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Abstract

We present a general formalism for the analysis of mechanical lattices with microstructure using the
concept of effective dynamic mass. We first revisit a classical case of microstructure being modeled by
a spring-interconnected mass-in-mass cell. The frequency-dependent effective dynamic mass of the cell
is the sum of a static mass and of an added mass, in analogy to that of a swimmer in a fluid. The
effective dynamic mass is derived using three different methods: momentum equivalence, dynamic con-
densation, and action equivalence. These methods are generalized to mechanical systems with arbitrary
microstructure. As an application, we calculate the effective dynamic mass of a 1D composite lattice
with microstructure modeled by a chiral spring-interconnected mass-in-mass cell. A reduced (condensed)
model of the full lattice is then obtained by lumping the microstructure into a single effective dynamic
mass. A dynamic Bloch analysis is then performed using both the full and reduced lattice models, which
give the same spectral results. In particular, the frequency bands follow from the full lattice model
by solving a linear eigenvalue problem, or from the reduced lattice model by solving a smaller non-
linear eigenvalue problem. The range of frequencies of negative effective dynamic mass falls within the
bandgaps of the lattice. Localized modes due to defects in the microstructure have frequencies within the
bandgaps, inside the negative-mass range. Defects of the outer, or macro stiffness yield localized modes
within each bandgap, but outside the negative-mass range. The proposed formalism can be applied to
study the odd properties of coupled micro-macro systems, e.g., active matter.

Keywords: Effective Dynamic Mass, Added Mass, Dynamic Mass, Mechanical Lattice, Microstructure,
Chiral Solids.

Contents

1 Introduction 2

2 Effective dynamic mass formalism 4
2.1 Swimmer in a fluid analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 1D spring-interconnected mass-in-mass microstructure . . . . . . . . . . . . . . . . . . . . . . 5
2.3 General mechanical systems with arbitrary microstructure . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Momentum equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Dynamic condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Action equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

∗To appear in Journal of the Mechanics and Physics of Solids.
†Corresponding author, e-mail: arash.yavari@ce.gatech.edu



3 1D composite lattices with 1D chiral spring-interconnected mass-in-mass microstructure 13
3.1 Effective dynamic mass matrix of a cell with a single micro-mass . . . . . . . . . . . . . . . . 14

3.1.1 The effective dynamic mass matrix and force vector . . . . . . . . . . . . . . . . . . . 15
3.1.2 Frequency ranges of negative effective dynamic mass . . . . . . . . . . . . . . . . . . . 16
3.1.3 Equivalence with a cell with two micro-masses . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Bloch analysis and frequency bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 The full lattice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 The reduced lattice model via the effective dynamic mass . . . . . . . . . . . . . . . . 21

3.3 Defects and localized modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 The full lattice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 The reduced lattice model via the effective dynamic mass . . . . . . . . . . . . . . . . 24

4 Concluding Remarks 28

1 Introduction

Solids with microstructure can have dynamic (effective) masses that are significantly different from their
static masses [Banerjee, 2011]. The idea of dynamic mass has its origins in the works of Berryman [1980]
and Willis [1985], who found that the effective mass density for composites is not just the average mass
density, but is rather dependent on the frequency of excitation. In these works, the unit cell of the composite
is assumed to consist of a heavy mass that is embedded in a very soft matrix. This can be represented by the
classical microstructure model of a hollow rectangular box with mass M0, with another mass m inside it that
is connected to the two opposing walls with linear springs of stiffness k, also referred to as a mass-in-mass
lattice [Huang et al., 2009]. Under harmonic excitations with frequency ω, the effective dynamic mass has
the following expression [Milton and Willis, 2007]1

Meff(ω) = M0 +
ω2
i

ω2
i − ω2

m, (1.2)

which is different from the static mass Meff(ω = 0) = M0 +m, where ωi =
√

2k/m is the natural frequency
of the system. Since limε→0+ Meff(ωi± ε) = ∓∞, the effective dynamic mass is negative when the excitation
frequency ω approaches the natural frequency ωi from above, i.e., in the frequency range

ωi < ω < ωi

√
1 +

m

M0
, (1.3)

between ωi and the frequency at which the effective mass vanishes, i.e., Meff(ωi
√

1 +m/M0) = 0. Such
a mass-in-mass model has been subsequently studied by many researchers. Li et al. [2017] used a finite
composite lattice of mass-in-mass cells for designing devices with asymmetric wave transmission properties.
Ghavanloo and Fazelzadeh [2019] considered long range interactions in a 1D mass-in-mass lattice and ob-
served that long range interactions have a negligible effect on the bandgaps. There have also been extensions
to materials with multiresonator microstructures [Huang and Sun, 2010, Gorshkov et al., 2021].

The above 1D problem has been generalized to both 2D and 3D by Milton and Willis [2007], in which case
the effective dynamic mass density becomes matrix-valued.2 This concept is consistent with the balance of
linear momentum—divσ + ρb = ρü, where σ is the Cauchy stress, b is the body force, and ü is the
acceleration—which only requires that the inertial force ρü must be a vector. Therefore, the mass density

1Milton and Willis [2007] considered a unit cell with n cavities. There is a micro mass in each cavity and is connected to
the cavity wall by two linear springs. However, the micro masses do not interact with each other. In the case of n cavities their
effective dynamic mass is

Meff(ω) = M0 +
ω2
i

ω2
i − ω2

nm . (1.1)

2As discussed subsequently, the effective dynamic mass density is a second-order tensor. The term “matrix-valued” is used
to refer to the matrix representation of the tensor with respect to a given coordinate system.
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can be either a scalar ρ or a second-order tensor ρeff. There have been numerous efforts over the past two
decades directed towards the design and analysis of composites with microstructure that display matrix-
valued effective dynamic mass density [Mei et al., 2007, Avila et al., 2008, Huang et al., 2009, Lai et al.,
2011]. The effective dynamic mass matrix can have negative eigenvalues, which reduces to the effective
dynamic mass becoming negative in the case of a 1D model, as discussed above. In particular, the additional
impulse, or momentum generated by the solid shape changes can make the solid move towards the source
of force instead of moving away from it, as if it would have a negative mass. In such cases, the solid moves
and deforms in a non-intuitive way when a force acts on it. If a positive mass is pushed, it accelerates away
from the source of the force. A negative mass instead would accelerate towards it. It is worth noting that
such negative effective dynamic masses are not merely a theoretical construct, but have found experimental
realizations [Yu et al., 2023, Yao et al., 2008, Yang et al., 2013, Muhlestein et al., 2017].

The concept of effective dynamic mass is also fundamental in revealing exotic properties of coupled inner-
outer (micro-macro) systems, such as active matter or metamaterials [Shankar et al., 2022], or mechanical
lattices with microstructure. For example, the associated effective lattice, which accounts for the effects
of the microstructure on the macrostructure, is characterized by its effective dynamic mass. The so-called
odd properties such as negative mass or stiffness, no reciprocity of mutual forces, odd viscosity or elastic-
ity [Fruchart et al., 2023] are clearly defined for the effective system, but hidden in the original coupled
system. Wave propagation in metamaterials with microstructure is affected in the excitation frequency
range of negative mass leading to thickening of the bandgaps, where waves are damped and transmission
is prevented [Huang and Sun, 2009]. It should be mentioned that the discrepancy between the static and
dynamic variants of the same physical property is not restricted to mass; for example, it is known that the
static and dynamic elastic constants can be different,3 as studied for gradient solids [DiVincenzo, 1986] and
composites [Lakes, 2001b, Wojnar and Kochmann, 2014, Kochmann and Drugan, 2011].

In this work, using the concept of effective dynamic mass, we present a general formalism for the analysis
of mechanical lattices with microstructure. Specifically, we first consider a 1D lattice with microstructure.
In order to have more than one degree of freedom for each micro or macro element, we assume chiral linear
springs that couple longitudinal and torsional degrees of freedom for each element. A linear chiral spring
is a 1D noncentrosymmetric linear elastic solid. Noncentrosymmetric solids can be modeled in the setting
of generalized continuum mechanics and have been studied by many researchers: [Cheverton and Beatty,
1981, Lakes and Benedict, 1982, Lakes, 2001a, Sharma, 2004, Liu et al., 2012, Ieşan and Quintanilla, 2016,
Böhmer et al., 2020]. Papanicolopulos [2011] studied chirality in 3D isotropic gradient elasticity under the
assumption of small strains. Chirality is controlled by a single material parameter in the fifth-order coupling
elasticity tensor. Auffray et al. [2015, 2017] studied the material symmetries in 2D linear gradient elasticity.
In dimension two, chirality is due to the lack of mirror symmetry, and it affects both the coupling and the
second-order elasticity tensors. They showed that there are fourteen symmetry classes, eight of which have
isotropic first-order elasticity tensors.

The remainder of this paper is structured as follows. In §2, we provide an analogy to the effective
dynamic mass of a swimmer in a fluid and then revisit the classical spring-interconnected mass-in-mass
system. We show that its frequency-dependent effective dynamic mass can be derived using three different
methods: momentum equivalence, dynamic condensation of the momentum balance equations, and action
equivalence. We then generalize the latter methods to mechanical systems with arbitrary microstructure
and derive the associated effective dynamic mass matrix. In §3, the proposed formalism is applied to study
the reduced (condensed) model of a 1D composite lattice with microstructure modeled by a chiral spring-
interconnected mass-in-mass cell. The reduced lattice model is obtained by lumping the microstructures into
single effective dynamic masses and the frequency range of negative mass is determined. A dynamic Bloch
analysis is presented in §3.2 using both the full and the reduced lattice models. In particular, the frequency
bands of the lattice are computed. In §3.3, we study the effect of defects on the lattice and the associated
localized modes. Conclusions are given in §4.

3For elastic transformation cloaking applications the dynamic elastic constants are relevant as was discussed in detail in
[Yavari and Golgoon, 2019, Sozio et al., 2021].
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2 Effective dynamic mass formalism

In this section, we describe the effective dynamic mass formalism for mechanical systems with microstructure.
Specifically, in §2.1, we first motivate the effective dynamic mass concept through an analogy with a swimmer
in a fluid. Next, in §2.2, using three different methods to derive the effective dynamic mass, we revisit a
system in which the microstructure is modeled as a 1D spring-interconnected mass-in-mass cell, a case that
has been extensively studied in the literature [Milton and Willis, 2007, Lai et al., 2011, Manimala et al.,
2014, Cveticanin and Zukovic, 2017, Cveticanin et al., 2018]. Finally, in §2.3, we extend this framework to
generalized mechanical systems with arbitrary microstructure.

2.1 Swimmer in a fluid analogy

In fluid mechanics, the motion of a swimmer at low Reynolds numbers can be explained in terms of geometric
phases [Saffman, 1967, Shapere and Wilczek, 1987]. Swimmers in an ambient fluid can cyclically change their
shape to move forward. The coupled swimmer-ambient fluid system conserves the total linear momentum,
and since the inertia of the swimmer can be considered to be negligible, the swimmer velocity is uniquely
determined by the geometry of the sequence of its body shapes, which leads to a net translation. Note that
only a layer of fluid surrounding the swimmer is altered by its motion and shape deformation. So, in this
sense, one can consider the fluid-swimmer interaction as that of a coupled inner-outer (micro-macro) system
where the outer component is the swimmer and the inner component is the portion of the fluid disturbed
by the swimmer motion deformation.

Consider a swimmer of mass M moving in a surrounding ambient inviscid and irrotational fluid of infinite
extent. The instantaneous position vector of the swimmer is X(t) =

∑3
j=1X

jej , where ej are the unit vectors

of the ambient space R3. The velocity of the swimmer’s center of mass is U = Ẋ =
∑3
j=1 U

jej , where the

velocity components are defined as U j = Ẋj . Newton’s law of motion gives us d
dt (MU + IB) = FB , where

FB is an external force acting on the swimmer and IB is the impulse exerted by the surrounding fluid to put
the swimmer in motion, or the linear momentum of the fluid: IB = −ρ

∫
SB Φ n dS. Here, ρ is the fluid mass

density, Φ(x, t) is the velocity potential of the fluid flow with velocity field u = ∇Φ, SB is the boundary
surface of the swimmer, and n is the unit outer normal to the boundary from the body into the fluid. The
fluid domain is Ω, where SB is its boundary ∂Ω. The velocity potential Φ of the fluid flow is a harmonic
function, i.e., ∇2Φ = 0 in Ω, with the Neumann boundary condition u · e = ∇Φ · e = U. Thus, the fluid
speed matches with that of the the moving swimmer body, and e = U/

∣∣U∣∣ is the unit vector along the
direction of motion.

Since no external forces act on the swimmer, i.e., FB = 0, the total linear momentum L = MU + IB , is
conserved. This implies that

MU + IB = 0 , (2.1)

where a zero initial total momentum is assumed, i.e., both the ambient fluid and the swimmer are initially
at rest. The impulsive force IB is the response of the fluid surrounding the swimmer. The pressure exerted
by the thin layer of the surrounding fluid disturbed by the swimmer shape changes varies in such a way that
the net fluid pressure force speeds up or slows down the swimmer. The velocity potential can be decomposed
as [Saffman, 1967, Shapere and Wilczek, 1987]

Φ =

3∑
j=1

ΦjẊ
j +

∑
α

Φ̃αṠ
α , (2.2)

where Φj is the translation potential due to the motion of an instantaneously identical rigid body moving at
the unit speed along the direction Xj . It is a harmonic function satisfying ∇2Φj = 0 in Ω and the Neumann

boundary conditions read u · ej = ∇Φj · ej = 1. The deformation potential Φ̃α measures the changes of the
fluid flow due to a change in shape defined by the deformation displacements Sα relative to the rigid body,
and Ṡα is the speed of deformation, with α being the index of shape modes. The potential Φ̃α is a harmonic
function satisfying ∇2Φ̃α = 0 in Ω with the Neumann boundary conditions u · eα = ∇Φ̃α · eα = 1, where eα
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is the unit vector defining the deformation displacements of the boundary SB [Saffman, 1967, Shapere and
Wilczek, 1987]. Then, the impulse components can be written as

(IB)j = M
(a)
j Ẋj +

∑
α

F
(s)
α,j Ṡ

α , j = 1, 2, 3 , (2.3)

where

M
(a)
j = −ρ

∫
SB

Φjn · ej dS , F
(s)
α,j = −ρ

∫
SB

Φ̃αn · ej dS , j = 1, 2, 3 . (2.4)

Here, M
(a)
j is the added mass and M

(a)
j Ẋj is the linear momentum, or impulse generated by the fluid altered

by the swimmer moving at the speed Ẋj in the Xj direction. Similarly, F
(s)
α,j is the linear momentum, or

impulse generated by the fluid in the direction Xj by a unit deformation speed of the shape mode Sα. The
conservation of total linear momentum in (2.1) can be written as(

M +M
(a)
j

)
Ẋj + F

(s)
α,j Ṡ

α = 0 , j = 1, 2, 3 . (2.5)

Thus, the swimmer carries with it an added mass M
(a)
j of the surrounding fluid. Moreover, as the swimmer

(macro/outer system) changes shape, it alters a layer of the surrounding fluid (micro/inner system). The

fluid generates the impulse F
(s)
α,j Ṡα in response to the altered pressure distribution around the deforming

swimmer.
Let us now assume that the swimmer can move along the direction X1 only with speed Ẋ1. We can

define an effective dynamic mass of the swimmer by equating the total linear momentum of the swimmer-
fluid system in (2.5) to that of an equivalent body of effective dynamic mass Meff moving at the same speed
Ẋ1 as (

M +M
(a)
1

)
Ẋ1 + F (s)

α Ṡα = Meff Ẋ
1 , (2.6)

from which

Meff = M +M
(a)
1 + F

(s)
α,1

Ṡα

Ẋ1
. (2.7)

The effective dynamic mass includes the static massM of the swimmer (first term), the added mass M
(a)
1 (sec-

ond term) and an additional added mass (third term), which accounts for the effects of the surrounding
fluid on the swimmer due to shape changes. Let us assume a periodic motion, that is X1 = X̂1 eiωt, and
Sα = Ŝα eiωt, where X̂1 and Ŝα are Fourier amplitudes. The Fourier transform of the momentum equivalence

in (2.6) is
(
M +M

(a)
1

)
X̂1 + F

(s)
α Ŝα = Meff X̂

1, and solving for the effective dynamic mass yields

Meff = M +M
(a)
1 + F

(s)
α,1

Ŝα

X̂1
. (2.8)

This effective dynamic mass follows from an equivalence between the true complex system and an effective
system, with the added momentum due to the action of the inner system on the outer system. In particular,
the momentum equivalence in (2.6) is the key concept in defining an effective dynamic mass, which includes
an added mass and the effects of the micro/inner motion (the portion of fluid disturbed by the swimmer)
on the macro/outer system (swimmer).

2.2 1D spring-interconnected mass-in-mass microstructure

We now show that mechanical systems with microstructure are qualitatively the analogue of the fluid-
swimmer system, an observation that does not appear to have been made heretofore. Consider two masses
interconnected by two linear springs of stiffness k/2, as shown in Fig. 1. The two springs are in series and
their stiffness is equivalent to that of a single spring of stiffness k. The dynamical equilibrium equations are

MẌ − k(x−X) = FX(t) , mẍ+ k(x−X) = 0 . (2.9)
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x

X
M

mk/2 k/2 F(t)

ξ

Figure 1: A 1D spring-interconnected mass-in-mass system. The macro element has mass M . There is a single micro element
inside with mass m that is connected to the macro element by two identical linear springs.

We distinguish between the outer system of mass M with coordinate X and the inner system of mass m
described by ξ = x − X. The applied force FX(t) acts on the outer system. We want to understand how
the two systems are dynamically coupled. The outer system is the analogue of a swimmer that advects
downstream described by the outer variable X. The swimmer changes shape displaying the surrounding
fluid, whose motion is described by the inner variable ξ. Then, the equations above can be rewritten as

MẌ − k ξ = FX(t) , mξ̈ +mẌ + k ξ = 0 . (2.10)

Adding the two equations one obtains

(M +m)Ẍ +m ξ̈ = FX(t) , (2.11)

which can be written as dA
dt = FX(t), where we have defined the total linear momentum as

A = (M +m)Ẋ +mξ̇ . (2.12)

Thus,

A = A0 +

∫ t

0

FX(τ) dτ , (2.13)

where A0 is the initial linear momentum. Therefore, the motion of the outer system is given by

Ẋ =
A0

M +m
− m

M +m
ξ̇ +

∫ t

0

FX(τ)

M +m
dτ . (2.14)

Thus, the motion of the outer system depends on the linear momentum of the entire system in the absence
of external forces (FX = 0) and internal motion, i.e., ξ = 0.

Momentum equivalence. The analogy to the dynamic mass of a swimmer in a fluid in §2.1 suggests
the following approach based on a momentum equivalence. The inner motion, or shape deformation, ξ̇
contributes to an added momentum, which can slow down or speed up the entire system. The momentum
depends also on the total impulse generated by the external forces. Thus, one can define an effective dynamic
mass of an equivalent mass-spring system as MeffẌ = Feff(t), which describes the outer system and accounts
for the momentum added by the coupling with the inner system (dynamic condensation). Its momentum is

Aeff = MeffẊ , (2.15)

and

Ẋ =
Aeff(t = 0)

Meff
+

∫ t

0

Feff(τ)

Meff
dτ . (2.16)

Equating the momenta of the two systems, i.e., Aeff = A, from (2.12) and (2.15) we have

MeffẊ = (M +m)Ẋ +m ξ̇ , (2.17)
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and the effective dynamic mass is given as

Meff = (M +m) +m
ξ̇

Ẋ
, (2.18)

which is similar to the effective dynamic mass of a swimmer in (2.7). Indeed, the first two terms together
is the total mass of the system as a rigid body (static mass). This includes the added mass m of the inner
system (fluid), which is dragged by the outer system (swimmer). The third term m ξ̇/Ẋ is an additional
added mass due to the internal deformations of the inner system in analogy with the impulse induced by the
swimmer shape change in (2.7). Comparing (2.11) and the time derivative of (2.17), one concludes that the
equivalent force is Feff(t) = FX(t).

Let us assume that the coupled system is subject to periodic forcing. Then the Fourier modes of dis-
placements and forces are X = X̂ eωt, ξ = ξ̂ eωt, and FX = F̂X eωt, where (X̂, ξ̂, F̂ ) are complex amplitudes.

Then, from (2.17) equating the momenta yields Meff iωX̂ = (M +m) iωX̂ +miωξ̂, from which

Meff = (m+M) +m
ξ̂

X̂
. (2.19)

From (2.10), the dynamical equation of the inner motion transforms in Fourier space to −mω2ξ̂ −mω2X̂ +

k ξ̂ = 0, and hence,

ξ̂ =
mω2

k −mω2
X̂ . (2.20)

The effective dynamic mass in (2.19) is now simplified to read

Meff(ω) = (M +m) +m
mω2

k −mω2
= M +m

k

k −mω2
, (2.21)

and the static mass is Meff(ω = 0) = M + m. Note that the effective dynamic mass is negative when the
excitation frequency ω approaches the natural frequency ωi =

√
k/m of the inner system from above in the

frequency range ωi < ω < ωi
√

1 +m/M . Here, limε→0+ Meff(ωi ± ε) = ∓∞, and Meff(ωi
√

1 +m/M) = 0.

Remark 2.1. An alternate strategy to the above is matching the inertial forces Ȧe = Ȧ, arriving at an
alternative form for the effective dynamic mass:

Meff = (M +m) +m
ξ̈

Ẍ
, (2.22)

where the second term mξ̈/Ẍ is an additional added mass due to the internal inertia of the system. For a
periodic motion, it will lead to the same effective dynamic mass given in (2.21).

Dynamic condensation. The effective dynamic mass can also be derived by applying the standard ap-
proach of matrix condensation. From (2.10), the dynamical equation of the outer motion transforms in the

Fourier space to −M ω2X̂ − k ξ̂ = F̂X , and plugging in the expression of ξ̂ of (2.20) one gets

−M ω2X̂ − k mω2

k −mω2
X̂ = F̂X , (2.23)

which can be written as −ω2
(
M +m k

k−m

)
X̂ = F̂X . Thus, we can define the effective dynamic mass as

Meff = M +m
k

k −mω2
. (2.24)
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Action equivalence. The Lagrangian of the two-mass-spring system considered above is written as L =
K− P−W where the kinetic energy K, the potential energy P, and the work W done by the external forces
are given by

K =
1

2
MẊ2 +

1

2
mẋ2 , P =

1

2
kξ2 , W = FX(t)X(t) . (2.25)

The Lagrangian density of the equivalent system with effective dynamic mass Meff and subject to the effective
force Feff is

Leff =
1

2
MeffẊ

2 − Feff(t)X(t) , (2.26)

where the equivalence is meant in the sense that the two Lagrangians are the same on average, that is

L = Leff, where f = limT→∞
1
T

∫ T
0
f(t)dt is the time average of f . Consider a periodic force with frequency

ω given by

FX(t) = |F̂X | cos(ωt+ φX) =
1

2
F̂Xeiωt + c.c. , (2.27)

where the complex amplitude is defined as F̂X = |F̂X |eiφX , and c.c. denotes complex conjugate. The average
external work in (2.25)3 is given by

W =
1

4
F̂ †XX̂ + c.c. , (2.28)

where X̂ is the Fourier amplitude of X and the the operator † is the complex conjugate transpose. The time
average of the kinetic energy K in (2.25)1 follows as

K =
1

8
ω2M |X̂|2 +

1

8
ω2m|ξ̂ + X̂|2 + c.c. =

1

8
ω2
(
M +m(1 + γ)2

)
|X̂|2 + c.c. , (2.29)

where (2.20) was used to solve for the inner displacement ξ̂ = γX̂, and γ = mω2/(k −mω2). Similarly, the
time average of the potential energy P in (2.25)2 reads

P =
1

8
k|ξ̂|2 + c.c. =

1

8
kγ2|X̂|2 + c.c. . (2.30)

The time-average of the Lagrangian L of the two-mass-spring system simplifies to read

L = K− P−W =
1

8
ω2

(
M +m(1 + γ)2 − k

ω2
γ2

)
|X̂|2 − 1

4
F̂ †XX̂ + c.c. , (2.31)

and that of the effective-mass system in (2.26) is given by

Leff =
1

8
ω2Meff|X̂|2 −

1

4
F̂ †effX̂ + c.c. . (2.32)

Equating the two averaged Lagrangians, i.e., L = Leff, yields Feff = FX and the effective dynamic mass:

Meff = M +m(1 + γ)2 − k

ω2
γ2 = M +m

k

k −mω2
. (2.33)

Remark 2.2. The effective dynamic mass obtained using the three different approaches, namely, momentum
equivalence (2.21), dynamic condensation (2.24), and action equivalence (2.33), are identical and coincide
with the established results in literature [Milton and Willis, 2007, Banerjee, 2011]. While the dynamic
condensation method has been the standard approach for deriving the effective dynamic mass in literature,
the momentum and action equivalence methods do not appear to have been explored heretofore. Indeed,
though not a surprising result for harmonic loads, it was not established that the three approaches would
yield the same effective dynamic mass.
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2.3 General mechanical systems with arbitrary microstructure

We now formulate the concept of added mass for a general mechanical system with arbitrary microstructure.
In so doing, we derive the associated effective dynamic mass matrix and force vector using the three methods
described above, namely, momentum equivalence, action equivalence, and dynamic condensation.

Consider a mechanical system with miscrostructure in which the inner (micro) and outer (macro) systems
are coupled according to the following dynamical equations:[

MOO 0
0 MII

] [
ẌO

ẌI

]
+

[
KOO KOI

KIO KII

] [
XO

XI

]
=

[
FO(t)
FI(t)

]
. (2.34)

The outer (macro) system is described by the generalized displacement vector XO ∈ RNO , and inner (micro)
system by the generalized displacement vector XI ∈ RNI . The respective stiffness matrices are the matrices
KOO ∈ RNO×NO , and KII ∈ RNI×NI . The mechanical coupling between the two systems is described by the
matrix KOI ∈ RNO×NI , and KIO = KT

OI, where T denotes matrix transposition. Both systems are subject
to forcing via the force vectors FO ∈ RNO , and FI ∈ RNI .

The dynamical equations in (2.34) can be expanded as two coupled equations for the inner and outer
systems as

MOOẌO + KOOXO + KOIXI = FO(t) ,

MIIẌI + KIOXO + KIIXI = FI(t) .
(2.35)

These two equations are the starting point for deriving an effective dynamic mass matrix and force vector
for the outer system that accounts for the added momentum of the inner system.

2.3.1 Momentum equivalence

Adding the two dynamical equations in (2.35) for the inner-outer system, and integrating over time gives
the conservation of the total momentum4

A(t) +

∫ t

t0

[(KOO + KIO)XO + (KII + KOI)XI] dτ −
∫ t

t0

(FO + FI) dτ = A(t0) , (2.36)

where the total momentum vector is defined as

A(t) = MOOẊO + MIIẊI , (2.37)

and Ẋ = dX/dt denotes the time derivative of X. The time integrals are the impulses of the macro and
micro (generalized) forces.5 Let us now define an effective macro system such that

Meff ẌO = Feff . (2.38)

The effective momentum vector is defined as Aeff = Meff ẊO and

Aeff(t)−
∫ t

t0

Feff dτ = Aeff(t0) , (2.39)

where the time integral is the impulse of the effective force vector. Equating the initial momenta A(t0) =
Aeff(t0) yields

MeffẊO −
∫ t

t0

Feff dτ = MOOẊO + MIIẊI +

∫ t

t0

[(KOO + KIO)XO + (KII + KOI)XI] dτ

−
∫ t

t0

(FO + FI) dτ .

(2.40)

4Depending on the mechanical system this can be linear momentum, angular momentum, or both. In general, by “momen-
tum” we mean linear and angular momenta.

5By force we mean either a force or a moment, and hence, a generalized force.
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In order to formulate an effective dynamic mass, we will take the Laplace transform of the above momen-
tum equivalence equation. Consider t0 = 0 and assume the initial conditions XO(0) = XI(0) = Xeff(0) = 0.
Then, Laplace transforming (2.40) yields

sMeff
‹XO(s)− F̃eff(s)

s
=

(
sMOO +

KOO + KIO

s

)‹XO(s)

+

(
sMII +

KII + KOI

s

)‹XI(s)−
F̃O(s) + F̃I(s)

s
,

(2.41)

where
(‹XO(s),‹XI(s)

)
are the Laplace transforms of the outer and inner variables (XO,XI), which follow

from Laplace transforming the dynamical equations in (2.35). The Laplace transform ‹XI(s) of the inner

variable follows from the time-domain equation (2.35)2 as (s2MII + KII)‹XI = −KIO
‹XO + F̃I, where we

assumed the initial conditions XI(0) = ẊI(0) = 0. Hence,‹XI = (s2MII + KII)
−1
(
F̃I −KIO

‹XO

)
. (2.42)

Then, from (2.41) one obtains

sMeff(s)‹XO(s)− F̃eff(s)

s
=

(
sMOO +

KOO −KOI(s
2MII + KII)

−1KIO

s

)‹XO

− F̃O −KOI(s
2MII + KII)

−1F̃I

s
.

(2.43)

Therefore, the effective dynamic mass matrix follows as

Meff(s) = MOO +
KOO −KOI(s

2MII + KII)
−1KIO

s2
. (2.44)

The effective force vector reads

F̃eff(s) = F̃O −KOI(s
2MII + KII)

−1F̃I . (2.45)

Then, ‹XO(s) = ‹Heff(s) F̃eff(s), where we have defined the transfer function ‹Heff(s) = M−1
eff (s), which is the

Laplace transform of the impulsive response of the condensed outer system.

The Fourier Transform X̂(ω) of X(t) follows from the Laplace transform ‹X(s) by setting s = iω, i.e.,

X̂(ω) = ‹X(s = iω). Then, the harmonic expression of the effective dynamic mass matrix is written as

Meff(ω) = Meff(s = iω) = Mstatic + Madded(ω) , (2.46)

where

Mstatic = MOO , Madded(ω) = − 1

ω2

[
KOO + KOI(ω

2MII −KII)
−1KIO

]
. (2.47)

The effective dynamic mass matrix includes the static mass Mstatic of the outer system and a frequency-
dependent added mass Madded(ω) that accounts for the effects of the micro-momentum on the outer system
in analogy with the effective dynamic mass of a swimmer in a fluid (see §2.1). The effective force vector is
given by

F̂eff(ω) = F̃eff(s = iω) = F̃O + KOI(ω
2MII −KII)

−1F̃I . (2.48)

2.3.2 Dynamic condensation

Assume periodic forcing with given frequency ω, that is FO(t) = F̂O(ω) eiωt, and FI(t) = F̂I(ω) eiωt. Then,

XO(t) = X̂O(ω) eiωt, and XI(t) = X̂I(ω) eiωt, where X̂(ω) is the complex Fourier amplitude of X. Fourier
transforming the dynamical equations of the outer and inner systems in (2.35) yields

−ω2MOOX̂O + KOOX̂O + KOIX̂I = F̂O ,

−ω2MIIX̂I + KIOX̂O + KIIX̂I = F̂I .
(2.49)
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In this approach the inner (micro) variables are eliminated as follows. From (2.49), we solve for X̂I:

X̂I =
(
ω2MII −KII

)−1
(KIOX̂O − F̂I) . (2.50)

This can be rewritten as

X̂I = AKIOX̂O −AF̂I , A =
(
ω2MII −KII

)−1
. (2.51)

Plugging (2.51) into (2.49) yields

− ω2MOOX̂O + KOOX̂O + KOIAKIOX̂O −KOIAF̂I = F̂O , (2.52)

which can be rewritten as

− ω2

(
MOO −

1

ω2
KOIAKIO

)
X̂O + KOOX̂O = F̂O + KOIAF̂I . (2.53)

Therefore, one can lump the inertial forces of the inner system into those of the outer system and define the
condensed macro system

− ω2Meff(ω)X̂O = F̂eff(ω) , (2.54)

where the effective dynamic mass matrix is written as

Meff(ω) = MOO −
1

ω2

[
KOI

(
ω2MII −KII

)−1
KIO + KOO

]
, (2.55)

and the effective force vector reads

F̂eff(ω) = F̂O + KOI

(
ω2MII −KII

)−1
FI . (2.56)

Note that the effective dynamic mass matrix and force vector above are identical to those obtained from the
momentum equivalence approach (see Eqs. (2.47) and (2.48)).

2.3.3 Action equivalence

The effective dynamic mass includes both the effects of the momentum and the elastic forces of the inner
system, which are coupled. Let us consider the Lagrangian of the coupled system

L = K− P−W , (2.57)

where the kinetic and potential energies are defined as

K =
1

2
ẊT

OMOOẊO +
1

2
ẊT

I MIIẊI , P =
1

2

(
XT

OKOOXO + XT
I KIIXI + 2XT

OKOIXI

)
, (2.58)

and the work done by the external forces is defined as W = FT
O(t)XO(t) + FT

I (t)XI(t). Consider the
Lagrangian of the equivalent system with the effective dynamic mass Meff and potential energy Peff subject
to the effective force Feff is given by

Leff = Keff − Peff −Weff, Keff =
1

2
ẊT

OMeffẊO, Weff = FT
effXO , (2.59)

where the equivalence is meant in the sense that the two Lagrangians are the same on average, that is
L = Leff, or more explicitly

K− P−W = Keff − Peff −Weff , (2.60)

where f = limT→∞
1
T

∫ T
0
f(t)dt is the time average of f . Consider periodic force vectors with frequency ω

given by

FO(t) = |F̂O| cos(ωt+ φO) =
1

2
F̂Oeiωt + c.c., FI(t) = |F̂I| cos(ωt+ φI) =

1

2
F̂Ie

iωt + c.c. , (2.61)
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where the complex amplitude is defined as F̂j = |F̂j|eiφj with j = I,O, and c.c. denotes complex conjugate.
The average external work is given by

W =
1

4
F̂†OX̂O +

1

4
F̂†IX̂I + c.c. , (2.62)

where the the operator † is the complex conjugate transpose. Using the expression of X̂I in (2.51),

W = Ŵ0 +
1

4
F̂†wX̂O + c.c. , F̂w = F̂O + K†IOA†FI , Ŵ0 = −1

4
F†IAF̂I . (2.63)

The time average of the kinetic energy K can be written as

K = K̂0 +
1

8
ω2X̂†OMaX̂O −

1

4
F̂†aX̂O + c.c. , (2.64)

where

K̂0 =
ω2

8
F̂†IA

†MIIAF̂I , Ma = MOO + K†IOA†MIIAKIO, Fa = ω2K†IOA†MIIAFI . (2.65)

Similarly, the time average of the potential energy P reads

P = P̂0 +
1

8
X̂†OKbX̂O −

1

4
F̂†bX̂O + c.c. , (2.66)

where the potential at rest P̂0 = F̂†IA
†KIIAF̂I/8 and

Kb = KOO + K†IOA†KIIAKIO + 2K†IOAKIO , Fb = K†IOA†KIIAF̂I + K†IOAF̂I . (2.67)

Thus, the time average of the Lagrangian in (2.57) reduces to

L = K− P−W =
1

8
X̂†O

(
ω2Ma −Kb

)
X̂O +

1

4
(−F̂a + F̂b + F̂w)†X̂O + K̂0 − P̂0 − Ŵ0 + c.c. . (2.68)

The time average of the Lagrangian of the effective-mass system in (2.59) is given by

Leff = ω2 1

8
X̂†OMeffX̂O −

1

4
F̂†effX̂O − Peff . (2.69)

Equating the two average Lagrangians (2.68) and (2.69), L = Leff implies that

Meff = Ma −
Kb

ω2
, F̂eff = F̂w + F̂a − F̂b , Peff = P̂0 + Ŵ0 − K̂0 = −3

8
F̂†IAF̂I . (2.70)

Here, Peff is interpreted as potential energy at rest due to inner forces when there is no outer motion. Such
a potential vanishes in the absence of inner forces, i.e., when F̂I = 0. Using (2.67)1 and after some algebraic
manipulations, one can show that the effective dynamic mass matrix in (2.70)1 is identical to that derived
from the momentum equivalence in (2.47). Moreover, using (2.63)2, (2.65)3, (2.67)2 and after some algebraic
manipulations, once can show that the effective force vector in (2.67)2 is also the same as that derived from
the momentum equivalence in (2.48).

Remark 2.3. The effective dynamic mass matrix and force vector obtained using the three different ap-
proaches, namely, momentum equivalence (Eqs. (2.47) and (2.48)), dynamic condensation (Eqs. (2.55) and
(2.56)), and action equivalence (Eqs. (2.70)1 and (2.70)2), are identical. In particular, both the effective
dynamic mass matrix and force vector are frequency-dependent and include an added mass matrix and an
added force vector that account for the momentum of the microstructure. Note that we have not restricted
the derivation to the dynamic condensation method alone, since the momentum equivalence and action
equivalence methods provide a suitable framework for defining the effective dynamic mass for more complex
systems such as those with disorder, uncertainties or nonlinearities (see, for example Whitham [1974]).
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Negative effective dynamic mass The general effective dynamic mass matrix given in (2.47) may have
negative eigenvalues for certain frequencies. In our case, the eigen-masses are real. The natural frequencies
ωi of the inner, or microstructure, satisfy the eigenvalue problem |ω2MII −KII| = 0. Note that the outer

mass and stiffness matrices MOO and KOO are positive-definite. If the matrix KOI

(
ω2MII −KII

)−1
KIO

is positive-definite, then the effective dynamic mass may have negative eigenvalues. Positive-definiteness

of KOI

(
ω2MII −KII

)−1
KIO is equivalent to w†

(
ω2MII −KII

)−1
w > 0, for w = KIOv, and arbitrary

v. Therefore, a necessary condition for the effective dynamic mass matrix to have negative eigenvalues is
ω2MII−KII being positive-definite. This happens when the excitation frequency ω is greater than all of the
natural frequencies ωi of the microstructure, i.e., ω > max{(ωi)1, . . . (ωi)NI

}, where NI is the number of the
inner degrees of freedom. Thus, one or more eigen-masses of the effective dynamic mass matrix may become
negative when the excitation frequency ω approaches one of the natural frequencies ωi from above. Clearly,
if the frequency ranges overlap, the condition that all the eigenvalues of the mass matrix are negative is met.

Sufficient conditions for at least one negative eigen-mass follow from the Gershgorin circle theorem [Horn
and Johnson, 2012]. Given the effective dynamic mass matrix Meff = [Mij ], an eigen-mass λ lies within the
closed discs of the complex plane (Reλ, Imλ)∣∣λ−Mii

∣∣ ≤∑
i 6=j

∣∣Mij

∣∣ = Ri i = 1, · · ·NI , (2.71)

centered at Mii with radius Ri. Thus, sufficient conditions to have one negative eigen-mass is when one of
the two Gershgorin discs lies in the negative part of the complex plane (Reλ < 0).

Effective stiffness matrix The two terms Ma and Kb/ω
2 of the effective dynamic mass in (2.70)1 suggest

another formalism that defines Kb as an effective stiffness matrix and Ma as an alternative effective dynamic
mass matrix. In particular, consider an equivalent lumped mass-spring system with effective dynamic mass

M̃eff, stiffness matrix Keff, potential energy at rest Peff subject to the effective force Feff. The associated
Lagrangian is given by

Leff =
1

2
ẊT

OM̃effẊO −
1

2
XT

OKeffXO − Peff − FT
effXO . (2.72)

The time average of Leff follows as

Leff = ω2 1

8
X̂†OM̃effX̂O −

1

8
X̂†OKeffX̂O − Peff −

1

4
F̂†effX̂O + c.c. . (2.73)

Equating the two averaged Lagrangians (2.68) and (2.73) yields the same effective force and potential energy
at rest as in (2.70)2,3, but a different effective dynamic mass given by (2.65)2, that is

M̃eff(ω) = Ma = MOO + K†IOA†MIIAKIO . (2.74)

The effective stiffness matrix follows from (2.67)1 as

Keff(ω) = Kb = KOO + KT
IO(AKIIA + 2A)KIO . (2.75)

The effective dynamic mass of the equivalent lumped-mass system in (2.70)1 can be written as

Meff(ω) = Ma −
Kb

ω2
= M̃eff(ω)− Keff(ω)

ω2
. (2.76)

3 1D composite lattices with 1D chiral spring-interconnected mass-
in-mass microstructure

As an example application of the general framework developed in the previous section, we now consider a 1D
composite lattice with 1D chiral spring-interconnected mass-in-mass microstructure, which recently found an
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Figure 2: Bottom panel: A 1D composite lattice with microstructure. Cells are separated by distance L and are connected to
each other by outer chiral springs with elastic constants K, Kc, and Kt. Top panel left: The microstructure of the lattice cell
is a 1D chiral spring-interconnected mass-in-mass system. The macro element has mass M0 and mass moment of inertial I0.
There is a single micro element inside with mass m and mass moment of inertial Im that is connected to the macro element
by two identical linear chiral springs with elastic constants k, kc, and kt. Top panel right: A macro element with mass M0

and mass moment of inertial I0. There are two micro elements inside each with mass m and mass moment of inertial Im that
are connected to the macro element and each other by three identical linear chiral springs.

experimental realization [Yu et al., 2023]. Specifically, consider the 1D composite lattice made of N identical
cells depicted in the bottom panel of Fig. 2. The microstructure is made of a single mass-in-mass cell shown
in the top-left panel of the same figure (single micro-mass). The cells are separated by distance L and are
connected to each other by outer chiral springs with elastic constants K, Kc, and Kt. The single micro-mass
cell is a hollow circular shaft with mass M0 and mass moment of inertia I0. Inside the unit cell there is a
solid cylinder with mass m and mass moment of inertia Im as depicted in the top-left panel of Fig. 2. This
solid cylinder is connected to the hollow shaft by two identical chiral linear (micro) springs with the elastic
constants k, kc, and kt.

6 Denoting the change in length of the spring by δ and its twist by θ the force and
torque in the spring are written as

f = k δ + kc θ , t = kc δ + kt θ . (3.1)

In what follows, we will first derive the dynamical equations of the single mass-in-mass cell microstructure
and derive its effective dynamic mass matrix, and in so doing, identify frequency ranges of negative mass. In
§3.1.3 we will consider a microstructure with two micro-masses depicted in the top-right panel of Fig. 2. We
will show that the associated effective dynamic mass matrix is equivalent to that of some single micro-mass
cell. This result can be generalized to a unit cell with N micro-masses in series. This implies that in our
study it suffices to consider only the single mass-in-mass unit cell depicted in the top-left panel of Fig. 2.
Then, in §3.2 we will explore the spectral properties (frequency bands) of the 1D composite lattice by way
of a Bloch analysis. In §3.3 localized modes due to defects will be investigated.

3.1 Effective dynamic mass matrix of a cell with a single micro-mass

We model the microstructure of the cell with a single micro-mass as the 1D chiral spring interconnected
mass-in-mass system depicted in top-left panel of Fig. 2. The macro and micro generalized coordinates are
(X(t),Θ(t)) and (x(t), θ(t)), respectively. The balance of micro linear and angular momenta read

−2f(t) + Fm(t) = −2k
(
x(t)−X(t)

)
− 2kc

(
θ(t)−Θ(t)

)
+ Fm(t) = mẍ(t) ,

−2t(t) + Tm(t) = −2kc
(
x(t)−X(t)

)
− 2kt

(
θ(t)−Θ(t)

)
+ Tm(t) = Im θ̈(t) ,

(3.2)

6See Yu et al. [2023] for an example of a 3D structure that can be approximated by this chiral model.
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where Fm(t) and Tm(t) are the applied micro-force and micro-moment, respectively. Similarly, the balance
of macro linear and angular momenta read

F (t) + 2f(t) = F (t) + 2k
(
x(t)−X(t)

)
+ 2kc

(
θ(t)−Θ(t)

)
= M0 Ẍ(t) ,

T (t) + 2t(t) = T (t) + 2kc
(
x(t)−X(t)

)
+ 2kt

(
θ(t)−Θ(t)

)
= I0 Θ̈(t) ,

(3.3)

where F (t) and T (t) are the applied macro-force and macro-moment, respectively. The dynamical equa-
tions (3.2) and (3.3) can be written in the compact matrix form of (2.34). In particular, let us define the
inner and outer generalized displacements

XI =

[
x(t)
θ(t)

]
, XO =

[
X(t)
Θ(t)

]
, (3.4)

and the inner and outer mass matrices

MII =

[
m 0
0 Im

]
, MOO =

[
M0 0
0 I0

]
. (3.5)

The stiffness matrices are written as KOO = KII = 2K, and KOI = KT
IO = −2K, where

K =

[
k kc
kc kt

]
, (3.6)

and the outer and inner force vectors are defined as

FO =

[
F (t)
T (t)

]
, FI =

[
Fm
Tm

]
. (3.7)

3.1.1 The effective dynamic mass matrix and force vector

We now assume that the macro and micro forces and torques are harmonic, i.e., F (t) = F̂ ei ω t, T (t) = T̂ ei ω t,
Fm(t) = F̂m e

i ω t, and Tm(t) = T̂m e
i ω t. This implies that X(t) = X̂ ei ω t, Θ(t) = Θ̂ ei ω t, x(t) = x̂ ei ω t, and

θ(t) = θ̂ ei ω t. Then, the Fourier transform of the generalized displacements vectors read

X̂O =

[
X̂

Θ̂

]
, X̂I =

[
x̂

θ̂

]
. (3.8)

The effective dynamic mass follows from (2.47) as

Meff(ω) = MOO −
1

ω2

[
KOI

(
ω2MII −KII

)−1
KIO + KOO

]
= MOO −

2

ω2
K
[(
ω2MII − 2K

)−1
2K + I

]
,

(3.9)

where I is the 2× 2 identity matrix. Thus

Meff(ω) =

M0 +
2m(2k2c−2kkt+Imkω

2)
4k2c−(2kt−Imω2)(2k−mω2)

2Imkcmω
2

4k2c−(2kt−Imω2)(2k−mω2)

2Imkcmω
2

4k2c−(2kt−Imω2)(2k−mω2) I0 +
2Im(2k2c−2kkt+mktω

2)
4k2c−(2kt−Imω2)(2k−mω2)

 . (3.10)

Note that the effective dynamic mass matrix can be written as a static mass matrix plus an added mass
matrix, i.e.,

Meff(ω) = Mstatic + Madded(ω) , (3.11)

where

Mstatic =

[
M0 0
0 I0

]
, Madded(ω) =

[
M(ω) J(ω)
J(ω) I(ω)

]
, (3.12)
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and

M(ω) =
2m
(
Im k ω

2 − 2k kt + 2k2
c

)
4k2
c − (2kt − Im ω2) (2k −mω2)

,

J(ω) =
2mImkc ω

2

4k2
c − (2kt − Imω2) (2k −mω2)

,

I(ω) =
2Im

(
−2k kt + 2k2

c + ktmω2
)

4k2
c − (2kt − Im ω2) (2k −mω2)

.

(3.13)

From (2.48), the effective force vector reads

Feff(ω) = F̂O + KOI

(
ω2MII −KII

)−1
F̂I , (3.14)

where

F̂O(ω) =

[
F̂

T̂

]
, F̂I(ω) =

[
F̂m
T̂m

]
, (3.15)

are the Fourier transforms of the micro and macro force vectors.

3.1.2 Frequency ranges of negative effective dynamic mass

In §2.3.3 we showed that an effective eigen-mass λ of Meff is negative when the excitation frequency ω is
greater than any of the natural frequencies ωi of the microstructure, where |ω2

iMII − KII| = 0. For the
specific microstructure considered above, the 2 × 2 effective dynamic mass matrix in (3.10) has a negative
eigen-mass in the range ωi < ω < (1 + α)ωi, for each natural inner frequency (i = 1, 2). Here, (1 + α)ωi is
greater than ωi (α > 0), where the effective eigen-mass vanishes, that is λ

(
(1 + α)ωi

)
= 0. As an example,

in Fig. 3 we depict the two eigen-masses of the microstructure as a function of ω (black curves) and the two
frequency ranges of negative mass (red curves).

As was discussed in §2.3.3, sufficient conditions for at least one negative eigen-mass follow from the
Gershgorin circle theorem applied to the 2 × 2 effective dynamic mass matrix (3.10). In particular, from
(2.71) we have ∣∣λ−Mjj

∣∣ ≤ ∣∣M12

∣∣ , j = 1, 2 , (3.16)

and an eigen-mass λ lies within two Gershgorin discs of the same radius R =
∣∣M12

∣∣ centered either at M11,
or M22. Thus, sufficient conditions to have one negative eigen-mass is when one of the two Gershgorin
discs lies in the negative part of the complex plane (Reλ < 0), that is (M11 < 0 and |M11| > |M12|), or
(M22 < 0 and |M22| > |M12|).

3.1.3 Equivalence with a cell with two micro-masses

As we now show, the effective dynamic mass matrix of a unit cell with a single micro-mass has a one-to-
one correspondence with that with two micro-masses, a result that does not appear to have been found
heretofore. Let us consider a single unit cell with macro and micro generalized coordinates X(t), Θ(t), x1(t),
θ1(t), x2(t), and θ2(t) (see Fig. 2). The balance of micro linear and angular momenta read

f2(t)− f1(t) + Fm1(t) = m1 ẍ1(t) ,

t2(t)− t1(t) + Tm1(t) = Im1 θ̈1(t) ,

f3(t)− f2(t) + Fm2(t) = m2 ẍ2(t) ,

t3(t)− t2(t) + Tm2(t) = Im2 θ̈2(t) ,

(3.17)

where Fm1(t), Fm2(t), and Tm1(t), Tm2(t) are the applied micro-forces and micro-moments, respectively.
Note that

fj(t) = k sj(t) + kc ψj(t) , tj(t) = kc sj(t) + kt ψj(t) , j = 1, 2, 3 , (3.18)
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Figure 3: Frequency ranges (red) of negative eigen-masses occur for excitation frequencies ω approaching from above the natural
frequencies ωi of the microstructure with effective dynamic mass matrix given in (3.10). The circles indicate where the eigen-
mass is zero. Inner parameters m = 0.25, Im = 0.25, k = 1/2, kt = 1/4, and outer parameters M0 = 1.5, I0 = 1.5,K = 2,Kt =
2 are chosen. The inner and outer chiral stiffnesses are selected to avoid zero-energy modes, kc = γ

√
kkt, and Kc = Γ

√
KKt

with γ = Γ = 0.7.

where
s1(t) = x1(t)−X(t) , s2(t) = x2(t)− x1(t) , s3(t) = X(t)− x2(t) ,

ψ1(t) = θ1(t)−Θ(t) , ψ2(t) = θ2(t)− θ1(t) , ψ3(t) = Θ(t)− θ2(t) .
(3.19)

The balance of macro linear and angular momenta read

F (t) + f1(t)− f3(t) = M0 Ẍ(t) ,

T (t) + t1(t)− t3(t) = I0 Θ̈(t) ,
(3.20)

where F (t) and T (t) are the applied macro-force and macro-moment, respectively. Let us assume that the
macro and micro forces and torques are harmonic, i.e., F (t) = F̄ ei ω t, T (t) = T̄ ei ω t, Fm1(t) = F̄m1 e

i ω t,
Tm1(t) = T̄m1 e

i ω t, Fm2(t) = F̄m2 e
i ω t, and Tm2(t) = T̄m2 e

i ω t. This implies that X(t) = X̄ ei ω t, Θ(t) =
Θ̄ ei ω t, x1(t) = x̄1 e

i ω t, θ1(t) = θ̄1 e
i ω t, x2(t) = x̄2 e

i ω t, and θ2(t) = θ̄2 e
i ω t. Thus, the balance equations

for the micro and macro variables can be written as

f̄2 − f̄1(t) + F̄m1 = −ω2m1 x̄1 ,

t̄2 − t̄1 + T̄m1 = −ω2 Im1 θ̄1 ,

f̄3 − f̄2 + F̄m2 = −ω2m2 x̄2 ,

t̄3 − t̄2 + T̄m2 = −ω2 Im2 θ̄2 ,

F̄ + f̄1 − f̄3 = −ω2M0 X̄ ,

T̄ + t̄1 − t̄3 = −ω2 I0 Θ̄ .

(3.21)
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Substituting (3.19) into (3.17) and (3.20), one obtains the following matrix equation relating forces and
displacements

2k −m1 ω
2 2kc −k −kc −k −kc

2kc 2kt − Im1 ω
2 −kc −kt −kc −kt

−k −kc 2k −m2 ω
2 2kc −k −kc

−kc −kt 2kc 2kt − Im2 ω
2 −kc −kt

−k −kc −k −kc 2k −M0 ω
2 2kc

−kc −kt −kc −kt 2kc 2kt − I0 ω2




x̄1

θ̄1

x̄2

θ̄2

X̄
Θ̄

 =


F̄m1

T̄m1

F̄m2

T̄m2

F̄
T̄

 .
(3.22)

The above matrix equation can be recast in the inner-outer form as follows. Define the inner and outer
generalized displacements

XI =


x1(t)
θ1(t)
x2(t)
θ2(t)

 , XO =

[
X(t)
Θ(t)

]
. (3.23)

The inner and outer mass matrices read

MII =


m 0 0 0
0 Im 0 0
0 0 m 0
0 0 0 Im

 , MOO =

[
M0 0
0 I0

]
. (3.24)

The stiffness matrices are written as

KOO =

[
2k 2kc
2kc 2kt

]
, KII =


2k 2kc −k −kc
2kc 2kt −kc −kt
−k −kc 2k 2kc
−kc −kt 2kc 2kt

 , KOI = −
[
k kc k kc
kc kt kc kt

]
, (3.25)

and KOI = KT
IO. Equivalently,

MOO =

[
M0 0
0 I0

]
, MII =

[
m 0
0 m

]
, m =

[
m 0
0 Im

]
, (3.26)

and

KOO = 2K , KII =

[
2K −K
−K 2K

]
, KOI = −

[
K K

]
, K =

[
k kc
kc kt

]
. (3.27)

The outer and inner force vectors are defined as

FO =

[
F (t)
T (t)

]
, FI =


Fm1

Tm1

Fm2

Tm2

 . (3.28)

The effective dynamic mass is calculated using (2.47) and reads

Meff(ω) =

M0 +
2m(k2c−kkt+Imkω

2)
k2c−(kt−Imω2)(k−mω2)

2Imkcmω
2

k2c−(kt−Imω2)(k−mω2)

2Imkcmω
2

k2c−(kt−Imω2)(k−mω2) I0 +
2Im(k2c−kkt+mktω

2)
k2c−(kt−Imω2)(k−mω2)

 . (3.29)

Note that the effective dynamic mass matrix can be written as a static mass matrix plus an added mass
matrix as

Meff(ω) = Mstatic + Madded(ω) , (3.30)
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where

Mstatic =

[
M0 0
0 I0

]
, Madded(ω) =

[›M(ω) ‹J(ω)‹J(ω) Ĩ(ω)

]
, (3.31)

and ›M(ω) =
2m(k2

c − kkt + Imkω
2)

k2
c − (kt − Imω2)(k −mω2)

,‹J(ω) =
2Imkcmω

2

k2
c − (kt − Imω2)(k −mω2)

,

Ĩ(ω) =
2Im(k2

c − kkt +mktω
2)

k2
c − (kt − Imω2)(k −mω2)

.

(3.32)

Comparing with the effective dynamic mass matrix of the single micro-mass cell in (3.10) we note the
following equivalence

M2−mass
eff (2k, 2kc, 2kt,m, Im, 2M0, 2I0) = 2M1−mass

eff (k, kc, kt,m, Im,M0, I0) . (3.33)

Thus, a single micro-mass cell with micro-mass m and micro-inertia Im is equivalent to a double micro-mass
cell with the same micro-mass and micro-inertia, doubled outer stiffness and macro-mass and inertia. There
is a similar equivalence relation for a unit cell with N micro-masses in series. Thus, hereafter it suffices to
consider a microstructure with a single mass-in-mass unit cell (see top-left panel of Fig. 2).

3.2 Bloch analysis and frequency bands

In this section, we study the spectral properties of the 1D composite lattice depicted in the second panel
from the bottom of Fig. 4. The unit cell (fundamental domain) of the composite lattice has two mass-in-
mass cells that are separated by distance L and are connected to each other by an outer chiral spring with
elastic constants K, Kc, and Kt. Each mass-in-mass cell is identical to that shown in the top-left panel of
Fig. 2. In order to avoid unstable modes, it is assumed that kkt − k2

c > 0, and KKt −K2
c > 0. Note that

k, kt,K,Kt > 0. Let us define the following 4× 4 local stiffness matrices

Kex =

[
KG 0
0 0

]
, KG =

[
K Kc

Kc Kt

]
, (3.34)

where KG and the null matrix 0 are 2× 2 matrices. The generic cells 2j and 2j+ 1 interact via the stiffness
matrix Kex while the nearest-neighbor unit cells interact through the stiffness matrix βKex, with β > 0.
The case of a simple lattice is recovered when β = 1.

We next perform a dynamic Bloch analysis of the infinite lattice, whose unit cell has 4 degrees of free-
dom (2 outer and 2 inner generalized displacements). The frequency bands follow by solving a linear eigen-
value problem in the squared frequency ω2 (c.f., e.g., Fedele et al. [2005a], and references therein). Then,
we consider the associated reduced (effective) lattice by lumping the microstructure of each cell to a single
mass with the 2 × 2 effective dynamic mass matrix Meff(ω) in (3.10). The reduced (condensed) lattice has
unit cells with 2 degrees of freedom (2 outer generalized displacements only). The frequency bands follow by
solving a smaller 2 × 2, but nonlinear eigenvalue problem in ω2 because the effective dynamic mass matrix
is frequency dependent. It is shown that the full and reduced lattice models give the same frequency bands.
On the one hand, the full lattice has a stiffness matrix double the size of that of the reduced lattice, but the
Bloch eigenvalue problem of the former is linear. On the other hand, the reduced (effective) lattice yields a
nonlinear Bloch eigenvalue problem of a smaller size.
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Figure 4: Bottom panels: (top) a periodic 1D composite lattice with alternating nearest-neighbor cell-cell stiffness matrices
and (bottom) the associated reduced (condensed) lattice. Top panel: Frequency dispersion bands of the 1D composite lattice for
β = 0.7, 1, 1.3. The (black) symmetric and (red) anti-symmetric bands are also depicted for the simple lattice β = 1. Bandgaps
(light violet) and frequency range of negative mass (ochre) are also shown. Natural frequencies of the microstructure (red
lines): ω2

1 = 5.22, ω2
2 = 0.78. The two regions of negative effective dynamic mass are depicted (ochre strips). Each region

is delimited from below by the natural frequency of the microstructure and from above by the frequency at which the effective
eigenmass vanishes. Note that only one of the two negative-mass regions is within a bandgap.
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3.2.1 The full lattice model

From §3.1, the Fourier transform of the associated dynamical equations (3.2) and (3.3) can be written in the

compact matrix form of (2.34) as −ω2Mcellû + Kcellû = F̂, where

Mcell =

[
MOO 0

0 MII

]
, Kcell =

[
KOO KOI

KIO KII

]
=

[
2K −2K
−2K 2K

]
, û =

[
X̂O

X̂I

]
, F̂ =

[
F̂O

F̂I

]
.

(3.35)
Here, the inner and outer mass matrices are given in (3.5) and the stiffness matrix K is defined in (3.6). The
vector û ∈ C4 lists the 2×1 vectors of the Fourier amplitudes of the outer and inner generalized displacements
(X̂O, X̂I) given in (3.8). The outer and inner forces (F̂O, F̂I) are defined in (3.15). In the following we will

assume that the inner forces vanish, i.e., F̂I = 0.
The location of each cell of the fundamental domain shown in Fig. 4 is Xj = jL for j = 1, . . . N . The

even cells 2j are connected to their nearest-neighbor unit cells 2j + 1 and 2j − 1 by springs with stiffness
matrices Kex and βKex (β > 0), respectively. Let us assume harmonic loads. The displacements of odd and
even unit cells are assumed to be of the following forms

û2j = û0eiqX2j = û0eiα2j , û2j+1 = û1eiqX2j+1 = û1eiα(2j+1) , (3.36)

where û0, û1 ∈ C4, and α = qL. Note that such a form for the solutions follows from the block-circulant
nature of the stiffness and mass matrices of the lattice, which allows them to be block-diagonalized by the
block form of the discrete Fourier transform matrix (cf., e.g., Pratapa et al. [2018]). The dynamical governing
equations then read

−βKexû2j−1 + [(1 + β)Kex + Kcell]û2j −Kexû2j+1 − ω2Mcellû2j = 0 ,

−Kexû2j + [(1 + β)Kex + Kcell]û2j+1 − βKexû2j+2 − ω2Mcellû2j+1 = 0 .
(3.37)

Using (3.36), one obtains

[(1 + β)Kex + Kcell]û0eiα2j −Kexû1eiα(2j+1) − βKexû1eiα(2j−1) − ω2Mcellû0eiα2j = 0 ,

[(1 + β)Kex + Kcell]û1eiα(2j+1) − βKexû0eiα(2j+2) −Kexû0eiα2j − ω2Mcellû1eiα(2j+1) = 0 .
(3.38)

Dividing the first and second equations by eiα2j and eiα(2j+1), respectively, one obtains

[(1 + β)Kex + Kcell]û0 − aKexû1 − ω2Mcellû0 = 0 ,

[(1 + β)Kex + Kcell]û1 − a†Kexû0 − ω2Mcellû1 = 0 ,
(3.39)

where a = eiα+βe−iα, and a† is the complex conjugate of a. This can be rewritten in the following compact
form [

(1 + β)Kex + Kcell − ω2Mcell −aKex

−a†Kex (1 + β)Kex + Kcell − ω2Mcell

] [
û0

û1

]
=

[
0
0

]
. (3.40)

Note that the coefficient matrix is Hermitian, and hence, has real eigenvalues. The dispersion bands ω2(α)
can be evaluated by solving the 8 × 8 linear eigenvalue problem above by imposing the vanishing of the
determinant of the coefficient matrix. This yields an 8th-order polynomial equation in ω2, whose roots yield
8 frequency bands.

3.2.2 The reduced lattice model via the effective dynamic mass

We next lump the microstructure of each cell to a single mass with the 2× 2 effective dynamic mass matrix
Meff(ω) in (3.10) related to the outer Fourier amplitude displacements v̂ = X̂O ∈ C2 given in (3.8)1. The
reduced (condensed) lattice has unit cells with 2 degrees of freedom (outer displacements of translation and
twist) and it is depicted in the bottom panel of Fig. 4. In the following we will show that the frequency
bands are obtained by solving a 4 × 4 nonlinear eigenvalue problem in ω2 as the effective dynamic mass
matrix is frequency dependent.
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The effective dynamic mass cells are connected via outer chiral elastic springs characterized by the 2× 2
stiffness matrix KG (see (3.34)2). In particular, even nodes interact with their successive (odd) node by a
spring of stiffness KG and interact with their preceding (odd) node by a spring of stiffness βKG. Odd nodes
are connected to their successive (even node) by a spring of stiffness βKG and to their preceding (even)
node by a spring with stiffness KG. For a harmonic motion the associated Fourier amplitude of the outer
displacements (translation and twist) of odd and even nodes are assumed to be of the following form

v̂2j = v̂0eiqX2j = v̂0eiα2j , v̂2j+1 = v̂1eiqX2j+1 = v̂1eiα(2j+1) , (3.41)

where v̂0, v̂1 ∈ C2, and α = qL. The dynamical equations of even and odd node masses are written as

(1 + β)KGv̂2j −KGv̂2j+1 − βKGv̂2j−1 − ω2Meff(ω)v̂2j = 0 ,

(1 + β)KGv̂2j+1 − βKGv̂2j+2 −KGv̂2j − ω2Meff(ω)v̂2j+1 = 0 .
(3.42)

Using (3.41), one writes

(1 + β)KGv̂0eiα2j −KGv̂1eiα(2j+1) − βKGv̂1eiα(2j−1) − ω2Meff(ω)v̂0eiα2j = 0 ,

(1 + β)KGv̂1eiα(2j+1) − βKGv̂0eiα(2j+2) −KGv̂0eiα2j − ω2Meff(ω)v̂1eiα(2j+1) = 0 .
(3.43)

Dividing the first and second equations by eiα2j and eiα(2j+1), respectively, one obtains

(1 + β)KGv̂0 − aKGv̂1 − ω2Meff(ω)v̂0 = 0 ,

(1 + β)KGv̂1 − a†KGv̂0 − ω2Meff(ω)v̂1 = 0 ,
(3.44)

where a = eiα + βe−iα, and a† is the complex conjugate of a. This can be written in the following compact
form ([

(1 + β)KG −aKG

−a†KG (1 + β)KG

]
− ω2

[
Meff(ω) 0

0 Meff(ω)

])[
v̂0

v̂1

]
=

[
0
0

]
. (3.45)

Thus, we obtain the following 4× 4 nonlinear eigenvalue problem in ω2[
(1 + β)KG − ω2Meff(ω) −aKG

−a†KG (1 + β)KG − ω2Meff(ω)

] [
v̂0

v̂1

]
=

[
0
0

]
, (3.46)

because the effective dynamic mass matrix is frequency dependent (see (3.10)). The dispersion bands ω2(α)
follow by imposing the vanishing of the determinant of the above 4 × 4 coefficient matrix. This gives the
same 8th-order polynomial equation in ω2 that follows from the full linear eigenvalue problem in (3.40). The
nonlinear eigenvalue problem (3.46) reduces to two smaller 2×2 nonlinear eigenvalue problems for the simple
lattice with β = 1 as is amenable to algebraic simplification.

Remark 3.1. In the case of an uniform lattice, i.e., β = 1, (3.46) reduces to[
2KG − ω2Meff(ω) −2 cosαKG

−2 cosαKG 2KG − ω2Meff(ω)

] [
v̂0

v̂1

]
=

[
0
0

]
. (3.47)

The associated matrix is real-symmetric. The mirror-symmetry of the uniform lattice, or equivalently,
rotational symmetry with an angle of π, permits solutions of the system (3.47) as either (+) symmetric modes
[v̂0, v̂0] (v̂1 = v̂0) or (−) anti-symmetric modes [v̂0, −v̂0] (v̂1 = −v̂0) (cf., e.g., Sharma and Suryanarayana
[2021], and references therein). For symmetric modes the 4 × 4 matrix equation in (3.47) reduces to two
identical 2×2 matrix equations for v̂0:

[
2(1− cosα)KG − ω2Meff(ω)

]
v̂0 = 0. For the anti-symmetric modes

we instead have
[
2(1 + cosα)KG − ω2Meff(ω)

]
v̂0 = 0. In compact form, the symmetric and anti-symmetric

modes satisfy the following 2× 2 nonlinear eigenvalue problem

(b±KG − ω2Meff(ω))v̂0 = 0 , (3.48)

22



where b± = 2(1∓ cosα). Non-trivial solutions for symmetric (+) and anti-symmetric (−) modes exist if the
determinant of the linear system in (3.48) vanishes. Such a condition provides the squared eigenfrequencies
ω2 by solving the following nonlinear equation∣∣b±KG − ω2Meff(ω)

∣∣ = 0 , (3.49)

or ∣∣∣∣ b±K − ω2M11(ω) b±Kc − ω2M12(ω)
b±Kc − ω2M21(ω) b±Kt − ω2M22(ω)

∣∣∣∣ = 0 . (3.50)

This simplifies to Q1(ω)ω4 +Q2(ω)ω2 +Q3 = 0, with

Q1 =
∣∣Meff

∣∣ = −M2
12(ω) +M11(ω)M22(ω) ,

Q2 = b±(−KtM11(ω) + 2KcM12(ω)−KM22(ω)) ,

Q3 = (b±)2
∣∣KG

∣∣ = −(b±)2(K2
c −KKt) ,

(3.51)

where use has been made of the symmetry M12 = M21. This reduces to the following 4th-order polynomial
in r = ω2:

Ar4 +Br3 + Cr2 +Dr + E = 0 , (3.52)

where
A =− I0ImmM0 ,

B =b±Imm(I0K +KtM0) + 2(I0ktmM0 + ImktmM0 + I0Imk(m+M0)) ,

C =(b±)2Im(K2
c −KKt)m+ 4(I0 + Im)(k2

c − kkt)(m+M0)−
2b±(I0K(Imk + ktm) +KtktmM0 + Im(−2kcKcm+Kktm+ kKt(m+M0))) ,

D =2b±(−b±(K2
c −KKt)(Imk + ktm)− 2(k2

c − kkt)((I0 + Im)K +Kt(m+M0))) ,

E =− 4(b±)2(k2
c − kkt)(K2

c −KKt) .

(3.53)

Thus, we have 4 bands of symmetric modes (b+) and 4 bands of anti-symmetric modes (b−). The associated
eigenvector u0 follows from (3.48). For example,

(v̂0)1 = R, (v̂0)2 = 1 , R = −b
±Kc − ω2M12(ω)

b±K − ω2M11(ω)
, (3.54)

if the denominator of R does not vanish.
Zero-frequency, or energy modes exist if E = 0, that is −4(b±)2(k2

c −kkt)(K2
c −KKt) = 0. This vanishes

if either i) b± = 0, i.e., cosα = ±1, or ii) k2
c − kkt = 0, or K2

c −KKt = 0, which prescribes the value of the
chiral coefficients so that either the determinant of the inner stiffness matrix K or that of the outer stiffness
matrix KG vanishes. For example, from i) zero-frequency modes satisfy α = qL = 0, and qL = −π, 0, π.
Such modes correspond to generalized rigid displacements (translation and twist) of the entire chain (qL = 0)
or to opposite displacements at even and odd nodes (qL = ±π). Such modes are ‘floppy’ in the sense that
they are mechanisms that do not require any deformation energy, or force. An example is

v̂floppy =

[
X̄
Θ̄

]
=

[
−
√

Kt

K

1

]
. (3.55)

Examples Consider the 1D composite lattice and its reduced model depicted in the bottom panels of
Fig. 4. The inner parameters m = 0.25, Im = 0.25, k = 1/2, kt = 1/4, and the outer parameters M0 =
1.5, I0 = 1.5,K = 2,Kt = 2 are chosen. Note that here and henceforth the units for each of the quantities
are not specified. Indeed, any consistent system of units, e.g., SI, can be chosen. The inner and outer
chiral stiffnesses are selected to avoid zero-energy modes, in particular kc = γ

√
kkt, and Kc = Γ

√
KKt,

where |γ|, |Γ| < 1. When |γ|, |Γ| = 1 zero-energy modes exist. We choose γ = Γ = 0.7. We consider the
reduced (condensed) lattice and frequency dispersion bands ω2(α) are computed by solving the nonlinear
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eigenvalue problem in ω2 in (3.46), which is an 8th-order polynomial in ω2. The bisection method is used to
find the eight roots of the 4× 4 determinant of matrix system (3.46), which are identical to those obtained
by solving the 8× 8 linear eigenvalue problem (3.40) of the full lattice.

The frequency bands for β = 0.7, 1, 1.3 are depicted in the top panels of Fig. 4. The two regions of negative
effective dynamic mass are also shown (ochre strips). Each region is delimited from below by the natural
frequency of the microstructure and from above by the frequency at which the effective eigenmass vanishes.
Note that only one of the two negative-mass regions is within a bandgap. For the uniform lattice (β = 1)
the roots of the quartic algebraic equation (3.52) yields the frequency bands of symmetric modes (black
curves) and anti-symmetric modes (red curves), the only two modes permitted by the mirror-symmetry of
the lattice. Two pairs of frequency bands intersect at special points indicating the existence of 1D analogues
of Dirac cones [Ochiai and Onoda, 2009, He and Chan, 2015]. The emergence of such special points is
attributed to band crossing protected by the mirror-symmetry of the uniform lattice [He and Chan, 2015].
The Dirac nodes unbuckle for the cases β 6= 1 because the mirror-symmetry of the lattice is broken by the
alternating outer springs of different stiffness along the lattice. A bandgap opens for each band pair, where
wave propagation is forbidden. The composite lattice becomes the 1D analogue of a Chern, or topological
insulator [Shankar et al., 2022].

3.3 Defects and localized modes

Consider the defective 1D composite lattice of N cells indicated in the second panel from the bottom of
Fig. 5 with the local 4 × 4 stiffness matrix Kex given in (3.34)1, and the cell mass matrix Mcell given in
(3.35)1. The boundary springs ηKex at j = 1 and ζKex at j = N (see bottom panel of Fig. 5) introduce
defects as they break the translation symmetry of the lattice (see, e.g., Fedele et al. [2005a]).

3.3.1 The full lattice model

The 4N × 4N global mass matrix is block-diagonal and is written as

M =


Mcell

Mcell

. . .

Mcell

Mcell

 . (3.56)

The 4N × 4N global stiffness matrix is given by

K =



ηKex + βKex + Kcell −βKex · · · · · · · · ·
−βKex (1 + β)Kex + Kcell −Kex · · · · · ·

. . .

. . .

· · · · · · −Kex (1 + β)Kex + Kcell −βKex

− · · · · · · · · · −βKex ζKex + βKex + Kcell


.

(3.57)

The displacement vector has the form û = [û1 û2 · · · ûN ]
T

, where the vector ûj ∈ C4 lists the 2× 1 vectors

of the Fourier amplitudes of the outer and inner generalized displacements (X̂O, X̂I) of the unit cell j at
Xj = jL given in (3.8).

3.3.2 The reduced lattice model via the effective dynamic mass

We now consider the reduced lattice shown in the bottom panel of the same Fig. 5, where we lump the
microstructure of each macro-mass to a single mass whose 2 × 2 effective dynamic mass matrix is Meff(ω)
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Figure 5: Bottom panels: (top) a 1D finite composite lattice with alternating nearest-neighbor cell-cell stiffness matrices (N =
200 nodes, β = 1.3) and (bottom) the associated reduced (condensed) lattice. The parameters η, ζ ≥ 0 specify the type of
boundary conditions. Top panel: Frequency dispersion bands and defect modes (translation displacements). Bandgaps (light
violet) and frequency range of negative mass (ochre) are also shown. Natural frequencies of the microstructure (red curves):
ω2

1 = 5.22, ω2
2 = 0.78.

given in (3.10). The 2× 2 stiffness matrix of the elastic springs connecting the lumped masses is KG given
in (3.34)2. The 2N × 2N global effective dynamic mass matrix is block-diagonal and is written as

Me(ω) =


Meff(ω)

Meff(ω)
. . .

Meff(ω)
Meff(ω)

 . (3.58)
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Figure 6: Bottom panel: (top) A 1D defective finite composite lattice with alternating nearest-neighbor cell-cell stiffness
matrices (N = 200 nodes, β = 1.3) and central defect of the outer, or macro stiffness (δ = 4); (bottom) the associated
reduced (condensed) lattice. Top panel: Frequency dispersion bands and defect modes (translation displacements). Bandgaps
(light violet) and frequency range of negative mass (ochre) are also shown. Natural frequencies of the microstructure (red
curves): ω2

1 = 5.22, ω2
2 = 0.78.

The 2N × 2N global effective stiffness matrix is given by

Ke =



ηKG + βKG −βKG · · · · · · · · ·
−βKG (1 + β)KG −KG · · · · · ·

. . .

. . .

· · · · · · −KG (1 + β)KG −βKG

− · · · · · · · · · −βKG ζKG + βKG


. (3.59)
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Figure 7: Bottom panel: (top) A 1D defective finite composite lattice with alternating nearest-neighbor cell-cell stiffness matrices
(N = 200 nodes, β = 1.3) and a microstructure defect at the central cell with micro mass m and inertia Im γ-times larger than
those of the other cells (γ = 1.75); (bottom) the associated reduced (condensed) lattice. Top panel: Frequency dispersion bands
and bandgaps (light violet) and frequency range of negative mass (ochre) are also shown. There is only defect mode (translation
displacements) of the defective lattice inside the negative-mass region of the bandgap. Natural frequencies of the microstructure
(red curves): ω2

1 = 5.22, ω2
2 = 0.78.

The displacement vector has the form v̂ = [v̂1 v̂2 · · · v̂N ]
T

, where v̂j is the 2 × 1 vector of the Fourier

amplitudes of the outer generalized displacements of the unit cell j at Xj = jL, that is v̂ = X̂O ∈ C2 given
in (3.8)1. The matrix is Hermitian as expected. Defect modes are identified by finding the isolated eigenvalues
ω2 of the 2N × 2N nonlinear eigenvalue problem |Ke − ω2Me(ω)| = 0 by the bisection method (see, e.g.,
Fedele et al. [2005a,b] and references therein). The same modes can be obtained by solving the 4N×4N linear
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eigenvalue problem |K− ω2M| = 0 of the full lattice, where the full mass and stiffness matrices are given in
§3.3.1. The defect eigenvalues reside within the bandgaps of the periodic composite lattice.

Examples. The dispersion bands of the composite lattice (β = 1.3, N = 200) with an imperfection of the
outer, or macro stiffness near node 1 are shown in Fig. 5. A defect mode is present in each bandgap of the
associated periodic lattice. The defect modes are localized in space and tend to decay slower as they get
closer to the band edges. Similar results hold for an imperfection of the outer, or macro stiffness at the
central node of the lattice depicted in Fig. 6. Note that in both cases the frequency of the defect mode
D3 is outside the bandgap region of negative mass. As a matter of fact, for the chosen parameters the
microstructure has a positive-definite effective dynamic mass matrix. If one alters the microstructure of the
central cell to have a negative effective dynamic mass, then the defective lattice has only one defect mode,
which lies inside the negative-mass region of a bandgap as depicted in Fig. 7.

4 Concluding Remarks

In this paper, we presented a general formalism for the effective dynamic mass of mechanical lattices with
microstructure. Specifically, we first revisited a classical case of the microstructure being modeled as a spring-
interconnected mass-in-mass system, showing that its frequency-dependent effective dynamic mass can be
derived in three different ways, namely, momentum equivalence, dynamic condensation of the momentum
balance equations, and action equivalence. The effective dynamic mass is the sum of a static mass and of
an added mass, which accounts for the effects of the microstructure on the macrostructure, in analogy to
that of a swimmer in a fluid. This framework was generalized to systems with arbitrary microstructure, and
it provides an avenue for defining the effective dynamic mass for more complex systems such as those with
disorder, uncertainties or nonlinearities (see, for example Whitham [1974]).

As an application, we considered a 1D composite lattice, whose microstructure is modeled by a chiral
spring-interconnected mass-in-mass cell. A reduced (condensed) model of the full lattice is then obtained by
lumping the microstructure into a single effective dynamic mass. We then studied the spectral properties
of the composite lattice, in particular, the frequency bands and localized modes due to defects. To do
so, we performed a dynamic Bloch analysis using both the full and reduced lattice models, which provide
identical spectral results. In particular, the frequency bands follow from the full lattice model by solving
a linear eigenvalue problem, or from the reduced lattice model by solving a smaller nonlinear eigenvalue
problem, for which we used the bisection method. We found that the range of frequencies of negative
effective dynamic mass falls within the bandgaps of the lattice. In addition, localized modes due to defects
of the macrostructure have frequencies within the bandgaps, but outside the negative-mass range. If the
defect alters the microstructure of a lattice cell to have negative effective dynamic mass (micro-defect), then
there is only one localized mode at the cell with defect, with frequency within the negative-mass range of
the bandgap. Macro-defects of the outer lattice result in defect modes within each bandgap, but outside the
negative-mass range, irrespective of the mass sign of the microstructure.

The proposed formalism can be applied to reveal exotic properties of coupled micro-macro systems, such
as active matter or metamaterials [Shankar et al., 2022], making it a worthy subject for future work. In
particular, the unconventional properties of these peculiar systems, such as negative mass or stiffness, and
odd viscosity or elasticity [Fruchart et al., 2023], are clearly defined for the reduced (or effective) lattice.
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