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OverviewEnergy Formulations of Material LawsTime, spa
e, work De�nitionsTruss exampleNe
king ExamplesOverviewFor small deformations, we applied F=ma in the referen
eframeFor large deformations, this is no longer a validapproximationIf we upgrade our de�nitions to handle more situations......formulate new material models using the free energydensity......and link it to the �nite element method......we 
an explore all kinds of new phenomena!Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work De�nitionsTruss exampleNe
king ExamplesStrainsStret
h: λ = lLEngineering: e = l−LL = λ −1Natural: ε = log( lL ) = log(λ )Lagrange: η = 12 [

( lL)2−1] = 12 (

λ 2−1)NOTE: These are all fun
tions of the stret
h (λ)StressesTrue/Cau
hy: σ = PaNominal/1st Piola Kir
ho�: s = PANOTE: Others 
an be de�ned as wellBen M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work De�nitionsTruss exampleNe
king ExamplesIn
rements and Work-ConjugatesIn
rementsTaking the derivates of our strainde�nitions w.r.t. λ gives us
δλ = δ lL
δe = δλ
δε = δλ

λ
δη = λ δλWorkAn in
rement of work is givenby Pδ l

Work-
onjugatesFind pairs that give"in
r. of work in 
ur.""volume in ref." = Pδ lALWith nominal stress,Pδ lAL = sδλ = sδeWith true stress, Pδ laL = σδεWhat about Lagrange?Pδ lAL = δη(?) = λ δλ (?)

(?) = S = s
λ , the 2ndPiola-Kir
ho� Stress!Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work De�nitionsTruss exampleNe
king ExamplesTruss Example Deformation geometry
λ1 = l1L1 = 1, λ2 = l2L2 , λ3 = l3L3 =

√l21+l22√L21+L22Note: only unknown here is l2Material Model: Neo-Hookeansi = µ(λi −λ−2i ), i = 1,2,3, s1 = 0Note: nominal stress formFor
e Balan
eFx : By symmetry, this is 0Fy : W −2(
os(θ )s3a3)− s2a2 = 0In
ompressibilityAL = al ⇒ a = ALlMixing results in...W −2( l2l3 s3 A3L3l3 )

− s2 A2L2l2 = 0, whi
h is 1 eqn. for1 unk.Ben M. Jordan Finite Deformation: Spe
ial Cases
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x-axis: ε , y-axis:P/AK
What is the for
e/strain relation for apower law material, su
h as aluminum?One possible formulation using naturalstrain / true stress is:

ε = log(λ ), P = σaA power law material model is used,whi
h �ts the experimental ε → σ 
urveswell.
σ = KεN , N = 12 for our exampleIn
ompressibility: AL = al ⇒ a = Ae−εMixing these gives σ = Pa = PAe−ε = KεNBen M. Jordan Finite Deformation: Spe
ial Cases
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king 2

x-axis: ε , y-axis:P/AK
dPdε = AK (e−εNεN−1− εN − e−ε =a(σ ′−σ) = 0 at the maximuma 
annot be zero, and thus σ ′ = σ (the
Considère condition)Applying our material model, this gives
ε = NNote that σ ′is the tangent modulusMaterial hardening / geometri
 softeningModel is invalid after this 
ondition, asthis is only good for homogenousdeformationBen M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work De�nitionsTruss exampleNe
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king 3

x-axis: λ , y-axis:P/AK
We 
an also formulate this using s, λ
λ = lL , P = sAUsing ε = log(λ ) and AL= al ,the powerlaw material model be
omess = K log(λ )N

λMixing these givesP = KA log(λ )N
λ = As(λ )dPdλ = As ′ ⇒ s ′ = 0 (Considère 
ondition)Taking this derivative from the materialmodel gives N = log(λ ) ⇔ λ = eNBen M. Jordan Finite Deformation: Spe
ial Cases
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x-axis: λ , y-axis:P/Aµ

What about for Neo-Hookean materials?Formulate this using s, λ
λ = lL , P = sAMaterial model be
omes s = µ(λ −λ−2)P = µA(λ −λ−2)dPdλ = µA(1+ 2

λ3), (1+ 2
λ3)

= 0(Considère 
ondition)This is satis�ed when λ = 3√−2, whi
his not valid.Con
lusion: no ne
king in Neo-Hookeanmaterials.Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work Helmholtz free energyGibbs free energyExamplesHelmholtz free energy 1
θ is temp., l is lengthGiven F (l ,θ ),δF = ∂F

∂ l δ l + ∂F
∂θ δθ = Pδ l + ηδθAssuming that temperate 
hange is negligible, i.e. adiobati
, andthus 
onsider δF = Pδ lRe
all P = sA and l = λL ⇒ δFAL = Pδ lAL

δW = sδλ ⇒ s(λ ) = dWdλ , where W is the energy density
Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work Helmholtz free energyGibbs free energyExamplesHelmholtz free energy 2
Using our material models, we 
an write them in terms of energydensityFor neo-Hookean, s(λ ) = µ(λ −λ−2) = dWdλIntegrating gives W (λ ) = µ2 (

λ 2 +2λ−1− 
) ,W (1) = 0⇒ 
 = 3For power law, s = K log(λ )N
λ = dWdλIntegrating gives W (λ ) = KN+1 log(λ )N+1
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OverviewEnergy Formulations of Material LawsTime, spa
e, work Helmholtz free energyGibbs free energyExamplesStability of equilibriumIf for
e is stati
, then obje
t may equilibrate. If so, what is λ in thisstate? Is it stable?Gibbs free energy = potential energy=Helmholtz free energy - workdone by external for
eG = ALW (λ )−PL · (λ −1) = F (λ )−P · (l −L)Using thermodynami
s, we 
an show that the equilibrium state isrea
hed when G is minimized.Evaluating G at λ + δλ by expanding a Taylor series about λ
(x0 = λ ,x − x0 = δλ )G (λ + δλ ) = G (λ )+G ′(λ )(δλ )+ G ′′(λ )2 (δλ )2 + ...Setting G ′(λ ) = ALW ′−PL= 0⇒W ′ = PA = s (stress is re
overed)This is a stable equillibrium if G ′′(λ ) > 0 i.e. if W ′′ > 0NOTE: Re
all from ne
king that W ′′ = s ′ = 0 where maximal for
e isa
hieved. Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work Helmholtz free energyGibbs free energyExamplesCoexistent phases exampleMixed phases → non-
onvex energydensity → material model not one to one.L′ +L′′ = L, l ′ + l ′′ = l , λ ′L′ + λ ′′L′′ = lProblem: For some non
onvex W (λ ),�ndthe unstable stress regime.st = W ′′−W ′
λ ′′−λ ′ = dWdλ is the tangent line thatpasses through the points λ ′ and λ ′′Maxwell's rule:dWdλ = stat λ ′ and λ ′′
∫ λ ′′

λ ′ sdλ = 0The area under the 
urve is equalF = W (λ ′)AL′ +W (λ ′′)AL′′Summary: In equilibrium the phasesseparate, but if metastable, they 
oexist.Ben M. Jordan Finite Deformation: Spe
ial Cases
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e, work Helmholtz free energyGibbs free energyExamplesGibbs example 1
Problem: For a power law material, determine P
and plotG (λ ) for value around it.Power law in terms of nominal stress: s = K

λ log(λ )NConsidère 
ondition: s ′ = 0⇒ dsdλ = K(log(λ)N−1N−log(λ)N
λ2 = 0

λ = 1 or λ = eNP = kKA log(λ)N
λ = sA⇒ P
 = KANNeN
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x-axis: λ , y-axis:G (λ ), P
 < P

Let's examine the behaviouraround PCof G (λ )Re
all W (λ ) = KN+1 log(λ )N+1G (λ ) = ALW (λ )−PL · (λ −1)For the above G(lambda), thefor
e is less than the 
riti
alfor
e, and for small lambdanear 1, the helmholtz freeenergy is less than the workbeing done.
Ben M. Jordan Finite Deformation: Spe
ial Cases
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e, work Helmholtz free energyGibbs free energyExamplesGibbs example 3

x-axis: λ , y-axis:G (λ ), P
 > P

G (λ ) = ALW (λ )−PL · (λ −1)For Pmore, the work beingdone is always greater thanthe Helmholz free energy.
Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work Helmholtz free energyGibbs free energyExamplesSpheri
al balloon example 1Problem: Dis
uss Gibbs free energy ofballoonG = 4πr2HW −p 43πr3Using three ingredients:Def Geom: λ1 = λ2 = 2πr2πR = rR , λ3 = hHIn
ompressibility:4πR2H = 4πr2h⇒ λ3 = λ−21For
e balan
e: σ3 ≈ 0, σ1 = σ2 = Pr2h ,(biaxial state)Consider a half sphere:2πrhσ1 = πr2p
σ = (σ1,σ2,0) and add hydrostati
pressure to get (0,0,−σ1)Material model (true stress):

−σ1 = µ · (λ 2−λ−1)Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, work Helmholtz free energyGibbs free energyExamplesSpheri
al balloon example 2Result: p = −2HR (λ−71 −λ−11 )We 
an �nd 
riti
al pressure from here, andplot G (λ )as before.
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OverviewEnergy Formulations of Material LawsTime, spa
e, workTime-dependent, inhomogeneous deformation
Now we move to a more 
ompli
ated model and 
onsider timeand spa
e variation4 ingredients:Def Geom: λ (X ,t) = x(X+dX ,t)−x(X ,t)dX = ∂x(X ,t)dXCons. of Mass: ρ(X ) only.Cons. of Momentum (For
e Balan
e):

∂
∂X (s(X ,t)A(X ))dX +B(X ,t)A(X )dX = ρ(X ) ∂2x(X ,t)

∂ t A(X )dXMat. Model: s = g(λ )

Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, workWave in pre-stressed bar exampleUsing the ingredients:Def. Geom: x(X ,t) = λ0X +u(X ,t),
λ = ∂x

∂X = λ0 + ∂u
∂XMat. Model: Expand s = g(λ ) using TS to�nd: s ≈ g(λ0)+g ′(λ0)(λ −λ0)+ 12g ′′(λ0)(λ −

λ0)2 + ...Cons. of Momentum: ∂
∂X s(X ,t) = ρ ∂2x(X ,t)

∂ t2By keeping up to linear terms from TS, we 
an mixingredients to �nd:
∂2u
∂ t2 = g ′(λ0)

ρ
∂2u
∂ t2
 =

√g ′(λ0)
ρBen M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, workVirtual work formulationDe�ne virtual displa
ement: δx = δx(X )Virtual stret
h: δλ = ∂(δλ)
∂XUsing 
onservation of momentum, we 
an write an expressionfor virtual work:Asδx |X2X1 +

∫ X2X1 ∂
∂X (sA)δxdXIntegrating by parts gives us: ∫ X2X1 As ∂

∂X (δx)dXFor an arbitrary segment, sδλ = s ∂
∂X (δx) is the virtual workdone by all for
es on the segment.This is the basis for the �nite element method.Ben M. Jordan Finite Deformation: Spe
ial Cases



OverviewEnergy Formulations of Material LawsTime, spa
e, workResear
h
Biomaterials are 
ompli
ated, inhomogenous, anisotropi
materialsTissues, in parti
ular, require 
onsideration of spe
ial materialmodelsTissues also grow and this addition of mass and volume
hange must be 
onsideredMy ongoing work will 
onsider various models for growthAppli
ations to limb, root, and 
ell, and embryo growth.
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OverviewEnergy Formulations of Material LawsTime, spa
e, workThe end
Thank you all for a great semester.
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