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We impose uniform electric fields both parallel and normal to 180° ferroelectric domain walls in
PbTiOs and obtain the equilibrium structures using the method of anharmonic lattice statics. In
addition to Ti-centered and Pb-centered perfect domain walls, we also consider Ti-centered domain
walls with oxygen vacancies. We observe that electric field can increase the thickness of the domain
wall considerably. We also observe that increasing the magnitude of electric field we reach a critical
electric field E°; for E > E° there is no local equilibrium configuration. Therefore, E° can be
considered as a a lower bound for the threshold field E; for domain wall motion. Our numerical
results show that Oxygen vacancies decrease the value of E°. As the defective domain walls are
thicker than perfect walls, this result is in agreement with the recent experimental observations and
continuum calculations that show thicker domain walls have lower threshold fields.

I. INTRODUCTION

Ferroelectric materials have been used in many impor-
tant applications such as high strain actuators, electro-
optical systems, non-volatile and high density memories,
etc.1'2. The properties of domain walls in ferroelectric
materials including their structure, thickness, and mo-
bility are important parameters as they determine the
performance of devices that use these materials?.

Theoretical calculations have predicted that ferroelec-
tric domain walls are atomically sharp and their thick-
ness is about a few angstroms®7. However, experimental
measurements show the existence of domain walls with
thicknesses of a few micrometers®?. It has been observed
that such broadening of domain walls is due to the pres-
ence of extrinsic defects, charged walls, and surfaces!'C.
Shilo et al.'! used atomic force microscopy to measure the
surface profile close to emerging domain walls in PbTiOg
and then fitted it to the soliton-type solution of GLD the-
ory. They measured wall widths of 1.5nm and 4nm and
observed a wide scatter in wall widths. They suggested
that the presence of point defects is responsible for such
wide variations. Lee et al.'? proposed a continuum model
to investigate this proposal and reproduced the experi-
mentally observed range of wall widths with their model.
They mentioned that the interaction between the order
parameter and point defects and interaction of point de-
fects with each other are two important interactions that
should be considered properly in such modelings. Jia et
al.? investigated the cation-oxygen dipoles near 180° do-
main walls in PbZr 5Tip.gO3 thin films. They measured
the width and dipole distortion across domain walls us-
ing the negative spherical-aberration imaging technique
in an aberration-corrected transmission electron micro-
scope and observed a large difference in atomic details
between charged and uncharged domain walls.

External electric field can cause the motion of ferroelec-
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tric domain walls if the magnitude of the field reaches the
threshold field E}, for wall motion, i.e., the field at which
a domain wall begins to move after overcoming the in-
trinsic Peierls friction of the ferroelectric lattice!?. It was
observed that threshold fields that are predicted via ther-
modynamic calculations are usually much greater than
the experimental values. For example, Bandyopadhyay
and Ray'? predicted an upper limit for E; of LiNbO3
to be 30000kV/cm but experimental observations show
that the threshold field for wall motion can be less than
15kV/em. Choudhury et al.!? suggested that the reason
for such large differences between theoretical and exper-
imental values of E}, is broadening of the domain walls.
Using microscopic phase-field modeling, they show that
the threshold field for moving an antiparallel ferroelectric
domain wall dramatically drops by two or three orders of
magnitude if the wall was diffused by only about 1—2nm.
Su and Landis'* developed a continuum thermodynamics
framework to model the evolution of ferroelectric domain
structures and investigated the fields near 90° and 180°
domain walls and the electromechanical pining strength
of an array of line charges on these domain walls.

In this work, we investigate the effect of external elec-
tric field (E) on the perfect and defective 180° domain
walls in PbTiO3 using the method of anharmonic lattice
statics. We consider both Pb-centered and Ti-centered
perfect domain walls and also defective domain walls with
oxygen vacancies. In agreement with experimental re-
sults, our calculations show that such defective domain
walls are thicker than perfect walls'®. By increasing E
we reach a critical value E°¢ such that for £ > E° the
lattice statics iterations do not converge. Therefore, this
critical value can be considered as a lower bound for the
threshold field for wall motion.

The paper is organized as follows. In §II, we explain
the geometry of the perfect and defective domain walls
that we use throughout this work. In §III, we describe
the method of analysis used in our calculations. Our
numerical results are presented in §IV. The paper ends
with some concluding remarks in §V.
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FIG. 1: (a) The relaxed configuration of the unit cell of PbTiOs. @ and ¢ are the tetragonal lattice parameters. Note that
01, 02, and O3 refer to oxygen atoms located on (001), (100), and (010)-planes, respectively. ¢ denotes the y-displacements
of the atoms from their centerosymmetric positions and arrows near each atom denote the direction of these displacements.
(b) The geometry of a perfect Ti-centered 180° domain wall. (c) The geometry of a Ol-defective 180° domain wall. Note that
Pb-centered domain walls with oxygen vacancies are not stable.

II. FERROELECTRIC DOMAIN WALLS

Due to the relative displacements between the center of
the positive and negative charges, each unit cell of a ferro-
electric crystal has a net polarization below its Curie tem-
perature. Fig.1(a) shows the relaxed unit cell of tetrag-
onal PbTiO3. In this work, we consider 180° domain
walls in PbTiOg parallel to a (100)-plane. These domain
walls are two dimensional defects and the direction of
the polarization vector switches across them. There are
two types of perfect 180° domain walls in PbTiO3: Pb-
centered and Ti-centered domain walls. Fig.1(b) shows
the geometry of a Ti-centered domain wall.

In addition to perfect domain walls, we also consider
180° domain walls with oxygen vacancies. It is known
that oxygen vacancies tend to move toward domain walls
and pin them!'® 7. Therefore, we study domain walls
with oxygen vacancies sitting on the domain wall. In
order to be able to obtain a solution, we need to con-
sider a periodically arranged vacancies on the domain
wall. Although in reality oxygen vacancies have lower
densities, our results with the current assumption can
still provide important insights on the effect of vacan-
cies on 180° domain walls. Depending on which oxygen
in the PbTiO3 unit cell sits on the domain wall, there
would be three types of defective domain wall: (i) O2-

defective, (ii) Ol-defective, and (iii) O3-defective. Fig.
1(c) shows Ol-defective domain wall. Note that O1I-
and O3-defective domain walls are Ti-centered but O2-
defective domain wall is Pb-centered. It has been ob-
served that O2-defective domain walls are not stable!®18,
i.e., the lattice statics iterations do not converge. Thus,
we consider O1- and O3-defective domain walls in the
following.

Let x, y, and z denote coordinates along the (100},
(010), and (001)-directions, respectively. We assume
a 1-D symmetry reduction, which means that all the
atoms with the same x-coordinates have the same dis-
placements. Therefore, we partition the 3D lattice £ as
L = l;Uaez L1a, where L1, and Z are 2-D equivalence
classes parallel to the (100) plane and the set of integers,
respectively. j = Jf is the atom in the [Fth equivalence
class of the Jth sublattice. See'®2% for more details on
the symmetry reduction.

III. METHOD OF CALCULATION

We apply a uniform electric field on 180° domain walls
and obtain the equilibrium structure using the method
of anharmonic lattice statics!®. We use a shell potential
for PbTiO32! for modeling the atomic interactions. Each
ion is represented by a core and a massless shell in this



potential. Let £ denote the collection of cores and shells,
i € L denotes a core or a shell in £, and {xz}l repre-
sents the current position of cores and shells. In this shell
potential, three different energies are assumed to exist

due to the interactions of cores and shells: £ o145 glong’

and £, e-shell- Sshort <{Xi}ie£) denotes the energy of
short range interactions, which are assumed to be only
between Pb-O, Ti-O, and O-0O shells. The short range in-
teractions are described by the Rydberg potential of the
form (A + Br)exp(—r/C), where A, B, and C are poten-
tial parameters and r is the distance between interacting

elements. Elong ({xi}ieﬁ) denotes the Coulombic in-

teractions between the core and shell of each ion with
the cores and shells of all the other ions. For calculat-
ing the classical Coulombic energy and force, we use the

damped Wolf method??. Finally, £, .c_shell ({Xi}ie L)

represents the interaction of core and shell of an atom
and is assumed to be an anharmonic spring of the form
(1/2)kor? + (1/24)kyr*, where ko and k4 are constants.
The total static energy is written as

€ ({Xi}ieﬁ) = Eshort <{Xi}i€£) + glong ({Xi}ieﬁ)
+ gcore—shell ({Xi}ieg> : (1)

Note that all the calculations are done for absolute zero
temperature. At this temperature PbTiO3 has a tetrag-
onal unit cell with lattice parameters a = 3.843 A and
c = 1.08a2!.

Assume that a uniform electric field E = (E,, Ey, E.)
is applied to a collection of atoms. Then for the relaxed
configuration B = {Xi}ie[l C R?, we have
o0&
oxt

where ¢; denotes the charge of the ith charge. To obtain
the solution of the above problem, we utilize the Newton
method. Having a configuration B* the next configura-
tion BF*1 is calculated from the current configuration B*
as: BFt1 = BF 4+ 6%, where

oF = -H (BY) - Ve (BY), (3)

+¢E=0 VYiel, ()

with H denoting the Hessian matrix. The calcula-
tion of the Hessian becomes inefficient as the size of
the problem increases and hence we use the quasi-
Newton method. This method uses the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm to approx-
imate the inverse of the Hessian?? instead of the direct
calculation of the Hessian at each iteration. We start
from a positive-definite matrix and use the BFGS algo-
rithm to update the Hessian at each iteration as follows:

ctl = Qi 4 2 _(Ci'A)®(Ci'A)
(5k)T.A AT . Ci. A
+(AT-ci-A)u®u, (4)

ok ® &*

where C7 = (H') ™', A = VEH — V&, and

5" Cc-A
@HT.A AT.ci-A’

()

Calculating C**!, one then should use C**! instead of
H~' to update the current configuration for the next
configuration B¥+1 = Bk 4+ §%. If C*+! is a poor approxi-
mation, then one may need to perform a linear search to
refine B**! before starting the next iteration®3.

In the presence of oxygen vacancies on the domain wall,
one needs to consider charge redistribution between some
ions. To model an oxygen vacancy using a shell poten-
tial, we remove the core and shell of the oxygen atom
and because we assume a charge neutral oxygen vacancy,
there will be a charge redistribution in the neighboring
shells'®. Tt is known that charge redistribution is highly
localized and hence in our calculations we equally dis-
tribute the charge AQ = Qs + Q., where Qs and Q. are
oxygen shell and core charges, between the (fourteen)
first nearest neighbors of each oxygen vacancy.

To obtain the equilibrium configuration under an ex-
ternal electric field we need to start from an appropriate
initial configuration. This initial configuration for per-
fect and defective domain walls is the equilibrium config-
uration of these domain walls under zero electric field
(see®!® for discussions on how to calculate such con-
figurations). As we mentioned earlier, we assume a 1-
D symmetry reduction for the lattice and hence as is
shown in Fig.2, our computational box (CB) consists of
a row of unit cells perpendicular to the domain wall. In
this figure, the shaded region is the computational box.
Note that because in general there is no symmetry in the
problem, we need to relax all the atoms inside the CB.
For removing the rigid body translation freedom of the
atoms, one should fix the core of an atom and relax the
other atoms. We fix Pb-core (Ti-core) of an atom located
on the domain wall in Pb-centered (Ti-centered) domain
walls. Thus, if there are M unit cells in the CB, we would
have 30M — 3 variables in our calculations. We should
mention that to investigate the effect of the size of CB in
the domain wall plane, we consider CBs with the size of
one, four, and sixteen unit cells in the domain wall plane
and therefore the number of the unit cells in CB in each
case is M, 4M and 16M, respectively. We observe that
the final relaxed structure does not depend on the size
of CB in the domain wall plane. This suggests that the
symmetry reduction that we use in our calculations is a
reasonable assumption for this problem.

Note that we consider a finite number of unit cells in
the CB and do not assume any periodicity condition in
our calculations. This means that we need to impose
some proper boundary conditions to take into account
the effect of the atoms located outside of CB. To this
end, we rigidly move the unit cells outside of CB with
displacements equal to those of the first or last unit cell
of the CB (the unit cell on the boundary of the CB that is
closer to the unit cell outside of the CB). This is a natural



<010>

-T—P<100>

Domain Wall

12 - : ~M-1 M
. R - - -
. R N S

ooo- -l ————*———-c. " " + . l oo l el eee TEy
. ol e el B B
] - [ | | @ I o I ]
PO A . . .
—
E

X

FIG. 2: Ti-cores under external electric field in a Ti-centered 180° domain wall.

E, and E, are the normal and parallel

electric fields, respectively. The shaded region denotes the region that is relaxed in each step. Note that M is the size of the
computational box normal to the domain wall. We consider different CB with the size of one, four, and sixteen unit cells in

the domain wall plane.

boundary condition as we expect the bulk configuration
far from the domain wall.

In our calculations we use M = 20 as larger values for
M do not affect the results. Imposing an external electric
field should be done step by step, i.e., one first needs to
obtain the configuration for E = AE; from the initial
configuration and then use this configuration to obtain
the equilibrium configuration for E = AE; + AE, and
so on. We use the average step size of 20 kV/cm for
electric field. Using this step size and force tolerance of

0.005 erZl_l7 our solutions converge after about 30 to 40
iterations.

IV. NUMERICAL RESULTS

In this section we present our numerical results for per-
fect and defective domain walls. Note that as the coordi-
nates of cores and shells are close to each other, we only
report the results for cores. Also as we mentioned ear-
lier, x, y, and z are coordinates along the (100), (010),
and (001)-directions, respectively.

Perfect domain walls: We plot the y-coordinates of
Ti-cores under external electric field normal to the Ti-
centered domain wall, E,, in Fig.3(a). As expected, we
see that increasing the electric field, the atomic struc-
ture loses its symmetry. We observe that there exists an
upper bound for the magnitude of E,, i.e., there exists
a critical electric field ES such that for E, > ES there
is no local equilibrium structure. The critical value of
the normal electric field is about ES = 1400kV/em. The
thickness of the domain wall slightly increases as the nor-
mal electric field increases. Note that domain wall thick-
ness cannot be defined uniquely very much like bound-

ary layer thickness in fluid mechanics. Here, domain wall
thickness is by definition the region that is affected by
the domain wall, i.e. those layers of atoms that are dis-
torted. One can use definitions like the 99%-thickness
in fluid mechanics and define the domain wall thickness
as the length of the region that has 99% of the far field
rigid translation displacement. What is important here
is that no matter what definition is chosen, domain wall
“thickness” increases as the normal field increases. For
a Ti-centered domain wall, the domain wall thickness in-
creases from 3 atomic spacings (1nm) to about 5 atomic
spacings (1.5nm) for E, = E¢.

Fig.3(b) depicts the y-coordinates of Ti-cores under
an external electric field F, parallel to a Ti-centered do-
main wall. It is observed that such electric fields do
not alter the domain wall thickness. Note that simi-
lar to the atomic structure for normal fields, the atomic
structure under parallel fields also loses its symmetry.
The critical value of the parallel electric field is about
Ey = 5900kV/cm, which is 4 times larger than that of
the normal electric field.

Fig.3(c) shows the y-coordinates of Pb-cores of a Pb-
centered domain wall under normal electric field E,. We
observe that the critical electric field is about Ef
6300kV /cm, which is about 4.5 times greater than the
critical normal field of Ti-centered walls. Also it is ob-
served that domain wall thickness increases to about 11
atomic spacings (~ 4nm) under critical normal field. The
y-coordinates of Pb-cores of a Pb-centered domain wall
under parallel electric field E, are shown in Fig.3(d).
Similar to perfect Ti-centered domain walls, we observe
that parallel electric fields do not affect the domain wall
thickness. The critical parallel electric field is about
Ey = 6500kV/cm. For Pb-centered domain walls we see
that unlike Ti-centered domain walls, the critical normal
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FIG. 3: The y-coordinates of cores under external electric field: Ti cores in a perfect Ti-centered domain wall under (a) E,
and (b) Ey; Pb cores in a perfect Pb-centered domain wall under (¢) E, and (d) E,.

electric field is close to the critical parallel electric field.

Fig.4 depicts the polarization profiles normal and par-
allel to the domain walls. For calculation of the cell-
by-cell polarization, we follow Meyer and Vanderbilt?.
We plot P = (P,, P,) = P/|Ps|, where P is the po-
larization and |Py| = 80.1uC ¢m~2 is the norm of the
bulk polarization?*. Fig.4(a) shows P, and P, for a Ti-
centered domain walls under zero and critical electric
fields. In agreement with Lee et al.2> and Angoshtari
and Yavari’, it is observed that (100) Ti-centered domain
walls have a mixed Ising-Néel character, i.e., the polariza-
tion rotates normal to the (100)-plane near the domain
wall. For E = 0, the maximum normal component of the
polarization is about 2% of the bulk polarization. For
E = Ef, as can be expected, normal field causes the pos-
itive and negative charges to have normal displacements
that create a polarization in the x-direction. This nor-
mal component of the polarization (P,) reaches to about
13.5% of the bulk polarization at ES, but we observe that
normal field ES does not have a remarkable effect on the
parallel component of the polarization, Py, On the other

hand, we observe that under £ = EY, P, does not change
considerably but P, has an unsymmetric profile with the
maximum value of about 105% of the bulk polarization.

Fig.4(b) presents similar results for Pb-centered do-
main walls. Similar to Ti-centered domain walls, we ob-
serve that Pb-centered domain walls have a mixed Ising-
Néel character”?® with P, about 2% of the bulk polar-
ization for zero electric field. For E = E¢, P, reaches
to about 38% of the bulk polarization. Also we observe
that ES has more impact on Py compared to Ti-centered
walls. Finally, it is observed that similar to Ti-centered
domain walls, Ef does not have a significant effect on
P, but makes P, unsymmetric with maximum value of
about 107% of the bulk polarization.

Defective domain walls: In this part we report the
structure of defective domain walls under normal and
parallel external electric fields. Because the results for
O1- and O3-defective domain walls are similar, we only
present the results for Ol-defective walls, which are Ti-
centered domain walls. Note that as we mentioned ear-
lier, O2-defective domain walls, which are Pb-centered
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FIG. 4: The polarization profiles P = (P,, P,) of domain walls under zero, normal critical field (E¢), and parallel critical field
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FIG. 5: The y-coordinates of Ti cores in an Ol-defective domain wall under (a) normal (E,), and (b) parallel (E,) external

electric fields.

domain walls, are not stable. Our calculations show that
they are not stable even under external electric fields. We
had earlier shown that they are not stable under strain
as well'8.

Fig.5(a) depicts the y-coordinates of Ti-cores in an O1-
defective domain wall under normal external electric field
E,. The critical normal field is about ES = 380kV/cm.
It is observed that domain wall thickness increases up to
about 16 atomic spacings (6nm) under the critical normal
electric field. Comparing Ol-defective atomic structure
with the structure of perfect Ti-centered domain wall un-
der normal field (Fig.3(a)), we observe that oxygen va-
cancies increase the thickness of the domain wall con-
siderably. Also it is observed that critical normal field
of defective domain walls is smaller than that of per-
fect Ti-centered wall. Fig.5(b) shows the y-coordinates

of Ti-cores in an O1-defective domain walls under parallel
electric field E,. The value of the critical field is about
Ey = 5100kV/cm. Here we observe a major difference
between the atomic structure of perfect and defective do-
main walls; unlike perfect domain walls, parallel electric
fields increase the thickness of defective domain walls up
to about 13 atomic spacings (5nm) under the critical par-
allel electric field. Also similar to normal electric fields,
we observe that critical electric field of defective domain
walls is smaller than that of perfect domain walls.
Defective domain walls are thicker than perfect domain
walls. The observation that the defective domain walls
have smaller critical electric fields is in agreement with
the experimental observations of Choudhury et al.l°.
They observed that the threshold field for domain wall
motion exponentially decreases as the wall width in-



FIG. 6: The polarization profiles P = (P, P,) of Ol-defective
domain walls under zero, normal critical field (E%), and par-
allel critical field (Ey).

creases.

Fig.6 shows the polarization profiles for Ol-defective
domain walls. It is observed that similar to perfect do-
main walls, defective domain walls have an Ising-Néel
character with P, of about 2.5% of the bulk polarization
for zero electrical field. For E = E¢, P, reaches to about
55% of the bulk polarization, which is greater than the
corresponding values for perfect domain walls, and Py
shows more Ising-type character. As we mentioned ear-
lier, for £ = Ej, we observe a difference between perfect
and defective domain walls; unlike perfect walls, parallel
electric fields have considerable effects on P,: it reaches
to about 55% of the bulk polarization under Eg. Similar
to perfect walls, Py has an unsymmetric distribution and
reaches to about 106% of the bulk polarization.

V. CONCLUDING REMARKS

In this work we obtained the atomic structure of per-
fect and defective 180° domain walls in PbTiO3 under

both parallel and normal external electric fields using the
method of anharmonic lattice statics. We observe that
electric field can increase the thickness of a domain wall
considerably (up to 5 times thicker than domain walls
under no external electric field). This can be one rea-
son for the wide scatter of the domain wall thicknesses
observed in experimental measurements. In agreement
with previous works'»'®, we observe that oxygen vacan-
cies can increase the thickness of the domain walls. We
also observe that by increasing the external electric field
we reach a critical electric field E°. For E > E° there
is no local equilibrium configuration and hence E€ can
be considered as a lower bound for the threshold field for
the domain wall motion. We observe that defective do-
main walls, which are thicker than perfect domain walls,
have smaller critical fields. This is in agreement with the
experimental observations that show the threshold field
decreases as the domain wall thickness increases!?.

In practice, it has been observed that the domain walls
move or break down under electric fields in the order of
a few kV/em1926) which are considerably smaller than
the high-fields that we consider here. We do not consider
break down of the domain walls in our model. Also as
mentioned earlier, the high density of oxygen vacancies
that we assume is unrealistic. In practice, steps and other
complex defects on domain walls can increase the thick-
ness of the domain walls considerably®?2%. Thus, as the
threshold fields for domain walls decrease exponentially
with the increase of the domain wall width!'®, one can ob-
tain a better estimates for the critical electric fields with
more realistic models for defects in domain walls. Also
as suggested by Roy et al.26, electric fields change the
potential parameters. In this paper our aim is to show
that even with our simple model, one can show that the
threshold field has an inverse relation with the domain
wall thickness.
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