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1 Introduction

If a structure has one of its dimensions much larger than the other two, such as slender
wings, rotor blades, level arms, shafts, channels, bridges and etc., we can simplify the
analysis of such structures using beam models. The axis of the beam is defined along that
longer dimension, and a cross-section normal to this axis is assumed to smoothly vary
along the span of the beam. Although we could use the finite element method to routinely
analyze complex structures, simple beam models are often used in the preliminary design
stage because they can provide valuable insight into the behavior of the structures with
much less effort. There are different beam models with different accuracy. The simplest
one is the so-called classical model which can deal with extension, torsion, and bending in
two transverse directions. There are at least three ways to derive this beam model: New-
tonian method based on free body diagrams, variational method as an application of the
Kantorovich method, and variational asymptotic method. Both the Newtonian method
and the variational method are based on various ad hoc assumptions including kinematic
assumptions such as the Euler-Bernoulli assumptions associated with extension and bend-
ing and the Saint Venant assumptions associated with torsion and kinetic assumptions for
the 3D stress field within the structure. For this reason, we also term both the Newtonian
method and the variational method as ad hoc approaches. Although the classical beam
model is also commonly called Euler-Bernoulli beam model, it is misleading as the original
Euler-Bernoulli beam model can only deal with extension and bending in two directions.
We are usually taught the Newtonian method in our undergraduate study as it is intuitive
for understanding. However, it is tedious and error-prone for development of new models
and analysis of real structures. On the contrary, the variational method is systematic and
easy to handle real structures. Mainly for this reason, the variational method is commonly
employed in the literature to derive new models. The variational asymptotic method is
a recent addition to the beam literature and it has the merits of the variational method
without using ad hoc assumptions. We will present the details of these three methods for
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constructing the classical model for isotropic, homogeneous beams (beam-like structure
made of a single isotropic material) to appreciate the advantages and disadvantages of
different methods.

Fundamentally speaking, a beam model, no matter how rudimentary or how sophisti-
cated it is, is a one-dimensional (1D) model. It seeks to replace the governing equations
of the original three-dimensional (3D) structure into a set of equations in terms of one
fundamental variable, the beam axis. In other words, we need to replace the original 3D
kinematics, kinetics, and energetics in terms of their 1D counterparts. Such a connection
is usually not clearly pointed out in our study of beam theories.

As beam models can be considered as an approximation to the 3D elasticity theory,
it is appropriate for us to review the basics of that theory. For simplicity, we restrict
ourselves to material and geometric linear problems only. The theory of linear elasticity
contains three parts including kinematics, kinetics and energetics. The kinematics deal
with a continuous displacement field (ui) and a continuous strain field (εij) satisfying the
following strain-displacement relations at any material point in the body:

εij =
1

2
(ui,j + uj,i) (1)

The kinetics deals with a continuous stress field (σij) satisfying the following equilibrium
equations at any material point in the body:

σji,j + fi = 0 (2)

The energetics deals with the constitutive behavior of the material. For isotropic elastic
material, it deals with the following constitutive relations satisfied at any material point
in the body:

ε11
ε22
ε33
2ε23
2ε13
2ε12


=

1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν





σ11

σ22

σ33

σ23

σ13

σ12


(3)

It is commonly called the generalized Hooke’s law for isotropic materials. The 6×6 matrix
is the compliance matrix with E as the Young’s modulus and ν as the Possion’s ratio. The
constitutive relations in Eq. (3) can be simply inverted to obtain a 6× 6 stiffness matrix.

The 15 equations in Eqs. (1), (2), (3) form the complete system to solve the 15 un-
knowns (ui, εij, σij, note the symmetry of εij and σij). Clearly boundary is also part of the
body, which implies that the above equations should also hold for points on the boundary.
However, along the boundaries, we also know some information which can be considered
as given to the solid in question. For example some boundary points are fixed. Hence
along the boundary, we have some additional equations to satisfy. If the displacement of
some boundary surfaces is prescribed to be u∗

i , then we require the displacement field to
satisfy

ui = u∗
i (4)
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on such boundary surfaces. If the traction of some boundary surfaces is prescribed to be
ti, then we require the stress field to satisfy

σijni = tj (5)

2 Ad Hoc Approaches

The starting point of ad hoc approaches is the introduction of a set of kinematics as-
sumptions which enables us to express the 3D displacements in terms of the 1D beam
displacements, the 3D strain field in terms of 1D beam strains. Assumptions of the stress
field are also used to relate the 3D stress field with the 3D strain field. Although these
assumptions are commonly used in our textbooks, they are not emphatically pointed as
one set of many possible assumptions. Students might mistakenly think these are the
assumptions must be made for beam theory or, even worse, they might think that these
assumptions represent a universal truth for beam-like structures. The reality is that these
assumptions are usually reasonably justified for isotropic homogeneous beams featuring
simple cross-sections and become questionable for beams of complex geometry made of
general anisotropic, heterogeneous materials such as composite rotor blades. These as-
sumptions are not absolutely needed if one uses the variational asymptotic method to
construct the beam model, as we will show later.

2.1 Kinematics

As we have pointed out that the derivation of the classical beam model using the New-
tonian method and the variational method starts from two types of ad hoc assumptions
for kinematics: Euler-Bernoulli assumptions associated with extension and bending and
Saint Venant assumptions associated with torsion.

2.1.1 The displacement field based on Euler-Bernoulli assumptions

The Euler-Bernoulli assumptions are

1. The cross-section is infinitely rigid in its own plane. Any material point in the plane
of the cross-section solely consists of two rigid body translations.

2. The cross-section of a beam remain plane after deformation.

3. The cross-section remains normal to the deformed axis of the beam.

Experimental observations show that these assumptions are reasonable for slender
structures made of isotropic materials with solid cross sections subjected to extension
or bending deformations. When one or more of these conditions are not met, the classical
beam model derived based on these assumptions may be inaccurate. Now, let us discuss
the mathematical implication of the Euler-Bernoulli assumptions.

Consider a set of unit vectors êi with coordinates xi (Here and throughout this chapter,
Greek indices assume values 2 and 3 while Latin indices assume 1, 2, and 3. Repeated
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1ê

1ê
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Figure 1: Decomposition of the axial displacement field.
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indices are summed over their range except where explicitly indicated). This set of axes is
attached at a point of the beam cross-section, ê1 is along the axis of the beam, and ê2 and
ê3 define the plane of the cross-section. Let u1(x1, x2, x3), u2(x1, x2, x3), and u3(x1, x2, x3)
be the displacement of an arbitrary point of the beam in the ê1, ê2, and ê3 directions,
respectively.

The first Euler-Bernoulli assumption states that the cross-section is infinitely rigid in
its own plane, which implies that the displacement of any material point in the cross-
sectional plane solely consists of two rigid body translations ū2(x1) and ū3(x1)

u2(x1, x2, x3) = ū2(x1); u3(x1, x2, x3) = ū3(x1); (6)

The second Euler-Bernoulli assumption states that the cross-section remains plane after
deformation. This implies an axial displacement field consisting of a rigid body translation
ū1(x1), and two rigid body rotations Φ2(x1) and Φ3(x1), as depicted in Figure 1.

u1(x1, x2, x3) = ū1(x1) + x3Φ2(x1)− x2Φ3(x1); (7)

Although the center of rotation is not necessarily at the origin of xα, rotation around
any other point can still be expressed using Eq. (7) as any axial displacements introduced
by the shifting of the rotation center can be incorporated into the unknown function
ū1(x1). Note the sign convention: the rigid body translations of the cross-section ūi(x1) are
positive in the direction of the axes êi; the rigid body rotations of the cross-section Φi(x1)
are positive if they rotate about the axes êi, respectively. Only Φ2 and Φ3 are involved
in the Euler-Bernoulli assumptions and Φ1 will be introduced later in the displacement
expressions according to the Saint Venant assumptions. Figure 2 depicts these various
sign conventions. The reason there is a negative sign in the last term of Eq. (7) is because
a positive Φ3 will create a negative axial displacement for a positive x2.
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Figure 2: Sign convention for the displacements and rotations of a beam.

The third Euler-Bernoulli assumption states that the cross-section remains normal to
the deformed axis of the beam. This implies the equality of the slope of the beam and of
the rotation of the section, as depicted in Figure 3

Φ3 = ū′
2; Φ2 = −ū′

3 (8)

where the superscript prime expresses a derivative with respect to x1. The minus sign in
the second equation is a consequence of the sign convention on sectional displacements
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Figure 3: Beam slope and cross-sectional rotation.

and rotations. Substituting Eqs. (8) into Eq. (7), we can eliminate the sectional rotation
from the axial displacement field. The complete 3D displacement field for a beam-like
structure implied by the Euler-Bernoulli assumptions writes

u1(x1, x2, x3) = ū1(x1)− x3ū
′
3(x1)− x2ū

′
2(x1);

u2(x1, x2, x3) = ū2(x1); (9)

u3(x1, x2, x3) = ū3(x1).

Here, we have to emphasize that the fact that in reality that the 3D displacements
ui(x1, x2, x3) are generally 3D unknown functions of x1, x2, x3 as determined by physics.
We have assumed a specific functional form for them in virtue of Euler-Bernoulli assump-
tions so that u1 must be a linear combination of x2, x3 and some unknown 1D functions ūi

which must be functions of x1 only. The Euler-Bernoulli assumptions can be equivalently
considered as constraining the structure in such a way that it must behave according to
these assumptions, although we might not be able to apply such constraints physically.
Because of these constraints, the overall system is more stiffer than the original structure.
In other words, for a structure under the same load, displacements ui obtained using the
classical beam model based on the Euler-Bernoulli assumptions will be smaller than those
obtained using a theory (for example 3D elasticity) without such assumptions. One or all
of the three Euler-Bernoulli assumptions can be removed or replaced by other assump-
tions. For example, one can remove the third Euler-Bernoulli assumptions, which implies
the cross-section remains as a plane during deformation but it not necessarily remains
as normal to the beam axis. This is actually the starting point of the derivation of the
Timoshenko beam model. As the Timoshenko beam model has one less assumption, it is
expected that the displacements obtained by Timoshenko beam model will be larger than
those obtained using the classical beam model based on the Euler-Bernoulli assumptions.

2.1.2 The displacement field based on Saint Venant assumptions

The displacement field based on Euler-Bernoulli assumptions, Eqs. (9), have been proven
to be adequate for isotropic homogeneous beams featuring extension and bending. How-
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ever, it provides a poor representation of beams under torsion, which is often present in
structures, and in fact many important structural components are designed to carry tor-
sional loads primarily. If the beam is twisted, the cross section will be warped and cannot
remain plane in general. For this reason, Saint Venant relaxed the second Euler-Bernoulli
assumption and introduced the following assumptions:

1. The shape and size of the cross section in its own plane are preserved, which implies
each cross section rotates like a rigid body.

2. The cross section does not remain plane after deformation but warp proportionally
according to the rate of twist.

3. The rate of twist is uniform along the beam, which implies the twist angle is a linear
function of the beam axis.

According to the first assumption of Saint Venant, the in-plane displacement due to
the twist angle Φ1(x1) (see Figure 2) can be described as

u2(x1, x2, x3) = −x3Φ1(x1); u3(x1, x2, x3) = x2Φ1(x1). (10)

According to the second assumption of Saint Venant, the axial displacement field is pro-
portional to the twist rate κ1 = Φ′

1 and has an arbitrary variation over the cross-section
described by the unknown warping function Ψ(x2, x3) such that

u1(x1, x2, x3) = Ψ(x2, x3) κ1. (11)

It is noted that the twist rate is constant according to the third assumption. Ψ(x2, x3) is
usually called Saint Venant warping function and solved separately over the cross-sectional
domain according to the elasticity theory. It is governed by the following equation

∂2Ψ

∂x2
2

+
∂2Ψ

∂x2
3

= 0. (12)

at all points of the cross-section A along with stress free boundary conditions along the
boundary curve of the cross-section. The warping function vanishes for a isotropic, ho-
mogenous, circular cross-section.

It is common that the beam could subjected to extension, bending, and torsion. We
need to develop a model which could simultaneously handle all these deformation modes.
This can be achieved by combining the displacement expressions in Eqs. (9), Eqs. (10),
and Eq. (11) such that

u1(x1, x2, x3) = ū1(x1)− x3ū
′
3(x1)− x2ū

′
2(x1) + Ψ(x2, x3) κ1;

u2(x1, x2, x3) = ū2(x1)− x3Φ1(x1); (13)

u3(x1, x2, x3) = ū3(x1) + x2Φ1(x1).

Clearly, the complete 3D displacement field of the beam can be expressed in terms of
three sectional displacements ū1(x1), ū2(x1), ū3(x1) and one sectional rotation Φ(x1). This
important simplification resulting from the Euler-Bernoulli assumptions and Saint Venant
assumptions allows the development of the classical beam model in terms of ūi and Φ,
which are unknowns functions of the beam axis x1 only, a 1D formulation. In other words,
through these two types of assumptions, we relate the 3D displacements, ui(x1, x2, x3), in
terms of 1D beam displacements, ūi(x1),Φ1(x1).

7



2.1.3 The strain field

To deal with geometrical linear problem, we use the infinitesimal strain field defined as

εij =
1

2
(ui,j + uj,i) (14)

Substituting the displacement field in Eqs. (13), we obtain the following 3D strain field as

ε11(x1, x2, x3) = ū′
1(x1)− x3ū

′′
3(x1)− x2ū

′′
2(x1). (15)

ε22 = ε33 = 2ε23 = 0 (16)

2ε12 =

(
∂Ψ

∂x2

− x3

)
κ1; 2ε13 =

(
∂Ψ

∂x3

+ x2

)
κ1; (17)

At this point it is convenient to introduce the following notation for the 1D beam
strains

ϵ1(x1) = ū′
1(x1); κ1(x1) = Φ′

1(x1) κ2(x1) = −ū′′
3(x1); κ3(x1) = ū′′

2(x1). (18)

where ϵ1 is the axial strain, κ1 the twist rate, and κ2 and κ3 the curvature about the axes
ê2 and ê3, respectively. Eq. (18) can be considered as the 1D beam strain-displacement
relations. It is pointed out here that expressing the twist rate κ1 as a function of x1 is a
direct violation of the third Saint Venant assumption of uniform torsion which is used to
obtain the expression for ε11 in Eq. (15). Nevertheless, it is a common practice that the
classical beam model derived based on this assumption is frequently used to analyze beams
with twist rates varying along the beam axis. This type of inconsistency frequently hap-
pens for models derived using ad hoc assumptions such as the Euler-Bernoulli assumptions
and Saint Venant assumptions.

Using the definition in Eqs. (18), we can express the axial strain distribution ε11 in
Eq. (15) as

ε11(x1, x2, x3) = ϵ1(x1) + x3κ2(x1)− x2κ3(x1); (19)

The vanishing of the in-plane strain field as implied by Eq. (16) is a direct consequence
of assuming the cross-section to be infinitely rigid in its own plane. The strain measures
ϵ1, κi are usually collectively terms as classical beam strain measures. The original 3D
strain field is expressed in terms of the classical beam strain measures, which are 1D
functions of x1 and we have now completed the expressions for 3D kinematics including
the displacement field ui(x1, x2, x3) and the strain field εij(x1, x2, x3) in terms of 1D kine-
matics including beam displacement variables ūi(x1),Φ1(x1) and the classical beam strain
measures ϵ1(x1), κi(x1).

2.2 Kinetics

Having known the strain field, we can obtain the stress field in the beam using the gen-
eralized 3D Hooke’s law if the material is linear elastic. For example, for an isotropic
material, we have

σ11 = (λ+2G)ε11 σ22 = σ33 = λε11 σ12 = 2Gε12 σ13 = 2Gε13 σ23 = 0 (20)
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where λ = νE
(1+ν)(1−2ν)

and G = E
2(1+ν)

is the shear modulus. Although this stress field
naturally flow from the generalized Hooke’s law, it does not agree with the experimental
measurements very well. We have to introduce additional assumptions regarding the stress
field to provide more accurate approximation of the reality. Because the dimension of the
cross-section is much smaller comparing to the length of the beam axis, we can assume that
σ22 ≈ 0 and σ33 ≈ 0 in comparison to σ11. This assumption clearly conflicts with the stress
field in Eq. (20) obtained from the strain field which is obtained from the displacement
field based on the Euler-Bernoulli assumptions and the Saint Venant assumptions. The
reason is that the first assumption of Euler-Bernoulli and Saint Venant, cross section
remains rigid in its own plane, clearly violates the reality. We all know that when beam is
deformed, the cross section will deform in its own plane due to Poisson’s effect. For this
very reason, we overrule the previous assumptions for obtaining kinematics and introduce
the following assumptions for the stress field:

σ22 = σ33 = σ23 = 0 (21)

With this additional assumption, we end up with the following stress field:

σ11 = Eε11 σ12 = 2Gε12 σ13 = 2Gε13 σ22 = σ33 = σ23 = 0 (22)

Clearly the above stress field is not the same as those in Eq. (20), which implies that
the stress field in Eq. (22) conflicts with our starting Euler-Bernoulli and Saint Venant
assumptions. In fact, it is obtained from the strain-stress relations for isotropic materials
with the assumption that σ22 = σ33 = 0, which implies in fact ε22 = ε33 = −ν/Eε11
as a direct consequence of the Hooke’s law. This implication contradicts with the strain
field in Eq. (16) obtained using the Euler-Bernoulli assumptions and the Saint Venant
assumptions except when ν = 0 which in general is not true. The kind of contradictions
are common in structural models derived based on ad hoc assumptions. Nevertheless,
such inconsistencies are used in the derivation of the classical beam model and commonly
taught in textbooks. These contractions can be partially justified by the fact that we
need to rely on the Euler-Bernoulli assumptions and Saint Venant assumptions to obtain
a simple expression of the 3D kinematics in terms of 1D kinematics and we also use the
stress assumptions in Eq. (21) so that the results can better agree with reality. A sad fact
is that such inconsistencies are seldom clearly pointed out and criticized. As a summary,
to derive the classical beam model based on ad hoc assumptions, we have to first use
Euler-Bernoulli assumptions and Saint Venant assumptions to related 3D kinematics with
1D kinematics, and then use the stress assumption in Eq. (21) to obtain the 3D stress
field. In other words, in our further derivations, we use the 3D strains as expressed in
Eqs. (19), (16), and (17) and the 3D stresses as expressed in Eq. (22), despite of the fact
that they are obtained through a set of conflicting assumptions.

We also need to note that the transverse shear stresses in Eq. (22) here are only caused
by twist in view of Eq. (17) and the transverse shear stresses due to flexure, denoted
as σ∗

1α for distinction, cannot be obtained this way. This is due to the third Euler-
Bernoulli assumption. When we assume cross-section remains normal to the beam axis
during deformation, we effectively assume that the beam is infinitely rigid in transverse
shear in flexure. Hence, the transverse shear stresses due to flexure, although exist in
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Figure 4: Sign convention for sectional stress resultants

general, cannot be obtained based on constitutive relations but must be determined from
equilibrium considerations as will be shown later.

To complete the 1D beam model, we also need to introduce a set of 1D kinetic variables
called sectional stress resultants to relate with it 3D counterparts, the 3D stress field. The
sectional stress resultants are defined as follows:∫

σ11dA = F1∫
(σ13x2 − σ12x3)dA = M1∫
σ11x3dA = M2∫
σ11x2dA = −M3 (23)

where A denotes the cross-sectional domain. The sign convention is determined by the
definition as depicted in Figure 4 for a differential beam segment. Fα are not defined
similarly as the first equation in Eq. (23) as we have pointed out that σ1α in Eq. (22)
are only twist-induced transverse shear stresses which are statically equivalent to the
twisting moment M1 only. Thus, the corresponding transverse stress resultants due to
twist-induced transverse shear stresses will vanish. For this reason, we define the transverse
shear resultants in terms of the flexure-induced transverse shear stresses instead, such that∫

σ∗
1αdA = Fα (24)
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As will be shown later, Fα are not kinetic variables in the 1D classical beam model and
are only used for deriving the equilibrium equations using the Newtonian approach.

It is timely noted that to complete the kinetics part, we need to establish govern-
ing equations among the 1D kinetic variables F1,Mi which will be furnished by either
Newtonian method or the variational method later.

2.3 Energetics

Substituting the 3D strain field in Eqs. (19), (16), and (17) into the 3D stresses in Eq. (22),
then into Eq. (23), we have

F1 =

∫
E (ϵ1 + x3κ2 − x2κ3) dA = S11ϵ1 + S13κ2 + S14κ3

M1 =

∫
G (x2(Ψ,3 + x2)− x3(Ψ,2 − x3))κ1dA = S22κ1

M2 =

∫
x3E (ϵ1 + x3κ2 − x2κ3) dA = S13ϵ1 + S33κ2 + S34κ3

M3 =−
∫

x2E (ϵ1 + x3κ2 − x2κ3) dA = S14ϵ1 + S34κ2 + S44κ3

(25)

with

S11 =

∫
EdA S13 =

∫
Ex3dA S14 = −

∫
Ex2dA

S22 =

∫
G
(
x2
2 + x2

3 + x2Ψ,3 − x3Ψ,2

)
dA

S33 =

∫
Ex2

3dA S34 = −
∫

Ex2x3dA S44 =

∫
Ex2

2dA

(26)

These are commonly called beam stiffness. As the beam is made of a single isotropic
material, then the constants E and G can be factored out.

Eq. (25) can be rewritten in the following matrix form
F1

M1

M2

M3

 =


S11 0 S13 S14

0 S22 0 0
S13 0 S33 S34

S14 0 S34 S44



ϵ1
κ1

κ2

κ3

 (27)

Here S11 is the extension stiffness, S13 and S14 are the extension-bending coupling stiffness,
S22 is the torsional stiffness, S33 and S44 are the bending stiffness, S34 is the cross bending
stiffness. Eq. (27) can be considered as the constitutive relations for the classical beam
model, the 1D counterpart of the 3D generalized Hooke’s law. The 4×4 symmetric matrix
is commonly called classical beam stiffness matrix. Because of the assumptions we have
used and the restriction that our beam is made of a single isotropic material, the torsional
behavior is automatically decoupled from extension and bending, implied by the fact that
the entries on the second row and second column are zero except the diagonal term, the
torsional stiffness. That is also the reason that why in our undergraduate study, torsion
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is taught separately from extension and bending. For a composite beam structure, the
stiffness matrix could be fully populated such that

F1

M1

M2

M3

 =


S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44



ϵ1
κ1

κ2

κ3



ϵ1
κ1

κ2

κ3

 =


c11 c12 c13 c14
c12 c22 c23 c24
c13 c23 c33 c34
c14 c24 c34 c44




F1

M1

M2

M3

 (28)

The 4 × 4 matrix in the right equation is commonly called compliance matrix which is
the inverse of the stiffness matrix. The stiffness matrix (thus the compliance matrix)
for composite beams cannot be simply evaluated using the integrals in Eq. (26) but a
numerical approach is usually needed.

2.3.1 Extension center

It is also possible to decouple extension and bending by choosing the origin of the coor-
dinates xα in such a way that extension-bending coupling stiffness computed with respect
to this newly chosen origin vanish. Such a point is normally called the centroid but we
prefer the name of extension center for the reason that when an extension force is applied
at this point, no bending deformation will be caused. Suppose we choose the origin at the
extension center with location at (x2c, x3c) (see Figure 5) with respect to the original xi

coordinate system, then we have

S∗
13 =

∫
E(x3 − x3c)dA = 0 =⇒ x3c =

S13

S11

S∗
14 =−

∫
E(x2 − x2c)dA = 0 =⇒ x2c =

−S14

S11

(29)

In other words, if we know the classical stiffness matrix in an arbitrary coordinate, we can
compute the extension center according to the above formulas. A coordinate system x∗

i

with the origin of x∗
α located at (x2c, x3c) and x∗

1 = x1 is called the centroidal coordinate
system of the beam. Although as long as the origin is at the centroid, the coordinate
system is called centroidal coordinate system. We usually also choose x∗

α to be parallel to
our original coordinate system xα. All our previous formulations remain exactly the same
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in this new coordinate system (we need to replace xi with x∗
i , of course), except that the

constitutive relations will become
F1

M1

M∗
2

M∗
3

 =


S11 0 0 0
0 S22 0 0
0 0 S∗

33 S∗
34

0 0 S∗
34 S∗

44



ϵ1
κ1

κ∗
2

κ∗
3

 (30)

Here superscript star is used to denoted that these quantities are computed with respect
to the centroidal coordinate system x∗

i and S∗
33, S

∗
34, S

∗
44 are different from these values in

the original arbitrary coordinate system xi.

2.3.2 Principal bending axes

Because of the special choice of centroidal coordinate system, extension is now decoupled
from the bending in the classical beam stiffness matrix. However, the bending deforma-
tions in two directions are still coupled if the cross bending stiffness S∗

34 is not zero. What
we can is to rotate the coordinates x∗

α in such a way that cross bending stiffness computed
with the rotated axes vanish. Denote the rotated axes as x̄α, we call the coordinate system
x̄i with x̄1 = x∗

1 as the principal centroidal axes of bending. According to what we have
learned in our undergraduate solid mechanics, the rotated angle can be computed from
the following expressions

sin 2α = −S∗
34

H
cos 2α =

S∗
44 − S∗

33

2H
(31)

with H =
√

(S∗
44−S∗

33)
2

4
+ (S∗

34)
2. In the principal centroidal coordinate system of bending,

we have

S̄34 = 0 S̄33 =
S∗
44 + S∗

33

2
−H S̄44 =

S∗
44 + S∗

33

2
+H (32)

S̄33 and S̄44 are called principle bending stiffnesses. In other words in the principal cen-
troidal coordinate system, the stifffness matrix becomes a diagonal matrix and we can
completely decouple all the four fundamental deformation modes (extension, torsion, and
bending in two directions) and we can study each deformation separately and that is what
exactly we have learned in our undergraduate studies. To achieve such decoupling, we
need to first locate the centroid of the cross-section, then we need to identify the principal
bending directions of the cross-section, and finally write our equations in the principal
centroidal coordinate system. More specifically, we need to follow the following steps:

• Compute the stiffness matrix Eq. (27) according to Eqs. (26) in any arbitrary user
chosen coordinate system.

• Locate the centroid according to the formulas in Eq. (29). Compute S∗
33, S

∗
34, S

∗
44 in

the centroidal coordinate system x∗
i .

• Locate the direction of principal bending axes by computing the rotating angles
according to Eq. (31), and compute the principal bending stiffness according to
Eq. (32).

13



The principal centroidal coordinate system x̄i has the origin located at the centroid and
x̄α align with the principal bending axes. The formulations we have thus far remain the
same for the principal centroidal coordinate system except the classical stiffness matrix
becomes a diagonal matrix with S11, S22, S̄33, S̄44 on the diagonal. Note, each cross-section
only has one unique principal centroidal coordinate system. For simple cross-sections it is
easy to identify such coordinate system. For realistic structures, it is not trivial to do so.
Particularly, for a general composite beam, the 4× 4 classical beam stiffness matrix could
be fully populated which means all the four deformation modes can be fully coupled and
such a decoupling may only cause confusion and not of much use any longer.

2.3.3 Extension center of composite beams

To obtain the extension center and principal bending axes for a general composite beam
is more involved than the simple formulas we obtained previously for isotropic homoge-
nous beams. Nevertheless, they can be obtained by slightly modifying the definitions of
extension center and principal bending axes. As all the deformation modes of the classical
beam model could be fully coupled, the extension and principal bending axes can only be
rigorously defined at the cross-sectional level. In other words, we modify our definition
of extension center as the point on the cross-section when only axial force resultant F1 is
applied at this point, no bending curvatures will be caused. Imagining F1 is applied at
the centroid in Figure 5, pointing toward the reader, then with respect to the coordinate
system xi, F1 will also generate bending moments M2 = F1x3c and M3 = −F1x2c. Using
the second equation in Eq. (28), we have

ϵ1
κ1

κ2

κ3

 =


c11 c12 c13 c14
c12 c22 c23 c24
c13 c23 c33 c34
c14 c24 c34 c44




F1

0
F1x3c

−F1x2c

 (33)

The definition of extension center requires κ2 = κ3 = 0, which implies the following two
equations

(c13 + c33x3c − c34x2c) = 0 (c14 + c34x3c − c44x2c) = 0 (34)

which can be used to locate the position of extension center as

x2c =
c14c33 − c13c34
c33c44 − c234

x3c =
c14c34 − c13c44
c33c44 − c234

(35)

It can be easily verified that the above formula will be reduced to be the same as those in
Eq. (5) if the flexibility constants are obtained by inverting the stiffness matrix in Eq (27)
for an isotropic homogenous beam.

Relocating the origin of the coordinate system to the extension center, we can obtain
the centroidal coordinate system and the compliance matrix in this coordinate system will
have the following form. 

ϵ1
κ1

κ2

κ3

 =


c∗11 c∗12 0 0
c∗12 c∗22 c∗23 c∗24
0 c23∗ c∗33 c∗34
0 c∗24 c∗34 c∗44




F1

M1

M2

M3

 (36)
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Figure 6: Beam with arbitrary three-dimensional loading.

Note all the beam strains and sectional resultants are defined in the centrodial coordinate
system x∗

i . Note here, even if we vanished the two extension-bending coupling entries in
the compliance matrix, the extension is still coupled with the torsion which itself could be
coupled with the bending. That is to say, we can not completely decouple extension from
bending for general composite beams. This is the reason why I believe extension center
and principal axes of bending are not very meaningful quantities for composite beams.

2.4 Equilibrium equations

In our classical beam problem, we are solving for the unknown beam displacements (ūi,Φ1),
bean strains (ϵ1, κi), and stress resultants (F1,Mi), a total of 12 unknowns. Thus far, we
have obtained four equations for the 1D strain-displacement relations in Eq. (18), and four
equations for the 1D constitutive relations in Eq. (27), a total of eight equations. We are
lacking of four equations to form a complete system. These four equations can be derived
using either Newtonian method or variational method.

2.4.1 Newtonian method

To use Newtonian method to derive the equilibrium equations of the classical beam model,
we need to consider the equilibrium of a differential beam element using some free body
diagrams, which is the focus of this section.

Consider a beam of arbitrary cross-sectional shape subjected to a complex three-
dimensional loading as sketched in Figure 6. This loading consists of distributed and
concentrated axial and transverse loads, as well as distributed and concentrated moments.
The axial and transverse distributed loads p1(x1), p2(x1), and p3(x1) act in the direction
ê1, ê2, and ê3, respectively. The same convention is used for the concentrated loads P1,
P2, and P3. The distributed moments q1(x1), q2(x1) and q3(x1) act about the axes ê1,
ê2, and ê3, respectively. The concentrated moments Q1, Q2, and Q3 act about the same
axes. Figure 6 depicts concentrated forces and moments acting at the tip of the beam,
but in practical situations, such concentrated loads could be applied at any span-wise
location. Note here, we consider the distributed loads in terms of distributed forces pi
and distributed moments qi acting at the origin of xα and they are functions of x1 only.
In other words the distribution is only along the beam axis and not distributed along the
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Loading Type Notation Units
Distributed loads p1(x1), p2(x1), p3(x1) N/m
Concentrated loads P1, P2, P3 N
Distributed moments q1(x1), q2(x1), q3(x1) N·m/m
Concentrated moments Q1, Q2, Q3 N·m

Table 1: Loading components acting on the beam.
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111 )( dxxq

Figure 7: Free body diagram for the axial forces.

cross-section. In reality, in the original 3D structure, within the framework of 3D elastic-
ity, there are distributed body forces as functions of xi and distributed surfaces tractions
along the boundary surfaces. The 1D loads should relate with the 3D loads in such a way
that they are statically equivalent: summation of forces and summation of moments in
three directions of the 3D loads should be equal to those of the 1D loads. How to achieve
it systematically will be given in the next section when we derive the classical beam model
using the variational method. The notation used here for the various loads is summarized
in Table 1.

The equilibrium equations can be derived considering free body diagrams of a differ-
ential beam element. Let us focus on the equilibrium along the beam axis direction first.
Consider an infinitesimal slice of the beam of length dx1 as depicted in Figure 7. Summing
all the forces in the axial direction yields the following equation

dF1

dx1

= −p1(x1) (37)

Summing all the moments in the axial direction yields the following equation

dM1

dx1

= −q1(x1) (38)

The first sketch in Figure 8 depicts the transverse loads and bending moments acting
on an infinitesimal slice of the beam, focusing on the (ê1, ê2) plane. A summation of the
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Figure 8: Free body diagram for the transverse shear forces and bending moments.
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forces along axis ê2 gives the transverse force equilibrium equation in this direction

dF2

dx1

= −p2(x1). (39)

A summation of the moments taken about the origin about an axis parallel to ê3 yields

dM3

dx1

+ F2 = −q3(x1). (40)

Similarly, the second sketch of Figure 8 also depicts the transverse loads and bending
moments acting on an infinitesimal slice of the beam, focusing on the (ê1, ê3) plane.
Summing the forces along axis ê3 gives the second transverse force equilibrium equation

dF3

dx1

= −p3(x1), (41)

and the summing of the moments taken about the origin about an axis parallel to ê2 leads
to

dM2

dx1

− F3 = −q2(x1). (42)

The shear forces F2 and F3 can be eliminated from the equilibrium equations by taking
a derivative of Eqs. (42) and (40), then introducing Eqs. (41) and (39), respectively, to
yield the bending moment equilibrium equations

d2M2

dx2
1

= −p3(x1)−
dq2
dx1

; (43)

d2M3

dx2
1

= p2(x1)−
dq3
dx1

. (44)

The four equations in Eqs. (37), (38), (43), (44) are the last four equations we need to
complete the classical beam theory.

Substituting the 1D strain-displacement relations in Eq. (18) into the 1D constitutive
relations in Eq. (27), then into the four 1D equilibrium equations, we obtain the following
displacement formulation of the classical beam theory:

d

dx1

(S11ū
′
1 − S13ū

′′
3 + S14ū

′′
2) = −p1 (45)

d

dx1

(S22Φ
′
1) = −q1 (46)

d2

dx2
1

(S13ū
′
1 − S33ū

′′
3 + S34ū

′′
2) = −p3(x1)−

dq2
dx1

(47)

d2

dx2
1

(S14ū
′
1 − S34ū

′′
3 + S44ū

′′
2) = p2(x1)−

dq3
dx1

(48)

Note if we strictly abide our Saint Venant assumptions that κ1 = Φ′
1 is a constant, the

second equation will be true only if q1(x1) vanish. However, in general for a beam structure,
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we will have such distributed moment exist and we usually choose to violate the Saint
Venant assumption. In other words, κ1 is determined by the second equation and consider
Saint Venant assumption was used as an approximation for obtaining the displacement
field and the strain field.

A total of 12 boundary conditions are needed for us to determine the constants asso-
ciated with solving the system of differential equations. Supposing the beam is clamped
at its root x1 = 0, we will have the following six boundary conditions at this point:

ū1 = ū2 = ū3 = 0; Φ1 = 0; ū′
2 = ū′

3 = 0 (49)

which corresponds to vanishing displacements and rotations at the root of the beam in
view of Eq. (8) due to the third Euler-Bernoulli assumption. If the beam is also subjected
to concentrated loads (Pi) and moments (Qi) at its tip (x1 = L), then we have the following
another six boundary conditions at this point

F1 = P1; F2 = P2; F3 = P3; M1 = Q1; M2 = Q2; M3 = Q3 (50)

Introducing the sectional constitutive laws, Eq. (27) and using the definition of the sec-
tional strains Eq. (18) and the equilibrium equations in Eqs. (40) and (42) yields the
boundary conditions in Eq. (50) expressed in terms of displacements as

S11ū
′
1 − S13ū

′′
3 + S14ū

′′
2 = P1

− d

dx1

(S14ū
′
1 − S34ū

′′
3 + S44ū

′′
2) = P2 + q3(L)

d

dx1

(S13ū
′
1 − S33ū

′′
3 + S34ū

′′
2) = P3 − q2(L)

S22Φ
′
1 = Q1

S13ū
′
1 − S33ū

′′
3 + S34ū

′′
2 = Q2

S14ū
′
1 − S34ū

′′
3 + S44ū

′′
2 = Q3

(51)

The governing equations of the problem are in the form of the four coupled differential
equations (45), (46), (47), and (48), for the four beam displacements ūi and Φ1. The
equations are second order in the axial displacement ū1 and Φ1, and fourth order in the
transverse displacements ū2, and ū3. There are 12 associated boundary conditions, six at
each end of the beam Eqs. (49) and (51). Boundary conditions corresponding to various
end configurations can be derived based on equilibrium considerations using free body
diagrams at the boundary point.

If we choose the principal centroidal axes x̄i of bending as the coordinate system,
the four classical deformation modes (extension, twist, and bending directions) will be
completely decoupled and the corresponding governing different equations are simplified
as:

(S11ū
′
1)

′
= −p1 (S22Φ

′
1)

′
= −q1 (S33ū

′′
3)

′′
= p3(x1) + q′2 (S44ū

′′
2)

′′
= p2(x1)− q′3 (52)

The boundary conditions in Eq. (51) will be simplified as

S11ū
′
1 = P1 − (S44ū

′′
2)

′
= P2 + q3(L) − (S33ū

′′
3)

′
= P3 − q2(L)

S22Φ
′
1 = Q1 S33ū

′′
3 = −Q2 S44ū

′′
2 = Q3

(53)
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How to solve these equations has been extensively covered in our undergraduate solid
mechanics course.

2.5 Variational method

The equilibrium equations of the classical beam model can be derived in a more systematic
fashion using the variational method based on the Kantorovich method. From the view
point of Kantorovich method, our objective is to reduce to original 3D problem to a 1D
problem so we try to approximate the original 3D fields in terms of 1D unknown functions
of the beam axis x1 and some known functions of the cross-sectional coordinates xα. To
this end, we consider the displacement field based on the Euler-Bernoulli assumptions
and Saint Venant assumptions, Eq. (13), as an approximate trial function for the 3D
displacement field, and the stress field in Eq. (22) as an approximate trial function for the
3D stress field. For the original 3D structure, the load can be applied either as distributed
body force fi and/or surface tractions ti. The principle of virtual work of the beam
structure can be stated as

1

2

∫ L

0

δU1Ddx1 = δW (54)

with U1D understood as the 1D strain energy density along the beam axis, defined as

U1D =
1

2
⟨σijεij⟩ (55)

where the angle bracket denotes the integration over the cross-section. The virtual work
δW due to applied loads can be expressed as

δW =

∫ L

0

(
⟨fiδui⟩+

∮
∂Ω

tiδuids

)
dx1 + ⟨tiδui⟩ |x1=0 + ⟨tiδui⟩ |x1=L (56)

Here ∂Ω denotes the lateral surface of the beam structure, and the last two terms denote
the integration evaluated by the root surface (x1 = 0) and the tip surface (x1 = L),
respectively. Substituting the 3D displacement field expressed in Eq. (13) into Eq. (56),
we have

δW =

∫ L

0

(piδūi + qiδΦi) dx1 + (Piδūi +QiδΦi) |x1=0 + (Piδūi +QiδΦi) |x1=L (57)

20



where Φ2 = −ū′
3 and Φ3 = ū′

2 due to the third assumption of Euler-Bernoulli and

pi(x1) = ⟨fi⟩+
∮
∂Ω

tids

q1(x1) = ⟨x2f3 − x3f2⟩+
∮
∂Ω

(x2t3 − x3t2)ds

q2(x1) = ⟨x3f1⟩+
∮
∂Ω

x3t1ds

q3(x1) = −⟨x2f1⟩ −
∮
∂Ω

x2t1ds (58)

Pi = ⟨ti⟩
Q1 = ⟨x2t3 − x3t2⟩
Q2 = ⟨x3t1⟩
Q3 = −⟨x2t1⟩

Here we actually provided a systematic way to obtain the distributed forces pi(x1) and
moments qi(x1) along the beam axis, and the concentrated forces Pi and moments Qi we
used in the Newtonian method based on the original applied body forces fi and surface
tractions ti in the 3D structure. The concentrated forces Pi and Qi should be evaluated
on the end surfaces at either x1 = 0 or x1 = L. Note in deriving Eq. (57), we have to
realize that the warping function is already known and the twist rate κ1 is also assumed
to be a constant according to the Saint Venant assumptions.

Substituting the 3D stress field expressed in Eq. (22) into Eq. (55), we have

U1D =
1

2

⟨
Eε211 + 4G(ε212 + ε213)

⟩
(59)

Substituting the 3D strain field expressed in Eqs. (19), (16), (17) into the above equation,
we have

U1D =
1

2

(
S11ϵ

2
1 + 2S13ϵ1κ2 + 2S14ϵ1κ3 + S33κ

2
2 + 2S34κ2κ3 + S44κ

2
3 + S22κ

2
1

)
(60)

Here the stiffness constants S11, S13, . . . are the same as those defined in Eq. (26). Note
here

S22 =
⟨
G
[
(Ψ,2 − x3)

2 + (Ψ,3 + x2)
2
]⟩

(61)

which can be shown to be the same as that defined in Eq. (26) because

⟨G [(Ψ,2 − x3)Ψ,2 + (Ψ,3 + x2)Ψ,3]⟩ = ⟨G {[(Ψ,2 − x3)Ψ],2 + [(Ψ,3 + x2)Ψ],3}⟩

=

∮
∂A

GΨ((Ψ,2 − x3)n2 + (Ψ,3 + x2)n3)ds
(62)

vanishes due to the fact that Ψ must satisfy the governing equation in Eq. (12) in the
cross-sectional domain and the stress free boundary conditions along the boundary curve
of the cross-section, denoted using ∂A.
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Carrying out the partial derivatives of U1D in Eq. (60) and in view of Eq. (25), we
obtain

∂U1D

∂ϵ1
= (S11ϵ1 + S13κ2 + S14κ3) = F1

∂U1D

∂κ1

= S22κ1 = M1 (63)

∂U1D

∂κ2

= (S13ϵ1 + S33κ2 + S34κ3) = M2

∂U1D

∂κ3

= (S14ϵ1 + S34κ2 + S44κ3) = M3

This gives another way to define the sectional stress resultants as conjugates to the 1D
beam strains in terms of the 1D strain energy density, i.e., the stress resultant can be
defined as the partial derivative of the 1D strain energy density with respect to the corre-
sponding 1D beam strain measures and these equations can also be written in the same
matrix form as Eq. (27). In other words the variational method provides another way to
derive the same energetics as we have presented previous in Section 2.3.

Substituting Eqs. (57), into Eq. (54), we can rewrite the principal of virtual work
energy in a 1D form as∫ L

0

δU1Ddx1 =

∫ L

0

(piδūi + qiδΦi) dx1 + (Piδūi +QiδΦi) |x1=0 + (Piδūi +QiδΦi) |x1=L

(64)
which implies the following

0 =

∫ L

0

(δU1D − piδūi − qiδΦi) dx1 − (Piδūi +QiδΦi) |x1=0 − (Piδūi +QiδΦi) |x1=L (65)

The variation of 1D strain energy density U1D can be evaluated based on Eq. (63) as

δU1D = F1δϵ1 +Miδκi = F1δū
′
1 +M1δΦ

′
1 −M2δū

′′
3 +M3δū

′′
2 (66)

Realizing Φ2 = −ū′
3 and Φ3 = ū′

2 and carrying out integration by parts for the integral
term in Eq. (65), we can rewrite Eq. (65) as

0 =

∫ L

0

((M ′′
3 + q′3 − p2)δū2 − (M ′′

2 + q′2 + p3)δū3 − (F ′
1 + p1)δū1 − (M ′

1 + q1)δΦ1) dx1

− [(P1 + F1)δū1 + (Q1 +M1)δΦ1 + (P2 −M ′
3 − q3)δū2 + (P3 +M ′

2 + q2)δū3+

(Q3 +M3)δū
′
2 − (Q2 +M2)δū

′
3]x1=0

− [(P1 − F1)δū1 + (Q1 −M1)δΦ1 + (P2 +M ′
3 + q3)δū2 + (P3 −M ′

2 − q2)δū3+

(Q3 −M3)δū
′
2 − (Q2 −M2)δū

′
3]x1=L

(67)

As ūi and Φ1 are the four unknown functions of the classical beam model, they can vary
independently. The corresponding Euler-Lagrange equations are

F ′
1 + p1 = 0 M ′

1 + q1 = 0 M ′′
2 + q′2 + p3 = 0 M ′′

3 + q′3 − p2 = 0 (68)
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which are the same as the equilibrium equations we obtained in Eqs. (37), (38), (43), (44)
using Newtonian method. The boundary conditions can be deduced from the last four lines
of Eq. (67). If we know certain displacement variables (ūi, Φ1, ū

′
α) are prescribed, then their

variations must be zero. For example if the root is clamped, we have ūi = 0,Φ1 = 0, ū′
α = 0,

which implies δūi = 0, δΦ1 = 0, δū′
α = 0, which will automatically vanish the boundary

terms evaluated at x1 = 0 in Eq. (67). If the tip displacements and rotations are free to
vary, then the coefficients in front of the variation of these variables must be zero, that is
we have

F1 = P1 M1 = Q1 P2 = −M ′
3 − q3 P3 = M ′

2 + q2 Q2 = M2 Q3 = M3 (69)

This boundary condition is the same as those in Eq. (50) in view of Eqs. (40) and (42).
Using the 1D constitutive relations in Eq. (27) and the sectional strain definitions in

Eq. (18), we can formulate the governing equations and the boundary conditions in terms
of ūi,Φ1 exactly the same as those we derived using the Newtonian method.

Although both the Newtonian method and the variational method based on the same
set of ad hoc assumptions necessary to obtain the displacement field in Eq. (13), the strain
field in Eqs. (19), (16), (17), and the stress field in Eq. (22), there are some difference
between these two methods.

• We does not have to introduce the transverse shear stress resultants for the derivation
using the variational approach.

• The variational method can establish a rational connection between the applied loads
in the original 3D structure and the final 1D beam model.

• Although lack of being intuitive, the variational approach is more systematic. As
far as one is careful about the derivation, it is not easy to make a sign error like
commonly happen in Newtonian approach particularly for deriving the boundary
conditions.

• As the variational approach is based on the Kantrovich method, it is easy to extend
this derivation for higher-order models by using a different set of assumptions for
the 3D displacement field in terms of 1D unknown functions, while such extensions
using Newtonian approach is much more difficult.

However, because both methods are based on a host of ad hoc assumptions, they
feature the same set of contradictions as we discussed carefully in previous sections. In
the next section, we will use the variational asymptotic method to construct the classical
beam model without invoking any ad hoc assumptions thus avoiding the awkward self-
contractions.

3 Variational Asymptotic Method

The whole purpose of beam model is to approximate the original 3D model with a 1D
beam model formulated in terms of unknown functions of the beam axis. Our motivation
comes from the fact that the cross-sectional domain is much smaller than the span of the
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Figure 9: Sketch of a beam

beam structure. This fact of smallness of the cross-section compared to the beam span
can be exploited using the variational asymptotic method to derive the classical beam
model. For illustrative purpose, we consider a prismatic beam, with L as the length and
h as the dimension of the cross-section (see Figure 9). Then we know that δ = h/L as a
small parameter. Suppose the 3D displacements are ui(x1, x2, x3), then the 3D strains as
defined in linear elasticity are

εij =
1

2
(ui,j + uj,i) (70)

To proceed using the variational asymptotic method, we need to have some very basic
knowledge of order analysis. For a continuous differentiable function, f(x) for x ∈ [a, b].

If we denote the order of f(x) as f̄ , then df
dx

is of the order of f̄
b−a

, denoting as df
dx

∼ f̄
b−a

.
Then it is obvious that ui,1 ∼ ūi/L and ui,α ∼ ūi/h, and ui,1 ≪ ui,α because δ = h/L ≪ 1.

The 3D strain field can be written explicitly as

ε11 = u1,1

2ε12 = u1,2 + u2,1

2ε13 = u1,3 + u3,1

ε22 = u2,2 (71)

2ε23 = u2,3 + u3,2

ε33 = u3,3

The total potential energy of the original 3D structure is given as follows

Π =
1

2

∫ L

0

U1Ddx1 −W (72)

with twice of the 1D strain energy density expressed in a different form as

2U1D =
⟨
Eε211

⟩
+
⟨
G(2ε12)

2 +G(2ε13)
2 +G(2ε23)

2
⟩

+

⟨
E

(1 + ν)(1− 2ν)

{
νε11 + ε22
νε11 + ε33

}T [
1− ν ν
ν 1− ν

]{
νε11 + ε22
νε11 + ε33

}⟩
(73)

Note although this form is different from that in Eq. (55), they are identical to each other
after some algebraic manipulations.
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In view of Eq. (56), the work done by applied loads in the original 3D structure can
be obtained as

W =

∫ L

0

(
⟨fiui⟩+

∮
∂Ω

tiuids

)
dx1 + ⟨tiui⟩ |x1=0 + ⟨tiui⟩ |x1=L (74)

We have assumed that the 3D strain field is small as we are working within the frame-
work of linearity elasticity, i.e., ϵ̂ = O(εij) ≪ 1 with ϵ̂ denoting the characteristic magni-
tude of the 3D strain field. From Eqs. (71), we can conclude that

ui = O(Lϵ̂) (75)

The 1D strain energy density will be of the order of µ̄h2ϵ̂2 with µ̄ denoting the order
of the elastic constants. The condition of the boundedness of deformations for h/L → 0
puts some constraints on the order of the external forces. It is clear that the work done
must be of the same order as the strain energy, i.e., fiuih

2 ∼ tiuih ∼ µ̄h2ϵ̂2. In view of
Eq. (75), we have

fih ∼ ti ∼ µ̄
h

L
ϵ̂ (76)

Substituting the strain field in Eq. (71) into the total potential energy of the original
structure in Eq. (72) and dropping smaller terms, we obtain:

2Π =
⟨
Gu2

1,2 +Gu2
1,3 +G(u2,3 + u3,2)

2
⟩

+

⟨
E

(1 + ν)(1− 2ν)

{
u2,2

u3,3

}T [
1− ν ν
ν 1− ν

]{
u2,2

u3,3

}⟩
(77)

Note these kept terms, in the order of µ̄L2ϵ̂2 are much larger than those neglected in the
strain energy and in the work done which are in the order of µ̄h2ϵ̂2. The behavior of the
structure is governed by the principle of minimum total potential energy. The quadratic
form in Eq. (77) will reach its absolute minimum zero if the following conditions can be
satisfied:

u1,2 = u1,3 = u2,2 = u3,3 = u2,3 + u3,2 = 0 (78)

which has the following solution

u1(x1, x2, x3) = ū1(x1) (79)

u2(x1, x2, x3) = ū2(x1)− x3Φ1(x1) (80)

u3(x1, x2, x3) = ū3(x1) + x2Φ1(x1) (81)

where ūi and Φ1 are arbitrary unknown 1D functions of x1. Although we have found an
expression for the 3D displacement field in terms of 1D functions of x1, we are not sure
whether we have included all the terms corresponding to the classical beam model yet.
We need to continue our variational asymptotic procedure by perturbing the displacement
field such that

u1(x1, x2, x3) = ū1(x1) + v1(x1, x2, x3)

u2(x1, x2, x3) = ū2(x1)− x3Φ1(x1) + v2(x1, x2, x3) (82)

u3(x1, x2, x3) = ū3(x1) + x2Φ1(x1) + v3(x1, x2, x3)
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with v1 asymptotically smaller than ū1, v2 asymptotically smaller than ū2 − x3Φ1, and v3
asymptotically smaller than ū3 + x2Φ1. Because ūi,Φ1 are four arbitrary functions, for
definiteness of the expression in Eq. (82), we need to introduce four constraints for newly
introduced 3D functions vi. The choice of four constraints is directly related with how
we define the four 1D functions (ūi(x1), Φ1(x1)) in terms of the 3D displacement field
ui(x1, x2, x3). If we choose the constraints as

⟨vi⟩ = 0 ⟨v3,2 − v2,3⟩ = 0 (83)

It implies the following definitions of ūi(x1), Φ1(x1)) in terms of 3D displacements as

Aū1(x1) = ⟨u1(x1, x2, x3)⟩

AΦ1(x1) =
1

2
⟨u3,2 − u2,3⟩

Aū2(x1) = ⟨u2(x1, x2, x3)⟩+ ⟨x3⟩Φ1(x1)

Aū3(x1) = ⟨u3(x1, x2, x3)⟩ − ⟨x2⟩Φ1(x1)

with A denoting the cross-sectional area. If the origin of xα is at the geometric center
of the cross-section (i.e., ⟨xα⟩ = 0), ūi is defined as the average of corresponding 3D
displacement ui over the cross-section and Φ1 is defined as the average of corresponding
3D axial rotations 1

2
(u3,2 − u2,3) over the cross-section. For simplicity of the following

derivations, we restrict xα to originate from the geometric center.
Substituting this displacement field in Eq. (82) into Eq. (71), we can obtain the fol-

lowing 3D strain field as

ε11 = ϵ1 + v1,1

2ε12 = v1,2 + ū′
2 − x3κ1 + v2,1

2ε13 = v1,3 + ū′
3 + x2κ1 + v3,1

ε22 = v2,2 (84)

2ε23 = v2,3 + v3,2

ε33 = v3,3

Here we let ū′
1 = ϵ1 and Φ′

1 = κ1 as we defined previously. However, we do not have to
assume that κ1 is constant as what we did previously in the Saint Venant assumptions.

Substituting the displacement field in Eqs. (82) and the 3D strain field in Eqs. (84) into
the total potential energy of the original 3D structures in Eq. (72) and dropping smaller
terms, we have

2Π = ⟨E⟩ ϵ21 +
⟨
G(v1,2 + ū′

2 − x3κ1)
2 +G(v1,3 + ū′

3 + x2κ1)
2 +G(v2,3 + v3,2)

2
⟩

+

⟨
E

(1 + ν)(1− 2ν)

{
νϵ1 + v2,2
νϵ1 + v3,3

}T [
1− ν ν
ν 1− ν

]{
νϵ1 + v2,2
νϵ1 + v3,3

}⟩

−
∫ L

0

(
⟨fiūi + (x2f3 − x3f2)Φ1⟩+

∮
∂Ω

tiūi + (x2t3 − x3t2)Φ1ds

)
dx1

− ⟨tiūi + (x2t3 − x3t2)Φ1⟩ |x1=0 − ⟨tiūi + (x2t3 − x3t2)Φ1⟩ |x1=L

(85)
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of which the vα related terms will reach the absolute minimum value zero if the following
conditions are satisfied:

v2,3 + v3,2 = 0 (86)

νϵ1 + v2,2 = 0 (87)

νϵ1 + v3,3 = 0 (88)

which has the following solution
vα = −xανϵ1 (89)

with the unknown functions of x1 can be absorbed into ū2(x1) and Φ1(x1). The conditions
for the minimum of the v1 related terms in Eq. (85) has to be obtained using the usual
steps of calculus of variations. The corresponding Euler-Lagrange equation is

v1,22 + v1,33 = 0 (90)

over the cross-sectional domain and the boundary condition along the cross-sectional
boundary curve is

(v1,2 + ū′
2 − x3κ1)n2 + (v1,3 + ū′

3 + x2κ1)n3 = 0 (91)

with nα denoting the components along xα of outward normal vector n of the boundary
curve (see Figure 9). The solution of v1 can be written in the following form

v1 = −xαu
′
α +Ψ(x2, x3)κ1 (92)

with Ψ(x2, x3) as the Saint Venant warping function satisfying governing equations in
Eq. (12) along with the stress free boundary conditions such that

(Ψ1,2 − x3κ1)n2 + (Ψ1,3 + x2κ1)n3 = 0 (93)

along the boundary curve of the cross-section. The constraint in Eq. (83) for vi implies we
should constrain Ψ such that ⟨Ψ(x2, x3)⟩ = 0 which helps solve the Saint Venant warping
function uniquely.

Substituting the solutions for vi in Eqs. (92) and (89) into Eq. (82), we can express
the 3D displacement field as

u1 = ū1(x1)− xαu
′
α +Ψ(x2, x3)κ1

u2 = ū2(x1)− x3Φ1(x1)− x2νϵ1 (94)

u3 = ū3(x1) + x2Φ1(x1)− x3νϵ1

Now, we know that the asymptotical expansion of the 3D displacement field will be
spanned by ūi and Φ1 as no new degrees of freedom will appear according to the vari-
ational asymptotic method. However, we are still not sure whether we have included
all the orders needed for the classical beam model. For this purpose, we perturb the
displacement field one more time such that

u1 = ū1(x1)− xαū
′
α +Ψ(x2, x3)κ1 + w1(x1, x2, x3)

u2 = ū2(x1)− x3Φ1(x1)− x2νϵ1 + w2(x1, x2, x3) (95)

u3 = ū3(x1) + x2Φ1(x1)− x3νϵ1 + w3(x1, x2, x3)
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with the constraints on vi passed onto wi following the same reasoning we have used for
obtaining Eq. (83). That is we have

⟨wi⟩ = 0 ⟨w3,2 − w2,3⟩ = 0 (96)

The 3D strain field corresponding to the displacement field in Eq. (95) is

ε11 = ϵ1 + x3κ2 − x2κ3 +Ψ(x2, x3)κ
′
1 + w1,1

2ε12 = (Ψ,2 − x3)κ1 + w1,2 + w2,1 − νx2ϵ
′
1

2ε13 = (Ψ,3 + x2)κ1 + w1,3 + w3,1 − νx3ϵ
′
1

ε22 = −νϵ1 + w2,2 (97)

2ε23 = w2,3 + w3,2

ε33 = −νϵ1 + w3,3

Here we let ū′′
2 = κ3 and −ū′′

3 = κ2 as we defined previously. Clearly from these equations,
we can estimate that ϵ1 ∼ hκi ∼ ϵ̂.

Substituting the displacement field in Eqs. (95) and the 3D strain field in Eqs. (97) into
the total potential energy of the original 3D structures in Eq. (72) and dropping smaller
terms, we have

2Π =
⟨
E(ϵ1 + x3κ2 − x2κ3)

2
⟩
+
⟨
G[(Ψ,2 − x3)κ1 + w1,2]

2 +G[(Ψ,3 + x2)κ1 + w1,3]
2
⟩

+
⟨
G(w2,3 + w3,2)

2
⟩
+

⟨
E

(1 + ν)(1− 2ν)

{
ν(x3κ2 − x2κ3) + w2,2

ν(x3κ2 − x2κ3) + w3,3

}T

[
1− ν ν
ν 1− ν

]{
ν(x3κ2 − x2κ3) + w2,2

ν(x3κ2 − x2κ3) + w3,3

}⟩
−

∫ L

0

(piūi + qiΦi) dx1 − (Piūi +QiΦi)|x1=0 − (Piūi +QiΦi)|x1=L

(98)

with pi, qi, Pi, Qi defined the same as those in Eqs. (58). The minimization of this func-
tional in Eq. (108) will be reached by w1 = 0 and the following conditions:

w2,3 + w3,2 = 0 (99)

ν(x3κ2 − x2κ3) + w2,2 = 0 (100)

ν(x3κ2 − x2κ3) + w3,3 = 0 (101)

which can be solved along with the constraints in Eq. (96), yielding

w2 = (⟨x2x3⟩ − x2x3)νκ2 + (x2
2 − x2

3 −
⟨
x2
2

⟩
+
⟨
x2
3

⟩
)
νκ3

2

w3 = (x2x3 − ⟨x2x3⟩)νκ3 + (x2
2 − x2

3 −
⟨
x2
2

⟩
+
⟨
x2
3

⟩
)
νκ2

2

(102)

Now we have obtained for all the contributions to the classical beam model and it can be
easily verified that any further perturbation will not add any major terms to this beam
model as far as the total potential energy of the structure is concerned.
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The complete 3D displacement field corresponding to the classical beam model is

u1 = ū1(x1)− xαū
′
α +Ψ(x2, x3)κ1

u2 = ū2(x1)− x3Φ1(x1) + (⟨x2x3⟩ − x2x3)νκ2 + (x2
2 − x2

3 −
⟨
x2
2

⟩
+
⟨
x2
3

⟩
)
νκ3

2
(103)

u3 = ū3(x1) + x2Φ1(x1) + (x2x3 − ⟨x2x3⟩)νκ3 + (x2
2 − x2

3 −
⟨
x2
2

⟩
+
⟨
x2
3

⟩
)
νκ2

2

Comparing to the displacement field based on Euler-Bernoulli assumptions and Saint
Venant assumptions in Eqs. (13), the variational asymptotic method obtained additional
terms which are underlined in Eq. (103).

Substituting the solutions for wi into Eq. (97) and dropping the terms smaller than
the order of ϵ̂, the complete 3D strain field corresponds to the classical beam model is

ε11 = ϵ1 + x3κ2 − x2κ3

2ε12 = (Ψ,2 − x3)κ1

2ε13 = (Ψ,3 + x2)κ1

ε22 = −ν(ϵ1 + x3κ2 − x2κ3) (104)

2ε23 = 0

ε33 = −ν(ϵ1 + x3κ2 − x2κ3)

Comparing to the strain field obtained based on Euler-Bernoulli assumptions and Saint
Venant assumptions, ε22 and ε33 are different.

The complete stress field using the Hooke’s law will be

σ11 = E(ϵ1 + x3κ2 − x2κ3)

σ12 = G(Ψ,2 − x3)κ1 σ13 = G(Ψ,3 + x2)κ1

σ22 = σ33 = σ23 = 0

(105)

which is the same as those we assumed before in Eq. (22) in the ad hoc approaches,
although none of the assumptions has been used in obtaining this.

Substituting the solutions for wi into Eq. (108), we will obtain the potential energy of
the classical beam model and carry out the variation will result in the same variational
statement as that in Eq. (64), which implies we will have the same 1D constitutive relations
as those in Eq. (27), the same 1D governing different equations as those in Eqs. (37), (38),
(43), (44), and the same boundary conditions as those in Eq. (50).

3.1 A shortcut for the variational asymptotic derivation

We have used three perturbations to derive the classical beam model. A shortcut is possible
for us to derive the same model using one perturbation, which is what we adopted in the
formulation of VABS, a world-known commercial software for modeling composite beams.

To construct 1D classical beam model, the 3D displacement field must be expressed in
terms of the four unknown function ūi and Φ1. Let us introduce the following change of
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variables

u1 = ū1(x1)− xαū
′
α + w1(x1, x2, x3)

u2 = ū2(x1)− x3Φ1(x1) + w2(x1, x2, x3) (106)

u3 = ū3(x1) + x2Φ1(x1) + w3(x1, x2, x3)

The underline terms can be understood as the displacements introduced by the defor-
mation of the beam axis in terms of ūi and Φ1 if one assuming the cross-section is not
deformable. The fact that the cross-section is deformable is captured by wi which are
called generalized warping functions as the cross-section can deform both in-plane and
out-of-plane which are asymptotically smaller than those underlined terms. Although wi

are not the same as those used in Eqs. (95), the constraints in Eq. (96) can be used if we
define ūi and Φ1 according to the following definitions:

AΦ1(x1) =
1

2
⟨u3,2 − u2,3⟩

Aū2(x1) = ⟨u2(x1, x2, x3)⟩+ ⟨x3⟩Φ1(x1)

Aū3(x1) = ⟨u3(x1, x2, x3)⟩ − ⟨x2⟩Φ1(x1)

Aū1(x1) = ⟨u1(x1, x2, x3)⟩+ ⟨xα⟩ ū′
α

The 3D strain field corresponding to the displacement field in Eq. (106) is

ε11 = ϵ1 + x3κ2 − x2κ3 + w1,1

2ε12 = w1,2 − x3κ1 + w2,1

2ε13 = w1,3 + x2κ1 + w3,1

ε22 = w2,2 (107)

2ε23 = w2,3 + w3,2

ε33 = w3,3

Substituting the displacement field in Eqs. (106) and the 3D strain field in Eqs. (107)
into the total potential

2Π =
⟨
E(ϵ1 + x3κ2 − x2κ3)

2
⟩
+
⟨
G(w1,2 − x3κ1)

2 +G(w1,3 + x2κ1)
2
⟩

+
⟨
G(w2,3 + w3,2)

2
⟩
+

⟨
E

(1 + ν)(1− 2ν)

{
ν(ϵ1 + x3κ2 − x2κ3) + w2,2

ν(ϵ1 + x3κ2 − x2κ3) + w3,3

}T

[
1− ν ν
ν 1− ν

]{
ν(ϵ1 + x3κ2 − x2κ3) + w2,2

ν(ϵ1 + x3κ2 − x2κ3) + w3,3

}⟩
−

∫ L

0

(piūi + qiΦi) dx1 − (Piūi +QiΦi)|x1=0 − (Piūi +QiΦi)|x1=L

(108)

The warping functions that minimize the above energy functional are governed by the
Euler-Lagrange equations of this energy functional, given by

w1,22 + w1,33 = 0 (109)

2(1− ν)w2,22 + (1− 2ν)w2,33 + w3,23 − 2νκ3 = 0 (110)

2(1− ν)w3,33 + (1− 2ν)w3,22 + w2,23 + 2νκ2 = 0 (111)
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and the associated boundary conditions

n3(x2κ1 + w1,3) + n2(w1,2 − x3κ1) = 0 (112)

n3(w2,3 + w3,2) +
2n2

1− 2ν
[ν(ϵ1 + x3κ2 − x2κ3) + νw3,3 + (1− ν)w2,2] = 0 (113)

n2(w2,3 + w3,2) +
2n3

1− 2ν
[ν(ϵ1 + x3κ2 − x2κ3) + νw2,2 + (1− ν)w3,3] = 0 (114)

where nα is the direction cosine of outward normal with respect to xα. Here, to maintain
a simpler derivation, we do not use Lagrange multipliers to enforce the constraints of
Eqs.(96). Instead, we keep these constraints in mind and check whether they can be
satisfied by the solution. It can be observed that Eq. (109) and (112) are just the equations
of Saint-Venant warping Ψ(x2, x3) in elasticity textbooks such as , except

w1(x1, x2, x3) = Ψ(x2, x3)κ1(x1) (115)

Hence the first approximation of the out-of-plane warping w1 can be solved by the methods
used to solve the Saint Venant torsion problem commonly found in elasticity textbooks.
According to the theory of elasticity, Ψ can be determined up to a constant, and one can
choose the constant so that the constraint ⟨w1⟩ = 0 is satisfied. The following functions
of wα satisfy the other constraints and solve Eqs. (110), (111), (113) and (114):

w2 = −x2νϵ1 + (⟨x2x3⟩ − x2x3)νκ2 + (x2
2 − x2

3 −
⟨
x2
2

⟩
+
⟨
x2
3

⟩
)
νκ3

2

w3 = −x3νϵ1 + (x2x3 − ⟨x2x3⟩)νκ3 + (x2
2 − x2

3 −
⟨
x2
2

⟩
+
⟨
x2
3

⟩
)
νκ2

2

(116)

Substituting the solutions for wi into Eq. (106), we obtain the same displacement as
Eq. (103). Substituting the solutions for wi into Eq. (107), we obtain the same strain
field as Eq. (104). Using the 3D Hooke’s law, we will obtain the same stress field as in
Eq. (105). In other words, we obtained the same solution for relating the original 3D
elasticity to the classical beam model as we derived previously using three perturbations
in the previous section in a much quicker way.

4 Problems

1. Verify that the formulas in Eq. (35) is the same as those in Eq. (29) for isotropic
homogenous beams.

2. Following the procedure in this chapter for deriving the classical beam model, derive
the Timoshenko beam model by removing the third Euler-Bernoulli assumptions
using the Newtonian approach.

3. Consider the thin-walled, L shaped cross-section of a beam as shown in Figure 10.
Let b = 0.25 m, h = 0.1 m, and t = 2.5× 10−3 m.

(a) Find the location of the centroid of the section and verify that the formulas in
Eq. (35) will give the same results as those in Eq. (5).
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Figure 10: Thin-walled, L shaped cross-section.
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Figure 11: A helicopter blade rotating at an angular speed Ω.

(b) Find the orientation of the principal centroidal axes of bending.

4. A helicopter blade of length L is rotating at an angular velocity Ω about the ê2 axis,
as depicted in Figure 11. The blade is homogeneous and its cross-section linearly
tapers from an area A0 at the root to A1 = A0/2 at the tip, i.e.

A(x1) = A0 + (A1 − A0)
x1

L
= A0 (1− x1

2L
).

(a) Solve the governing differential equations of this problem to find the axial dis-
placement ū1(x1) and the axial force distribution F1(x1).

(b) Find an approximate solution of the problem. Assume the axial displacement
field in the form of ū1(x1) = ax1 + bx2

1.

(c) Compare the solution obtained in parts (1) and (2). Plot the exact and ap-
proximate axial displacement fields ū1(x1) on the same plot. Plot the exact and
approximate axial force F1(x1) on the same another plot. Comment on your
results. How would you improve the approximate solution?

5. Consider the cantilevered beam shown in Figure 12. It is subjected to a uniform
transverse loading and has a tip spring of stiffness.

(a) Solve the problem exactly to find the deflection of the beam and the force in
the tip spring using the differential statement.
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Figure 12: A cantilever with a tip spring.

(b) Use the energy approach based on the Principle of Minimum Total Potential
Energy to solve for deflection of the beam by choosing ū2(x1) = c1x

2
1 + c2x

3
1,

where c1 and c2 are constants to be determined by the Ritz method. Quantify
your errors if there is a difference between exact solution and approximate
solution for the maximum deflection and the force in the spring. What will the
results if the trial function is chosen to be ū2(x1) = c1x

2
1 + c2x

3
1 + c3x

4
1?
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