
tures. The rest of the article is organized as follows. First, we
demonstrate the existence of neutral stability with a bilayer
rubber strip with equally biaxial misfit strain between layers
and investigate the effect of the bilayer’s geometry on the actual
rolling direction. Then a theoretical framework is proposed to
address the transition frommonostability to neutral stability, which
is controlled by a dimensionless parameter. In addition, the effect
from the doubly curved, narrow region near the edge on the actual
bending direction of the bilayer is discussed. Furthermore, we
show that many different shapes can be generated using this
strain-engineering approach. Finally, we design and fabricate a
complex self-folded device that resembles a buckyball. This mech-
anism, when combined with other actuation methods, can be
used to create shape-programmable smart structures or devices
withmultiple stable configurations for a wide range of applications.

In our experiments, one sheet of latex rubber (Young’s
modulus E1¼ 1.65MPa, thickness H1¼ 0.25mm, Poisson’s

ratio ν1¼ 0.49) is prestretched in the mutually perpendicular
directions r1

! and r2
! with the same strain values

(ε1 ¼ ε1 ¼ 0.18) and bonded to an elastic strip (E2¼ 10.5MPa,
H2¼ 1.00mm, ν2¼ 0.35), whose top is coated with a thin
red layer of latex rubber to prevent it from getting dirty.

The longitudinal direction of the composite strip dx
�!

forms a
misorientation angle ϕ with the direction r1

!. When cut from
the sheet along the dotted line as shown in Figure 1a, the bilayer
will roll up driven by the residual stress. By changing the bilayer’s
geometry, including the length L, the width W, and the total
thickness H (Figure 1b), we can change the rolling direction
of the bilayer with the mechanical properties fixed.

When the bilayer is slim and long (W¼ 5mm, L¼ 95mm,
ϕ¼ 0�), it adopts a ring-like configuration (Figure 1c) by rolling

along the longitudinal direction dx
�!

. To test the effect of the
misorientation angle ϕ on the rolling direction, 12 strips are
arranged in a pattern in which each strip is separated by the
adjacent ones by a π/6 interval (Figure 1d) and these strips
are bonded to a prestretched bottom layer. Once released, the
star-shaped bilayer bends to form a Tire shape (Figure 1e), which
means the bending direction is independent of the misorienta-
tion angle.

When the bilayer is large and long enough (W¼ 48mm,
L¼ 350mm), it adopts a cylindrical configuration with a constant
radius almost everywhere except near the edges (Figure 2a).
Interestingly, the bilayer can be easily and continuously twisted
either clockwise or anticlockwise to a new, stable configuration
with no stiffness when subjected to a small driving force.
Therefore, the shell is held in place by no more than the friction
provided by the underlying surface and indicates the existence of
neutral stability (also see Movie S1, Supporting Information).
Balancing friction or surface adhesion with elasticity will enrich
the design space and introduce new multistable configurations,
yet here we opt to focus on the use of neutral stability that mainly
arises from elasticity. We also develop and present a full 3D
COMSOL5.5 finite element model to conduct simulations using
the structural mechanics module. The mechanical properties of
the materials are assumed to be isotropic and linear elastic. For
simplicity, here we make some simplifications in bilayer
structures, such as ignoring the effect of the thin red layer of
the latex rubber on the top. The parameters in the bilayer
used are the same as in the experiments, including the
prestrain (ε1 ¼ ε1 ¼ 0.18), the sizes of geometry (W¼ 48mm,
L¼ 350mm, H1¼ 0.25mm, H2¼ 1.00mm), Poisson’s ratio
(ν1¼ 0.49, ν2¼ 0.35), Young’s modulus (E1¼ 1.65MPa,

Figure 1. a) Schematic illustration of the fabrication of the bilayer strip with residual stress. b) The geometry of the bilayer strip. c) A ring-like
configuration. d) Schematic illustration of a star-shaped bilayer precursor. e) A tire-shaped configuration after release. Scale bar¼ 10mm.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2020, 2000101 2000101 (2 of 8) © 2020 The Authors. Published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


E2¼ 10.5MPa), other material parameters, and the mis-
orientation angle between the principal axes of the prestretch
and the geometric axes ϕ. In this model, the mutually perpendic-
ular strain tensor of the prestretch in the bottom layer is

ε ¼ ðε1 cos2 ϕþ ε2 sin2 ϕÞe1 ⊗ e1 þ ðε1 sin2 ϕ

þ ε2 cos2 ϕÞe2 ⊗ e2 þ ðε1 � ε2Þ sinϕ cosϕðe1 ⊗ e2

þ e2 ⊗ e1Þ
(1)

Assuming ε0 ¼ ε1 ¼ ε2, we can get ε ¼ ε0ðe1 ⊗ e1 þ e2 ⊗ e2Þ.
Thus, whatever the value of ϕ takes, it will not affect the strain
tensor. In the finite element simulations that follow the same
procedures in our previous works,[35–37] we adopt the method
of perturbation (1% of the prestress) and push directly at both
ends of the diagonal of the bottom layer to model the shape
transition. The bilayer is coiled about an axis inclined to the
bilayer length after applying small forces in different directions
between its ends (Figure 2b). Although there are some deviations
between the simulation results and the experiments, especially
the circular configuration in the middle of Figure 2b as shown,
most simulation results are consistent with the experiments.

The experimental results indicate the existence of neutral
stability. Next, we use a theoretical framework to interpret the
experimental observation. We consider a composite bilayer of
width W, length L, and total thickness H (H�W� L) consist-
ing of two sheets of different materials that are bonded together.
The bilayer is initially flat. Then the surface stress is applied on
one layer. As a result, the bilayer structure will morph into a 3D
configuration with the principal curvatures κ1 and κ2 along the
principal directions of the surface stresses (Figure 1b). Based
on the linear elasticity theory, the total potential energy per unit
length of the bilayer is contributed from the surface stresses (Πs),
bending energy (Πb), and stretching energy due to geometric
nonlinearity (Πg) as

[38,39]

Π ¼ Πs þ Πb þ Πg (2)

where

Πs ¼ �WHðf 1κ1 þ f 2κ2Þ=2 (3)

Πb ¼ EH3Wðκ12 þ κ2
2 þ 2νκ1κ2Þ=24ð1� ν2Þ þ OðEH3W3κ4Þ

(4)

Πg ¼ EHW5ðκ1κ2Þ2=½640ð1� ν2Þ� þ OðEHW7κ6Þ (5)

OðEH3W3κ4, EHW7κ6Þ are the higher order terms of the
bending and stretching energy. f 1 and f 2 are the principal
surface stresses. The parameters E and ν are the effective
Young’s modulus and Poisson’s ratio of the composite bilayer,
respectively.

Here, we extend this theory to illustrate the underlying
mechanism of the morphological transition and multistability
of the bilayer in our case. On one hand, the mismatch strain
between the top and bottom layers due to the prestretching
can be equivalently taken as the surface stress acting on one
layer. On the other hand, when the bending and stretching
energy are of comparable magnitude, geometrical incompatibil-
ity may cause bifurcation.[7,39,40] Comparing the scale of Πb and
Πg, we can get a characteristic width, W0 � 2.28

ffiffiffiffiffiffiffiffiffi
H=κ

p
(κ¼max

{κ1, κ2}, ν¼ 0.49). Such a length scale can be used to define the
doubly curved, narrow region close to the edge, which has been
analyzed by Holmes,[30] Sharon,[7,8] and our previous study.[38,39]

To obtain the equilibrium shapes of the bilayer, we apply the sta-
tionary condition ð ∂Π= ∂κi ¼ 0, i ¼ 1, 2Þ. As the misfit strain
across layers is equally biaxial, we set the effective surface stress
as f¼ f1¼ f2 and have the governing equation regarding the equi-
librium shapes as ðκ1 � κ2Þ½κ1κ2 � 80ð1þ νÞH2=ð3W4Þ� ¼ 0.

The governing equation, which is expressed in terms of the
principal curvatures κ1 and κ2, can be satisfied by letting either
κ1 � κ2 or κ1κ2 � 80ð1þ νÞH2=3W4 equal to zero. If the final
shape is determined through κ1¼ κ2, the bilayer will deform
into a spherical shallow cap. Otherwise, if κ1κ2 � 80ð1þ νÞ
H2=ð3W4Þ ¼ 0 has two real solutions, the bilayer will undergo
cylindrical bending and become neutrally stable because the
principal direction can be arbitrary when the surface stress is
equally biaxial. Therefore, bifurcation happens when both
κ1 ¼ κ2 ¼ κ and κ1κ2 ¼ 80ð1þ νÞH2=ð3W4Þ are satisfied. In
such a scenario, both principal curvatures (κ1, κ2) are equal to
6.3H=W2 for ν¼ 0.49. Defining the dimensionless parameter
η ≡W

ffiffiffiffiffiffiffiffiffi
κ=H

p
and substituting κ, we can get the critical dimen-

sionless parameter ηc � 2.51, which is also equal to the case
when two layers of latex rubber are prestretched along
perpendicular directions by an equal amount and bonded
together.[7,8,39] Using the aforementioned theoretical analysis,
the bifurcation width in our experiment can be calculated as

WC � 2.51
ffiffiffi
H
κ

q
¼ 24.7mm.

The ratio of the stretching energy and bending energy
scales as Πg=Πb � W4κ2=H2 ¼ η4. When η� ηc, the equilib-
rium configuration is dominated by the bending energy, and
the stretching energy associated with the nonzero Gaussian
curvature can be ignored. Notably, the helix angle Φ is deter-
mined by the following equation[41,42]

Φ ¼ arctan
h
ðκ1 � κ2Þ sinϕ cosϕ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1

2 cos2 ϕþ κ2
2 sin2 ϕ

q i
(6)

Figure 2. a) A series of different configurations of the neutrally stable
structure with the same radius of 42 mm, which can be transformed
between configurations in each direction in experiments. b) FEM solid
model built in COMSOL5.5 for the estimation of the stress and distortion
profile. Bar¼ 50mm.
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As κ1 ¼ κ2, the misorientation angle ϕ, regardless of the
curvature and the value of the helix angle, is always equal to zero.
Thus, when η� ηc, the bilayer will become either a ring-like
shape when it has narrow width and long length or a spherical
shallow cap if the width is relatively the same as the length.
This analysis is consistent with the aforementioned experiments,
as shown in Figure 1c.

When η≫ ηc, the stretching energy Πg dominates. To mini-
mize the total energy, the geometric nonlinearity requires that
either κ1! 0 or κ2! 0, which means that the Gaussian
Curvature K ¼ κ1κ2 goes to zero for the majority of the bilayer
(except near the edges) to reduce the stretching energy.
Otherwise, the stretching energy will become very large
compared to the bending energy, which is inadmissible.
Zero Gaussian curvature of a surface is known to correspond
to a flat or a cylindrical configuration. In this case, the bilayer
prefers a cylindrical configuration rather than being flat to reduce
the bending energy. Without losing generality, we assume κ2¼ 0.
Here, the potential energy density can be obtained by consider-
ing the misorientation ϕ

Π�
2ðϕÞ ¼ �3ð1� ν2Þðf 1 cos2 ϕþ f 2 sin

2 ϕÞ2=ð2EHÞ (7)

For different misorientation angles, the potential energy den-
sity keeps invariant for f 1 cos

2 ϕþ f 2 sin
2 ϕ ¼ f . Thus, Π�

2
remains a constant regardless of the misorientation angle ϕ.
By minimizing the energy density, we obtained the principal
curvature κ1 ¼ 6f ð1� ν2Þ=ðEH2Þ. In such a case, the bilayer
possesses neutral stability with zero twisting rigidity
(Figure 2), indicating that it can be twisted arbitrarily to a new
stable shape with the same curvature in any direction without
changing its potential energy, if edge effect is not considered.

As observed in the experiments, it is worth mentioning that
the edge effects can change the energy distribution of the bilayer
structure. Therefore, the nonzero Gaussian curvature near the
edge needs to be taken into account in most cases. The potential
energy density is no longer Π�

2 for the bilayer. By calculating the
energy density within a narrow region from the edge, we noted
that Πb ≫ Πg, the bending energy dominates. The density of
the potential energy is Π�

1. As Π�
2ðϕÞ ¼ �3ð1� ν2Þf 2=ð2EHÞ >

Π�
1 ¼ �6ð1� νÞf 2=ðEHÞ, it clearly shows that the edge effect

reduces the total potential energy. If the width of the boundary
region keeps unchanged, enlarging the boundary’s length is
the most effective way to reduce the total potential energy.
Thus, the bilayer will roll along the longitudinal direction to
enlarge the area of the doubly curved boundary region.

When η≫ ηc, the bilayer contains neutral stability if we do
not consider the edge effect. If we take the edge effect into
account, the bilayer prefers a coiled configuration instead of a
helix or cigar, provided that the 2D precursor is a long and
large rectangle (L≫W≫Wc). As a result, the coiled shape
becomes the most stable compared to other stable configurations
because it contains the lowest potential energy. For a square
precursor, the bilayer can stay stable along many directions
(Figure 3a–d). It seems that there is not a preferred bending
direction, probably because the potential energy’s reduction
brought about by the edge effect is almost the same for any
bending direction. However, if we increase the mismatch strain
from 0.18 to 0.20, the bilayer prefers to bend along the diagonal
direction—if we force the bilayer to bend along the other direc-
tion, it can only stay stable for a while and then becomes unstable
by automatically switching to the diagonal direction. (Movie S2,
Supporting Information).

By decreasing the prestretch strain or the geometric dimen-
sions of the 2D precursor, η will decrease and become equal
to or lower than ηc. Accordingly, the bilayer will curve along
the diagonal directions (W¼ 18mm, L¼ 36mm; Figure 3e)
or form a shallow spherical cap with equal curvatures (Figure 3f ),
respectively. When η ~ ηc, the energy of bending and stretching
are of the same magnitude in this situation, and the bilayer
shows monostability rather than neutral stability. To minimize
the total potential energy, as discussed previously, the bilayer will
still roll along the longitudinal direction, similar to the result of
Alben et al.[32] Here, we also try to decrease the pre-stretch of the
square bilayer to 0.05 (W¼ L¼ 48mm), the bilayer shows mono-
stability by adopting the shape of a spherical shallow cap
(Figure 3g). In this situation, furthermore, by decreasing the
strain of the prestretch to 0.1 and increasing the thickness of
H2 to 2.00mm (Figure 3h), the bilayer will show a similar mor-
phology to that in Figure 3g.

More generally, our theory and simulation can not only work
for the bilayer with a rectangular planform, but also work for

Figure 3. The shapes of the bilayers under different geometries and misfit strains. a–d) neutrally stable along four different bending directions
(W¼ L¼ 48mm, H2¼ 1.00mm, p¼ q¼ 0.18). e) Monostable configuration with diagonal rolling direction (W¼ 18mm, L¼ 36mm, p¼ q¼ 0.18).
f–h) Monostable configuration with the shape of a spherical shallow cap, f ) W¼ L¼ 16mm, H2¼ 1.00mm, p¼ q¼ 0.18; g) W¼ L¼ 48mm,
H2¼ 1.00mm, p¼ q¼ 0.05; and h) W¼ L¼ 48mm, H2¼ 2.00mm, p¼ q¼ 0.1. Scale bar¼ 10mm.
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many other planforms’ shapes, such as triangle (Figure 4a,d,g),
pentagon (Figure 4b,e,h), and hexagon (Figure 4c,f,j). In our
simulations, the stress and distortion of the pattern are
obtained from different geometric parameters with the same pre-
strain, which is consistent with our experiments (Figure S1,
Supporting Information). In these experiments, the width and
length in a rectangular case is replaced by a short axis and long
axis, respectively. If the 2D precursor is circular with rotational
symmetry, the configuration will show a spherical cap (η� ηc)
or neutrally stable cylindrical shape (η≫ ηc) without a preferred
bending direction.

The proposed theoretical framework is scalable and indepen-
dent of the constituent materials. To demonstrate this, we
perform experiments in the ultrathin system with different mate-
rials rather than a rubber sheet. Here, polydimethylsiloxane
(PDMS, Dow Corning’s Sylgard 184) is synthesized by mixing
the base/curing agent in a 10:1 ratio by weight. After being
stirred, the mixture is put into a vacuum chamber to remove
the air bubbles and then spin coated on a clean glass substrate.

After the PDMS is cured at 80 �C for 3 h, an aluminum (AI) film
is deposited by a direct current (DC) magnetron sputtering
technique with a temperature of 100 �C for heating on the
PDMS layer. During film deposition, the argon pressure and
sputtering power are kept at 0.4 Pa and 30W, respectively.
The thickness of the PDMS layer and Al film is 400 and
360 nm, respectively. The elastic modulus of PDMS, measured
by uniaxial tensile testing (UTM2102 SHIMADZU Company), is
1.6MPa and that of Al film, tested by atomic force microscope
(Bruker Icon), is 45 GPa. The Poisson’s ratio of PDMS and Al
roughly equals 0.49 and 0.35, respectively. During the sputtering,
thermal stress is generated, which leads to the following 3D large
deformation. Here, we detach the PDMS–Al bilayer from the
glass with various 2D geometries and the released bilayer will
curl to an arc (Figure 5f ) or show neutrally stable configurations
(Figure 5a–e), among which the bilayer structure with zero
stiffness can be transformed. Similarly, neutral stability is
achieved when the bilayer’s width is beyond the critical width
(WC ¼ 2.51

ffiffiffiffiffiffiffiffiffi
H=κ

p � 5.0mm).

Figure 5. Different configurations of the PDMS–Al bilayer. a–e) The neutrally stable structure (W¼ 19.5 mm, L¼ 54.5mm); f ) a segment of the ring-like
configuration (W¼ 1.0 mm, L¼ 1.95mm). Scale bar¼ 10mm.

Figure 4. The configurations of the regular pentagon with equal prestrain (p¼ q¼ 0.18): a–c) neutrally stable state (the circumcircle radius of the
polygons (R) is 20mm, H2¼ 1.00mm); d–f ) monostable state (R¼ 20mm, H2¼ 2.00mm); g–i) monostable state (R¼ 10mm, H2¼ 1.00mm).
Scale bar¼ 10mm.
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In addition to the PDMS–Al bilayer, we also choose another
nanoscale metallic system to demonstrate the generality of our
results. Here, e-beam evaporation was applied to deposit a film
consisting of Ag, SiO2, and Cr on glass substrate.[43] The thick-
ness of each layer was tuned as 40 nm, which means that the total
thickness is 120 nm. A residual stress gradient along the z axis
was established during the deposition as a consequence of ther-
mal expansion mismatch. Then, a drop of ethanol was used to
peel off the film from the substrate and the rolling direction
was determined by the contact point between the liquid and
ultrathin film. A variety of configurations were obtained in
Figure 6a–e. Considering that the total thickness is about
hundreds of nanometers while the rolling diameter was mea-
sured as �20 μm, the width of the film is much larger than
the critical width, leading to a neutrally stable state with multiple
possible configurations. Such self-rolling structures have
been demonstrated to have applications in vapor sensing,

microresonators, micromotors, and microactuators.[43] Another
potential application is to use these neutral stable structures
in energy harvesting[44–46] by using piezoelectric materials in
them, as these structures have minimum twisting stiffness
and will manifest deformation and therefore energy-harvesting
efficiency from the environment. It is also anticipated that by
incorporating these smart structural elements, a variety of novel
structures and devices, including mechanical metamaterials[47]

and flexible robotics,[48,49] can be obtained.
We have shown that one bilayer precursor can morph into var-

ious rolling configurations if it is neutrally stable. By assembling
several or more bilayer precursors together, we are able to gen-
erate a variety of 3D structures by programming the geometry
and misfit strain in each layer. The dimensionless parameter
η, here, is crucial to determining the multistability of the bilayer,
which is associated with not only the width and thickness, but
also the misfit strain. In addition, the curvature of the deformed

Figure 6. Different configurations of an ultrathin film (H¼ 120 nm) consisting of Ag, SiO, and Cr. a–e) The neutrally stable structure (W¼ 50 μm,
L¼ 400 μm). Scale bar¼ 100 μm.

Figure 7. a) Schematic illustration of polygons’ pattern for the top layer. b) The relationship of the radius between the polygons and the spherical shell at
the maximum cross-section. c) The graph of a buckyball self-folded conformation. d–f ) The stress pattern (blue means low and red means high) and
distortion of the bilayer by finite element simulation (the value of the mismatched strain is 0.093, 0.120, and 0.180, respectively). Bar¼ 10 mm.
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structure is also a function of surface stress, elastic modulus, and
thickness. Therefore, either reducing width (Figure 3f ), misfit
strain (Figure 3g), or increasing thickness (Figure 3h) can
transition the bilayer from neutral stability to monostability.

Based on our aforementioned mechanical model, many
complex shapes can be designed for a variety of engineering
applications. Here, we propose a self-folding design scheme to
produce a buckyball structure. To accomplish this aim, the
bottom layer is prestretched, as mentioned previously. The top
layer, which is shown in Figure 7a, consists of 12 pentagons
and 20 hexagons. The essence of this design is that the radius
of the ball should equal to the radius of the polygon’s curvature
(Figure 7b). As Figure 1c shows, the curvature of the bilayer with
narrow width is �0.048mm�1, while the equally biaxial misfit
strain is 0.18. The circumference of the maximum cross-section
of a football, which equals approximately the sum of four times
the height of the pentagon, four times the height of the hexagon,
and two times the length of the hexagon, should be 131mm in
this case. To decrease the interaction between polygons and
prevent the bilayer from transforming from monostability to
neutral stability, each interval of the polygon connection is set
as 1mm. Thus, the polygon side length approaches 8mm based
on the aforementioned analysis. According to the design, the
self-folding bilayer of a buckyball structure can be generated
and shown in Figure 7c. In the finite element method (FEM)
modeling, the stress distribution within the elastic bilayer that
undergoes large distortion is shown in Figure 7d–f.

In summary, we developed an on-demand strategy for fabri-
cating neutrally stable structures in a variety of strain-engineered
systems across multiple length scales and used a theoretical
model to address the transition between mono- and neutral sta-
bility driven by an equally biaxial mismatch strain. A dimension-
less parameter is used to describe the bifurcation and the edge
effect can determine the final status of the bilayer. The model can
predict the transition between monostability and neutral stability
in most arbitrary geometric shapes in various materials.
Moreover, we offer a simple approach using strain engineering
to achieve self-folding structures and therefore this study can
expect to find ample applications in the design of microscale
capsule casing, energy harvesting, microrobotics, mechanical
metamaterials, stimuli-responsive reconfigurable structures,[50–52]

and other multifunctional devices.
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