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Abstract  

While classical wetting is well captured by the famous Young’s equation and classical bulge 

and blister models are readily available, there is limited understanding of a micro- or nano-scale 

droplet being covered by an ultrasoft elastic membrane. We call this phenomenon elastic wetting 

to feature the interplay between the liquid’s surface tension and the membrane’s elastic 

deformation. Examples of elastic wetting include cell blebs and 2D material bubbles, where the 

membrane thickness ranges from microns to sub-nanometers. In this work, we study the 

equilibrium of elastic wetting and solve for the profiles and the pressure-volume relations of the 

membrane-confined droplets. We show that in elastic wetting, the pressure across the 

membrane/droplet interface can be described by a simple superposition of the Young-Laplace 

equation and the nonlinear membrane equation. Furthermore, nonlinear elasticity, geometric 

nonlinearity, and surface tension, together with membrane-substrate adhesion, interweave at the 

contact line, leading to rich membrane-confined droplet configurations. Finally, we examine the 

effect of substrate compliance on elastic wetting and find that the rigid substrate assumption 

approximates well for most of the existing experiments in the literature. Our results provide 

fundamental mechanistic insights into the various phenomena of elastic wetting as well as viable 

means to extract physical parameters including the bubble pressure and the interface energies. 
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1 Introduction 

Wetting is an everyday phenomenon that refers to how a liquid droplet adheres to a solid 

surface (De Gennes et al., 2013). When surface tension dominates other forces, such as gravity, 

droplets on rigid substrates form in the shape of a spherical cap (except the limiting case of 

complete wetting where the liquid spreads out). The degree of wetting, i.e. wettability, is 

characterized by the contact angle of this liquid spherical cap, which is size-independent, described 

by Young’s equation (Young, 1805), and measured at the liquid-vapor-solid interface, which is 

called the contact line. Conventionally, contact angles are widely measured for the quantification 

of solid surface tensions (Kwok et al., 1998; Shimizu and Demarquette, 2000; Wu, 1971). In recent 

years, many new efforts focused on how the wettability (or the drop geometry) can be tuned. 

Examples include the design of the self-cleaning surfaces (Blossey, 2003) and the control of 

nanoprintings (Fernández-Toledano et al., 2020). 

Recent experiments reported a slightly different wetting phenomenon where the droplets were 

confined by ultrasoft (i.e. ultrathin or ultracompliant or both) elastic membranes (see Fig. 1). It has 

been found in many different material systems with the membrane thickness ranging from microns 

to sub-nanometers. Examples include cellular blebs (i.e., the protrusion of cell membrane ) (Fig. 

1a) (Charras, 2008; Dimova and Lipowsky, 2012), epithelial domes on an elastomer (Fig. 1b) 

(Latorre et al., 2018), the blistering of thermosensitive hydrogel (Fig. 1c) (Shen et al., 2019), and 

the nano-bubbles at 2D material interfaces (Fig. 1d) (Sanchez et al., 2021; Sanchez et al., 2018). 

We call this phenomenon elastic wetting because the elasticity of the membrane and the surface 

tension of the liquid together govern the wetting behavior.  

Elastic wetting involves liquid bulging an elastic membrane, which is reminiscent of classical 

blister tests – a popular setup to measure the elastic and adhesive properties of thin films 

(Dannenberg, 1961; Vlassak and Nix, 1992). A major difference is that the classical models of 

blister tests typically neglect the surface tension of the liquid (Gent and Lewandowski, 1987; 

Jensen, 1991; Xiang et al., 2005). As a consequence, blisters pressurized by either gas or liquid 
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would lead to identical measures of material properties, such as the stiffness of the film and the 

film-substrate interface adhesion (Cao et al., 2015; Cao et al., 2014; Hohlfelder et al., 1996; Wang 

et al., 2013; Yue et al., 2012).  

As the film thickness and modulus decrease, the elastic energy drops to a level comparable 

with or even lower than the surface/interface energies, which we refer to as elastic wetting (Fig. 

1). In this scenario, the behavior of the blister would depend on the specific type of liquid. 

Experimentally, it has been observed that the aspect ratio (i.e., height-to-radius ratio) of the droplet 

trapped between monolayer graphene and a graphite substrate could increase by ~40% as the 

droplet substance changed from ethanol to water (Ghorbanfekr-Kalashami et al., 2017). The aspect 

ratio of such elastically confined droplets has been proved to be also an indicator of the membrane-

substrate adhesion (Dai et al., 2019; Sanchez et al., 2018). In this work, we focus on elastic wetting 

problems in which the droplet is supported by a substrate while confined by an ultrasoft elastic 

membrane. We note that there also exist a number of other interesting phenomena in the literature 

that may share similar physical ingredients of the elastic wetting, such as droplets being confined 

by an elastic capsule (Knoche et al., 2013), being supported by a suspended membrane 

(Davidovitch and Vella, 2018; Liu et al., 2020), and being sandwiched by elastic membranes 

(Schulman and Dalnoki-Veress, 2018). 

 
Fig. 1. Examples of elastic wetting in experiments. (a) Scanning electron micrographs (SEM) of a 

blebbing filamin-deficient cell (Charras, 2008). (b) Epithelial domes generated on a soft elastomer 
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substrate driven by transmural pressure (Latorre et al., 2018). (c) Blisters appear when 

temperature-sensitive hydrogels transit from swollen to unswollen phase (Shen et al., 2019). (d) 

Liquid nano-bubbles formed spontaneously when exfoliating a monolayer MoS2 on a SiO2 

substrate (Sanchez et al., 2018). 

 

Despite increasing experimental observations of elastic wetting (Fig. 1), there is no complete 

theoretical framework to offer quantitative understanding and prediction. As a result, a number of 

fundamental questions remain unanswered: How does the membrane elasticity perturb the Young-

Laplace equation built for sessile drops (i.e. classical wetting where droplets are supported by a 

substrate without membrane coverage)? How does the thin confining membrane modify the 

contact line previously described by the Young’s equation? When can the substrate be considered 

rigid? These natural questions would be more intriguing for the membrane-confined droplets with 

large aspect ratios, e.g. 0.2 (to be addressed in discussions), when both material and geometric 

nonlinearities set in. Blisters with large aspect ratios indeed have been widely observed in 

experiments. Table 1 summarizes the possible scales of parameters pertinent to elastic wetting, 

including the central height of the blister, ℎ , the base radius of the blister, 𝑅0 , and the 

corresponding aspect ratio, ℎ 𝑅0⁄ . When droplets are confined under biological or soft polymer 

membranes, the maximum aspect ratio could reach ~1 (Charras, 2008; Latorre et al., 2018; Shen 

et al., 2019). For bubbles trapped on 2D material interfaces, the maximum aspect ratio approaches 

0.2 when the interface adhesion is strong (Dai et al., 2020a; Ghorbanfekr-Kalashami et al., 2017; 

Khestanova et al., 2016). Other parameters in Table 1Table 1 will be discussed later. 

 

 Biological materials Soft polymers 2D materials 

ℎ (m) 10−6~10−5 10−4~10−3 10−9~10−8 

𝑅0 (m) ~10−5 ~10−3 ~10−7 

ℎ 𝑅0⁄  0.1~1 0.1~1 0.02~0.2 
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𝑡0 (m) ~10−6 ~10−5 ~10−9 

𝜇 (Pa) ~103 ~105 ~1011 

𝛾𝑙𝑚 (N m⁄ ) ~10−3 ~10−2 ~10−2 

𝛼 =
𝛾𝑙𝑚
𝜇𝑡0

 ~1 ~10−2 ~10−4 

𝛼

(ℎ 𝑅0⁄ )2
 1~102 10−2~1 10−3~1 

𝜇𝑠 (Pa) ~103 ~105 ~1010 

𝜇𝑡0
𝜇𝑠𝑅0

 ~10−1 ~10−2 ~10−1 

 

Table 1. Experimentally relevant parameters and their nondimensionalization for elastic wetting. 

Substrate-supported droplets are widely observed to be confined by thin membranes of biological 

materials (Latorre et al., 2018), soft polymers (Gilcreest et al., 2004; Shen et al., 2019; Xia et al., 

2019), and 2D materials (Ghorbanfekr-Kalashami et al., 2017; Khestanova et al., 2016; Sanchez 

et al., 2018; Wang et al., 2009). In this table, ℎ is the central height of the blister, 𝑅0 is the base 

radius of the blister, ℎ 𝑅0⁄   is hence the aspect ratio of the blister, 𝑡0  is the thickness of the 

membrane, 𝜇  is the shear modulus of the membrane, 𝛾𝑙𝑚  is the eneryy density of the liquid-

membrane interface, 𝛼 =
𝛾𝑙𝑚

𝜇𝑡0
 is the elasto-capillary number (see Eq. (25)), 

𝛼

(ℎ 𝑅0⁄ )2
 is adopted to 

quantify the ratio of interface eneryy to elastic eneryy,  𝜇𝑠 is the shear modulus of the substrate, 

and 
𝜇𝑡0

𝜇𝑠𝑅0
 is used for substrate riyidity evaluation. 

 

To answer those fundamental questions and to achieve quantitative predictions, we present a 

fully-coupled theoretical framework for elastic wetting, which contains the large deformation, the 

material nonlinearity, the interface energies as well as various interfacial constraints. We show 

that in elastic wetting, the pressure difference across the membrane/droplet interface can be 

described by a simple superposition of the Young-Laplace equation and the nonlinear membrane 

equation. Dimensionless governing parameters emerge naturally during the derivation. We 

discover that the interplay of nonlinear elasticity, geometric nonlinearity, and interfacial tension, 

together with membrane-substrate adhesion, leads to surprisingly rich elastic wetting 
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configurations. We demonstrate that this understanding could potentially be used to determine 

liquid-membrane interface energy and the membrane-substrate adhesion energy. 

This paper is arranged as follows. In Section 2, we establish the theoretical formulation for 

elastic wetting on a rigid substrate. In Section 3, we demonstrate an imaginary case of elastic 

wetting with a roller boundary that can successfully decay to the sessile drop scenario when the 

membrane stiffness vanishes. In Section 4, we unveil the quasi-static growth of a membrane-

confined droplet with or without interfacial slippage by comparing three different boundary 

conditions: clamped, adhesive, and slippery boundaries. Section 5 discusses the effects of substrate 

compliance and the applicability of our nonlinear theory of elastic wetting, followed by concluding 

remarks. 

2 Theoretical formulation 

This section provides the complete formulation for the boundary value problem of elastic 

wetting in the order of kinematics, equilibrium, constitutive law, and boundary conditions. 

2.1 Kinematics 

We consider an axisymmetric droplet trapped by an isotropic thin elastic membrane on a rigid 

substrate. The blistering process is modeled as a flat thin membrane with an initial thickness 𝑡0 

being inflated by incompressible liquid. A coordinate system (𝒆𝑟 , 𝒆𝑧) is introduced, with its origin 

located at the center of the undeformed membrane. The thin membrane assumption warrants the 

same profile of the droplet and the membrane. Figure 2 offers the schematics for undeformed and 

deformed configurations. In the undeformed configuration (Fig. 2a), the membrane is assumed to 

be stress-free, and each material point can be labeled by (𝑅, 0). In the deformed configuration (Fig. 

2b), the blister profile can be specified by the radius 𝑟(𝑅), the height 𝑧(𝑅), and the thickness 𝑡(𝑅). 

The edge of the blister, i.e. the location of the contact line, is specified by (𝑟0, 0) , which 

corresponds to (𝑅0, 0) in the undeformed configuration, i.e., 𝑟0 = 𝑟(𝑅0). 
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Fig. 2. An axisymmetric droplet trapped between a rigid substrate (gray) and a thin elastic 

membrane (red): (a) the undeformed configuration, (b) the deformed configuration. 

 

Let 𝜆𝑟, 𝜆𝜃 and 𝜆𝑡 denote the principal stretches of the membrane along the radial, hoop, and 

thickness directions, respectively, we have 

 𝜆𝑟 = √𝑟′2 + 𝑧′2, 𝜆𝜃 =
𝑟

𝑅
, 𝜆𝑡 =

𝑡

𝑡0
, (1) 

where ( )′ represents d( )/d𝑅. As shown in Fig. 2b, 𝜙(𝑅) is the slope of the deformed blister 

profile at the location (𝑟, 𝑧), satisfying  

 sin𝜙 = −
𝑧′

𝜆𝑟
, cos𝜙 =

𝑟′

𝜆𝑟
. (2) 

Moreover, 𝜙0 = 𝜙(𝑅0) is the contact angle of the droplet under the elastic confinement, which we 

call the elastic wetting contact angle.  

Assuming the membrane is incompressible (e.g. elastomers), i.e., 𝜆𝑟𝜆𝜃𝜆𝑡 = 1, the thickness 

of the deformed membrane is 

 𝑡 =
𝑡0
𝜆𝑟𝜆𝜃

. (3) 

Elastic wetting with compressible membranes can be further investigated by considering the 

Poisson’s effect. However, it is expected to share very similar features with incompressible 

membranes in terms of blister profiles. The two situations should only differ quantitatively as 

illustrated in Sanchez et al.’s work that derived the aspect ratios of 2D material confined bubbles 

for different Poisson’s ratios (Sanchez et al., 2018). 

The area of the liquid-membrane interface in the deformed configuration is 

 𝐴1 = ∫ 2𝜋𝑟√𝑟′2 + 𝑧′2d𝑅
𝑅0

0

, (4) 

𝑅, 0

(b)

𝑟0

𝑟, 𝑧 

rigid

𝒆𝑧

𝒆𝑟

Deformed configuration

𝜙

(a)

rigid

𝒆𝑟

𝑅0

𝒆𝑧

Undeformed configuration

𝜙0
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the area of the liquid-substrate interface is 

 𝐴2 = 𝜋𝑟0
2 = ∫ 2𝜋𝑟𝑟′d𝑅

𝑅0

0

, (5) 

the area of the membrane-substrate interface is 

 𝐴3 = ∫ 2𝜋𝑟𝑟′d𝑅
∞

𝑅0

, (6) 

and the volume of the membrane-confined droplet is 

 𝑉 = ∫ 2𝜋𝑟𝑟′𝑧d𝑅
𝑅0

0

. (7) 

2.2 Equilibrium equations 

Taking both elastic and interface energies into consideration, the total free energy of the 

elastic wetting problem can be written as 

 Π = 𝑈𝑚 − Δ𝑝𝑉 + 𝛾𝑙𝑚𝐴1 + 𝛾𝑙𝑠𝐴2 + 𝛾𝑚𝑠𝐴3, 
(8) 

where 𝑈𝑚 is the strain energy due to the stretching of the membrane, Δ𝑝 is the inner pressure of 

the droplet, 𝛾𝑙𝑚, 𝛾𝑙𝑠 and 𝛾𝑚𝑠 are the energy densities of the liquid-membrane interface, the liquid-

substrate interface, and the membrane-substrate interface, respectively. We neglect the gravity of 

the liquid here due to the small-scale nature of the elastic wetting problem, though the gravity, as 

well as other external potentials (e.g., electrical potential) (Zhao and Suo, 2008; Zhu et al., 2010), 

could be readily added to Eq. (8) (Bico et al., 2018; Roman and Bico, 2010). In this paper, all three 

interface energy densities are assumed to be constant, i.e., independent of the deformation of the 

materials, which is excepted to be true for amorphous elastomers (Schulman et al., 2018). Some 

polymeric materials have time-dependent surface/interface tensions due to the remodeling of the 

polymer chains on surfaces (Yasuda et al., 1981). However, we do not consider such complexity 

here so that the simplified theoretical setting would allow for the exploration of some critical 

features of quasi-static elastic wetting systems. For crystalline membranes (e.g., 2D materials), 

although their strain-dependent surface energies were investigated by considering the Shuttleworth 

effect (Shuttleworth, 1950), such effect could still be neglected in our elastic wetting analysis 
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because most blisters confined by 2D materials have relatively small aspect ratios (see Table 1) 

and hence small strains in the membranes (< ~2%).  

Combining with Eq. (1), the membrane energy 𝑈𝑚 can be computed by 

 𝑈𝑚 = ∫ 2𝜋𝑡0𝑅𝑊(𝑟, 𝑟′, 𝑧′)d𝑅
𝑅0

0

+∫ 2𝜋𝑡0𝑅𝑊(𝑟, 𝑟′)d𝑅
∞

𝑅0

, (9) 

where 𝑊 = 𝑊(𝜆𝑟 , 𝜆𝜃) is the strain energy per unit volume in the undeformed configuration of the 

membrane. The second term on the right side of Eq. (9) accounts for the membrane energy outside 

of the membrane-confined droplet where 𝑧 = 𝑧′ = 0 . This term would be zero when the 

membrane is clamped along the contact line. However, for droplets confined by atomically smooth 

2D materials (one of the cases that will be discussed in Section 4), the membrane could slide on 

the substrate with negligible shear resistance such that this term is no longer zero (Wang et al., 

2017b).  

Substituting Eqs. (4)-(7) and (9) into Eq. (8), one can perform variations of the total free 

energy Π with respect to 𝑟, 𝑧, 𝑟′, 𝑧′ . At equilibrium, the principle of minimum free energy is 

applied, i.e., 

 δΠ = 0, (10) 

which leads to equilibrium equations 

 {

𝜅𝑟𝑁𝑟 + 𝜅𝜃𝑁𝜃 + 𝛾𝑙𝑚(𝜅𝑟 + 𝜅𝜃) + Δ𝑝 = 0

d𝑁𝑟
d𝑅

+
𝑟′(𝑁𝑟 − 𝑁𝜃)

𝑟
= 0                           

 ∀ 0 ≤ 𝑅 < 𝑅0, (11) 

and  

 {
𝑧 = 0                                  
d𝑁𝑟
d𝑅

+
𝑟′(𝑁𝑟 − 𝑁𝜃)

𝑟
= 0 

                                   ∀ 𝑅 ≥ 𝑅0. (12) 

We use 𝜅𝑟 and 𝜅𝜃 to denote the principal curvatures in the directions of the principal stretches 

𝜆𝑟 and 𝜆𝜃, respectively: 

 𝜅𝑟 =
𝑟′𝑧′′ − 𝑟′′𝑧′

(𝑟′2 + 𝑧′2)
3/2

, 𝜅𝜃 =
𝑧′

𝑟(𝑟′2 + 𝑧′2)
1/2
. (13) 

𝑁𝑟  and 𝑁𝜃  are in-plane radial and hoop membrane tensions, respectively, which could be 

related to the in-plane Cauchy stresses of the membrane, 𝜎𝑟 and 𝜎𝜃, through 
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 𝑁𝑟 = 𝑡𝜎𝑟 =
𝑡0
𝜆𝜃

∂𝑊

∂𝜆𝑟
, 𝑁𝜃 = 𝑡𝜎𝜃 =

𝑡0
𝜆𝑟

∂𝑊

∂𝜆𝜃
, (14) 

where 𝜎𝑟 = 𝜆𝑟(∂𝑊 ∂𝜆𝑟⁄ ) and 𝜎𝜃 = 𝜆𝜃(∂𝑊 ∂𝜆𝜃⁄ ). 

2.3 Constitutive law 

The normal equilibrium in Eq. (11) indicates that the pressure difference across the liquid-

membrane interface is a simple summation of pressures due to membrane tension (via a nonlinear 

membrane theory) and interfacial tension (via Young-Laplace equation). Unlike the uniform 

interfacial tension, the membrane tension varies spatially, depending on the local stretches as well 

as the constitutive law of the membrane, as delineated in Eq. (14). This motivates us to investigate 

the effect of different material behaviors on elastic wetting. To do so, both neo-Hookean and Gent 

material models are adopted in this paper. The neo-Hookean model (Rivlin and Taylor, 1948) 

provides a mathematically simple constitutive law for the nonlinear behavior of isotropic polymers 

such as elastomers. The strain energy density is given by 

 𝑊 =
𝜇

2
(𝜆𝑟

2 + 𝜆𝜃
2 +

1

𝜆𝑟2𝜆𝜃
2 − 3), (15) 

where 𝜇 is the shear modulus of the membrane. When the length of each polymer chain approaches 

its finite contour length, the following Gent model (Gent, 1996, 2005) captures a strain hardening 

phenomenon 

 𝑊 = −
𝜇

2
𝐽𝑚 ln (1 −

𝐼1 − 3

𝐽𝑚
), (16) 

where 𝐽𝑚 is a material constant related to the limiting stretch of the membrane and 𝐼1 is the first 

invariant of the left Cauchy–Green deformation tensor. It is obvious that the neo-Hookean model 

is a special case of the Gent model when 𝐽𝑚 → ∞. 

2.4 Contact line (boundary conditions) 

Having shown that in the elastic wetting problem, the Young-Laplace equation is modified 

by the addition of a nonlinear membrane theory, we further demonstrate a plethora of complexities 
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emerging at the contact line due to the existence of membrane. The boundary terms generated 

when proceeding Eq. (10) constitute boundary conditions for the elastic wetting problem. The 

details of the derivation are tedious and presented in Appendix A. Here, we discuss the general 

conclusions in brief. 

At the contact line of the blister 𝑟0 = 𝑟(𝑅0), 𝑟(𝑅) and 𝑧(𝑅) are continuous, while 𝑟′(𝑅) and 

𝑧′(𝑅) can be discontinuous. To describe different continuity conditions, we use (𝑥)− and (𝑥)+ to 

represent 𝑥 evaluated on the left (inner) and right (outer) sides of 𝑅 = 𝑅0, respectively. In addition, 

the initial radius of the contact line 𝑅0  could have nonzero variation, i.e., δ𝑅0 ≠ 0, when the 

membrane-substrate interfacial delamination propagates. Therefore, the variation of the evaluation 

of a function 𝑓(𝑅) at 𝑅 = 𝑅0 (i.e., δ𝑓(𝑅0)) could be different from the evaluation of the variation 

of this function (i.e., (δ𝑓)(𝑅0)). In particular, (δ𝑓)(𝑅0) = δ𝑓(𝑅0) − 𝑓
′(𝑅0)δ𝑅0. Based on the 

grounds, the boundary terms derived from Eq. (10) are expressed as (also see Appendix A for 

details) 

 

[cos 𝜙− (𝑁𝑟
− + 𝛾𝑙𝑚) − Δ𝑝𝑧0 + (𝛾𝑙𝑠 − 𝛾𝑚𝑠) − cos𝜙

+𝑁𝑟
+]𝑟0δ𝑟0 + 

[−𝑟0(𝜆𝑟
−𝑁𝑟

− − 𝜆𝑟
+𝑁𝑟

+) + 𝑅0𝑡0(𝑊
− −𝑊+)]δ𝑅0 − 

𝑟0 sin 𝜙
− (𝑁𝑟

− + 𝛾𝑙𝑚)δ𝑧0 + [(cos𝜙𝑁𝑟 + 𝛾𝑚𝑠)𝑟]|∞δ𝑟(∞) = 0, 

(17) 

where 𝑧0 = 𝑧(𝑅0). If the substrate is considered as rigid and flat, one has 𝑧0 = δ𝑧0 = 0, 𝜙+ =

𝜙|∞ = 0, and 𝜙− = 𝜙0, which is defined as the elastic wetting contact angle, such that Eq. (17) 

can be simplified slightly, 

 

[cos 𝜙0 (𝑁𝑟
− + 𝛾𝑙𝑚) + (𝛾𝑙𝑠 − 𝛾𝑚𝑠) − 𝑁𝑟

+]𝑟0δ𝑟0 + 

[−𝑟0(𝜆𝑟
−𝑁𝑟

− − 𝜆𝑟
+𝑁𝑟

+) + 𝑅0𝑡0(𝑊
− −𝑊+)]δ𝑅0 + 

[(𝑁𝑟 + 𝛾𝑚𝑠)𝑟]|∞δ𝑟(∞) = 0. 

(18) 

Besides, due to the axisymmetry, the membrane always satisfies 

 𝑟(0) = 𝑧′(0) = 0. (19) 

Equation (18), including both elasticity and interface energy terms, gives rise to abundant 

boundary conditions at the contact line. We first consider an ultrasoft membrane sticking to the 
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substrate (without slippage) through adhesion. In this context, we may neglect the elasticity terms 

in Eq. (18) and have δ𝑟0 ≠ 0, δ𝑅0 = 0, δ𝑟(∞) = 0. It is then natural to define the contact angle in 

this elasticity-free case as the effective Youny’s contact anyle, 

 cos 𝜙̅𝑌 = {

 −1, 𝛽 ≤ −1 
𝛽,       𝛽 ∈ [−1,1]
1, 𝛽 ≥ 1

 where 𝛽 =
𝛾𝑚𝑠 − 𝛾𝑙𝑠
𝛾𝑙𝑚

,  (20)  

since it is analogous to Youny’s equation. With this definition, we may understand the essence of 

the contact line in the elastic wetting problem by examining how the elastic wetting contact angle 

𝜙0 is evolved from the effective Youny’s contact anyle 𝜙̅𝑌  when the elastic force acts on the 

contact line. The evolution would not only depend on the membrane properties but also vary with 

the extent to which the substrate constrains the membrane. We note that though 𝜙̅𝑌  is always 

within [0, 𝜋], the term 𝛽 is not limited to [−1,1]. Physically, 𝛽 ≥ 1 results in complete wetting 

whereas 𝛽 ≤ −1 corresponds to complete de-wetting at the interface. We will show that 𝛽 is one 

of the two dimensionless groups that control the elastic wetting problem.  

Though more subtleties would appear when the substrate is deformable (see discussion in 

Section 5.1), an understanding based on rigid substrates should be a starting point to grasp the 

physics and mechanics of elastic wetting. In particular, we consider four types of constraints on 

the contact lines as summarized in Table 2 and discussed in the following subsections, i.e. Sections 

2.4.1-2.4.4. 

 Droplet Sliding Clamped Adhesive  Slippery 

Schematic 

     

Contact 

angle 

cos 𝜙𝑌

=
𝛾𝑠 − 𝛾𝑙𝑠
𝛾𝑙

 

cos 𝜙0

=
𝛾𝑠 − 𝛾𝑙𝑠
𝑁𝑟
− + 𝛾𝑙𝑚

 Arbitrary 

cos 𝜙0

=
𝛾𝑚𝑠 − 𝛾𝑙𝑠 + 𝜆𝑟

−𝑁𝑟
− − 𝑡0𝑊

−

𝑁𝑟
− + 𝛾𝑙𝑚

 

𝑐𝑜𝑠 𝜙0

=
𝛾𝑚𝑠 − 𝛾𝑙𝑠 + 𝑁𝑟

+

𝑁𝑟
− + 𝛾𝑙𝑚

 

𝜙𝑌 𝜙0 𝜙0 𝜙0 𝜙0
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Variation 

constraint 

Prescribed 

volume 

𝑅0 = const 

𝑟0 ≠ const 

𝑅0 = 𝑟0
= const 

𝑅0 = 𝑟0 ≠ const 
𝑅0 ≠ const 

𝑟0 ≠ const 

Controllin

g numbers 

𝛼 =
𝛾𝑙

𝜇𝑡0
→ ∞; 

𝛽 =
𝛾𝑠 − 𝛾𝑙𝑠
𝛾𝑙

 

𝛼 =
𝛾𝑙𝑚

𝜇𝑡0
; 

𝛽 =
𝛾𝑠 − 𝛾𝑙𝑠
𝛾𝑙𝑚

 

𝛼 =
𝛾𝑙𝑚
𝜇𝑡0

 

𝛼 =
𝛾𝑙𝑚

𝜇𝑡0
; 

𝛽 =
𝛾𝑚𝑠 − 𝛾𝑙𝑠
𝛾𝑙𝑚

 

𝛼 =
𝛾𝑙𝑚

𝜇𝑡0
; 

𝛽 =
𝛾𝑚𝑠 − 𝛾𝑙𝑠
𝛾𝑙𝑚

 

Table 2. Illustration and mathematical description of the sessile drop and the membrane-confined 

droplet with four different boundary conditions. 

2.4.1 Sliding boundary 

We begin by discussing an imaginary contact line, the sliding boundary (see Column 2 of 

Table 2), where a membrane with an initial radius of 𝑅0 is fixed vertically but free to slide laterally 

(i.e., not subjected to any horizontal constraints) at the contact line. The aim of considering this 

case of elastic wetting is to compare directly with a sessile drop (see Column 1 of Table 2). This 

comparison can be used to verify our theory by checking whether the elastic wetting degenerates 

to the classical wetting when membrane tension is trivial. More importantly, the comparison would 

provide simple, illustrative demonstrations of how the nonlinear elasticity modifies the classical 

Young’s equation regarding the contact angle as well as the Young-Laplace equation regarding 

the normal force balance for a sessile drop. Based on the mechanism elucidated here, the results 

of more realistic boundary conditions will be presented in later sections. 

Now, the 𝑅 > 𝑅0 part of the membrane is removed. The terms in Eq. (18) involving 𝑅0
+ are 

set to be zero. In addition, the parameters defined in Eq. (20) need to be modified slightly by 

substituting 𝛾𝑚𝑠 with 𝛾𝑠, i.e.,  

 𝛽 = cos 𝜙̅𝑌 =
𝛾𝑠 − 𝛾𝑙𝑠
𝛾𝑙𝑚

. (21) 

The edge of the membrane could slide freely along the lateral direction, which means 

  δ𝑟0 ≠ 0, δ𝑅0 = 0, δ𝑟(∞) = 0. (22) 

Equation (18) then becomes 
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 [cos 𝜙0 (𝑁𝑟
− + 𝛾𝑙𝑚) + (𝛾𝑙𝑠 − 𝛾𝑠)]𝑟0δ𝑟0 = 0. (23) 

Equations (19) and (23) complete the boundary conditions required for solving the equilibrium Eq.  

(11) with a sliding boundary, namely 

 𝑟(0) = 𝑧(𝑅0) = 𝑧′(0) = 0, cos𝜙0 =
𝛾𝑠 − 𝛾𝑙𝑠
𝑁𝑟− + 𝛾𝑙𝑚

. (24) 

Equation (24) clearly suggests that the elastic wetting contact angle is a simple modification 

of the effective contact angle due to the membrane tension 𝑁𝑟
−  at the contact line. Since the 

membrane tension term in Eq. (24) would be normalized by the in-plane stiffness, two 

dimensionless groups arise naturally; they are 𝛽 (or 𝜙̅𝑌) in Eq. (21) and 

 𝛼 =
𝛾𝑙𝑚
𝜇𝑡0

, (25) 

which compares the liquid-membrane interface energy density with the membrane stiffness and 

may be thought of as the elasto-capillary number in the elastic wetting problem. Systems with 

larger 𝛼 are more likely to be dominated by their interface properties, otherwise by their membrane 

properties. Typical values of 𝛼 are provided in Table 1, indicating that blisters with ultrathin and 

ultra-compliant biological membranes are more sensitive to the elasto-capillary effects.  

2.4.2 Clamped boundary 

In reality, there often exists a constraint on the membrane at the contact line due to either 

membrane-substrate adhesion or externally applied fixture. When the constraint is much stronger 

than the membrane and interfacial tension, it can be modeled as the clamped boundary that has 

been frequently used in classical bulge tests. Under this condition, the horizontal constraint could 

be treated as infinite, and the edge of the membrane is fixed on the rigid substrate (see Column 3 

of Table 2), leading to 

 δ𝑟0 = δ𝑅0 = δ𝑟(∞) = 0. (26) 

As a result, Eq. (18) is automatically satisfied. Equations (19) and (26) present the boundary 

conditions for equilibrium Eq. (11) with clamped boundary, namely 

 𝑟(0) = 𝑧′(0) = 𝑧(𝑅0) = 0, 𝑟(𝑅0) = 𝑅0. 
(27) 
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In this case, only one controlling parameter appears in the normal equilibrium of Eq. (11), that is, 

the elasto-capillary number 𝛼. 

2.4.3 Adhesive boundary 

Instead of being infinite, the constraint along the contact line is usually limited by the 

adhesion between the membrane and the substrate. This is particularly true for liquid trapped 

between an adhesive interface aggregates into a blister (e.g., blisters formed when 2D crystals 

transferred on a substrate as shown in Fig. 1d) or when interfacial liquid generates and initiates 

membrane-substrate delamination (e.g., blisters form on hydrogel surface as shown in Fig. 1c). 

Either case shall be in equilibrium, although the limitation of the horizontal constraint comes from 

work of adhesion in the former and work of separation in the latter. We study this equilibrium 

using an adhesive boundary (see Column 4 of Table 2), assuming Mode 2 delamination (tangential 

displacement at the contact line) negligible. For an equilibrated membrane-confined droplet (i.e., 

membrane-substrate delamination has propagated), we have 𝑟0 = 𝑅0 but 𝑅0 is allowed to vary to 

minimize the total free energy or to achieve equilibrium. We therefore have 

 δ𝑟0 = δ𝑅0 ≠ 0, δ𝑟(∞) = 0. (28) 

As the tangential displacement at the contact line is not allowed, trivial solutions can be obtained 

for the attached membrane (𝑅 ≥ 𝑅0
+). The terms in Eq. (18) involving 𝑅0

+ go to zero. With Eq. 

(28), Eq. (18) could be rewritten as 

 [cos 𝜙0 (𝑁𝑟
− + 𝛾𝑙𝑚) + (𝛾𝑙𝑠 − 𝛾𝑚𝑠) − 𝜆𝑟

−𝑁𝑟
− + 𝑡0𝑊

−]𝑟0δ𝑟0 = 0. (29) 

Equations (19) and (29) then give rise to the boundary conditions for equilibrium Eq. (11) 

with adhesive boundary, namely 

 𝑟(0) = 𝑧′(0) = 𝑧(𝑅0) = 0, cos𝜙0 =
𝛾𝑚𝑠 − 𝛾𝑙𝑠 + 𝜆𝑟

−𝑁𝑟
− − 𝑡0𝑊

−

𝑁𝑟− + 𝛾𝑙𝑚
. (30) 

Like the case with the sliding boundary, this problem would depend on two dimensionless groups: 

𝛼 and 𝛽. The difference is that the 𝛽 used for the adhesive boundary is defined by Eq. (20) while 

the 𝛽 for the sliding boundary is defined by Eq. (21). 
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2.4.4 Slippery boundary 

Finally, we consider an equilibrated droplet confined under an elastic membrane, where the 

membrane is allowed to slide laterally without shear resistance, which we call the slippery 

boundary (see Column 5 of Table 2). This boundary condition is motivated by two specific 

examples – 2D materials that feature an atomically smooth interface (Dai et al., 2018) or wet 

interfaces with negligible friction (Chopin et al., 2008). The bonded part is still considered as 

“attached” after horizontal slippaye such that the interface energy remains unchanged. We will 

show that the “attached” membrane, in this case, is subjected to hoop compression due to the edge 

slippage, which is the differentiation from the sliding boundary. A more appropriate treatment is 

to release such compression via elastic instabilities. It warrants further investigations but is out of 

the focus of this work. Due to the slippage, we have 𝑟0 ≠ 𝑅0 and both of them are unknown, i.e., 

 δ𝑟0, δ𝑅0 ≠ 0. (31) 

For the attached part (𝑅 ≥ 𝑅0
+), we have 

 𝑟(𝑅0
+) = 𝑟0, 𝑁𝑟|∞ = −𝛾𝑚𝑠, 

(32) 

as the boundary conditions for equilibrium Eq. (12). In computations, since the slippage at far-

field is very trivial, we adopted a fixed displacement condition at the outer edge of the membrane, 

say 𝑟(100𝑅0) = 100𝑅0, for simplicity. Now Eq. (18) gives two conditions at the contact line, 

 cos𝜙0 =
𝛾𝑚𝑠 − 𝛾𝑙𝑠 +𝑁𝑟

+

𝑁𝑟− + 𝛾𝑙𝑚
, (33) 

and    

 𝑁𝑟
−𝜆𝑟

− − 𝑁𝑟
+𝜆𝑟

+ =
𝑡0𝑅0(𝑊

− −𝑊+)

𝑟0
. (34) 

Equations (33) and (34) can be used to solve for 𝑟0 and 𝑅0, with  boundary conditions for Eq. 

(11), 

 𝑟(0) = 𝑧′(0) = 0, 𝑟(𝑅0
−) = 𝑟0, 𝑧(𝑅0

−) = 0. (35) 

This case still relies on 𝛼 and 𝛽.  
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Based on the equilibrium equations and boundary conditions given above, we adopted the 

well-established shooting method to solve the elastic wetting problem (such as the ODE45 solver 

in Matlab), which is presented in detail in Appendix B. In calculations, we used all normalized 

parameters (see details in Appendix B). The central deflection is normalized by 𝑟0 as 𝑧(0)/𝑟0 to 

present the aspect ratio of the deformed blister. The volume is normalized as 𝑉 𝑉0⁄  where 𝑉0 =
4

3
𝜋𝑅0

3. The inner pressure Δ𝑝 is normalized to be Δ𝑝𝑅0 𝜇𝑡0⁄  according to Eq. (B 5) or (B 6). Note 

that the normalized volume is a measure of the deformation of the thin membrane: a larger 

normalized volume suggests a larger deformation in the membrane. Besides, particular attention 

should be paid to adhesive and slippery boundaries because 𝑅0  develops as the delamination 

propagates. We thus let the notation 𝑅0 be the radius of the pre-existing delaminated zone and 𝑅1 

be the radius of the delaminated zone after interfacial delamination (𝑅1 ≥ 𝑅0) in the undeformed 

configuration (similarly, 𝑟0 and 𝑟1 in the deformed configuration). 

 

3 Comparison between elastic wetting and classical wetting 

In this section, we present numerical results for the elastic wetting problem with the imaginary 

sliding boundary (Column 2 of Table 2), which could be understood via several concepts in the 

classical wetting problem. As a demonstration, in Fig. 3, we first show profiles of membrane-

confined droplets with a hydrophilic and a hydrophobic effective Youny’s contact anyle 𝜙̅𝑌, 𝜋 4⁄  

(solid curves) and 3𝜋 4⁄  (dash-dot curves), respectively, under a prescribed volume of 𝑉/𝑉0 = 0.5 

for various elasto-capillary numbers 𝛼. When 𝛼 = 0, the profiles of these blisters, i.e. the two 

overlapping red curves, are controlled by the elasticity of the membrane, featuring an elastic 

wetting contact angle of 𝜋 2⁄  reyardless of the effective Youny’s contact anyle. As 𝛼 increases, 

the elastic wetting contact angle starts to deviate from 𝜋 2⁄  due to the effect of interfacial tension, 

till  it approaches 𝜙̅𝑌. 
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Fig. 3. Profiles of droplets confined by neo-Hookean membranes subjected to sliding boundary 

conditions. 𝑉 𝑉0⁄ = 0.5 is prescribed while the elasto-capillary numbers 𝛼 is varying. Solid curves 

correspond to 𝜙̅𝑌 = 𝜋 4⁄  and dash-dot curves for 𝜙̅𝑌 = 3𝜋 4⁄ . The two red curves overlay.  

 

We further plot the evolution of the elastic wetting contact angle 𝜙0 and the aspect ratio 

𝑧(0)/𝑟0 vs. 𝑉/𝑉0 under various effective Youny’s contact anyle 𝜙̅𝑌 and elasto-capillary number 

𝛼 in Fig. 4. As expected, 𝜙0 → 𝜙̅𝑌 as 𝛼 → ∞ regardless of the deformation as represented by the 

three horizontal lines in Fig. 4a. This result confirms that elastic wetting with a sliding boundary 

(Column 2 of Table 2) could indeed decay to classical wetting (Column 1 of Table 2) when the 

interfacial tension dominates over the membrane elasticity, i.e., 𝛾𝑙𝑚 ≫ 𝑁𝑟
−. Since the sessile drop 

in classical wetting exhibits a spherical cap shape, the aspect ratio should remain constant at a 

given  𝜙̅𝑌 regardless of the liquid volume, which is consistent with our numerical solutions when 

𝛼 → ∞ (see the three horizontal lines in Fig. 4b). In contrast, when the elastic force dominates, i.e. 

𝛼 → 0, all curves consolidate into the red horizontal line in Fig. 4a, i.e. 𝜙0 ≡ 𝜋/2, indicating that 

all cases decay to the case of air bulging of a thin membrane (i.e., 𝛼 = 0 ). Therefore, the 

corresponding aspect ratio-deformation relations are independent of 𝜙̅𝑌, i.e., all the red curves in 

Fig. 4b collapse to the solid red curve. Also obvious in Fig. 4b, only when the deformation is 

relatively large (i.e., 𝑉/𝑉0 ≥ 0.8  so that elasticity dominates), the blisters with 𝛼 = 0  could 

0

1

2

-1.5 -1 -0.5 0 0.5 1 1.5

𝛼

0.0

0.5
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2.0

𝜙̅𝑌= 𝜋/4 𝜙̅𝑌= 3𝜋/4

𝑧/
𝑅
0

𝑟/𝑅0

𝑉 𝑉0 = 0.5⁄

neo-Hookean material
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approach a hemispherical profile (i.e., aspect ratio approaching 1). In more general cases, when 

𝜙̅𝑌 ≠ 𝜋/2 and 𝛼 is nonzero and finite, the elastic wetting contact angle 𝜙0 should be determined 

by both interfacial and elastic tensions and the latter could be tuned by the deformation of the thin 

membrane (see Fig. 4).  

 
Fig. 4. The evolution of (a) the elastic wetting contact angle and (b) the aspect ratio of droplets 

confined by neo-Hookean membranes subjected to sliding boundary conditions for 𝜙̅𝑌 = 𝜋 4⁄  

(dash-dot-dot curves), 𝜋 2⁄  (dashed curves) and 3𝜋 4⁄  (solid curves) with various 𝛼. The arrows 

indicate 𝛼 decreases from ∞ to 0. In (a), all the dashed curves and red curves (i.e., when 𝜙̅𝑌 =
𝜋 2⁄  or 𝛼 = 0) collapse to the red solid line. In (b), all the red curves (i.e., when 𝛼 = 0) collapse 

to the red solid curve. 

 

The elastic wetting contact angle is sensitive to the droplet volume when 𝑉/𝑉0 < 0.4, i.e. 

when elasticity cannot fully dominate over interfacial tension (see Fig. 4a). This could be 

understood through the investigation of how the elasticity (favoring 𝜋/2) modifies the Young’s 

equation (favoring 𝜙̅𝑌), which is further illustrated by the force balance at the contact line in Table 

3. We will focus our discussion on the case of 𝜙̅𝑌 < 𝜋/2 but the physical argument also applies 

to the case of 𝜙̅𝑌 > 𝜋/2. In this context, though numerical solution allows 𝜙0 < 𝜙̅𝑌, we found 

that the stretches at the center of the membrane are only greater than 1 (i.e. the membrane is in 

tension) when 𝜙0 ≳ 𝜙̅𝑌 . Therefore, we focus on numerical results in Fig. 4a with 𝜙0 ∈
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(𝜙̅𝑌, 𝜋 2⁄ ). As a result, the corresponding aspect ratio-deformation curves in Fig. 4b do not 

emanate from the origin when 𝛼 is nonzero and finite. Specifically, for systems with 𝜙0~𝜙̅𝑌, the 

membrane tension is relatively small (𝜆𝑟, 𝜆𝜃~1), hence the tangential force is dominated by the 

liquid/membrane interfacial tension 𝛾𝑙𝑚 (see the 1st row of  Table 3). As the deformation increases, 

the membrane tension provides a modification to the classical Young’s equation (see Eq. (24)) or 

an additional force that lifts the 𝜙̅𝑌 towards 𝜋 2⁄  (see the 2nd row of Table 3). This process is best 

illustrated by an animation of a numerically solved blister profile evolution with a sliding boundary 

in supplementary Video 1. For the specific cases of either 𝜙̅𝑌 = 𝜋 2⁄  or 𝛼 = 0, both the membrane 

tension and the liquid/membrane interfacial tension at the contact line are vertical, which satisfies 

the horizontal “force equilibrium” ( see the 3rd row of Table 3). As a result, the elastic wetting 

contact angle remains to be 𝜋 2⁄  and all the dashed and red curves in Fig. 4a collapse to the red 

solid line. However, the dashed curves do not collapse in Fig. 4b as those in Fig. 4a. This is because 

the interfacial tension exerted at the contact line increases as 𝛼 increases, which lifts the aspect 

ratio. 
 

𝜙̅𝑌 <
𝜋

2
 𝜙̅𝑌 >

𝜋

2
 

Small  

deformation 

𝛾𝑙𝑚~(𝛾𝑠 − 𝛾𝑙𝑠) ≫ 𝑁𝑟
− 

  

Large  

deformation 

𝛾𝑙𝑚~(𝛾𝑠 − 𝛾𝑙𝑠)~𝑁𝑟
− 

  

𝛾𝑙𝑚~𝛾𝑠 ≳ 𝛾𝑙𝑠 ≫ 𝑁𝑟
−

𝜙0 → 𝜙̅𝑌

𝛾𝑠

𝛾𝑙𝑚

𝛾𝑙𝑠

𝛾𝑙𝑚~𝛾𝑙𝑠 ≳ 𝛾𝑠 ≫ 𝑁𝑟
−

𝛾𝑠𝛾𝑙𝑠

𝛾𝑙𝑚𝜙0 → 𝜙̅𝑌

𝑁𝑟
−~𝛾𝑙𝑚~𝛾𝑠 ≳ 𝛾𝑙𝑠

𝑁𝑟
− + 𝛾𝑙𝑚𝜋

2
> 𝜙0 > 𝜙̅𝑌

𝛾𝑠𝛾𝑙𝑠

𝑁𝑟
−~𝛾𝑙𝑚~𝛾𝑙𝑠 ≳ 𝛾𝑠

𝜋

2
< 𝜙0 < 𝜙̅𝑌

𝑁𝑟
− + 𝛾𝑙𝑚

𝛾𝑙𝑠 𝛾𝑠
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𝜙̅𝑌 = 𝜋 2⁄  

or 

𝛼 = 0 

 

Table 3. Illustrations of force balance at the contact line (blue dots) in elastic wetting with sliding 

boundaries. 

 

Besides the blister profiles, the inner blister pressure is another important parameter, 

particularly for 2D-material-confined liquids with possible applications such as interface-confined 

high-pressure (e.g. 2 GPa) chemistry (Lim et al., 2014). We hence plot the normalized pressure vs. 

deformation in Fig. 5. Since the normal equilibrium is a simple summation of the membrane-

tension induced pressure and the Young-Laplace pressure as given in the first equation of Eq. (11), 

a system with a larger elasto-capillary number would produce larger Young-Laplace pressure 

under the same level of deformation. Note that at large deformations, the nonlinear elasticity of 

the membrane could release the pressure, reminiscent of the snap-through instability while 

inflating a neo-Hookean balloon. The results in Figs. 3-5 are based on the neo-Hookean 

constitutive law. Results based on the Gent constitutive law only show slight quantitative 

differences and therefore are presented in Figs. C1-C3 in Appendix C.  

𝛾𝑠 = 𝛾𝑙𝑠

𝜙0 = 𝜋 2⁄

𝛾𝑙𝑠 𝛾𝑠

𝑁𝑟
− + 𝛾𝑙𝑚 (when 𝜙̅𝑌 =

 

2
)

𝑁𝑟
−(when 𝛼 = 0) 
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Fig. 5. Normalized pressure-deformation relations for elastic wetting with neo-Hookean 

membranes and sliding boundaries under various elasto-capillary numbers 𝛼. 

 

Our model and solution for the elastic wetting problem with a sliding boundary reveal the 

dramatically changed droplet profile and pressure from classical wetting, which is attributed to the 

elasticity-surface/interface tension interaction. Due to the limitations in accurately detecting the 

edge profiles at small scales, we realize that the aspect ratio (see Fig. 4b) may be a more practical 

geometric feature to measure in experiments, whereas the elastic wetting contact angle can be 

leveraged as a mathematical tool to elucidate the force balance at the contact line. Therefore, to 

unveil elastic wetting problems subjected to other contact/boundary conditions, in what follows, 

we present the numerical results in terms of the pressure, the profile, the elastic wetting contact 

angle, and the aspect ratio of the soft membrane-confined droplet. 
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4 Solutions to elastic wetting under different boundary conditions 

In this section, we consider elastic wetting with more realistic boundary conditions listed in 

Table 2. We first assign an infinite constraint, i.e. a clamped boundary (see Column 3 of Table 

2Table 2). We then consider finite horizontal constraint due to the finite membrane-substrate 

adhesion, which leads to edge delamination without slippage (see Column 4 of Table 2) and with 

slippage (see Column 5 of Table 2). We note that there may exist an initially delaminated area in 

experiments (Benet and Vernerey, 2019; Shen et al., 2019). After the membrane is further inflated, 

the problem is first under clamped boundary and then subjected to edge delamination when the 

membrane tension is substantial enough to cause the membrane-substrate interface failure (Benet 

and Vernerey, 2019).  

4.1 No edge delamination (clamped boundary) 

Of interest is the process of the quasi-static inflation of liquids at the membrane-substrate 

interface (a.k.a. blistering or bulging) with pre-existing circular delamination of radius 𝑅0. Before 

further delamination occurs, the system can be considered as elastic wetting with a clamped 

boundary, as illustrated by Column 3 of Table 2. Classical bulging solutions considered material 

and geometric nonlinearity but not interfacial tension (Wang et al., 2017a; Xie et al., 2016). Taking 

interfacial tension into consideration, we numerically solve the boundary value problem defined 

in Section 2.4.2. 

Figure 6a plots the normalized pressure-deformation relation of different 𝛼 based on two 

different material laws. Similar to the sliding boundary discussed in Section 3, a higher elasto-

capillary number yields higher pressure. Unlike the sliding boundary, the clamped boundary shows 

a discernable deviation between the two material laws at large deformations (i.e., 𝑉/𝑉0 > 1). 

Specifically, as the liquid volume increases, the pressure first increases dramatically and then 

decreases gradually for a neo-Hookean membrane, whereas an N-shaped pressure-deformation 

curve is observed for a Gent membrane. The difference is attributed to the strengthening 
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phenomena included in the Gent model when the applied stretch approaches the limiting stretch of 

the polymer chains, i.e., 𝐼1 − 3 → 𝐽𝑚  (𝐽𝑚 = 100 in our computation). Consequently, given the 

same volume, the droplet confined by a Gent membrane is predicted to exhibit smaller aspect ratios 

than that under a neo-Hookean membrane of the same shear modulus (see Fig. 6b). In fact, with 

the clamped boundary, both the elastic wetting contact angle and the aspect ratio can be tuned by 

the liquid volume, as shown in Figs. 6c and 6d. It is worth noting that the elastic wetting contact 

angle and the aspect ratio of the droplet confined by neo-Hookean membranes are insensitive to 

the elasto-capillary number 𝛼 whereas the Gent membrane leads to slightly decreasing elastic 

wetting contact angle and increasing aspect ratio with increasing 𝛼 , especially at large 

deformation. We again attribute such difference to the strengthening effect of the Gent model at 

large deformation. The quasi-static growth process of a droplet confined by a neo-Hookean 

membrane with a clamped boundary can be visualized through supplementary Video 2. 
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Fig. 6. Solutions to elastic wetting under clamped boundary with various elasto-capillary numbers 

𝛼 and different membrane constitutive laws – neo-Hookean (solid curves) vs. Gent (dashed curves). 

(a) Normalized pressure-deformation relation. (b) Blister profiles at given 𝛼 = 2 and 𝑉 𝑉0⁄ = 4. 

(c) Elastic wetting contact angle-deformation relation. (d) Aspect ratio-deformation relation.  

 

4.2 Edge delamination without slippage (adhesive boundary) 

4.2.1 Solutions to edge delamination without slippage 

The assumption of clamped boundary breaks down when edge delamination occurs as the 

base radius of the blister starts to vary. We first consider an adhesive boundary that allows normal 

separation but prohibits horizontal slippage at the membrane-substrate interface. Hence the 

undelaminated part of the membrane is stress-free. The criterion of edge delamination is that the 

elastic wetting contact angle satisfies the boundary conditions expressed in Eq. (30) (also included 

in Column 4 of Table 2). As we discussed in Section 2.4.3, this criterion depends on two 

dimensionless groups: 𝛼 (i.e., 𝛾𝑙𝑚 𝜇𝑡0⁄ ) and 𝛽 (i.e., (𝛾𝑚𝑠 − 𝛾𝑙𝑠) 𝛾𝑙𝑚⁄ ). The numerical solutions to 

the adhesive boundary are plotted in Figs. 7 through 9. The critical volume-to-delaminate can be 

determined through the comparison of the total free energy of undelaminated (black) and 

delaminated (red) configurations, as plotted in Fig. 7a, where 𝛼 = 0.5  and 𝛽 = −5 . The 

intersection is marked by a blue square, where the criterion is first satisfied or beyond which edge 

delamination occurs. Fig. 7b plots the normalized inner pressure before (black) and after (red) edge 

delamination. Hence the actual pressure should evolve along the black curve at small volumes and 

then along the red curve beyond the blue marker, i.e. along the solid curves in Fig. 7b.  
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Fig. 7. Normalized (a) free energy-deformation and (b) pressure-deformation relations for elastic 

wetting with a neo-Hookean membrane and an adhesive boundary when 𝛼 = 0.5 and 𝛽 = −5 are 

given. The black and red curves represent configurations without and with edge delamination, 

respectively. The solid curves represent the actual evolution pathways of free energy/pressure. The 

blue marker at the intersection of the black and red curves highlights the critical volume-to-

delaminate. (c) The growth of the blister profile under the adhesive boundary. The black and red 

parts represent the sections of the membrane that are initially detached from or attached to the 

substrate before any liquid injection. In other words, the red parts are delaminated membrane due 

to the increased liquid volume. For the two blister profiles labeled with “before delamination”, 

their prescribed volumes are 𝑉/𝑉0 = 0.3 and 0.9. 

Red curves in Fig. 7 are obtained by considering that the edge of the blister has delaminated 

to enlarge the radius from 𝑟0  (or 𝑅0  in the undeformed configuration) to 𝑟1  (or 𝑅1  in the 

undeformed configuration), where 𝑟0 = 𝑅0 and 𝑟1 = 𝑅1 due to prohibited edge slippage and 𝑅1 ≥
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𝑅0. To calculate the pressure and profile of the delaminated blister, we may consider the elastic 

wetting problem with a clamped boundary but using parameters 𝑉/𝑉1  (where 𝑉1 = 4𝜋𝑅1
3/3), 

Δ𝑝𝑅1/𝜇𝑡0, 𝑧/𝑟1 and 𝜙, all normalized based on 𝑅1. The advantage of this normalization is that the 

critical pressure or volume relies only on 𝛼 and 𝛽 and is independent of any lengths, including the 

radius of the pre-existing delamination zone. In other words, (𝑉/𝑉1)𝑐 = (𝑉/𝑉0)𝑐 and (Δ𝑝𝑅1/

𝜇𝑡0)𝑐 = (Δ𝑝𝑅0/𝜇𝑡0)𝑐 for any 𝑅1 ≥ 𝑅0. However, it is still convenient to plot the delaminated 

pressure-deformation relation by the coordinates based on 𝑅0  (e.g., Δ𝑝𝑅0/𝜇𝑡0  and 𝑉/𝑉0). We 

hence leverage the following relation to cancel out the radius 𝑅1: 

 𝑉 (
Δ𝑝

𝜇𝑡0
)
3

= 𝐶(𝛼, 𝛽). (36) 

Equation (36) gives rise to the red curve in Fig. 7b, where the constant 𝐶(𝛼, 𝛽) is determined 

by the fact that Eq. (36) has to pass the blue marker (i.e., the critical delamination point). As long 

as this criterion is satisfied, the pressure-deformation curve would switch from the black to the red 

curve that denotes equilibrated states. Similar relations for Gent membranes are shown in Fig. C4 

in Appendix C, where we find that the edge delamination initiates earlier than the droplet confined 

by the neo-Hookean membrane due to the strengthening effect of the Gent membrane. 

The profiles of the blister before and after delamination are plotted in Fig. 7c. Before edge 

delamination, i.e. 𝑉/𝑉0 < (𝑉/𝑉0)𝑐, the membrane-confined droplet behaves like a clamped blister 

and we plot two of them with prescribed volumes of 𝑉/𝑉0 = 0.3 and 0.9 as labeled in Fig. 7c. 

Once 𝑉/𝑉0 ≥ (𝑉/𝑉0)𝑐, edge delamination kicks in. The new system could be thought of as having 

a pre-existing delamination zone of radius 𝑅1. Its deformation level satisfies 𝑉/𝑉1 = (𝑉/𝑉1)𝑐 and 

its normalized profile 𝑧 (
𝑟

𝑅1
) /𝑅1  is identical to the profile 𝑧 (

𝑟

𝑅0
) /𝑅0  at the critical moment 

defined by 𝑉/𝑉0 = (𝑉/𝑉0)𝑐. In other words, by doing normalization, all numerical solutions for 

elastic wetting after edge delamination are identical to the numerical solution for elastic wetting at 

the critical moment. It is useful to plot the profile of a delaminated droplet with 𝑅1 along with the 

normalization based on 𝑅0, which could be readily achieved by scaling the profile of the critical 

moment through 
𝑟

𝑅0
→

𝑅1

𝑅0

𝑟

𝑅0
  and 

𝑧

𝑅0
→

𝑅1

𝑅0

𝑧

𝑅0
. In Fig. 7c, it is clear that the profiles after delamination 
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are self-similar as they were obtained by simply scaling the profile at the critical moment. Such 

volume-independent self-similarity has been widely found in 2D-material-confined droplets in the 

literature (Khestanova et al., 2016; Sanchez et al., 2018). The growing process of a neo-Hookean 

membrane confined droplet under the adhesive boundary is visualized through supplementary 

Video 3. 

4.2.2 A means to determine (𝛼, 𝛽) and membrane-substrate adhesion energy Γ 

 Since the solutions 𝑉/𝑉1 , Δ𝑝𝑅1/𝜇𝑡0 , 𝑧(0)/𝑟1  and 𝜙0  are only dependent on 𝛼 and 𝛽 in 

elastic wetting with adhesive boundary, we provide the contour plots for these dependencies in 

Fig. 8 for droplets under neo-Hookean membranes. Of particular interest is the discovery of the 

blank spaces in these contour plots, where numerical methods failed to find solutions. The left-

side blank space features large 𝛼 and small 𝛽. The physical interpretation is that the membrane-

substrate adhesion is sufficiently strong to prevent interface delaminating no matter how much the 

volume inflates. We will show later in Eq. (38) that the membrane-substrate interface adhesion 

energy is related to 𝛼(1 − 𝛽). We note that the left-side blank space disappears in the contour plots 

for droplets confined by Gent membranes (see Fig. C5 in Appendix C), which suggests the 

interface could delaminate eventually due to the strengthening of the Gent membrane. The right-

side blank space exists for both neo-Hookean and Gent membranes and could be captured simply 

by 𝛽 ≥ 1. 𝛽 = 1 is equivalent to 𝒮 = 𝛾𝑚𝑠 − 𝛾𝑙𝑠 − 𝛾𝑙𝑚 = 0, where 𝒮 is called the elastic wetting 

spreading number, reminiscent of the spreading number for classical wetting (Quéré et al., 1990). 

When 𝒮 ≥ 0 or 𝛽 ≥ 1, the interface is in complete wetting (𝜙0 = 0) so that liquid spreads along 

the interface without bulging the membrane. This scenario has been observed in 2D material 

systems, where the membrane and the substrate are relatively hydrophilic, and the membrane-

substrate adhesion is relatively weak (Temmen et al., 2014). 
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Fig. 8. Contour plots of (a) the normalized pressure, (b) the normalized volume, (c) the elastic 

wetting contact angle, and (d) the aspect ratio in 𝛼~𝛽 parametric space for elastic wetting with 

neo-Hookean membranes and adhesive boundaries. 

While the membrane elastic properties are relatively accessible, the interface energies are 

notoriously challenging to detect experimentally (Calvimontes, 2017). It hence gives rise to the 

challenge of determining the controlling parameter group (𝛼, 𝛽) in elastic wetting problems. Our 

contour plots suggest that for a regular elastic wetting system with 𝜙𝑜 ∈ (0, 𝜋), 𝛼 and 𝛽 could be 

extracted once the droplet pressure and one of the three geometrical parameters in Fig. 8 could be 

measured. It is theoretically possible to extract (𝛼, 𝛽) purely through two of the three geometrical 

parameters, 𝑉/𝑉1 , 𝑧(0)/𝑟1  and 𝜙0 . But the error could be excessive since these geometrical 

parameters share a very similar dependency on 𝛼 and 𝛽 (see Fig. 8). We thus advocate exploiting 

the combination of pressure and one of the geometrical parameters, such as the aspect ratio. For 
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example, for a droplet covered by a neo-Hookean membrane with 𝑧(0) 𝑟1⁄ =2 and Δ𝑝𝑅1/𝜇𝑡0 =

10, one can plot corresponding contour curves using Figs. 8a and 8d, and the intersect yields the 

𝛼 and 𝛽 of the system (Fig. 9). While the aspect ratio is often easy to detect in experiments, directly 

measuring the pressure in micro- or nano- blisters is almost impossible. We will propose an 

approach to estimate the pressure in Section 5.1 by observing the substrate deformation if the 

substrate were not completely rigid. The same methodology could be adopted to find out (𝛼, 𝛽) 

for droplets confined by Gent membranes (see Fig. C6 in Appendix C). 

 
Fig. 9. Contour curves for 𝑧(0) 𝑟1⁄ =2 and Δ𝑝𝑅1/𝜇𝑡0 = 10 in 𝛼 ∼ 𝛽 parametric space for elastic 

wetting with a neo-Hookean membrane and an adhesive boundary. 

 

Knowing 𝛼 and 𝛽 of the elastic wetting system with adhesive boundary can shed light on the 

membrane-substrate adhesion energy Γ. Specifically, according to the definition, 

 Γ = 𝛾𝑠 + 𝛾𝑚 − 𝛾𝑚𝑠, 
(37) 

where 𝛾𝑠 and 𝛾𝑚 are the surface energy densities of the substrate and the membrane, respectively. 

We may apply Young’s equation such that Eq. (37) yields 

 
Γ

𝜇𝑡0
= 𝛼(1 − 𝛽) +

𝛾𝑙
𝜇𝑡0

(cos𝜙𝑚 + cos𝜙𝑠), (38) 

Δ𝑝𝑅1
𝜇𝑡0

= 10

𝛼

𝛽

neo-Hookean material

-5 -4 -3 -1 20 1-2
0

2

4

6

8

10

𝑧 0

𝑟1
= 2



 32 / 59 
 

where 𝛾𝑙 is the surface tension of the interfacial liquid, and 𝜙𝑚 and 𝜙𝑠 are Youny’s contact anyles 

of the interfacial liquid on the membrane and the substrate, respectively. Therefore, the membrane-

substrate adhesion energy can be estimated once the membrane stiffness (i.e., 𝜇𝑡0) and surface 

parameters (including 𝛼, 𝛽, 𝛾𝑙, 𝜙𝑚, and 𝜙𝑠) in the system are known. The extracted Γ could be 

either work of adhesion or work of separation, depending on whether the droplet is formed via a 

process of the membrane healing with or separating from the substrate. 

4.3 Edge delamination with slippage (slippery boundary) 

Finally, we allow the membrane to delaminate with free slippage against the substrate so that 

the membrane in contact with the substrate is stressed. The main difference between edge 

delamination without and with slippage is that 𝑟1 ≠ 𝑅1 in the later. The criteria for delamination 

with slippage should include the force balance at the contact, i.e. Eq. (33), plus an equation, i.e. 

Eq. (34), to relate 𝑟1 to 𝑅1. The physical concepts discussed in Section 4.2.1 such as the self-similar 

shape and the invariant 𝑉 (
Δ𝑝

𝜇𝑡0
)
3

are still applicable to this case.  

We plot the normalized free energy-deformation and normalized pressure-deformation 

relations before and after edge delamination in Figs. 10a and 10b, respectively. The blue marker 

locates the onset of delamination when 𝛼 = 0.5 and 𝛽 = −5 are given. Compared to the position 

of the blue marker shown in Fig. 7a or Fig. 7b, at the same 𝛼 and 𝛽, the edge delamination occurs 

much earlier in a membrane-confined droplet with slippery boundary because the membrane-

substrate interface is relatively weak compared with the adhesive boundary. Figure 10c plots the 

evolution of the blister profile. After the onset of delamination, the profiles are again obtained 

through scaling the profile at the onset of delamination. Notably, the radius of the contact line first 

shrinks at the early stage of the bulging, reminiscent of the experimental observation of a flat 

membrane suddenly wrapped around a droplet due to surface tension (Antkowiak et al., 2011; de 

Langre et al., 2010; Paulsen et al., 2015). The wrapping and delamination process under slippery 

boundary can be visualized in supplementary Video 4. Figure 10d exhibits the distribution of 
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normalized hoop tractions in the membrane with edge delamination 𝑅1 = 𝑅0, 1.5𝑅0, and 2𝑅0. It is 

clear that all the attached region and part of the bulged region of the membrane are subjected to 

hoop compression. Considerations of elastic instabilities that release such compression would be 

necessary (Chopin et al., 2008; Dai and Lu, 2021; Dai et al., 2020b; Huang et al., 2007), but are 

out of the scope of this paper. Besides, similar results for elastic wetting with a Gent membrane 

and a slippery boundary are offered in Fig. C7 in Appendix C. 

 
 

Fig. 10. Normalized (a) free energy-deformation and (b) pressure-deformation relations for elastic 

wetting with a neo-Hookean membrane and a  slippery boundary when 𝛼 = 0.5 and 𝛽 = −5 are 

given. The black and red curves represent configurations without and with edge delamination, 

respectively. (c) The growth of the blister profile under the slippery boundary. The black and red 

parts represent the sections of the membrane that are initially detached from or attached to the 

substrate before any liquid injection. For the two blister profiles before delamination, their 
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prescribed volumes are 𝑉/𝑉0 = 0.1 and 0.2. (d) Normalized hoop tension in the membrane with 

edge delamination of 𝑅1 = 𝑅0, 1.5𝑅0, and 2𝑅0. 

 

We have provided the full theoretical solutions to elastic wetting under three realistic 

boundary conditions in this section. We find that before edge delamination occurs, the system with 

adhesive boundary first behaves like a clamped bulge test where the interfacial tension and the 

membrane tension together balance against the inner pressure through curvature, while the contact 

line of the system with slippery boundary first moves inward such that the membrane appears to 

wrap around the interfacial droplet. Once the bulging volume reaches the critical volume-to-

delaminate or the contact angle reaches the critical value as given in Eq. (30) for non-slipping 

interface and Eq. (33) for slipping interface, edge delamination occurs, and the blister grows in a 

self-similar manner with constant contact angle afterward.  Everything else the same, the slippery 

boundary greatly reduces the critical volume-to-delaminate compared with the adhesive boundary 

due to a weaker membrane-substrate interface. Once the membrane slides inward under slippery 

boundary, hoop compression develops in the membrane, which would cause instabilities such as 

radial buckles but is beyond the scope of this work. 

5 Discussions 

5.1 Effects of substrate compliance 

Having shown the complexities in pressure and geometry when the droplet is confined 

between an elastic membrane and a rigid substrate, we discuss the applicability of our theory when 

the substrate is not perfectly rigid. 

To reveal the effects of substrate stiffness, we start with a simple scaling analysis for the 

elastic wetting problem on a soft substrate subjected to a clamped boundary. Based on equilibrium 

Eq. (11), the inner pressure can be expressed as ∆𝑝~(𝑁 + 𝛾)𝜅. Consider the membrane strain 

𝜀~(ℎ 𝑅0⁄ )2, the membrane tension 𝑁~𝜇𝑡0𝜀~𝜇𝑡0(ℎ 𝑅0⁄ )2 and the curvature 𝜅~ℎ 𝑅0
2⁄ , we have 

∆𝑝~𝜇𝑡0 ℎ
3 𝑅0

4⁄ + 𝛾 ℎ 𝑅0
2⁄ . Furthermore, the central deflection of the substrate, i.e. 𝛿𝑠, due to the 
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inner pressure is less than ∆𝑝𝑅0 𝜇𝑠⁄ ~
𝜇𝑡0

𝜇𝑠
(ℎ3 𝑅0

3⁄ + 𝛼 ℎ 𝑅0⁄ ) (Lubarda, 2013). Consequently, the 

ratio of the central deflection of the substrate to the central deflection of the membrane can be 

expressed as 𝛿𝑠 ℎ⁄ ≲
𝜇𝑡0

𝜇𝑠𝑅0
(ℎ2 𝑅0

2⁄ + 𝛼). In most experiments, ℎ 𝑅0⁄ ~𝒪(1) and 𝛼 ≲ 1 (see the 3rd 

and the 7th rows of Table 1). Therefore, we suggest that the effect of substrate compliance on the 

droplet configuration may be negligible when 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ ≪ 1. Considering the fact that 𝑡0 𝑅0⁄  

is extremely small for ultrathin membrane systems, our theoretical analysis based on the rigid 

substrate would stay applicable as long as the membrane stiffness is not orders of magnitude larger 

than that of the substrate. This also brings an outstanding opportunity to detect the elusive inner 

pressure of membrane-confined droplets via the substrate deformation (Latorre et al., 2018), which 

should be sufficiently large to allow for accurate experimental measurement yet sufficiently small 

(compared with the membrane deflection) to render our rigid substrate assumption valid. Such a 

conclusion essentially makes use of the nearly linear elasticity of an elastomeric substrate at small 

deformation and the highly nonlinear elasticity of a thin membrane at large deformation.  

We quantitatively verify the rigid substrate criterion of 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ ≪ 1 by carrying out 

finite element modeling (FEM) in Abaqus. The elasto-capillary effect is simulated by using the 

UEL subroutine created by Jagota and colleagues (Jagota et al., 1998; Style et al., 2017; Xu et al., 

2014), where a two-node user-defined surface element was developed and applied in various topics 

involving surface tensions. In our simulations, both the thin membrane and the substrate were 

modeled as incompressible neo-Hookean materials. The substrate was meshed using 2-D 

axisymmetric elements CAX4H. We chose a domain Ω = {(𝑅, 𝑍)|0 ≤ 𝑅 ≤ 10𝑅0, −10𝑅0 ≤ 𝑍 ≤

0} whose lateral size and depth were both ten times of the initial blister radius, i.e. 10𝑅0, such that 

the substrate could be treated as a half-space. We considered small substrate-liquid and substrate-

membrane interface energies and large membrane-liquid interface energies such that the substrate 

was susceptible to deformation under a given blister height. Specifically, 𝛾𝑙𝑠 = 𝛾𝑚𝑠 = 0  and 

𝛾𝑙𝑚 𝜇𝑡0⁄ = 1 were assumed. If the rigid substrate criterion was verified under such parameters, the 

criterion would be applicable for more general cases with 𝛾𝑙𝑠, 𝛾𝑚𝑠 > 0 and 𝛾𝑙𝑚 𝜇𝑡0⁄ < 1.  
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Figure 11 plots the FEM results of the normalized pressure (Δ𝑝𝑅0/𝜇𝑡0 ) against the 

normalized central displacement of the membrane on a soft substrate. These results were produced 

by varying 𝜇𝑡0 (𝜇𝑠𝑅0)⁄  from 0 to 1. The black curve in Fig. 11 corresponds to 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ = 0, 

which represents elastic wetting on a rigid substrate. Clearly, the substrate effect on the pressure-

deformation relation weakens as 𝜇𝑡0 (𝜇𝑠𝑅0)⁄  decreases. Particularly, when 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ < 0.1, the 

deviation in pressure between the soft and the rigid substrate analysis is within 6.5%. This agrees 

with the scaling prediction of 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ ≪ 1. Figure 12 displays the configurations of elastic 

wetting with 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ = 0.1, 0.2, and 1 under various aspect ratios, further indicating that the 

substrate deflection becomes negligible compared with the membrane deflection when 

𝜇𝑡0 (𝜇𝑠𝑅0)⁄ ≲ 0.1. 

 
Fig. 11. FEM results of the normalized pressure against the normalized central displacement of the 

neo-Hookean membrane with a clamped boundary on soft substrates where 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ =
0, 0.1, 0.2, 1.0, 𝛾𝑙𝑠 = 𝛾𝑚𝑠 = 0 and 𝛾𝑙𝑚 𝜇𝑡0⁄ = 1. The result of 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ = 0 (the black curve) 

represents the elastic wetting with a clamped boundary on a rigid substrate.  
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Fig. 12. FEM solutions of elastic wetting on soft substrates with various 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ = 0.1, 0.2, 

and 1  along the verticle axis and various aspect ratios 
𝑧(0)

𝑅0
= 0.5, 1.0, 1.5,  and 2.0  along the 

horizontal axis. 

5.2 Signatures of nonlinear elastic wetting 

In this section, we discuss the conditions under which the elastic wetting phenomena 

presented in this work are too significant to neglect.   

• Interface energy. In Section 5.1, we have derived that the blister pressure scales as 

∆𝑝~𝜇𝑡0 ℎ
3 𝑅0

4⁄ + 𝛾 ℎ 𝑅0
2⁄ . Therefore, the effect of interfacial tension would be 

nontrivial when 
𝛾

𝜇𝑡0
≳ (

ℎ

𝑅0
)
2

, suggesting that systems with ultrathin and ultrasoft 

membranes are more likely to fall in the elastic wetting category. Such effect is 
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especially significant in several small-scale blisters trapped by biological and soft 

polymer membranes (see the 8th row of Table 1). 

• Substrate stiffness. In Section 5.1, we have derived a scaling law and verified 

numerically that the rigid substrate assumption could provide a good approximation 

when 
𝜇𝑡0

𝜇𝑠𝑅0
 ≲ 0.1. This condition is not that limited as most blisters have 𝑡0 ≪ 𝑅0. 

Moreover, most small-scale elastic wetting systems observed in experiments satisfy 

this criterion (see the 10th row of Table 1).  

• Nonlinear elasticity. Our analysis is based on both nonlinear elastic materials and 

nonlinear geometry, which we claimed to be significant when the aspect ratio of the 

blister is greater than 0.2. To justify, we compare our results with the following two 

typical membrane theories: the nonlinear membrane theory (without surface tension) 

and the Föppl-Hencky membrane theory (Hencky, 1915).  

The conventional nonlinear membrane theory without surface tension is simply obtained 

by neglecting the interface energy term in Eq. (11) (i.e., setting 𝛾𝑙𝑚 = 0 in Eq. (11)). The Föppl-

Hencky membrane theory considers a small in-plane deformation but a relatively large deflection 

for the bulged membrane (also without surface tension), as well as a linear constitutive law. 

Therefore, the radial and hoop membrane tensions are expressed as 

 𝑁𝑟 =
𝐸𝑡0
1 − 𝜈2

(𝜖𝑟 + 𝜈𝜖𝜃) =
𝐸𝑡0
1 − 𝜈2

[
d𝑢𝑟
d𝑟

+
1

2
(
d𝑧

d𝑟
)
2

+ 𝜈
𝑢𝑟
𝑟
], (39) 

and 

 𝑁𝜃 =
𝐸𝑡0
1 − 𝜈2

(𝜖𝜃 + 𝜈𝜖𝑟) =
𝐸𝑡0
1 − 𝜈2

[
𝑢𝑟
𝑟
+ 𝜈

d𝑢𝑟
d𝑟

+
𝜈

2
(
d𝑧

d𝑟
)
2

], (40) 

respectively. Here 𝐸 is the Youny’s modulus, 𝜈 is the Poisson's ratio, 𝜖𝑟 =
d𝑢𝑟

d𝑟
+

1

2
(
d𝑧

d𝑟
)
2

 and 𝜖𝜃 =

𝑢𝑟

𝑟
 are the two principle in-plane strain components, 𝑢𝑟 and 𝑧 are displacements in the 𝒆𝑟 and 𝒆𝑧 

direction, respectively. Notably, the shear modulus of the membrane is defined as 𝜇 =
𝐸

2(1+𝜈)
  

where 𝜈 = 0.5 for the incompressible membrane. 

The out-of-plane and in-plane force equilibriums based on the Föppl-Hencky membrane 

theory are derived as (Wang et al., 2013) 
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    {
𝑁𝑟
d2𝑧

d𝑟2
+ 𝑁𝜃

1

𝑟

d𝑧

d𝑟
+ Δ𝑝 = 0,

d𝑁𝑟
d𝑟

+
𝑁𝑟 − 𝑁𝜃

𝑟
= 0,               

 (41) 

which can also be obtained through linearizing the constitutive law and the curvature in the 

nonlinear membrane theory, i.e. Eq. (11).  

For simplification, we adopt a clamped boundary condition in calculations. Such a boundary 

condition for the nonlinear membrane theory is shown in Section 2.4.2. For the Föppl-Hencky 

membrane theory, we consider 

 𝑢𝑟(0) =
d𝑧(0)

d𝑟
= 𝑢𝑟(𝑅0) = 𝑧(𝑅0) = 0. (42) 

Equations (39)-(42) can be solved numerically by applying the shooting method as well. For 

comparison, we adopt the incompressible Gent model with 𝐽𝑚 = 100, 200, and ∞, where 𝐽𝑚 → ∞ 

denotes the incompressible neo-Hookean material in the nonlinear membrane theory. 

Figure 13a plots the normalized pressure-aspect ratio relations comparing the three theories 

and Fig. 13b offers the blown-up view of the red boxed region in Fig. 13a. We can see that the 

Föppl-Hencky membrane theory starts to deviate from the nonlinear membrane theory without 

surface tension (i.e., 𝛼 = 0 ) at the aspect ratio around 0.2. We, therefore, recommend that 

nonlinear elasticity and geometric nonlinearity should be considered when the aspect ratio of the 

blister is greater than 0.2. Moreover, as shown in  Fig. 13, once surface tension is considered, the 

pressure-deformation relation is markedly affected, leading to a much higher pressure firstly, and 

then a more rapid pressure drop, as deformation increases. Besides, for elastic wetting with Gent 

membranes (i.e., 𝐽𝑚 = 100, 200) and clamped boundaries, the N-shaped pressure-deformation 

relation is more visible in Fig. 13a than in Fig. 6a when the aspect ratio instead of the volume is 

adopted by the former to quantify the deformation. 
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Fig. 13. (a) Normalized pressure-aspect ratio curves obtained based on our elastic wetting theory 

(dash-dot curves) and two conventional membrane theories without considering surface tension: 

the nonlinear membrane theory (solid curves) and the Föppl-Hencky membrane theory (dashed 

curves). (b) Zoomed-in view of the red-boxed region in (a). 

Conclusions 

In this paper, we model and solve the elastic wetting problems in which a droplet is confined 

between a soft elastic membrane and a rigid substrate at small scales such that the interplay 

between the interface energy and the elastic energy enriches the problem. We find that the pressure 

acting on the membrane-confined droplet comes from a superposition of interfacial tension 

(described by Young-Laplace equation) and membrane tension (controlled by nonlinear membrane 

theory). Though the pressure remains uniform, the membrane tension varies spatially, modifying 

the droplet from being in a perfectly spherical cap shape. The membrane-substrate interaction, 

together with the elastic and surface tensions, leads to a variety of scenarios at the contact line or 

the blister boundary.  

This work tackles four typical boundary conditions – sliding, clamped, adhesive, and slippery 

boundaries. Our derivation yields two dimensionless controlling parameters in this system: the 

elasto-capillary number that compares the membrane-liquid surface tension with the membrane 

stiffness, and the effective contact angle that decays to Youny’s contact angle when the membrane 

elasticity is negligible. The essence of these complex behaviors at the contact line is explained by 
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how the membrane tension and the elasto-capillary number modify the effective contact angle to 

the elastic wetting contact angle. In the adhesive case (more likely to occur in experiments), we 

discover that the elastic wetting contact angle is a stretch-independent constant. We therefore 

provide contour plots for its dependency on the two controlling parameters, which further leads to 

a means to experimentally measure the interface energies. We suggest that elastic wetting 

problems may follow the theoretical framework presented here when the elasto-capillary number 

is comparable with the square of the aspect ratio of the blister. We discover that the rigid substrate 

assumption could be satisfied when the membrane deflection is much larger than the substrate 

deflection, which is equivalent to 𝜇𝑡0 (𝜇𝑠𝑅0)⁄ ≲ 0.1. We advocate that nonlinear elasticity and 

geometric nonlinearity should be considered, especially when the aspect ratio is greater than 0.2. 

Table 1 exhibits experimentally practical parameters for the elastic wetting problems associated 

with biological materials, soft polymers and 2D materials, where our theory is very relevant. Our 

theoretical framework for elastic wetting not only enables the prediction of the blister profile and 

the ∆𝑝 − 𝑉 relation but also provides means to experimentally extract the inner pressure as well 

as the interface and adhesion energies.  
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Appendix A. Derivation of equilibrium equations and boundary conditions through energy 

minimization 

In this section, we illustrate the derivation of the energy minimization procedure based on the 

calculus of variations. Firstly, substituting Eqs. (4)-(7) and (9) into Eq. (8), one obtains 

 

Π = ∫ 2𝜋𝑡0𝑅𝑊(𝑟, 𝑟
′, 𝑧′)d𝑅

𝑅0

0

+∫ 2𝜋𝑡0𝑅𝑊(𝑟, 𝑟′)d𝑅
∞

𝑅0

− Δ𝑝∫ 2𝜋𝑟𝑟′𝑧d𝑅
𝑅0

0

 + 𝛾𝑙𝑚∫ 2𝜋𝑟√𝑟′2 + 𝑧′2d𝑅
𝑅0

0

+ 𝛾𝑙𝑠∫ 2𝜋𝑟𝑟′d𝑅
𝑅0

0

+ 𝛾𝑚𝑠∫ 2𝜋𝑟𝑟′d𝑅
∞

𝑅0

,            

(A 1) 

which is rearranged as 

 Π = 2𝜋∫ 𝐹1d𝑅
𝑅0

0

+ 2𝜋∫ 𝐹2d𝑅
∞

𝑅0

, (A 2) 

where 

 𝐹1 = 𝑡0𝑅𝑊(𝑟, 𝑟′, 𝑧′) − Δ𝑝𝑟𝑟′𝑧 + 𝛾𝑙𝑚𝑟√𝑟′
2 + 𝑧′2 + 𝛾𝑙𝑠𝑟𝑟

′,  
𝐹2 = 𝑡0𝑅𝑊(𝑟, 𝑟

′) + 𝛾𝑚𝑠𝑟𝑟
′. 

(A 3) 

If we use 𝑟, 𝑧, 𝑟′, 𝑧′ as the variation terms, based on Eq. (10), there is 

 δΠ = 2𝜋δ∫ 𝐹1d𝑅
𝑅0
−

0

+ 2𝜋δ∫ 𝐹2d𝑅
∞

𝑅0
+

= 0, (A 4) 

where 𝑅0
− and 𝑅0

+ represent the left (inner) and right (outer) sides of the contact line 𝑅 = 𝑅0 , 

respectively.  

Furthermore, based on the principle of variation, there is 

 δ∫ 𝐹1d𝑅
𝑅0
−

0

= ∫ (
∂𝐹1
∂𝑟

δ𝑟 +
∂𝐹1
∂𝑟′

δ𝑟′ +
∂𝐹1
∂𝑧

δ𝑧 +
∂𝐹1
∂𝑧′

δ𝑧′) d𝑅
𝑅0
−

0

+ 𝐹1|𝑅0−δ𝑅0
−, (A 5) 

where 

 

∫
𝜕𝐹1
𝜕𝑟′

δ𝑟′d𝑅
𝑅0
−

0

=
𝜕𝐹1
𝜕𝑟′

|
𝑅0
−
(δ𝑟)(𝑅0

−) −
𝜕𝐹1
𝜕𝑟′

|
0

(δ𝑟)(0) − ∫
d

d𝑅

𝜕𝐹1
𝜕𝑟′

δ𝑟d𝑅
𝑅0
−

0

, 

∫
𝜕𝐹1
𝜕𝑧′

δ𝑧′d𝑅
𝑅0
−

0

=
𝜕𝐹1
𝜕𝑧′

|
𝑅0
−
(δ𝑧)(𝑅0

−) −
𝜕𝐹1
𝜕𝑧′

|
0

(δ𝑧)(0) − ∫
d

d𝑅

𝜕𝐹1
𝜕𝑧′

δ𝑧d𝑅
𝑅0
−

0

. 

(A 6) 

Similarly, there is 

 δ∫ 𝐹2d𝑅
∞

𝑅0
+

= ∫ (
𝜕𝐹2
𝜕𝑟

δ𝑟 +
𝜕𝐹2
𝜕𝑟′

δ𝑟′)d𝑅
∞

𝑅0
+

− 𝐹2|𝑅0+δ𝑅0
+, (A 7) 
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where 

 ∫
∂𝐹2
∂𝑟′

δ𝑟′d𝑅
∞

𝑅0
+

=
∂𝐹2
∂𝑟′

|
∞

(δ𝑟)(∞) −
∂𝐹2
∂𝑟′

|
𝑅0
+
(δ𝑟)(𝑅0

+) − ∫
d

d𝑅

∂𝐹2
∂𝑟′

δ𝑟d𝑅
∞

𝑅0
+

. (A 8) 

Based on the above, we plug Eqs. (A 5)-(A 8) into Eq. (A 4), yielding 

 

∫ ((
𝜕𝐹1
𝜕𝑟

−
d

d𝑅

𝜕𝐹1
𝜕𝑟′

) δ𝑟 + (
𝜕𝐹1
𝜕𝑧

−
d

d𝑅

𝜕𝐹1
𝜕𝑧′

) δ𝑧) d𝑅
𝑅0
−

0

 

+𝐹1|𝑅0−δ𝑅0
− +

𝜕𝐹1
𝜕𝑟′

|
𝑅0
−
(δ𝑟)(𝑅0

−) +
𝜕𝐹1
𝜕𝑧′

|
𝑅0
−
(δ𝑧)(𝑅0

−) −
∂𝐹1
∂𝑟′

|
0

(δ𝑟)(0) 

−
∂𝐹1
∂𝑧′

|
0

(δ𝑧)(0) + ∫ ((
∂𝐹2
∂𝑟

−
d

d𝑅

∂𝐹2
∂𝑟′

) δ𝑟) d𝑅
∞

𝑅0
+

 

                          −𝐹2|𝑅0+δ𝑅0
+ +

∂𝐹2

∂𝑟′
|
∞
(δ𝑟)(∞) −

∂𝐹2

∂𝑟′
|
𝑅0
+
(δ𝑟)(𝑅0

+) = 0. 

(A 9) 

To satisfy Eq. (A 9), one obtains 

 {

𝜕𝐹1
𝜕𝑟

−
d

d𝑅

𝜕𝐹1
𝜕𝑟′

= 0

𝜕𝐹1
𝜕𝑧

−
d

d𝑅

𝜕𝐹1
𝜕𝑧′

= 0

      ∀ 0 ≤ 𝑅 ≤ 𝑅0
−, (A 10) 

and 

 
∂𝐹2
∂𝑟

−
d

d𝑅

∂𝐹2
∂𝑟′

= 0               ∀ 𝑅 ≥ 𝑅0
+. (A 11) 

In addition, plugging Eq. (A 3) into Eq. (A 10), one obtains 

{
 
 

 
 𝑡0 [𝑅

∂𝑊

∂𝑟
− (𝑅

∂𝑊

∂𝑟′
)
′

] − Δ𝑝[𝑟′𝑧 − (𝑟𝑧)′] + 𝛾𝑙𝑚 [√𝑟′
2 + 𝑧′2 − (

𝑟𝑟′

√𝑟′2 + 𝑧′2
)

′

] = 0

𝑡0 [𝑅
∂𝑊

∂𝑧
− (𝑅

∂𝑊

∂𝑧′
)
′

] − Δ𝑝𝑟𝑟′ − 𝛾𝑙𝑚 (
𝑟𝑧′

√𝑟′2 + 𝑧′2
)

′

= 0                    ∀ 0 ≤ 𝑅 ≤ 𝑅0
−.

 (A 12) 

Similarly, plugging Eq. (A 3) into (A 11), one obtains 

 𝑡0 [𝑅
∂𝑊

∂𝑟
− (𝑅

∂𝑊

∂𝑟′
)
′

] = 0              ∀ 𝑅 ≥ 𝑅0
+. (A 13) 

Besides, based on Eq. (1), there is 

 
∂𝑊

∂𝑟
=
1

𝑅

∂𝑊

∂𝜆𝜃
,
∂𝑊

∂𝑟′
=
𝑟′

𝜆𝑟

∂𝑊

∂𝜆𝑟
,
∂𝑊

∂𝑧
= 0,

∂𝑊

∂𝑧′
=
𝑧′

𝜆𝑟

∂𝑊

∂𝜆𝑟
. (A 14) 

Now, combining with Eqs. (13) and (A 14), Eq. (A 12) can be rewritten as 

{
 
 

 
 Δ𝑝 = −

𝑡0
𝑟𝑧′

[
∂𝑊

∂𝜆𝜃
−
𝑟′

𝜆𝑟

∂𝑊

∂𝜆𝑟
− 𝑅 (

𝑟′

𝜆𝑟
)

′
∂𝑊

∂𝜆𝑟
− 𝑅

𝑟′

𝜆𝑟
(
∂𝑊

∂𝜆𝑟
)
′

] − 𝛾𝑙𝑚(𝜅𝑟 + 𝜅𝜃)

Δ𝑝 =
𝑡0
𝑟𝑟′

[−
∂𝑊

∂𝜆𝑟
(𝑅

𝑧′

𝜆𝑟
)

′

− 𝑅
𝑧′

𝜆𝑟
(
∂𝑊

∂𝜆𝑟
)
′

] − 𝛾𝑙𝑚(𝜅𝑟 + 𝜅𝜃)   ∀ 0 ≤ 𝑅 ≤ 𝑅0
−.

 (A 15) 

Similarly, Eq. (A 13) can be rewritten as  
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∂𝑊

∂𝜆𝜃
−
𝑟′

𝜆𝑟

∂𝑊

∂𝜆𝑟
− 𝑅 (

𝑟′

𝜆𝑟
)

′
∂𝑊

∂𝜆𝑟
− 𝑅

𝑟′

𝜆𝑟
(
∂𝑊

∂𝜆𝑟
)
′

= 0    ∀ 𝑅 ≥ 𝑅0
+. (A 16) 

By computing the difference between the two equations in Eq. (A 15) and then combining 

with Eq. (14), one obtains 

 
d𝑁𝑟
d𝑅

+
𝑟′(𝑁𝑟 − 𝑁𝜃)

𝑟
= 0              ∀ 0 ≤ 𝑅 ≤ 𝑅0

−.   (A 17) 

Meanwhile, by computing the average between two equations in Eq. (A 15) and then combining 

with Eq. (14), one obtains 

 𝜅𝑟𝑁𝑟 + 𝜅𝜃𝑁𝜃 + 𝛾𝑙𝑚(𝜅𝑟 + 𝜅𝜃) + Δ𝑝 = 0    ∀ 0 ≤ 𝑅 ≤ 𝑅0
−. (A 18) 

As we can see, Eqs. (A 17)-(A 18) are the equilibrium equations at the inner side of the membrane-

confined droplet, shown as Eq. (11). 

 Combining with Eq. (14), Eq. (A 16) is expressed as  

 
d𝑁𝑟
d𝑅

+
𝑟′(𝑁𝑟 − 𝑁𝜃)

𝑟
= 0                  ∀ 𝑅 ≥ 𝑅0

+,   (A 19) 

which is the equilibrium equation at the outside of the membrane-confined droplet, shown as Eq. 

(12). 

Now, the residual parts in Eq. (A 9) are considered as boundary terms, which is 

 
𝐹1|𝑅0−δ𝑅0

− +
𝜕𝐹1

𝜕𝑟′
|
𝑅0
−
(δ𝑟)(𝑅0

−) +
𝜕𝐹1

𝜕𝑧′
|
𝑅0
−
(δ𝑧)(𝑅0

−) −
𝜕𝐹1

𝜕𝑟′
|
0
(δ𝑟)(0) −

𝜕𝐹1

𝜕𝑧′
|
0
(δ𝑧)(0) − 𝐹2|𝑅0+δ𝑅0

+ +
𝜕𝐹2

𝜕𝑟′
|
∞
(δ𝑟)(∞) −

𝜕𝐹2

𝜕𝑟′
|
𝑅0
+
(δ𝑟)(𝑅0

+) = 0. 
(A 20) 

We know that 

 

δ𝑅0
− = δ𝑅0

+ = δ𝑅0, δ𝑟(𝑅0
−) = δ𝑟(𝑅0

+) = δ𝑟0, δ𝑧(𝑅0
−) = δ𝑧(𝑅0

+) = δ𝑧0, 
(δ𝑟)(𝑅0

±) = δ𝑟(𝑅0
±) − (𝑟′)|𝑅0

±δ𝑅0
± = δ𝑟0 − (𝑟

′)|
𝑅0
±δ𝑅0, 

(δ𝑧)(𝑅0
±) = δ𝑧(𝑅0

±) − (𝑧′)|𝑅0
±δ𝑅0

± = δ𝑧0 − (𝑧
′)|

𝑅0
±δ𝑅0, 

(δ𝑟)(0) = δ𝑟(0) − 𝑟′(0)δ0 = 0, (δ𝑧)(0) = δ𝑧(0) − 𝑧′(0)δ0 = δ𝑧(0), 
 (δ𝑟)(∞) = δ𝑟(∞) − 𝑟′(∞)δ(∞) = δ𝑟(∞). 

(A 21) 

Therefore, by plugging Eqs. (A 3) and (A 21) into Eq. (A 20), one obtains  
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[𝑡0𝑅𝑊 − Δ𝑝𝑟𝑟′𝑧 + 𝛾𝑙𝑚𝑟√𝑟′
2 + 𝑧′2 + 𝛾𝑙𝑠𝑟𝑟

′]|
𝑅0
−
δ𝑅0

+ [𝑡0𝑅
∂𝑊

∂𝑟′
− Δ𝑝𝑟𝑧 + 𝛾𝑙𝑚

𝑟𝑟′

√𝑟′2 + 𝑧′2
+ 𝛾𝑙𝑠𝑟]|

𝑅0
−

(δ𝑟0

− (𝑟′)|𝑅0−δ𝑅0)

+ [𝑡0𝑅
∂𝑊

∂𝑧′
+ 𝛾𝑙𝑚

𝑟𝑧′

√𝑟′2 + 𝑧′2
]|

𝑅0
−

(δ𝑧0 − (𝑧
′)|𝑅0−δ𝑅0)

− [𝑡0𝑅
∂𝑊

∂𝑧′
+ 𝛾𝑙𝑚

𝑟𝑧′

√𝑟′2 + 𝑧′2
]|

0

δ𝑧(0)

− [𝑡0𝑅𝑊 + 𝛾𝑚𝑠𝑟𝑟
′]|𝑅0+δ𝑅0

− [𝑡0𝑅
∂𝑊

∂𝑟′
+ 𝛾𝑚𝑠𝑟]|

𝑅0
+
(δ𝑟0 − (𝑟

′)|𝑅0+δ𝑅0)

+ [𝑡0𝑅
∂𝑊

∂𝑟′
+ 𝛾𝑚𝑠𝑟]|

∞
δ𝑟(∞) = 0. 

 

(A 22) 

Based on Eqs. (1), (2), (14), (19), and (A 14), we simplify it as Eq. (17). By now, all the equilibrium 

equations and boundary conditions are derived for elastic wetting. 

Appendix B. Shooting method 

We adopted shooting method to numerically solve the ODE system consisting of the 

equilibrium Eq. (11) and various boundary conditions given in Section 2.4. Instead of solving 2nd 

order ODEs for 𝑧 and 𝑟, we solve 1st order ODEs for 𝜆𝜃 , 𝜆𝑟 , 𝑧, 𝜙. To do so, We plug Eq. (2) into 

Eq. (13), yielding 

 𝜅𝑟 = −
𝜙′

𝜆𝑟
, 𝜅𝜃 = −

sin𝜙

𝑟
. (B 1) 

Combining with Eq. (B 1), Eq. (11) can be then rewritten as 

 

{
  
 

  
 
𝜙′ =

−(𝑁𝜃 + 𝛾𝑙𝑚)
𝜆𝑟
𝜆𝜃

sin𝜙
𝑅

+ Δ𝑝𝜆𝑟

𝑁𝑟 + 𝛾𝑙𝑚
                

𝜆𝑟
′ =

−cos𝜙 𝜆𝑟
𝑅

(
∂𝑁𝑟
∂𝜆𝜃

+
𝑁𝑟 − 𝑁𝜃
𝜆𝜃

) +
∂𝑁𝑟
∂𝜆𝜃

𝜆𝜃
𝑅

∂𝑁𝑟
∂𝜆𝑟

. ( B 2) 

Next, plugging Eq. (15) into Eq. (14), we express the in-plane membrane tractions for neo-

Hookean materials in terms of principal stretches as 



 46 / 59 
 

 

{
 
 

 
 𝑁𝑟 =

𝜇𝑡0(𝜆𝑟
4𝜆𝜃

2 − 1)

𝜆𝑟
3𝜆𝜃

3

𝑁𝜃 =
𝜇𝑡0(𝜆𝑟

2𝜆𝜃
4 − 1)

𝜆𝑟
3𝜆𝜃

3

. (B 3) 

Similarly, for Gent materials, plugging Eq. (16) in Eq. (14), one obtains 

 

{
 
 

 
 𝑁𝑟 =

−𝜇𝑡0𝐽𝑚(𝜆𝑟
4𝜆𝜃

2 − 1)

𝜆𝑟𝜆𝜃 + 𝜆𝑟
3𝜆𝜃

3(𝜆𝑟2 + 𝜆𝜃
2 − 3 − 𝐽𝑚)

𝑁𝜃 =
−𝜇𝑡0𝐽𝑚(𝜆𝑟

2𝜆𝜃
4 − 1)

𝜆𝑟𝜆𝜃 + 𝜆𝑟
3𝜆𝜃

3(𝜆𝑟2 + 𝜆𝜃
2 − 3 − 𝐽𝑚)

. (B 4) 

A shooting method can be constructed using the terms {𝑦1, 𝑦2, 𝑦3, 𝑦4} = {𝜆𝜃, 𝑧 𝑅0⁄ , 𝜙, 𝜆𝑟} as 

variables for the corresponding boundary value problem. Based on Eqs. (2) and (B 3), we have the 

computational equations based on the incompressible neo-Hookean material model as 

 

{
 
 
 
 

 
 
 
 
d

d𝑅̂
𝑦1 =

𝑦4 cos 𝑦3 − 𝑦1

𝑅̂
                                                           

d

d𝑅̂
𝑦2 = −𝑦4 sin 𝑦3                                                                  

d

d𝑅̂
𝑦3 = −

𝑦4[𝑦4
2𝑦1

4 − 1 + 𝛼𝑦4
3𝑦1

3]
sin 𝑦3
𝑅̂

−
Δ𝑝𝑅0
𝜇𝑡0

𝑦4
4𝑦1

4

𝑦1(𝑦4
4𝑦1

2 − 1 + 𝛼𝑦4
3𝑦1

3)
,

d

d𝑅̂
𝑦4 =

𝑦4
2(𝑦4

2𝑦1
4 − 3) cos 𝑦3 − 𝑦4𝑦1(𝑦4

4𝑦1
2 − 3)

𝑅̂𝑦1(𝑦4
4𝑦1

2 + 3)
            

 (B 5) 

where 𝑅̂ = 𝑅 𝑅0⁄  and 𝛼 = 𝛾𝑙𝑚 𝜇𝑡0⁄ . Similarly, based on Eqs. (2) and (B 4), the computational 

equations based on the incompressible Gent material model are expressed as 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
d

d𝑅̂
𝑦1 =

𝑦4 cos 𝑦3 − 𝑦1

𝑅̂
                                                               

d

d𝑅̂
𝑦2 = −𝑦4 sin 𝑦3                                                                      

d

d𝑅̂
𝑦3 = −

𝑦4[𝑦4
2𝑦1

4 − 1 + 𝛼𝑦4
3𝑦1

3𝛿]
sin 𝑦3
𝑅̂

−
Δ𝑝𝑅0
𝜇𝑡0

𝑦4
4𝑦1

4𝛿

𝑦1(𝑦4
4𝑦1

2 − 1 + 𝛼𝑦4
3𝑦1

3𝛿)

d

d𝑅̂
𝑦4 = 𝛿

𝑦4
2(𝑦4

2𝑦1
4 − 3) cos 𝑦3 − 𝑦4𝑦1(𝑦4

4𝑦1
2 − 3)

𝑅̂𝑦1 [(𝑦4
4𝑦1

2 + 3)𝛿 +
2(𝑦4

4𝑦1
2 − 1)2

𝐽𝑚𝑦4
2𝑦1

2 ]

              

          +
2𝑦4(𝑦4

6𝑦1
6 − 𝑦4

2𝑦1
2𝐼1 + 2)(−𝑦4 cos 𝑦3 + 𝑦1)

𝑅̂𝑦1[𝑦4
2𝑦1

2(𝑦4
4𝑦1

2 + 3)𝐽𝑚𝛿 + 2(𝑦4
4𝑦1

2 − 1)2]
         

, (B 6) 

where 𝛿 = 1 − (𝐼1 − 3) 𝐽𝑚⁄ . 
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In addition, the initial conditions of Eqs. (B 5) and (B 6) at 𝑅̂ = 0 are summarized as 

 𝑦1(0) = 𝑘, 𝑦2(0) = 0, 𝑦3(0) = 0 and 𝑦4(0) = 𝑘,  (B 7) 

where 𝑘 is varied until boundary conditions at 𝑅̂ = 1 are satisfied. Notably, although the central 

height of a specific blister system (i.e., 𝑦2(0)) is an unknown constant physically, assigning 

𝑦2(0) = 0  is reasonable in computation because the value of 𝑦2  is independent with the 

computation of 𝑦1 , 𝑦3  and 𝑦4 . Besides, to avoid numerical singularity at 𝑅̂ = 0, the solution 

procedure may start at a sufficiently small value, i.e., 𝑅̂ = 𝜖 ≪ 1, so that the initial conditions are 

reformulated as 

 

𝑦1(𝜖) = 𝑘, 𝑦2(𝜖) = 0, 

𝑦3(𝜖) =

Δ𝑝𝑅0
𝜇𝑡0

𝑘7𝑔(𝑘)

𝑘6 − 1 + 𝛼𝑘6𝑔(𝑘)
𝜖, 𝑦4(𝜖) = 𝑘, 

(B 8) 

where 𝑔(𝑘) = 1 for neo-Hookean materials and 𝑔(𝑘) = 1 − (2𝑘6 − 3𝑘4 + 1) (𝐽𝑚𝑘
4)⁄  for Gent 

materials. Combining with boundary conditions discussed in Section 2.4, the elastic wetting 

problem with neo-Hookean material can be resolved by computing Eq. (B 5); and the elastic 

wetting problem with Gent material can be resolved by computing Eq. (B 6). The numerical solver 

is coded in Matlab using 𝜖 = 10−5, which is based on a basic convergence study.  
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Appendix C. Numerical results for elastic wetting with Gent membranes 

 
Fig. C1. Profiles of droplets confined by Gent membranes subjected to sliding boundary 

conditions. 𝑉 𝑉0⁄ = 0.5 is prescribed while the elasto-capillary numbers 𝛼 is varying. Solid curves 

correspond to 𝜙̅𝑌 = 𝜋 4⁄  and dash-dot curves for 𝜙̅𝑌 = 3𝜋 4⁄ . The two red curves overlay.  

 

 
Fig. C2. The evolution of (a) the elastic wetting contact angle and (b) the aspect ratio of droplets 

confined by Gent membranes subjected to sliding boundary conditions for 𝜙̅𝑌 = 𝜋 4⁄  (dash-dot-

dot curves), 𝜋 2⁄  (dashed curves) and 3𝜋 4⁄  (solid curves) with various 𝛼. The arrows indicate 𝛼 
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decreases from ∞ to 0. In (a), all the dashed curves and red curves (i.e., when 𝜙̅𝑌 = 𝜋 2⁄  or 𝛼 =
0) collapse to the red solid line. In (b), all the red curves (i.e., when 𝛼 = 0) collapse to the red 

solid curve. 

 
Fig. C3. Normalized pressure-deformation relations for elastic wetting with Gent membranes and 

sliding boundaries under various elasto-capillary numbers 𝛼. 
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Fig. C4. Normalized (a) free energy-deformation and (b) pressure-deformation relations for elastic 

wetting with a Gent membrane and an adhesive boundary when 𝛼 = 0.5 and 𝛽 = −5 are given. 

The black and red curves represent configurations without and with edge delamination, 

respectively. The solid curves represent the actual evolution pathways of free energy/pressure. The 

blue marker at the intersection of the black and red curves highlights the critical volume-to-

delaminate. (c) The growth of the blister profile under the adhesive boundary. The black and red 

parts represent the sections of the membrane that are initially detached from or attached to the 

substrate before any liquid injection. In other words, the red parts are delaminated membrane due 

to the increased liquid volume. For the two blister profiles labeled with “before delamination”, 

their prescribed volumes are 𝑉/𝑉0 = 0.3 and 0.9. 
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Fig. C5. Contour plots of (a) the normalized pressure, (b) the normalized volume, (c) the elastic 

wetting contact angle, and (d) the aspect ratio in 𝛼~𝛽 parametric space for elastic wetting with 

Gent membranes and adhesive boundaries. 
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Fig. C6. Contour curves for 𝑧(0) 𝑟1⁄ =2 and Δ𝑝𝑅1/𝜇𝑡0 = 10  in 𝛼 ∼ 𝛽  parametric space for 

elastic wetting with a Gent membrane and an adhesive boundary.  
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Fig. C7. Normalized (a) free energy-deformation and (b) pressure-deformation relations for elastic 

wetting with a Gent membrane and a slippery boundary when 𝛼 = 0.5 and 𝛽 = −5 are given. The 

black and red curves represent configurations without and with edge delamination, respectively.  

(c) The growth of the blister profile under the slippery boundary. The black and red parts represent 

the sections of the membrane that are initially detached from or attached to the substrate before 

any liquid injection. For the two blister profiles before delamination, their prescribed volumes are 

𝑉/𝑉0 = 0.1 and 0.2. (d) Normalized hoop tension in the membrane with edge delamination of 

𝑅1 = 𝑅0, 1.5𝑅0, and 2𝑅0. 
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Supplementary Information: Videos of elastic wetting with four types of boundary conditions 

Video 1. Schematic video of the shape evolution of a droplet confined by a neo-Hookean 

membrane with a sliding boundary, where 𝛼 = 2 and 𝜙̅𝑌 = 3𝜋 4⁄ . 

Video 2. Schematic video of the shape evolution of a droplet confined by a neo-Hookean 

membrane with a clamped boundary, where 𝛼 = 2. 

Video 3. Schematic video of the shape evolution of a droplet confined by a neo-Hookean 

membrane with an adhesive boundary, where 𝛼 = 0.5 and 𝛽 = −1.25. 

Video 4. Schematic video of the shape evolution of a droplet confined by a neo-Hookean 

membrane with a slippery boundary, where 𝛼 = 0.5 and 𝛽 = −1.25. 
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