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Topics Examples
@ Definintions @ Truss example
@ Considére condition @ Necking example
@ Helmholtz free energy @ Coexistent phases example
@ Stability of equilibrium @ Critical force and Gibbs free
@ Time-dependent, energy example

inhomogeneous deformation @ Gibbs free energy of spherical

@ Virtual work formulation balloon example

@ Wave in pre-stressed bar
example
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Overview Definitions
Truss example
Necking Examples

Overview

@ For small deformations, we applied F=ma in the reference
frame

@ For large deformations, this is no longer a valid
approximation

@ If we upgrade our definitions to handle more situations...

o ..formulate new material models using the free energy
density...

@ ...and link it to the finite element method...

@ ...we can explore all kinds of new phenomena!
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Overview Definitions
Truss example

Necking Examples

Strains
ref. cur.
T K L @ Stretch: A=1
@ Engineering: e= I_T =A-1
@ Natural: € = log(1) = log(A)
L , @ Lagrange: n:% [(%)2—1] :%(/\2—1)
4 NOTE: These are all functions of the stretch (A)

Stresses

®

@ True/Cauchy: o=
@ Nominal/1st Piola Kirchoff: s

>0 |

NOTE: Others can be defined as well
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Increments and Work-Conjugates

Increments Work-conjugates

Taking the derivates of our strain

L2 . o Fi i i
definitions w.r.t. A gives us Find pairs that give

“in%r. Iof work infcﬁ”'“ _ P3I
_al volume in ref. AL
® oA = @ With nominal stress,
® de=0A POl — 561 = sde
0 de=2 P3I
A @ With true stress, —7* = 00¢
® dn=A0A @ What about Lagrange?
Pél
=0 AOA(?
Work n(?)=A3A()

° (?)::SAAVA,the 2nd

Piola-Kirchoff Stress!
@ An increment of work is given

by P!
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Truss Example

Deformation geometry

2 2
Alzg:1,A2:g,A3:g:7VL’%i’é
Note: only unknown here is >
Material Model: Neo-Hookean
si=H(Ai—2;7%),i=1,23,5=0
Note: nominal stress form
Force Balance
Fx : By symmetry, this is 0
Fy : W —2(cos(6)s3az) —spa» =0
Incompressibility
AL=al=a= #
Mixing results in...

Ww-2 (%53 A73L3> —52A7—2L2 =0, which is 1 eqn. for
1 unk.
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Necking 1

Overview Definitions
Truss example
Necking Examples

x-axis: €, y-axis:P/AK

@ What is the force/strain relation for a
power law material, such as aluminum?

@ One possible formulation using natural
strain / true stress is:

o £=log(A), P=0a
@ A power law material model is used,
which fits the experimental € — 0 curves
well.

o 0=KeN, N=1 for our example

@ Incompressibility: AL=al = a= Ae™¢

s : _P_ P _ peN
@ Mixing these gives 0 = 7 = — = K¢
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Necking 2

0 9 _ AK(e ENEN 1 —gN —e ¢ =

de
os m a(o’ — 0) =0 at the maximum
f @ a cannot be zero, and thus ¢’ = o (the

" Considere condition)

| @ Applying our material model, this gives
e=N

o @ Note that 0’is the tangent modulus

— @ Material hardening / geometric softening

b < @ Model is invalid after this condition, as
. _ this is only good for homogenous
x-axis: €, y-axis:P/AK deformation
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xampl
Necking Examples

Necking 3

@ We can also formulate this using s, A
y / e A=1 P=sA
@ Using € = log(A) and AL = al,the power
03 “ law material model becomes

\ o s— Klog()\)\)N

@ Mixing these gives
N
P = KALEQT — Ag())

| N i
CU TR T T e 98 = Ad = ¢/ =0 (Considere condition)

x-axis: A, y-axis:P/AK @ Taking this derivative from the material
model gives N = log(A) & A = eV
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Overview

Necklng Examples

Necking 4

What about for Neo-Hookean materials?
Formulate this using s, A

A=1 P=sA

Material model becomes s = (A — A ~2)
P=pA(A —272)

B-nA(1+3%) (1+5) =0
(Considere condition)

i i : B ' @ This is satisfied when A = /=2, which
is not valid.

© 6 ¢ ¢ ¢

(4

x-axis: A, y-axis:P/AU
@ Conclusion: no necking in Neo-Hookean
materials.
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Helmholtz free energy
Energy Formulations of Material Laws Gibbs free energy
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Helmholtz free energy 1

@ Ois temp., | is Iength

@ Given F(1,0),6F = 251+ 9566 = P51+ n &6

@ Assuming that temperate change is negligible, i.e. adiobatic, and
thus consider 6F = P4/

@ Recall P =sA and I:AL#%:%‘{'

® OW =s0A = s(A) =4, where W is the energy density
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Helmholtz free energy
Energy Formulations of Material Laws Gibbs free energy
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Helmholtz free energy 2

Using our material models, we can write them in terms of energy
density

For neo-Hookean, s(A) = pu(A —A~2) = 4%

Integrating gives W(A) =5 (A2+2A71—¢) , W(1)=0=c=3

(]

_ ol _ gw
For power law, s = K=~ == =%

(]

N+1

Integrating gives W(A) = N+1 log(A)
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Stability of equilibrium

@ If force is static, then object may equilibrate. If so, what is A in this
state? Is it stable?

@ Gibbs free energy = potential energy=Helmholtz free energy - work
done by external force

@ G=ALWA)—PL-(A-1)=FA)—P-(I-1)

@ Using thermodynamics, we can show that the equilibrium state is
reached when G is minimized.

@ Evaluating G at A + A by expanding a Taylor series about A
(0o =A,x—x9=0A)

0 G(A+8A)=G(A)+G'(A)(BA)+ E A (BA)2 + ...

® Setting G'(A) = ALW' — PL=0=> W’ = & = s (stress is recovered)

@ This is a stable equillibrium if G"(A)>0ie. if W’ >0

NOTE: Recall from necking that W” = s’ = 0 where maximal force is
achieved.
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Helmholtz free energy
Energy Formulations of Material Laws Gibbs free energy
Examples

Coexistent phases example

@ Mixed phases — non-convex energy
density — material model not one to one.

o L'+L"=LT+I"=1ALU+A"'l"=]
@ Problem: For some nonconvex W(A),find

the unstable stress regime.
@5 = V/\V:: X‘,/' = 9% is the tangent line that
passes through the points A’ and A”

@ Maxwell’s rule:

° d/\ W — g,at A and A7

) f)\/ Sd)\ :0
o The area under the curve is equal

o F=WQA)AL + W(A")AL"

@ Summary: In equilibrium the phases

separate, but if metastable, they coexist.
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Helmholtz free energy
Energy Formulations of Material Laws Gibbs free energy
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Gibbs example 1

@ Problem: For a power law material, determine P.and plot
G(A) for value around it.

o Power law in terms of nominal stress: s = Xlog(A)N
o Considere condition: s’ =0 :> ("’g(’\)N)\l’V log MW" _
eA=1lorA=¢l
o P— kkAleM _ A p _ KANN
A ¢ eN
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Helmholtz free energy
Energy Formulations of Material Laws Gibbs free energy
Examples

Gibbs example 2

@ Let’s examine the behaviour
around Pcof G(A)

® Recall W(A) = NLJrllog(/\)"’+1

25 5 @ GA)=ALWA)—PL-(A-1)

@ For the above G(Iambda) the

force is less than the critical

force, and for small lambda
near 1, the helmholtz free

energy is less than the work

-5.x 10

~1.x 10

being done.
-1.5%x 104

x-axis: A, y-axis:G(A), P <P
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Helmholtz free energy
Energy Formulations of Material Laws Gibbs free energy
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Gibbs example 3

® G(A)=ALW(A)—PL-(A-1)

@ For Pmore, the work being
done is always greater than
the Helmholz free energy.

-2.x 10

~4. % 10

-6. % 10

-8.x 10

- 1.x 10'%

-12x10'4

x-axis: A, y-axis:G(A), Pc > P
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Helmholtz free energy
Energy Formulations of Material Laws Gibbs free energy
Examples

Spherical balloon example 1

@ Problem: Discuss Gibbs free energy of
balloon

o G =4nr*HW —pinrd

@ Using three ingredients:
v Def Geom: Ay =y =206 = £ A3=1

Incompressibility:

4TIR?H = 41ir?h = A3 = A, 2
Force balance: 03 20, 01 =0, = %
(biaxial state)

¢ ©

<

o Consider a half sphere:
2mrhoy = 1ir’p

e 0 =(01,02,0) and add hydrostatic
pressure to get (0,0,—01)

©

Material model (true stress):
-0 = “'()‘2_)\_1)
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Helmholtz free energy
Energy Formulations of Material Laws Gibbs free energy
Examples

Spherical balloon example 2

@ Result: p==2H(A;"—A; )

@ We can find critical pressure from here, and
plot G(A)as before.
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Time, space, work

Time-dependent, inhomogeneous deformation

@ Now we move to a more complicated model and consider time
and space variation

@ 4 ingredients:

o Def Geom: )\()(7 t) _ X(X+dXé§()—x(X i) 5X(X t)
s Cons. of Mass: p(X) onIy
o Cons. of Momentum (Force Balance):

2 (s(X, )A(X))dX + B(X, ) A(X)dX = p(X)Z2X0 A(X)dX
o Mat. Model: s=g(A)
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Time, space, work

Wave in pre-stressed bar example

ref.

cur.

Using the ingredients:
o Def. Geom: x(X t) = Ao X+ u(X,t),
A= (9x = )\0—|—
@ Mat. Model. Expand s=g(A) using TS to
find:
o 5~ g(Ao)+&'(A0)(A —Ao) +38"(Ao)(A —
Ao)? +

@ Cons. of Momentum: aiXS(X,t) :pdzx(x’t)

at?

By keeping up to linear terms from TS, we can mix
ingredients to find:

o 02u _ g(h) 0%

9t2 —  p o2
_ /&' (M)
[+ —
¢ p
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Time, space, work

Virtual work formulation

@ Define virtual displacement: dx = dx(X)

' . _9(3A)
@ Virtual stretch: oA = -

@ Using conservation of momentum, we can write an expression
for virtual work:

o Asdx|3Z + [52 5% (sA)dxdX
o Integrating by parts gives us: f))flz Asaix(éx)dX
@ For an arbitrary segment, sOA = s%(éx) is the virtual work
done by all forces on the segment.

@ This is the basis for the finite element method.
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Time, space, work

Research

@ Biomaterials are complicated, inhomogenous, anisotropic
materials

@ Tissues, in particular, require consideration of special material
models

@ Tissues also grow and this addition of mass and volume
change must be considered

@ My ongoing work will consider various models for growth

@ Applications to limb, root, and cell, and embryo growth.
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Time, space, work

The end

@ Thank you all for a great semester.
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