
On Hashin’s Hollow Cylinder and Sphere Assemblages

in Anisotropic Nonlinear Elasticity∗

Ashkan Golgoon1 and Arash Yavari†2,3

1Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
2School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

3The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

August 17, 2021

Abstract

We generalize Hashin’s nonlinear isotropic hollow cylinder and sphere assemblages to nonlinear anisotropic
solids. More specifically, we find the effective hydrostatic constitutive equation of nonlinear transversely
isotropic hollow sphere assemblages with radial material preferred directions. We also derive the effective
constitutive equations of finite and infinitely-long hollow cylinder assemblages made of incompressible or-
thotropic solids with axial, radial, and circumferential material preferred directions. In both sphere and
cylinder assemblages the spherical and cylindrical shells can be radially inhomogeneous as long as Hashin’s
definition of similar shells is properly generalized.
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ticity, anisotropic solids.
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1 Introduction

The idea of neutral holes in elastic sheets was first introduced by Gurney [1938], Reissner and Morduchow
[1949], and Mansfield [1953] in the setting of linear elasticity. Neutral holes under finite radial deformations
were studied in [Yavari and Golgoon, 2019]. Neutral inhomogeneities when inserted in an elastic matrix do not
perturb the stress and deformation fields outside the inclusions [Hashin and Shtrikman, 1962, 1963, Hashin, 1985,
Hashin and Rosen, 1964, Benveniste and Milton, 2003]. Sphere assemblages were introduced by Hashin [Hashin,
1962, Hashin and Shtrikman, 1962, 1963]. See also [Milton, 2004]. Hashin [1985] analyzed the hollow sphere
assemblages under large dilatational deformations and calculated their exact effective hydrostatic constitutive
equations. Note that in the case of Hashin’s hollow cylinder and sphere assemblages all the inclusions are neutral
when the body is under a pure dilatational finite deformation. Lopez-Pamies et al. [2012] showed that there exists
an isotropic porous material consisting of mesoscopic and microscopic pores that is stiffer than Hashin’s hollow
cylinder assemblage under hydrostatic loading. In this paper we construct anisotropic analogues of Hashin’s
isotropic composite hollow cylinder and sphere assemblages and find their effective hydrostatic constitutive
equations.

This paper is organized as follows. In §2 we briefly review nonlinear anisotropic elasticity. In §3, we analyze
transversely isotropic hollow sphere assemblages and calculate their effective hydrostatic constitutive equations.
In §4 the same problem is studied for orthotropic hollow cylinder assemblages. Conclusions are given in §5.

∗To appear in the Journal of Elasticity.
†Corresponding author, e-mail: arash.yavari@ce.gatech.edu
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2 Anisotropic nonlinear elasticity

Kinematics. In nonlinear elasticity, motion is a time-dependent mapping between a reference configuration
(or natural configuration) and the ambient space, i.e., ϕt : B → S, where (B,G) and (S,g) are the material and
the ambient space Riemannian manifolds, respectively [Marsden and Hughes, 1994]. Here, G is the material
metric (that allows one to measure distances in a natural stress-free configuration) and g is the background
metric of the ambient space. The deformation gradient F is the tangent map of ϕt, which is defined as
F(X, t) = Tϕt(X) : TXB → Tϕt(X)S. The transpose of F is denoted by FT, where

FT(X, t) : Tϕt(X)S → TXB , 〈〈W,FTw〉〉G = 〈〈FW,w〉〉g, ∀W ∈ TXB, w ∈ Tϕt(X)S . (2.1)

In components, (FT)Aa = GABF bB gab. The right Cauchy-Green deformation tensor is defined as C = FTF :
TXB → TXB, which in components reads CAB = F aMF

b
B gabG

AM . Note that C[ agrees with the pull-back
of the ambient space metric by ϕt, i.e., C[ = ϕ∗tg.

Balance laws. The balance of linear momentum in spatial and material forms reads

divg σ + ρb = ρa, (2.2)

where σ is the Cauchy stress. ρ, b, and a are the mass density, body force, and acceleration, respectively.
The Jacobian of deformation relates the deformed and undeformed Riemannian volume elements as dv(x,g) =

JdV (X,G), and is defined as J =
√

det g
detG det F.

Material symmetry. Consider an elastic body B made of a simple material with the response function
R.1 The material symmetry group GX associated with the body at a point X with respect to the reference
configuration (B,G) is defined as

R (FK) = R (F) , ∀ K ∈ GX , (2.3)

for all deformation gradients F, where K : TXB → TXB is an invertible linear transformation. Objectivity
requires that the energy function of a hyperelastic solid depend on the deformation through the right Cauchy-
Green deformation tensor C[, i.e., W = W (X,C[,G) at a referential point X. Therefore, for a hyperelastic
solid the material symmetry group GX is defined to be the subgroup of G-orthogonal transformations Orth(G)
such that2 [Ehret and Itskov, 2009]

W (X,Q−?C[Q−1,G) = W (X,C[,G) , ∀Q ∈ GX ≤ Orth(G) . (2.4)

Constitutive equations. The energy function (per unit undeformed volume) of an inhomogeneous anisotropic
hyperelastic material at a material point X is written in the following form

W = Ŵ (X,C[,G, ζ1, . . . , ζn) , (2.5)

where ζi, i = 1, . . . , n are a collection of the so called structural tensors characterizing the material symmetry
group at the point X (see also [Spencer, 1971, Boehler, 1979, Spencer, 1982, Liu et al., 1982, Zheng and Spencer,
1993, Lu and Papadopoulos, 2000]) such that

ζ̄j(X) = ζj(X) , j = 1, · · · , n ⇐⇒ Q ∈ GX , (2.6)

where ζ̄j is the Q-transformed ζj . Using the Doyle-Ericksen formula [Doyle and Ericksen, 1956, Marsden and
Hughes, 1994, Yavari et al., 2006], the Cauchy and the second Piola-Kirchhoff stress tensors are expressed as

S = 2
∂Ŵ

∂C[
, σ =

2

J

∂Ŵ

∂g
, (2.7)

1Here we assume that R is the energy function. Response function may be any measure of stress as well.
2Note that Orth(G) =

{
Q : TXB → TXB | Q> = Q−1

}
. We use the notation G 6 H when G is a subgroup of H .
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where, with a slight abuse of notation, we may write

Ŵ (X,G,C[, ζ1, . . . , ζn) = Ŵ (x,G ◦ ϕ−1,g,F, ζ1 ◦ ϕ−1, . . . , ζn ◦ ϕ−1) . (2.8)

Thus, using (2.5) and (2.7), one can write

S = Ŝ(X,C[,G, ζ1, . . . , ζn) . (2.9)

Using structural tensors makes the energy function and the stress tensor isotropic functions of their arguments,
i.e.

∀Q ∈ Orth(G) : S̄(X,C[,G, ζ1, . . . , ζn) = S(X, C̄[, Ḡ, ζ̄1, . . . , ζ̄n) . (2.10)

It is also noted that S (and Ŵ ) is an anisotropic function of C[ and G alone, with the type of anisotropy given
by the symmetry group GX . To see this, using (2.6) and (2.10), one has

S̄(X,C[,G, ζ1, . . . , ζn) = S(X, C̄[, Ḡ, ζ1, . . . , ζn) , ∀Q ∈ GX ≤ Orth(G) . (2.11)

According to Hilbert’s theorem, for any finite number of tensors, there exist a finite number of isotropic invariants
forming a basis called integrity basis for the space of isotropic invariants of the collection of tensors. Thus, if
Ij , j = 1, . . . ,m, form an integrity basis for the set of tensors in (2.5), we have W = W (X, I1, ..., Im). Hence,
using (2.7), one obtains

S =

m∑
j=1

2Wj
∂Ij
∂C[

, Wj :=
∂W

∂Ij
, j = 1, . . . ,m . (2.12)

Isotropic solids. In the case of isotropic materials, the energy function is expressed as W = W (X, I1, I2, I3),
where I1 = tr C, I2 = det C tr C−1, and I3 = det C are the principal invariants of the right Cauchy-Green
deformation tensor. It follows from (2.12) that

S = 2
[
W1G

] +W2(I2C
−1 − I3C−2) +W3I3C

−1] . (2.13)

If the material is incompressible, i.e., I3 = 1, one writes

S = −pC−1 + 2
[
W1G

] −W2C
−2] , (2.14)

where p is the Lagrange multiplier associated with the incompressibility constraint J =
√
I3 = 1. The Cauchy

stress σab = 1
JF

a
AF

b
BS

AB similarly reads

σ = −pg] +
2

J

∂Ŵ

∂g
. (2.15)

In components

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3)gab − I3W2 c
ab
]
, (2.16)

where
bab = F aAF

b
B G

AB , cab = (F−1)Mm(F−1)NnGMN g
amgbn . (2.17)

In the case of incompressible solids

σab = −pgab + 2
(
W1b

ab −W2 c
ab
)
. (2.18)

Transversely isotropic solids. Let us assume a compressible transversely isotropic material such that the
unit vector N(X) identifies the material preferred direction at a point X in the reference configuration. The
strain energy density per unit volume of the reference configuration is given as (see, e.g., [Doyle and Ericksen,
1956, Spencer, 1982, Lu and Papadopoulos, 2000]) W = W (X,G,C[,A), where A = N ⊗ N is a structural
tensor representing the transverse isotropy of the material symmetry group. The energy function W depends
on the following five independent invariants defined as

I1 = tr C , I2 = det C tr C−1 , I3 = det C , I4 = N ·C ·N , I5 = N ·C2 ·N . (2.19)
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In components they read

I1 = CAA , I2 = det[CAB ](C−1)DD , I3 = det[CAB ] ,

I4 = NANBCAB , I5 = NANBCBMC
M
A .

(2.20)

Thus, one obtains

S =

5∑
j=1

2Wj
∂Ij
∂C[

, Wj :=
∂W

∂Ij
, j = 1, . . . , 5 . (2.21)

Note that
∂I1
∂C[

= G] ,
∂I2
∂C[

= I2C
−1 − I3C−2 ,

∂I3
∂C[

= I3C
−1 ,

∂I4
∂C[

= N⊗N ,
∂I5
∂C[

= N⊗ (C ·N) + (C ·N)⊗N .

(2.22)

Therefore, using (2.22), we obtain the following representation for the second Piola-Kirchhoff stress tensor

S = 2
{
W1G

] +W2

(
I2C

−1 − I3C−2
)

+W3I3C
−1

+W4 (N⊗N) +W5 [N⊗ (C ·N) + (C ·N)⊗N]
}
.

(2.23)

The Cauchy stress tensor is represented in component form as

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3)gab − I3W2 c
ab

+W4 n
anb +W5(nabbcnc + nbbacnc)

]
,

(2.24)

where na = F aAN
A. If the material is incompressible, then I3 = 1, and hence, W = W (X, I1, I2, I4, I5). Thus,

from (2.23), S is expressed as

S = −pC−1 + 2
{
W1G

] +W2

(
I2C

−1 −C−2
)

+W4 (N⊗N) +W5 [N⊗ (C ·N) + (C ·N)⊗N]
}
.

(2.25)

The Cauchy stress tensor is represented in component form as [Ericksen and Rivlin, 1954, Spencer, 1986, Golgoon
and Yavari, 2018a,b]

σab = −pgab + 2
[
W1b

ab −W2 c
ab +W4 n

anb +W5(nabbcndgcd + nbbacndgcd)
]
. (2.26)

Orthotropic solids. Next, we consider a compressible orthotropic material with three G-orthonormal vectors
N1(X), N2(X), and N3(X) specifying the orthotropic axes in the reference configuration at a point X. A choice
of structural tensors is given by A1 = N1 ⊗N1, A2 = N2 ⊗N2, and A3 = N3 ⊗N3, where only two of which
are independent as A1 + A2 + A3 = I. Hence, the energy function is given as W = W (X,G,C[,A1,A2) ,
[Doyle and Ericksen, 1956, Spencer, 1982, Lu and Papadopoulos, 2000]. The energy function W is represented
in terms of the following seven independent invariants

I1 = tr C , I2 = det C tr C−1 , I3 = det C , I4 = N1 ·C ·N1 ,

I5 = N1 ·C2 ·N1 , I6 = N2 ·C ·N2 , I7 = N2 ·C2 ·N2 .
(2.27)

Thus

S =

7∑
j=1

2Wj
∂Ij
∂C[

, Wj :=
∂W

∂Ij
, j = 1, . . . , 7 . (2.28)
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Hence, the second Piola-Kirchhoff stress tensor is given by

S =2
{
W1G

] +W2

(
I2C

−1 − I3C−2
)

+W3I3C
−1

+W4 (N1 ⊗N1) +W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+W6 (N2 ⊗N2) +W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2]
}
.

(2.29)

The Cauchy stress tensor is represented in component form as

σab =
2√
I3

[
W1b

ab + (I2W2 + I3W3)gab − I3W2 c
ab

+W4 n
a
1 n

b
1 +W5

(
na1 b

bc nd1 gcd + nb1 b
ac nd1 gcd

)
+W6 n

a
2 n

b
2 +W7

(
na2 b

bc nd2 gcd + nb2 b
ac nd2 gcd

) ]
,

(2.30)

where na1 = F aAN
A
1 , and na2 = F aAN

A
2 . In the case of incompressible solids one has the following representation

for the second Piola-Kirchhoff stress tensor

S =− pC−1 + 2
{
W1G

] +W2

(
I2C

−1 −C−2
)

+W4 (N1 ⊗N1) +W5 [N1 ⊗ (C ·N1) + (C ·N1)⊗N1]

+W6 (N2 ⊗N2) +W7 [N2 ⊗ (C ·N2) + (C ·N2)⊗N2]
}
.

(2.31)

In components, the Cauchy stress tensor is given as

σab = −pgab + 2F aAF
b
B

[
(W1 + I1W2)GAB −W2C

AB

+W4N
A
1 N

B
1 +W5

(
NQ

1 N
A
1 CBQ +NP

1 N
B
1 CP

A
)

+W6N
A
2 N

B
2 +W7

(
NS

2 N
A
2 CBS +NK

2 N
B
2 CK

A
) ]
.

(2.32)

Or equivalently [Smith and Rivlin, 1958, Spencer, 1986, Golgoon and Yavari, 2018a,b]

σab =− pgab + 2
[
W1b

ab − I3W2 c
ab

+W4 n
a
1 n

b
1 +W5

(
na1 b

bc nd1 gcd + nb1 b
ac nd1 gcd

)
+W6 n

a
2 n

b
2 +W7

(
na2 b

bc nd2 gcd + nb2 b
ac nd2 gcd

) ]
.

(2.33)

3 Hollow transversely isotropic sphere assemblages

Let us consider a spherical shell of inner radius Ri and outer radius Ro in its undeformed configuration made of
a nonlinear incompressible transversely isotropic material with the strain energy function W = W (I1, I2, I4, I5).

We assume that the material preferred direction is radial, i.e., N = R̂, where R̂ is a unit vector in the radial
direction.3 More specifically, with respect to the spherical coordinates (R,Θ,Φ) the material metric and the
material preferred unit vector have the following representations

G =

1 0 0
0 R2 0
0 0 R2 sin2 Θ

 , N =

1
0
0

 . (3.1)

We consider radially-symmetric deformations such that in the spherical coordinates (r, θ, φ) = (r (R) ,Θ,Φ).4

The radial stretch is denoted by λ(R) = r(R)/R. Assume that the shell deforms such that in the deformed

3This can be thought of as a model for a polymer with spherulitic microstructure [Dryden, 1988]. See also [Schulgasser, 1983,
He and Benveniste, 2004].

4We assume that λ0 is small enough such that radial deformations are the only possible deformations.
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configuration λ(Ro) = λ0, where λ0 is a positive constant, and the hole surface is traction-free. The incom-
pressibility constraint implies that

λ(R) =

[
1 +

R3
o

R3

(
λ30 − 1

)] 1
3

. (3.2)

The right Cauchy-Green deformation tensor reads C = diag
(
λ−4(R), λ2(R), λ2(R)

)
. Using (2.22) and (2.26)

the Cauchy stress tensor has the following non-zero physical components

σ̂rr(R) = −p(R) + 2λ−4(R) [W1(R) +W4(R)] + 4λ−2(R)W2(R) + 4λ−8(R)W5(R) ,

σ̂θθ(R) = σ̂φφ(R) = −p(R) + 2λ2(R)W1(R) + 2
[
λ−2(R) + λ4(R)

]
W2(R) .

(3.3)

The invariants of the energy function read (note that I3 = 1 due to incompressibility)

I1(R) = 2λ2(R) + λ−4(R) , I2(R) = 2λ−2(R) + λ4(R) , I4(R) = λ−4(R) , I5(R) = λ−8(R) . (3.4)

The equilibrium equation, i.e., σ̂rr,r + 2
r

(
σ̂rr − σ̂θθ

)
= 0, and the boundary condition σ̂rr(Ri) = 0 imply that

σ̂rr(R) =

∫ R

Ri

4

ξλ(ξ)

{
W1(ξ)

[
1− λ−6(ξ)

]
+W2(ξ)

[
λ2(ξ)− λ−4(ξ)

]
−W4(ξ)λ−6(ξ)− 2W5(ξ)λ−10(ξ)

}
dξ ,

σ̂θθ(R) = σ̂φφ(R) = 2W1(R)
[
λ2(R)− λ−4(R)

]
+ 2W2(R)

[
λ4(R)− λ−2(R)

]
− 2W4(R)λ−4(R)− 4W5(R)λ−8(R)

+

∫ R

Ri

4

ξλ(ξ)

{
W1(ξ)

[
1− λ−6(ξ)

]
+W2(ξ)

[
λ2(ξ)− λ−4(ξ)

]
−W4(ξ)λ−6(ξ)− 2W5(ξ)λ−10(ξ)

}
dξ ,

(3.5)
where Wj(ξ) = Wj(I1(ξ), I2(ξ), I4(ξ), I5(ξ)) = W̄j(λ(ξ)), j = 1, 2, 4, 5. Note that the stress components depend
on the coordinate R only through the radial stretch λ(R), and thus, as long as the ratio Ri/Ro is fixed for the
spherical shells with different radii Ro (similar spherical shells), they will have the same stress distribution and
will require the same boundary traction to maintain the deformation.5

Remark 3.1. Suppose that the spherical shell is inhomogeneous but still radially symmetric, i.e., W =
W (R, I1, I2, I4, I5). In this case stresses are still given by (3.5) but withWj(ξ) = Wj(ξ, I1(ξ), I2(ξ), I4(ξ), I5(ξ)) =

W̄j(ξ, λ(ξ)), j = 1, 2, 4, 5. In this case, two radially inhomogeneous spherical shells with inner radii Ri, R̃i, and

outer radii Ro, R̃o, are called similar if:6

R̃i

R̃o
=
Ri
Ro

, and W̃ (R̃, I1, I2, I4, I5) = W (R, I1, I2, I4, I5) . (3.6)

It is straightforward to show that for inhomogeneous similar spherical shells ˆ̃σrr(R̃) = σ̂rr(R), and ˆ̃σθθ(R̃) =
σ̂θθ(R). In other words the hollow sphere assemblage can be constructed for radially inhomogeneous inclusions
as well.

Remark 3.2. It is known that radial deformations of a spherical shell are universal deformations for incompress-
ible isotropic solids [Ericksen, 1954]. More specifically, the class of deformations considered here are a subset
of Family 4 of universal deformations for incompressible isotropic solids. Note that the full Family 4 includes
inversions too. Recently, Yavari and Goriely [2021] showed that for incompressible transversely isotropic solids
Family 4 deformations are universal and the only universal material preferred directions consistent with Family

5For the same λ0 consider another hollow spherical shell with inner and outer radii R̃i and R̃o, respectively, such that R̃i = kRi,
and R̃o = kRo, k > 0. For the second spherical shell R̃i < R̃ < R̃o, where R̃ = kR. Note that

λ̃(R̃) =

[
1 +

R̃3
o

R̃3

(
λ30 − 1

)] 1
3

=

[
1 +

R3
o

R3

(
λ30 − 1

)] 1
3

= λ(R) .

Also Ĩ1(R̃) = I1(R), Ĩ2(R̃) = I2(R), Ĩ4(R̃) = I4(R), Ĩ5(R̃) = I5(R), and hence W1(R̃) = W1(R),W2(R̃) = W2(R),W4(R̃) = W4(R),
and W5(R̃) = W5(R). Therefore, ˆ̃σrr(R̃) = σ̂rr(R), and similarly for the other components of the Cauchy stress. This was Hashin’s
observation in the case of isotropic composite spheres.

6Similar radially inhomogeneous cylindrical shells are defined analogously using (3.6) if instead of spherical coordinates cylindrical
coordinates are used.
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4 deformations are radial. Also, Yavari [2021] has shown that for inhomogeneous incompressible isotropic solids
Family 4 is universal as long as the energy function has the form W = W (R, I1, I2, ). Here we observe that
for radially inhomogeneous transversely isotropic spherical shells with radial material preferred direction radial
deformations are still universal. See also [Goodbrake et al., 2020] for a recent generalization of Ericksen’s work
to anelasticity.

Now consider a finite compressible homogeneous and isotropic elastic body subjected to a pure dilatational
deformation such that F = λ0I, where I is the identity (in components F aA = λ0 δ

a
A). The strain energy

function of the (matrix) material is denoted by WM = WM (I1, I2, I3), where I1 = 3λ20, I2 = 3λ40, I3 = λ60
are the principal invariants of the right Cauchy-Green strain tensor. It immediately follows that the stress is
hydrostatic in the isotropic matrix and is written as σ = σ0g, where σ0 is a constant given by

σ0 = σ0(λ0) =
2

λ0

(
WM
I1 + 2λ20W

M
I2 + λ40W

M
I3

)
. (3.7)

When λ0 > 1 (λ0 < 1) one expects σ0 > 0 (σ0 < 0). These are the pressure-compression (P-C) inequalities
[Truesdell and Noll, 2013, Mihai and Goriely, 2017].

Figure 1: An anisotropic hollow sphere/cylinder assemblage with inhomogeneous spherical/cylindrical shells. An assemblage with
homogeneous spherical/cylindrical shells would be a special case.

Following Hashin’s construction of a composite sphere assemblage, any solid sphere of radius Ro in the
isotropic compressible homogeneous matrix can be replaced by an incompressible transversely isotropic spherical
shell with inner and outer radii Ri and Ro without perturbing the stress field in the remaining part of the body
as long as∫ λ0

λi(λ0,
Ri
Ro

)

4η

1− η3
[
W̄1(η)

(
1− η−6

)
+ W̄2(η)

(
η2 − η−4

)
− 2W̄5(η)η−10 − W̄4(η)η−6

]
dη = σo , (3.8)

where

λi = λ(Ri) =

[
1 +

R3
o

R3
i

(
λ30 − 1

)]1/3
,

I1(η) = 2η2 + η−4, I2(η) = 2η−2 + η4, I4(η) = η−4, I5(η) = η−8 ,

(3.9)

and the traction boundary condition σ̂rr(Ri) = 0 was used. For a fixed ratio Ri/Ro, and a given energy
function W , (3.9) gives a relation σ0 = σ(λ0). Hashin [1985] does not consider an arbitrary compressible
isotropic matrix; he assumes that the compressible isotropic matrix has an energy function that gives the
same hydrostatic constitutive equation σ0 = σ(λ0). Replacing the remaining part of the body by transversely
isotropic spheres of diminishing sizes with the same ratio Ri/Ro one reaches the so called sphere assemblage
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geometrical arrangement. In the limit of the hollow sphere assemblage one obtains a porous material with initial
porosity c0 = R3

i /R
3
o that has the same hydrostatic constitutive equation σ = σ(λ) as each of its constituent

hollow spherical shells does. In other words, σ = σ(λ, c0) is the effective hydrostatic constitutive equation
of the assemblage. In Fig.1 a body with a transversely isotropic hollow sphere assemblage is shown (more
precisely this is an element of a sequence that in the limit is a hollow sphere assemblage). The pure dilatational
response of this composite is identical to that of any of its transversely isotropic hollow spherical shells. Note
that the effective hydrostatic constitutive equations of assemblages made of similar homogenous and radially
inhomogeneous spherical shells both have the form σ = σ(λ, c0). However, the class of sphere assemblages made
of radially inhomogeneous spherical shells is much richer.

Example 3.3. Let us assume that the hollow spherical shells are made of an incompressible Mooney-Rivlin
reinforced model (I4 reinforcement) with energy function [Triantafyllidis and Abeyaratne, 1983, Merodio and
Ogden, 2003, 2005]

W (I1, I2, I4) = C1(I1 − 3) + C2(I2 − 3) +
µ1

2
(I4 − 1)2 , (3.10)

where C1, C2, µ1 > 0, and µ2 > 0 are constants. Eq. (3.8) is simplified to read

σ(λ0, c0) = C1

(
1

λ4o
+

4

λo
− 1

λ4i
− 4

λi

)
+ 2C2

(
1

2λ2o
− λ0 −

1

2λ2i
+ λi

)
+ µ1

[(
1

2λ80
+

4

5λ50
− 1

λ40
+

2

λ20
− 4

λ0

)
−
(

1

2λ8i
+

4

5λ5i
− 1

λ4i
+

2

λ2i
− 4

λi

)]
+

8µ1√
3

{
arctan

[
1 + 2λi√

3

]
− arctan

[
1 + 2λo√

3

]}
,

(3.11)

where λi = [1 + c−10 (λ30 − 1)]
1
3 . When µ1 = 0, the hydrostatic constitutive equation (3.11) is identical to what

Hashin [1985] obtained for isotropic spherical shells. Following [Hashin, 1985], let us assume that C1 = 0.5
MPa, and C2 = 0.05 MPa. Fig.2 shows the effective isotropic stress-strain relations for spherical assemblages
for three different values of µ1. We observe that even with I4 reinforcement the responses of the assemblages
in tension and compression are quite different. Fig.2(a) shows the tensile response of three assemblages that
all have porosity c0 = 0.001. It is seen that initially the assemblages with larger values of µ1 are stiffer but
for λ0 > 2 the responses of the three assemblages are almost identical. The effect of I4 reinforcement is more
pronounced in compression as can be seen in Fig.2(b).
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Figure 2: (a) The constitutive equation (3.11) for C1 = 0.5 MPa, C2 = 0.05 MPa, c0 = 0.001, and λ0 > 1. (b) The constitutive
equation (3.11) for C1 = 0.5 MPa, C2 = 0.05 MPa, c0 = 0.4, and λ0 < 1.
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Example 3.4. Let us assume that the hollow spherical shells are made of an incompressible Mooney-Rivlin
reinforced model with I5 reinforcement with energy function

W (I1, I2, I5) = C1(I1 − 3) + C2(I2 − 3) +
µ2

2
(I5 − 1)2 . (3.12)

In this case (3.8) is simplified to read

σ(λ0, c0) = C1

(
1

λ4o
+

4

λo
− 1

λ4i
− 4

λi

)
+ 2C2

(
1

2λ2o
− λ0 −

1

2λ2i
+ λi

)
+ µ2

[(
1

2λ160
+

8

13λ130
+

4

5λ100
− 1

λ80
+

8

7λ70
− 8

5λ50
+

2

λ40
− 4

λ20
+

8

λ0

)

−
(

1

2λ16i
+

8

13λ13i
+

4

5λ10i
− 1

λ8i
+

8

7λ7i
− 8

5λ5i
+

2

λ4i
− 4

λ2i
+

8

λi

)]

+
16µ2√

3

{
arctan

[
1 + 2λo√

3

]
− arctan

[
1 + 2λi√

3

]}
,

(3.13)

where λi = [1+c−10 (λ30−1)]
1
3 . Fig.3 shows the effective isotropic stress-strain relations for spherical assemblages

for three different values of µ2. We again observe that even with I5 reinforcement the responses of the assemblages
in tension and compression are very different. The tensile responses of three assemblages that all have porosity
c0 = 0.001 are shown Fig.3(a). We observe that initially the assemblages with larger values of µ2 are stiffer but
for λ0 > 1.5 the responses of the three assemblages are almost identical. The effect of I5 reinforcement is more
pronounced in compression as can be seen in Fig.3(b).
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Figure 3: (a) The constitutive equation (3.13) for C1 = 0.5 MPa, C2 = 0.05 MPa, c0 = 0.001, and λ0 > 1. (b) The constitutive
equation (3.11) for C1 = 0.5 MPa, C2 = 0.05 MPa, c0 = 0.4, and λ0 < 1.

Remark 3.5. It is straightforward to show that one can alternatively use compressible transversely isotropic
shells (with the radial material preferred direction) instead of incompressible ones provided that in lieu of (3.8)
the following condition holds (λ0 = r(Ro)/Ro)

2r′(Ro)
[
λ−20

{(
WI1(Ro) +WI4(Ro)

)
+ 2WI5r

′(Ro)
2
}

+ 2WI2(Ro) + λ20WI3(Ro)

]
= σ0 , (3.14)

where

I1 = r′(R)2 + 2
r2(R)

R2
, I2 =

r4(R)

R4
+ 2

r(R)2

R2
r′(R)2 , I3 =

r4(R)

R4
r′(R)2 , I4 = r′(R)2 , I5 = r′(R)4 , (3.15)
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and r(R) satisfies a second-order ODE dictated by the equilibrium equation in the radial direction. Similar to
the incompressible case, it can be shown that the dependence of the stress and the energy function invariants
on R is only through λ(R). This is done by showing that the ODE governing r(R) can be rewritten as a
second-order ODE for λ(R).

Figure 4: Left: A compressible isotropic body with holes. Two different incompressible neo-Hookean spherical shells are used to
cloak the holes. Right: The same body without holes. Under a specific pure dilatational deformation ϕ(X) = λ0X the matrix of
the body with holes has the same uniform hydrostatic stress as the homogeneous body does.

Remark 3.6 (Neutral hollow spherical inclusions). Consider a homogeneous body made of an isotopic
compressible solid with energy function WM (I1, I2, I3). Let us assume that the matrix is under a pure
dilatational deformation λ0. As was discussed earlier the body would be in a state of hydrostatic stress
σ0 = 2

λ0

(
WM
I1

+ 2λ20W
M
I2

+ λ40W
M
I3

)
. Now consider the same body but with a hole of radius Ri in the un-

deformed configuration. Under the same deformation the state of stress will be perturbed by the hole. We
would like to cloak the hole by a spherical shell with outer radius Ro such that outside the cloak, i.e., for
R ≥ Ro the state of stress is the hydrostatic stress σ0. The design parameters are the elastic properties of
the cloaking shell. Let us assume that the cloak is made of an incompressible neo-Hookean solid with energy
function µ

2 (I1 − 3). From (3.8) we have

µ =
4

λ0

[
1 + 4λ20
λ40

− 1 + 4λ2i
λ4i

]−1 (
WM
I1 + 2λ20W

M
I2 + λ40W

M
I3

)
, (3.16)

where λi = [1 + c−10 (λ30 − 1)]
1
3 , and c0 = R3

i /R
3
o. Note that{
λi > λ0, λ0 > 1,

λi < λ0, λ0 < 1 .
(3.17)

Thus 
1+4λ2

0

λ4
0
− 1+4λ2

i

λ4
i

> 0, λ0 > 1,
1+4λ2

0

λ4
0
− 1+4λ2

i

λ4
i

< 0, λ0 < 1 .
(3.18)

Therefore, we conclude that µ > 0 for any compressible isotropic matrix that satisfies the P-C inequalities
[Truesdell and Noll, 2013, Mihai and Goriely, 2017]. In other words, for a given λ0, cloaking is always possible
using an incompressible spherical shell made of a homogeneous neo-Hookean solid.

Note that µ explicitly depends on λ0. Also, for a given WM and λ0, µ depends on Ri/Ro. This means
that the same incompressible neo-Hookean material can be used for cloaking spherical cavities of different sizes
as long as the appropriate size Ro for the cloak is chosen. One should also note that µ is a strictly increasing
function of Ri/Ro, and µ → ∞, as Ri/Ro → 1. Fig.4 shows a body with spherical cavities that are cloaked
using two different incompressible neo-Hookean solids. In summary, for a given compressible isotropic matrix
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with energy function WM = WM (I1, I2, I3), and under a given pure dilatational deformation λ0, one can cloak
a spherical hole (or a set of spherical holes) such that outside the cloak(s) the hydrostatic response of the body
is identical to that of the same body made of the homogeneous and isotropic matrix. Note that a cloak designed
for λ0 would not work for other values of stretch, in general. This is a nonlinear analogue of Mansfield [1953]’s
neutral holes. See also, [Yavari and Golgoon, 2019].

4 Hollow orthotropic cylinder assemblages

4.1 Finite hollow cylinders

Let us next consider a finite incompressible orthotropic cylindrical shell of length L and inner and outer radii
Ri and Ro, respectively, in its undeformed configuration. Assume that the material orthotropic axes are in the
radial, circumferential, and axial directions in the cylindrical coordinates (R,Θ, Z), i.e., N1 = R̂, N2 = Θ̂, and

N3 = Ẑ, where R̂, Θ̂, and Ẑ denote the unit vectors in the radial, circumferential, and longitudinal directions,
respectively. More specifically, with respect to the cylindrical coordinates (R,Θ, Z) the material metric and the
three material preferred unit vectors have the following representations

G =

1 0 0
0 R2 0
0 0 1

 , N1 =

1
0
0

 , N1 =

 0
1
R
0

 , N3 =

0
0
1

 . (4.1)

The strain energy function of the shell is denoted by W = W (I1, I2, I4, I5, I6, I7). Let us consider deformations
of the form (r, θ, z) = (r(R),Θ, αZ), where α > 0 is the axial stretch. The radial stretch is denoted by
λ(R) = r(R)/R. Suppose that the shell deforms such that the inner surface of the cylindrical shell remains
traction-free, the radial stretch at R = Ro is λ(Ro) = λ0, and the axial stretch is α. The right Cauchy-
Green deformation tensor reads C = diag(α−2λ−2(R), λ2(R), α2). Incompressibility constraint dictates that
r(R)r′(R) = R/α, and hence

λ(R) =

[
1

α
+

(
λ20 −

1

α

)
R2
o

R2

]1/2
. (4.2)

Employing (2.27) and (2.32), the non-zero components of the stress read

σ̂rr(R) = −p(R) + 2α−2λ−2(R) [W1(R) +W4(R)] + 2
[
λ−2(R) + α−2

]
W2(R) + 4α−4λ−4(R)W5(R) ,

σ̂θθ(R) = −p(R) + 2λ2(R)
[
W1(R) + α2W2(R)

]
+ 2α−2W2(R) ,

σ̂zz(R) = −p(R) + 2α2
[
W1(R) +W6(R) + 2α2W7(R)

]
+ 2

[
λ−2(R) + α2λ2(R)

]
W2(R) .

(4.3)

The energy function has the following invariants

I1 = λ2(R) + α−2λ−2(R) + α2 , I2 = λ−2(R) + α2λ2(R) + α−2 ,

I4 = α−2λ−2(R) , I5 = α−4λ−4(R) , I6 = α2 , I7 = α4 .
(4.4)

The only non-trivial equilibrium equation, σ̂rr,r + 1
r (σ̂rr − σ̂θθ) = 0, implies that

σ̂rr(R) =

∫ R

Ri

2

αξ

{ [
1− α−2λ−4(ξ)

] [
W1(ξ) + α2W2(ξ)

]
− α−2λ−4(ξ)W4(ξ)− 2α−4λ−6(ξ)W5(ξ)

}
dξ ,

σ̂θθ(R) = 2
[
λ2(R)− α−2λ−2(R)

] [
W1(R) + α2W2(R)

]
− 2α−2λ−2(R)

[
W4(R) + 2α−2λ−2(R)W5(R)

]
+

∫ R

Ri

2

αξ

{ [
1− α−2λ−4(ξ)

] [
W1(ξ) + α2W2(ξ)

]
− α−2λ−4(ξ)W4(ξ)− 2α−4λ−6(ξ)W5(ξ)

}
dξ ,

σ̂zz(R) = 2
[
α2 − α−2λ−2(R)

] [
W1(R) + λ2(R)W2(R)

]
− 2α−2λ−2(R)

[
W4(R) + 2α−2λ−2(R)W5(R)

]
+ 2α2

[
W6(R) + 2α2W7(R)

]
+

∫ R

Ri

2

αξ

{ [
1− α−2λ−4(ξ)

] [
W1(ξ) + α2W2(ξ)

]
− α−2λ−4(ξ)W4(ξ)− 2α−4λ−6(ξ)W5(ξ)

}
dξ .

(4.5)
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Similar to the case of anisotropic spherical shells, the stress and the invariants of the energy function depend
on the radial parameter R though the radial stretch λ(R). In particular, orthotropic cylindrical shells with
the same Ri/Ro ratio (and different radii Ro) will have the same stress field (and boundary tractions). Note
also that similar to spherical shells, the above formulas and the following calculations are still valid for radially
inhomogeneous cylindrical shells if the more general definition of similar cylindrical shells (3.6) is adopted.

Remark 4.1. It is known that inflation and extension of cylindrical shells are universal deformations for
incompressible isotropic solids [Ericksen, 1954]. More specifically, the deformations considered here are a subset
of Family 3 of universal deformations for incompressible isotropic solids. Yavari and Goriely [2021] showed that
for incompressible orthotropic isotropic solids Family 3 deformations are universal and there are two classes of
universal material preferred directions consistent with Family 3 deformations: (i) radial, circumferential, and
axial, and (ii) radial and two orthogonal families of circular helices. Here we have considered class (i) of universal
material preferred directions.

Let us consider an elastic compressible, homogeneous, isotropic body with an energy function WM =
WM (I1, I2, I3) such that it has a finite thickness L in the Z-direction in the Cartesian coordinate system
(X,Y, Z). Assume that ϕ(X,Y, Z) = (λ0X,λ0Y, αZ), i.e., F = diag (λ0, λ0, α). The non-zero stress components
are

σ̂xx = σ̂yy = 2α−1
(
WM
I1 +

(
α2 + λ20

)
WM
I2 + α2λ20W

M
I3

)
= σ0 ,

σ̂zz = 2α
(
λ−20 WM

I1 + 2WM
I2 + λ20W

M
I3

)
,

(4.6)

where I1 = 2λ20 + α2, I2 = λ20
(
λ20 + 2α2

)
, and I3 = α2λ40. It is apparent that the stress in the X − Y plane

is everywhere the same and is equal to σ0. It is now possible to replace any isotropic cylindrical part of
the compressible homogeneous body by an incompressible orthotropic cylindrical shell without perturbing the
outside stress field provided that∫ λ0

λi(λ0,
Ri
Ro
,α)

2η

1− αη2
[ (
W1(η) + α2W2(η)

) (
1− α−2η−4

)
− α−2η−4W4(η)− 2α−4η−6W5(η)

]
dη = σ0 , (4.7)

where

λi = λ(Ri) =

[
1

α
+
R2
o

R2
i

(
λ20 −

1

α

)]1/2
, (4.8)

and

I1(η) = η2 + α−2η−2 + α2, I2(η) = η−2 + α2η2 + α−2, I4(η) = α−2η−2, I5(η) = α−4η−4 . (4.9)

We can then continue replacing the remaining part of the body by the hollow shells with as small radii as
we desire and reach the cylinder assemblage geometrical arrangement. Eq.(4.7) gives the effective constitutive
equation of the assemblage in the form σ = σ(λ, α, c0), where c0 = R2

i /R
2
o.

Remark 4.2 (The effective plane-stress constitutive equation). The axial force required to maintain the
deformation for a pair of radial and axial stretches (λ0, α) is calculated as

Fz = 2π

∫ ro

0

σ̂zz(r) rdr =
2π

α

∫ Ro

0

σ̂zz(R)RdR . (4.10)

If there is no applied axial force, i.e., Fz = 0, from the relation∫ Ro

0

R σ̂zz(R) dR = 0 , (4.11)

one obtains α = α(λ0). Then, σ = σ̄(λ, c0) = σ(λ, α(λ), c0) would be the effective plane-stress constitutive
equation of the assemblage. Note that even for a neo-Hookean solid the relation α = α(λ0) would need to be
calculated numerically.
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4.2 Infinitely-long hollow cylinders

Let us next consider an infinitely-long incompressible orthotropic cylindrical shell of inner and outer radii Ri
and Ro, respectively, in its undeformed configuration. Again, assume that the material orthotropic axes are in
the radial, circumferential, and axial directions in the cylindrical coordinates (R,Θ, Z). For deformations of
the form (r, θ, z) = (r(R),Θ, Z), the right Cauchy-Green deformation tensor reads C = diag(λ−2(R), λ2(R), 1).
The incompressibility constraint is written as r(R)r′(R) = R, and hence

λ(R) =

[
1 +

(
λ20 − 1

) R2
o

R2

]1/2
. (4.12)

From (2.27) and (2.32), the non-zero components of the stress read

σ̂rr = −p(R) + 2λ−2(R) [W1(R) +W4(R)] + 2
[
λ−2(R) + 1

]
W2(R) + 4λ−4(R)W5(R) ,

σ̂θθ = −p(R) + 2λ2(R) [W1(R) +W2(R)] + 2W2(R) ,

σ̂zz = −p(R) + 2 [W1(R) +W6(R) + 2W7(R)] + 2
[
λ−2(R) + λ2(R)

]
W2(R) .

(4.13)

The energy function has the following invariants

I1 = λ2(R) + λ−2(R) + 1 , I2 = λ−2(R) + λ2(R) + 1 , I4 = λ−2(R) , I5 = λ−4(R) , I6 = I7 = 1 . (4.14)

The equilibrium equation implies that

σ̂rr(R) =

∫ R

Ri

2

ξ

{ [
1− λ−4(ξ)

]
[W1(ξ) +W2(ξ)]− λ−4(ξ)W4(ξ)− 2λ−6(ξ)W5(ξ)

}
dξ ,

σ̂θθ(R) = 2
[
λ2(R)− λ−2(R)

]
[W1(R) +W2(R)]− 2λ−2(R)

[
W4(R) + 2λ−2(R)W5(R)

]
+

∫ R

Ri

2

ξ

{ [
1− λ−4(ξ)

]
[W1(ξ) +W2(ξ)]− λ−4(ξ)W4(ξ)− 2λ−6(ξ)W5(ξ)

}
dξ .

(4.15)

Again, the stress and the invariants of the energy function depend on the radial parameter R through the radial
stretch λ(R). In particular, orthotropic cylindrical shells with the same Ri/Ro ratio (and different radii Ro)
will have the same stress field (and boundary tractions).

Let us consider an elastic compressible, homogeneous, isotropic body with the energy function WM =
WM (I1, I2, I3) such that it is infinitely extended in the Z-direction in the Cartesian coordinate system (X,Y, Z).
For deformations of the form ϕ(X,Y, Z) = (λ0X,λ0Y,Z), i.e., F = diag (λ0, λ0, 1), the non-zero stress compo-
nents are

σ̂xx = σ̂yy = 2
[
WM
I1 +

(
1 + λ20

)
WM
I2 + λ20W

M
I3

]
= σ0 , (4.16)

where I1 = 2λ20 + 1, I2 = λ20
(
λ20 + 2

)
, and I3 = λ40. Note that the isotropic body is under the plane strain

condition, and the stress in the X − Y plane is everywhere the same and is equal to σ0. One can replace any
isotropic cylindrical part of the compressible homogeneous body by an incompressible orthotropic cylindrical
shell without perturbing the outside stress field if∫ λ0

λi(λ0,
Ri
Ro

)

2η

1− η2
{(

1− η−4
)

[W1(η) +W2(η)]− η−4W4(η)− 2η−6W5(η)
}
dη = σ0 , (4.17)

where

λi = λ(Ri) =

[
1 +

R2
o

R2
i

(
λ20 − 1

)]1/2
, (4.18)

and
I1(η) = η2 + η−2 + 1, I2(η) = η−2 + η2 + 1, I4(η) = η−2, I5(η) = η−4 . (4.19)

We can then continue replacing the remaining part of the body by the hollow shells with as small radii as we
desire and reach the cylinder assemblage geometrical arrangement. Eq.(4.17) gives the effective plane-strain
constitutive equation of the assemblage in the form σ = σ(λ, c0), where c0 = R2

i /R
2
o.
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5 Concluding Remarks

In this paper, we generalized Hashin’s hollow sphere assemblage to nonlinear transversely isotropic solids with
radial material preferred direction. Each incompressible shell can be radially inhomogeneous as long as similar
spherical shells are defined properly. We made a connection with cloaking spherical cavities in a given com-
pressible homogeneous isotropic solid. In particular, it is noted that mechanical properties of cloaks explicitly
depend on the applied pure dilatational deformation. We analyzed both finite and infinitely-long hollow cylinder
assemblages made of orthotropic incompressible solids with axial, radial, and circumferential material preferred
directions. In the case of finite cylinders the effective constitutive equation of the assemblage is a function of
both the axial and the radial stretches. The effective plane-stress constitutive equation was derived as well.
In the case of infinitely-long hollow cylinders the effective plane-strain constitutive equation of the assemblage
was derived. The cylindrical shells can, in general, be radially inhomogeneous as long as a proper definition of
similar cylindrical shells is used.
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