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Abstract

Electro-active polymers (EAPs) are increasingly becoming popular materials for actuators, sensors, and energy harvesters.
o simulate the complex behaviour of actuators under coupled loads, particularly in the realm of soft robotics, biomedical
ngineering and energy harvesting, finite element simulations are proving to be an indispensable tool. In this work, we present a
ovel finite element framework for the simulation of coupled static and dynamic electromechanical interactions in electro-active
olymeric materials. To model the incompressible nature of EAPs, a two-field mixed displacement–pressure formulation which,
nlike the commonly-used mixed three-field and F-bar formulations, is applicable for both nearly and fully incompressible

materials, is employed. For the spatial discretisation, innovative quadratic Bézier triangular and tetrahedral elements are used.
The governing equations for the coupled electromechanical problem are solved using a monolithic scheme; for elastodynamics
simulations, a state-of-the-art implicit time integration is adapted. The accuracy and the computational efficiency of the
proposed framework are demonstrated by studying several benchmark examples in computational electromechanics which
include simulations of a spherical gripper in elastostatics and a dielectric pump in elastodynamics. Such complex simulations
clearly depict the advantages of the proposed finite element framework over the Q1/P0 and Q1-F-bar elements. Furthermore,
the superiority of the proposed framework in accurately capturing complex coupled electromechanical interactions in thin
electro-active polymeric shells is demonstrated by studying a thin helical actuator under different excitation frequencies and
by reproducing buckling instabilities in thin semi-cylindrical and semi-spherical shells. With the ability to simulate various
elastostatics and elastodynamics phenomena using a single finite element framework for bulk as well as thin dielectric elastomers
while using coarse structured or unstructured meshes that can be readily generated using existing mesh generators, this novel
framework offers a robust, accurate, and computationally efficient numerical framework for computational electromechanics.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Electro-active polymers (EAPs) are relatively a new class of functional or active materials that can be activated
y electric fields or potential differences. A dielectric elastomer (DE), a subset of EAPs, is produced in the form of
thin polymeric film that is sandwiched between two compliant electrodes. When a voltage difference is applied
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across the film thickness, the material is contracted in the direction of the applied voltage and expands in the
transverse planar direction; this behaviour can be termed as the mechanical output as a result of an electric input.
Such activation mechanisms result in very large and complex deformations which make EAPs one of the most
promising active materials for a large variety of engineering applications, e.g., artificial muscles in soft robotic
mechanisms, optical membranes for shape correction in lenses, energy harvesting from ambient motions such as
human walking and ocean waves [1–6]. Due to the interplay of the mechanical and the electric field, the system of
governing equations needs to be solved in coupled forms, cf. [7–13]. For a range of comprehensive reviews on the
potential applications for EAPs, the reader is referred to recent papers, e.g., [14–17]. The mathematical foundations
of the coupling of electromagnetic fields in finite strains are well documented in some earlier publications, see for
example the works of Pao and Nemat-Nasser [18], Eringen and Maugin [19,20], Kovetz [21] and Maugin [22].
More concise mathematical frameworks on electromechanical problems can be found in the recent monographs of
Dorfmann and Ogden [23], Santapuri and co-workers [24–26].

One of the earliest experimental works that illustrates electric-field actuated large deformations is due to
elrine et al. [27]. Commercially available acrylic type VHB, polyurethanes and silicone polymers are most
ommonly used as EAPs. However, due to limited actuation of unfilled polymers, high permittivity particle-filled
olymeric composites are increasingly being explored for EAPs, see Madsen et al. [16], Ellingford et al. [15],
rochu and Pei [14], and Dang et al. [17], for exhaustive reviews on the state-of-the-art of EAP materials.
xperimental works related to either pure or composite EAPs are very limited in the literature. Wissler et al. [28]
onducted experiments on an acrylic type polymer under uncoupled electromechanical loading while Diaconu
t al. [29,30] studied the electromechanical properties of a synthesised polyurethane elastomer film-based polyester.
o illustrate the time-dependent viscoelastic behaviour of VHB 4910 polymer under pure mechanical loading,
omprehensive experimental studies were presented by Hossain et al. [31], and Ahmad and Patra [32]. Furthermore,
comprehensive characterisation of the electromechanically coupled properties of VHB 4910 polymer was recently

onducted by Hossain et al. [33] and Mehnert et al. [34]. Qiang et al. [35] presented an experimental study on the
ielectric properties of a polyacrylate dielectric elastomer while Michel et al. [36] performed a comparison between
ilicone and acrylic elastomers that can potentially be used as dielectric materials in electro-active polymer actuators.
ote that frequently used commercially available acrylic-based VHB polymer has a limited actuation that motivates
hao et al. [37,38] to formulate new acrylic type polymers which can be actuated at a very low electric voltage.

Thanks to a wide range of applications of EAPs, the constitutive modelling of electro-elasticity at finite strains
as been an active field of research for more than two decades. To capture electromechanical coupled behaviour
t large strains, in a series of papers, Dorfmann and Ogden [7–9] and Bustamante [39–42] proposed constitutive
odels of isotropic electro-elasticity which are mainly based on several coupled invariants. To enhance actuations,
APs are frequently filled with high electric permittivity fillers which are further cured under an electric field
uring the curing process that results in anisotropic EAP composites, see Kashani et al. [43], Carpi et al. [44] and
umar et al. [45] for experimental evidences, and refer to Keip and co-workers [46,47] and Ullah et al. [48,49]

or homogenisation-based simulation frameworks. In order to capture the underlying inhomogeneous behaviour of
article-filled EAPs, Bustamante [39], Hossain and Steinmann [50], Hossain [51], Sharma and Joglekar [52,53],
ustamante and Shariff [54] and Shariff et al. [55] proposed mathematical formulations of electro-elasticity that

ncorporated transverse and dispersion-type anisotropy. All the constitutive modelling frameworks mentioned above
re based on the so-called phenomenological approach. In contrary, exploiting the micro-mechanics of polymeric
hain orientations and deformations under mechanical and electromechanical coupled loads, Itskov et al. [56],
ohen et al. [57,58], Brighenti et al. [59], and Thylander et al. [60,61] proposed micro-mechanically-motivated
lectro-elastic models at finite strains with physically meaningful material parameters. Other efforts in formulating
onstitutive modelling of electro-elasticity are due to Gao et al. [10], Zhao and Suo [62], Henann et al. [63],
sk et al. [64], Büschel et al. [65], Nedjar [66], Wang et al. [67], Sharma and Joglekar [53], Wang et al. [67],
hylander [60], Vogel et al. [12,13], Saxena et al. [68,69], Skatulla et al. [70], and Zäh and Miehe [71].

Similar to the constitutive modelling of EAPs, the finite element (FE) implementation of the electromechanically
oupled problem is an active area of research in recent years. One of the earliest seminal works in the area of FE
imulations of electro-elastic problems is due to Vu et al. [72]. Variational formulations for the governing equations
f the coupled electromechanical problems are extensively considered in the works of Bustamante et al. [41] and
ogel [12] using a three-field formulation. Note that most of the earlier numerical formulations of electromechanics

eglected the free space contribution which plays a significant role in deforming EAP structures. Hence, very
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recently, Vu and Steinmann [11,73], Pelteret et al. [74] and Nedjar [75] provided computational frameworks for
nearly incompressible electro- and magneto-elastic solids immersed in a free space. Since dielectric elastomers
are mainly made of thin structures, a solid shell finite element formulation using a mixed variational principle
of Hu–Washizu type is proposed by Klinkel et al. [76]. In order to ameliorate volumetric-locking, a common
phenomenon in nearly incompressible rubber-like materials, Hennan et al. [63] extended the classical F-bar element
method proposed by de Souza Neto et al. [77] to the case of electro-elastic coupled problem while Sharma and
Joglekar [53] extended the J -bar method [78] for simulating the nearly incompressible electro-viscoelasticity. Very
recently, in a series of papers, Gil and co-workers [79,80] proposed a new constitutive framework with finite
element implementations for large strain electromechanics based on the so-called convex multi-variable strain
energies. Furthermore, Bishara and Jabareen [81,82] proposed a numerical scheme using the reduced mixed finite
element formulation, which eliminates the possible volumetric locking in electro-active polymers and enhances the
computational efficiency as the static condensation is circumvented.

Note that all of the above FE frameworks for electromechanically coupled simulations discard inertial effects
in the governing equations. Dynamical simulations of EAPs are largely ignored in the literature. However, inertia
effects are essential to capture physical details that may arise during the electromechanical softening and instability
of the dielectric elastomers. In a series of papers, Park and co-workers [83–86] simulate various dynamic instabilities
such as wrinkling, creasing in the EAPs using fully-coupled three-dimensional formulations either by a monolithic
or a staggered solution scheme. In a similar effort to obtain the time-dependent behaviour of EAPs, Schlögl and
Leyendecker [87] developed a finite element framework where an energy-conserving integrator is used to discretise
dynamical equations. Experimental evidence suggests that polymeric materials are inherently prone to temperature
fluctuations which are almost impossible to prevent during their application due to the high electric voltages and
various dissipation mechanisms responsible for temperature variations [88–90]. In the works of Vertechy et al. [5,6],
Chen [91], Liu [92] and Erbts et al. [93], theoretical frameworks to the thermo-electromechanical problem can be
found. Recently, Mehnert et al. [94,95] proposed a framework for thermo-electro-elasticity which was later extended
to the case of finite strain thermo-magneto-mechanical problems in Mehnert et al. [96]. However, these numerical
treatments of thermo-electro-elasticity are based on traditional displacement-based formulations, hardly suitable for
purely incompressible materials like EAPs.

In spite of the tremendous success by various researchers in extending the selective reduced integration method,
three-field, F-bar and J -bar formulations with the Q1 element for computational electromechanics, a numerical
framework that is accurate, robust and also computationally efficient is still lacking. This is primarily due to the
limitations of these formulations that become significant bottlenecks when applied to incompressible materials,
especially when the Poisson’s ratio approaches 0.5. The issues and limitations of widely-used finite element schemes
in the computational electromechanics community are:

• The F-bar formulation, despite its effectiveness for modelling nearly incompressible hyperelastic and elasto-
plastic materials, still requires as many load steps as necessary for the pure displacement formulation, and this
number increases as the Poisson’s ratio approaches 0.5. Such an increased computational cost of the F-bar
method limits its accuracy in imposing the incompressibility constraint and its applicability to large-scale real-
world problems. The same arguments are also applicable to the J -bar formulation because of the fundamental
similarity of the F-bar and J -bar formulations in retaining the volumetric part of the energy function in the
elastic tangent tensor.

• The three-field (displacement–pressure-Jacobian) formulation with the Q1/P0 element for purely mechanical
cases [97], while is effective in dealing with the volumetric locking and also requires significantly fewer load
steps when compared with the pure displacement, F-bar and J -bar formulations, suffers from spurious pressure
modes and serious convergence issues when ν → 0.5, as demonstrated with the example of a spherical gripper
in Section 5.4. The spurious pressure modes are a direct consequence of the fact that the Q1/P0 element is
not inf–sup or Ladyzhenskaya–Babuska–Brezzi (LBB) stable, see [98,99].

• All of these three formulations are not applicable for truly incompressible materials, i.e., for ν = 0.5.
• The use of quadrilateral and hexahedral elements in these schemes make the task of mesh generation quite

cumbersome, especially for complex geometries.

herefore, in this contribution, a new finite element framework that overcomes the above-mentioned issues and that

s robust and computationally efficient for computational electromechanics, is proposed.
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The proposed framework is an extension of the innovative finite element framework for computational solid
echanics based on Bèzier elements, which is very recently proposed by Kadapa [100,101]. Considering the ad-

antages of the two-field mixed (displacement–pressure) formulation demonstrated rigorously in Kadapa [101,102],
adapa et al. [103,104] for pure mechanical cases, we propose a novel three-field formulation with displacement,
ressure, and electric potential as the primary solution variables for the electromechanical problem. For the spatial
iscretisation, we use Bèzier elements because of their proven advantages over the Lagrange family of elements,

see [100,101]. The advantages of the proposed framework are multifold, which can be summarised as:

1. The proposed work employs a two-field mixed formulation for the mechanical problem which is applicable
for both nearly and truly incompressible materials unlike the three-field mixed formulation which is not
applicable for the truly incompressible model.

2. This newly devised framework employs inf–sup stable elements [101] as opposed to the widely-used Q1/P0
element, which is not inf–sup stable. Therefore, the pressure field computed using the proposed element is
free from spurious oscillations.

3. The current work does not include any ad-hoc parameters that control accuracy and stability, making it
a robust framework, unlike the mixed stabilised formulations. Moreover, unlike the Q1/P0 element, the
proposed element is not sensitive to the bulk modulus.

4. This work uses triangular and tetrahedral elements which are comparatively easier to generate using
automated mesh generators, even for complex geometries. It can also be extended to structured meshes using
quadrilateral/hexahedral elements in a straightforward manner.

5. The proposed FE strategy uses Bézier elements which, unlike the higher-order Lagrange family of elements,
are advantageous in explicit schemes for elastodynamics simulations of problems involving high-strain rates
and instabilities, see [100,101,105].

This manuscript is the first part of a series of contributions with the ultimate goal to connect and verify a
continuum modelling approach with realistic experimental data. This paper is organised as follows. The finite strain
theory and the governing equations for the coupled electromechanics are presented in Section 2, followed by a
discussion on the material models used in the present work in Section 3. The finite element formulation used in
the proposed work and the time integration scheme are discussed in Section 4. The accuracy and computational
advantages of the proposed finite element framework are illustrated with several numerical examples for electro-
elastostatic and electro-elastodynamics, respectively, in Sections 5 and 6. The paper is ended with Section 7 with a
summary of important contributions and an outlook to future works.

2. Governing equations for nonlinear electromechanics

2.1. Deformation, strain and stress

Let us consider an arbitrary solid body with B0 as its reference configuration. The body assumes a new
configuration, say Bt , under the influence of external forces. Let X : B0 → Bt denote the deformation mapping
that takes a point X ∈ B0 to a point x ∈ Bt . Now, the displacement field for identifying the new configuration, Bt ,
from the initial configuration, B0, can be defined as

u(X) := X (X) − X = x − X . (1)

Using the definition of the displacement field in Eq. (1), several important strain measures for the finite strain
ontinuum mechanics are defined as

Deformation gradient, F :=
∂X
∂ X

=
∂x
∂ X

= I +
∂u
∂ X

, (2)

Jacobian, J := det(F), (3)

Right Cauchy–Green deformation tensor, C := FT F, (4)

Left Cauchy–Green deformation tensor, b := F FT, (5)

Green–Lagrange strain tensor, E :=
1
2

[C − I] , (6)
where I is the second-order identity tensor.

4
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Using the above strain measures, important stress measures in the finite strain theory for continuum solid
echanics that are used in the present work are defined as,

First Piola–Kirchhoff stress tensor, P :=
∂Ψ

∂ F
= F S, (7)

Second Piola–Kirchhoff stress tensor, S := 2
∂Ψ

∂C
, (8)

Cauchy stress tensor, σ :=
1
J

F S FT, (9)

where Ψ is the strain energy function. For the comprehensive details on the finite strain theory for continuum solid
mechanics, we refer the reader to any of the standards textbooks on nonlinear finite element analysis, for example,
Zienkiewicz and Taylor [106], Bathe [107], de Souza Neto et al. [108], Bonet and Wood [109], and Holzapfel [110].

2.2. Electrostatics — Faraday’s and Gauss’s laws

Two main laws are important for electro-statics which are Faraday’s law and Gauss’ law. To express these laws
mathematically, we denote the quantities corresponding to the electrical field in the reference configuration as,
electric field vector E; electric displacement vector D; and electric polarisation density P. Similarly, the quantities
corresponding to the electrical field in the current configuration are, electric field vector e; electric displacement
vector d; and electric polarisation density p. Scalar electric potential in the current configuration and the vacuum
electric permittivity are denoted, respectively, as φ and ε0. Now, various electric quantities defined in two different
onfigurations are related by following relations,

E = FT e (10)

D = J F−1 d (11)

P = J F−1 p (12)

D = ε0 J C−1 E + P = Dϵ
+ P (13)

d = ε0 e + p = dϵ
+ p. (14)

For the given energy function Ψ consisting of mechanical and electro-mechanical coupled parts, the electric
displacement vector in the reference configuration (D) is defined as

D := −
∂Ψ

∂E
(15)

Now, using the above-listed quantities for the electrical field, the Faraday’s and Gauss’ laws in the current
configuration can be expressed as

curl e = ∇x × e = 0, (16)

div d = ∇x · d = 0. (17)

where ∇x is the gradient operator with respect to the current configuration. Eq. (16) implies the existence of a scalar
electric potential such that

e = − grad φ = −∇xφ. (18)

2.3. Equilibrium equations

A complete set of governing equations for the coupled electro-elastodynamics problem in the current configura-
tion can be written as

ρ a(x, t) − ∇x · σ (x, t) = f (x, t) ∀ x ∈ Bt , t ∈ [0, t f ] (19)

∇x · d(x, t) = 0 ∀ x ∈ Bt , t ∈ [0, t f ] (20)

u(x, t) = u(x, t) ∀ x ∈ ∂Bmech,D
t , t ∈ [0, t f ] (21)

σ (x, t) · n = t(x, t) ∀ x ∈ ∂Bmech,N, t ∈ [0, t ] (22)
t f
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φ(x, t) = φ(x, t) ∀ x ∈ ∂Belec,D
t , t ∈ [0, t f ] (23)

−d · n = ω ∀ x ∈ ∂Belec,N
t , t ∈ [0, t f ] (24)

u(x, 0) = u0(x) ∀ x ∈ Bt (25)

v(x, 0) = v0(x) ∀ x ∈ Bt (26)

here, t is the time variable, t f is the final time, v is the velocity at point x, a is the acceleration at point x, f is
the body force per unit deformed volume, n is the unit outward normal on the boundary ∂Bt , u is the prescribed
value of displacement on the Dirichlet boundary ∂Bmech,D

t , t is the specified traction force per unit deformed area on
he Neumann boundary ∂Bmech,N

t , φ is the prescribed value of electric potential on the Dirichlet boundary ∂Belec,D
t ,

ω is the specified electric surface charge density per unit deformed area on the Neumann boundary ∂Belec,N
t , and

u0 and v0 are the initial displacement and initial velocity, respectively. ρ is the density of the solid in the current
onfiguration, and it is related to the density of the solid in the original configuration, ρ0, as

ρ0 = ρ J. (27)

.4. Modifications for incompressible materials

For truly incompressible materials, the deformation of the solid is such that the total volume change at any point
n the domain at any time instant is zero. This can be represented mathematically as the incompressibility constraint
n finite strains,

J = 1. (28)

For modelling incompressible materials in finite strains, the deformation gradient, F, is decomposed into
eviatoric and volumetric components as

F = Fvol Fdev, (29)

ith

Fvol := J 1/3I, and Fdev := J−1/3 F. (30)

Using the above definitions, modified strain and stress measures are defined as

Modified deformation gradient, F := J−1/3 F (31)

Modified right Cauchy–Green deformation tensor, C := FT F (32)

Modified left Cauchy–Green deformation tensor, b := F FT
(33)

Modified Green–Lagrange strain tensor, E :=
1
2

[
C − I

]
(34)

Modified first Piola–Kirchhoff stress tensor, P :=
∂Ψ

∂ F
(35)

Modified second Piola–Kirchhoff stress tensor, S :=
∂Ψ

∂ E
(36)

Modified Cauchy stress tensor, σ :=
1
J

P F (37)

ote that in (35) and (36), the energy function, Ψ , has to be modified accordingly in terms of modified strain
easures.

. Material models

The material models in the present work are limited to incompressible isotropic hyperelastic materials with an
lectromechanical coupling. This, however, is not a limitation but chosen only for the clarity of the presentation.
he proposed work offers straightforward extension to anisotropic as well as rate-dependent material models,

or example, viscoelasticity by adding the corresponding energy contribution to the strain energy function. These

xtensions will be addressed in a forthcoming contribution.
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For all of the material models considered in this work, the energy function is assumed to be decomposed into
wo parts as

Ψ = Ψmech,dev
+ Ψ coup (38)

here Ψmech,dev is the deviatoric part of the mechanical strain energy function and Ψ coup is the strain energy function
that accounts for the electromechanical coupling. It is important to mention at this point that the volumetric energy
function Ψmech,vol vanishes for the perfectly incompressible material models.

3.1. Deviatoric energy function

From a variety of deviatoric energy functions available in the literature for modelling rubber-like materials, we
have selected three energy functions: Neo-Hookean, Gent and Arruda–Boyce models. For comprehensive details on
energy functions suitable for rubber-like materials modelling, the reader is referred to review works of Steinmann
et al. [111], Hossain and Steinmann [112], Hossain et al. [113], and Mihai and Goriely [114].

The energy functions for the three material models used in the present work are given as:

• Neo-Hookean model

Ψmech,dev
=

µ

2

[
IC − 3

]
(39)

where µ is the shear modulus and IC = tr(C).
• Gent model

Ψmech,dev
= −

µ Im

2
ln

(
1 −

IC − 3
Im

)
(40)

where Im is a material parameter that represents the upper limit of
[
IC − 3

]
.

• Arruda–Boyce model

Ψmech,dev
=

µ

2

[
IC − 3

]
+

µ

20 N

[
I 2

C − 32
]

+
11 µ

1050 N 2

[
I 3

C − 33
]

+
19 µ

7000 N 3

[
I 4
C − 34]

+
519 µ

673750 N 4

[
I 5

C − 35
]

(41)

where N is the measure of cross-link density of polymers.

.2. Coupled energy function

The part of the strain energy function corresponding to the electromechanical coupling is taken similar to the
ne proposed in Hennan et al. [63], Bishara and Jabareen [81,82], Mehnert et al. [34],

Ψ coup
= −

1
2

ε J C−1
: [E ⊗ E] = −

1
2

ε J EI C−1
I J EJ , (42)

where ε = εr ε0 is the permittivity of the material and εr is the relative permittivity, also known as the dielectric
onstant. Note that there are experimental evidences that the dielectric constant depends on the initial stretching of
APs [82]. However, for simplicity, in this work, we have taken the dielectric parameter ε as a constant.

. Displacement–pressure-potential finite element formulation in finite strains

The selective reduced integration approach [115], and the F-bar, J -bar and three-field displacement–pressure-
acobian formulations for the mechanical problem enforce the incompressibility constraint only approximately by
sing a volumetric energy function and choosing a large value of the bulk modulus κ . However, since the volumetric
nergy function vanishes for the truly incompressible case, these formulations are no longer suitable, and the pressure
eld must be determined as an additional solution variable. Mathematically, p is a Lagrange multiplier for enforcing

he incompressibility constraint given in Eq. (28).
Moreover, while the F-bar formulation has proven to be effective for modelling nearly incompressible hypere-
astic materials, the fundamental issue with the formulation is its computational cost, especially when the Poisson’s

7
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ratio approaches 0.5. Because of the direct dependence of the elasticity tensor on the bulk modulus similar to
the pure displacement formulation, the F-bar formulation still requires as many load steps as necessary for the
displacement formulation. As demonstrated in the section of numerical examples, for the case of κ/µ = 105, the
F-bar formulation requires 100 times more load steps when compared with the three-field and the proposed mixed
formulations. Our experience indicates that this number increases further as the Poisson’s ratio approaches 0.5,
i.e., for κ/µ > 105. The same arguments extend to the recently proposed J -bar formulation because it still retains the
volumetric contribution in the elasticity tensor. Although the three-field formulation for the purely mechanical cases
has proven to be effective in dealing with volumetric locking, because of its failure to satisfy the inf–sup stability
condition, the Q1/P0 element produces pressure fields with spurious oscillations, otherwise known as checkerboard
pattern in the literature. The Q1/P0 element also suffers from convergence issues for significantly higher values of
the bulk modulus, as will be demonstrated in Section 5.

It has been proven in Kadapa [102] that a two-field mixed displacement–pressure formulation for mechanical
problem is sufficient enough for computing accurate numerical solutions of incompressible materials. Following
Kadapa [101,102] and Kadapa et al. [103], the two-field mixed displacement–pressure formulation will be extended
to electromechanics in this work. Note that the classical three-field formulation becomes a four-field (displacement–
pressure-Jacobian-electric potential) formulation in the case of electromechanical problems while our two-field
formulation will become a three-field (displacement–pressure-electric potential) one for electromechanics.

Following the Hamilton’s principle [116–119], the action functional, A, for the displacement–pressure-electric
potential (u/p/φ) formulation can be written as

A =

∫ t f

0
L(u, v, p, φ, t) dt (43)

where L is the Lagrangian which, in terms of total kinetic energy, T , and total potential energy, V , of the system
is given as

L =

∫
B0

1
2

ρ0v
2 dV  

T

−

[∫
B0

Ψ (C, p, φ) dV +

∫
B0

ΨPL dV − Vext

]
  

V

(44)

here dV is the elemental volume in the reference configuration; ΨPL is the energy function for imposing the
ncompressibility constraint (28) using the perturbed Lagrangian method with p as the Lagrange multiplier; and
ext is the energy contribution due to the external forces. ΨPL is given as

ΨPL = p [J − 1] −
p2

2 κ
(45)

here κ is the bulk modulus of the material. The term −
p2

2 κ
in Eq. (45) accounts for the nearly incompressible case,

.e. when ν ≈ 0.5, in the proposed framework. The energy contribution due to the external forces is given by

Vext =

∫
B0

uT f 0 dV +

∫
∂Bmech,N

0

uT t0 dA +

∫
∂Belec,N

0

φ ω0 dA. (46)

here dA is the elemental area in the reference configuration, f 0 is the body force per unit original volume, t0 is
he traction force per unit undeformed area, and ω0 is the electric surface charge density per unit original area.

Now, using the principle of stationary action, i.e., δA = 0, and then applying the integration by parts for the
erm due to kinetic energy, we obtain

δA =

∫
B0

δui ρ0 ai dV +

∫
B0

[
δui, j σ̂i j + δφ,i di

]
J dV +

∫
B0

δp
[

J − 1 −
p
κ

]
dV − δ Vext = 0 (47)

where δ(•) denotes the variation of the variable (•) and (◦), j denotes the derivative of (◦) with respect to the j th
component; ai is the i th component of acceleration a and σ̂i j is the effective Cauchy stress tensor for the mixed
ormulation. We refer the reader to Appendix A. for the details on the variations of energy functions.

For the finite element discretisation, we take the approximations for displacement (u), pressure (p) and electric
otential (φ) as
u = Nu u, p = Np p, and φ = Nφ φ, (48)

8
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where u, p and φ are the displacement, pressure and electric potential degrees of freedom, and

Nu =

⎡⎣1 Nu 0 0 · · ·
nu Nu 0 0

0 1 Nu 0 · · · 0 nu Nu 0
0 0 1 Nu · · · 0 0 nu Nu

⎤⎦ (49)

Np =
[

1 Np
2 Np · · ·

np Np
]

(50)

Nφ =
[

1 Nφ
2 Nφ · · ·

nφ Nφ

]
(51)

ith nu, np and nφ are the number of the basis functions, respectively, for the displacement, pressure and electric
otential degrees of freedom for an element. After substituting the variations of the field variables

δu = Nu δu, δp = Np δp, and δφ = Nφ δφ, (52)

nto the first variation given in Eq. (47), the resulting semi-discrete equations for the mixed formulation can be
ritten as

Fint
u = Fext

u , (53a)

Fint
p = 0, (53b)

Fint
φ = Fext

φ , (53c)

here Fint
u , Fint

p and Fint
φ are the vectors of internal forces for the displacement, pressure and potential fields,

espectively; and Fext
u and Fext

φ are the vectors of external forces for the displacement and potential fields, respectively.
These force vectors are given by

Fint
u =

∫
B0

NT
u [ρ0 a] dV +

∫
Bt

GT
u σ̂ dv, (54)

Fext
u =

∫
B0

NT
u f 0 dV +

∫
∂Bmech,N

0

NT
u t0 dA, (55)

Fint
p =

∫
B0

NT
p

[
J − 1 −

p
κ

]
dV, (56)

Fint
φ =

∫
Bt

GT
φ d dv, (57)

Fext
φ =

∫
∂Belec,N

0

NT
φ ω0 dA. (58)

here dv is the elemental volume in the current configuration. Gu and Gφ are the gradient operators for
he displacement and potential fields, respectively. For more details on the derivations of these quantities, see
ppendix B.

.1. Fully-implicit time integration

We solve the coupled nonlinear equations in (53) using the monolithic approach and use the state-of-the-art
mplicit time integration scheme proposed by Kadapa et al. [120] for marching in time. The advantage of the implicit
cheme of [120] over the widely-used Newmark-β scheme [121] lies in its ability to damp out high-frequency
odes using a user-controlled parameter, see [122]. The numerical solutions of the coupled nonlinear equations

re computed iteratively using the Newton–Raphson scheme. To achieve linearisations for the Newton–Raphson
cheme, we apply the second variation to the action functional, A, as presented in Appendix A.

By adapting the implicit time integration scheme of [120] and substituting the corresponding finite element
pproximations for three field variables, we obtain the following discrete matrix system for the incremental
isplacements, ∆u, incremental pressure, ∆p, and incremental electric potential, ∆φ, at iteration k + 1 as⎡⎣Kuu Ku p Kuφ

Kpu Kpp 0

⎤⎦ ⎧⎨⎩∆u
∆p

⎫⎬⎭ = −

⎧⎨⎩Ru
Rp

⎫⎬⎭ (59)

Kφu 0 Kφφ ∆φ Rφ

9
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In the above system of matrix, individual components can be obtained as

Kuu =
α2

m

α f γ 2 ∆t2 Muu + α f

∫
Bt

GT
u e Gu dv (60)

Muu =

∫
B0

ρ0 NT
u Nu dV (61)

Ku p = α f

∫
Bt

DT
u Np dv = KT

pu (62)

Kuφ = α f

∫
Bt

GT
u p Gφ dv = KT

φu (63)

Kpp = −α f

∫
B0

1
κ

NT
p Np dV (64)

Kφφ = α f

∫
Bt

GT
φ d Gφ dv (65)

Ru = Fint
u (ak

n+αm
, uk

n+α f
, pk

n+α f
, φk

n+α f
) − Fext

u,n+α f
, (66)

Rp = Fint
p (uk

n+α f
, pk

n+α f
) (67)

Rφ = Fint
φ (uk

n+α f
, pk

n+α f
, φk

n+α f
) − Fext

φ,n+α f
(68)

Fext
u,n+α f

= α f Fext
u,n+1 + [1 − α f ] Fext

u,n (69)

Fext
φ,n+α f

= α f Fext
φ,n+1 + [1 − α f ] Fext

φ,n (70)

ak
n+αm

= αm ak
n+1 + [1 − αm] an (71)

vk
n+α f

= α f vk
n+1 + [1 − α f ] vn (72)

uk
n+α f

= α f uk
n+1 + [1 − α f ] un (73)

pk
n+α f

= α f pk
n+1 + [1 − α f ] pn (74)

φk
n+α f

= α f φk
n+1 + [1 − α f ] φn (75)

vk
n+1 =

αm

α f γ∆t

[
uk

n+1 − un
]
+

[α f − 1]
α f

vn +
[γ − αm]

γα f
u̇n (76)

ak
n+1 =

αm

α f γ 2∆t2

[
uk

n+1 − un
]
−

1
α f γ∆t

vn +
γ − 1

γ
an +

[γ − αm]
α f γ 2∆t

u̇n (77)

u̇k
n+1 =

1
γ∆t

[
uk

n+1 − un
]
+

γ − 1
γ

u̇n (78)

where ∆t is the time step, Du is the divergence operator, see Appendix B; uk
n+1, vk

n+1, ak
n+1, pk

n+1 and φk
n+1 are the

isplacement, velocity, acceleration, pressure, and electric potential, respectively, at the kth iteration of the Newton–
aphson scheme; u̇ is the time derivative of the displacement which is different from velocity, v; see [120]. Note

hat e, p and d, respectively, in (60), (63) and (65) are the corresponding matrix versions of the tensors ei jkl , pi jk ,
i j . Following the matrix/vector format used for the gradient and stress tensors in Appendix B, matrix forms of e,
and d are of size 9 × 9, 9 × 3 and 3 × 3, respectively.
Following Kadapa et al. [120], the time integration scheme is second-order accurate and unconditionally-stable

hen the parameters are chosen such that

α f =
1

1 + ρ∞

; αm =
3 − ρ∞

2 [1 + ρ∞]
; γ =

1
2

+ αm − α f , for 0 ≤ ρ∞ ≤ 1, (79)

here ρ∞ is the spectral radius at an infinite time step and it controls the amount of numerical damping. For
∞ = 1.0, the scheme does not include any numerical damping and for ρ∞ = 0.0, it annihilates all the high-
requency modes after the first time step. For comprehensive details on the implicit time integration scheme, the
eader is referred to Kadapa et al. [120].
10
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Remark 1. The second term in Eq. (60) for the effective stiffness matrix Kuu accounts for both the material and
geometric stiffness terms.

Remark 2. The formulation for the elastostatics problems is recovered by simply setting the parameters as, α f = 1
and αm = 0.

Remark 3. For the four-field (Q1/P0) and F-bar formulations, the volumetric energy function is taken as

Ψmech,vol
=

κ

2
[J − 1]2 (80)

t is easy to show that Eq. (54) in the proposed formulation exactly recovers the relation

p =
∂Ψmech,vol

∂ J
= κ [J − 1], (81)

or the nearly incompressible case. Note that there are several other forms of volumetric strain energy functions,
ee Holzapfel [110], and they can be incorporated into the proposed framework as already demonstrated in
adapa [101].

.2. Finite element spaces for the mixed formulation

From the various finite element spaces available in the literature for the mixed displacement–pressure formulation
n solid mechanics problems, we can choose either the P2/P1 and P2/P0 elements [98,99] or stabilised formu-
ations [123–125] that are based on the Lagrange family of elements or NURBS based elements [102,103] or
he BT2/BT1 and BT2/BT0 elements that are based on Bézier family of elements [101]. Although P2/P1, Q2/Q1
nd BT2/BT1 elements have been used widely for incompressible solids mechanics problems, the adaption of the
2/P1 element to solid mechanics problems is scarce when compared to its usage for incompressible fluid flow
roblems. To the best of the authors’ knowledge, extensive studies on the adaptation of these elements to coupled
lectromechanics are either sparse or non-existent; literature on computational electromechanics is predominantly
estricted to the Q1/P0 and Q1-F-bar elements [12,53,63,66,74,76,78]. Thanks to the advantages of Bézier elements
ver Lagrange elements for explicit dynamics simulations and their ease of mesh generation over NURBS [100,101],
ur primary choice of finite elements in this work is the one based on Bézier elements. However, for the sake of
ompleteness, Lagrange family of elements are also considered.

We name the new elements as BT2/BT1/BT2, P2/P1/P2, Q2/P1/Q2 and Q2/Q1/Q2 for the three-field mixed
isplacement–pressure-electric potential (u/p/φ) formulation. For the BT2/BT1/BT2 and P2/P1/P2 elements,
u = nφ = 6 and np = 3 in 2D, and nu = nφ = 10 and np = 4 in 3D; for the Q2/P1/Q2 element, nu = nφ = 9 and
p = 3 in 2D, and nu = nφ = 27 and np = 4 in 3D; and for the Q2/Q1/Q2 element, nu = nφ = 9 and np = 4 in 2D,
nd nu = nφ = 27 and np = 8 in 3D.

The computational advantages of the proposed elements over the widely-used Q1/P0 element for computational
lectromechanics can be summarised:

1. The order of convergence for the displacement, pressure and stress fields is one order higher for the proposed
elements when compared with the Q1/P0 element. Therefore, accurate numerical results can be obtained
using coarse meshes with the proposed elements, as will be demonstrated with few numerical examples in
Sections 5 and 6.

2. The proposed elements are inf–sup stable in both two and three dimensions [101] while the Q1/P0 element
is not, see [126]. Therefore, the proposed element produces pressure fields that are free from spurious
modes [101] as opposed to the Q1/P0 element which yields spurious modes in the pressure field [107,127].

3. The task of mesh generation for the Q1 and Q2 elements is quite cumbersome for complex geometries.
However, automated tetrahedral mesh generation tools can be used for discretising complex geometries with
the BT2 and P2 elements.

4. While it is true that the pressure degrees of freedom (DOFs) in the proposed work increase the size of coupled
matrix system that needs to be solved at each iteration, it can be shown that the number of pressure DOFs

for the BT2/BT1/BT2, P2/P1/P2 and Q2/Q1/Q2 elements is only about 5% of the combined DOFs for the
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displacement and electrical potential. This is illustrated schematically in Fig. 1a and using a matrix pattern
in Fig. 1b for the example of a spherical gripper presented in Section 5.4. Moreover, the convergence of
Newton–Raphson iterations for the proposed elements is not sensitive to the changes in the values of the
bulk modulus.
On the contrary, although the pressure DOFs can be condensed out for the Q1/P0 element when used for the
nearly incompressible materials, such a reduction is not always computationally beneficial. To demonstrate
this, the coupled matrix system for the Q1/P0 element [74]⎡⎢⎢⎣

Kuu 0 Ku p Kuφ

0 K J̃ J̃ K J̃ p 0
Kpu Kp J̃ 0 0
Kφu 0 0 Kφφ

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
∆u
∆ J̃
∆p
∆φ

⎫⎪⎪⎬⎪⎪⎭ = −

⎧⎪⎪⎨⎪⎪⎩
Ru
R J̃
Rp

Rφ

⎫⎪⎪⎬⎪⎪⎭ (82)

is rewritten in a condensed form as[
K̃uu Kuφ

Kφu Kφφ

] {
∆u
∆φ

}
= −

{
R̃u
Rφ

}
(83)

where J̃ is the independent approximation for the Jacobian and

K̃uu = Kuu + Ku p K−1
J̃ p

K J̃ J̃ K−1
p J̃

Kpu (84)

R̃u = Ru − Kup K−1
J̃ p

R J̃ + Ku p K−1
J̃ p

K J̃ J̃ K−1
p J̃

Rp. (85)

By exploiting the constant discontinuous approximation for the pressure and Jacobian variables, K̃uu and R̃u
for the volumetric energy function (80) can be further simplified as

K̃uu = Kuu +
κ

V0
Ku p Kpu (86)

R̃u = Ru +
1
V0

Ku p
[
κ Rp − R J̃

]
, (87)

where V0 is the volume of the element in the reference configuration. It can be observed from (86) and (87)
that both K̃uu and R̃u depend directly on κ , the bulk modulus. Such a dependence on the bulk modulus
significantly affects the convergence of iterations in the Newton–Raphson scheme for κ/µ > 103, often
causing the convergence to stall and eventually crashing the simulation, as demonstrated with the example
of a spherical gripper in Section 5.4. Besides, such a reduction is not applicable to truly incompressible
material models. Note that the convergence issues associated with the Q1/P0 element are also applicable
to the Q2/P1/Q2 element when the pressure DOFs are eliminated from the global matrix system. However,
Q2/P1/Q2 element is not the primary focus of the present work.

Therefore, the additional cost of matrix solver for computing the pressure DOFs is insignificant when compared
with the advantages gained: (i) increased accuracy in the stresses, (ii) the ability to simulate truly incompressible
materials, (iii) robustness in achieving the convergence, and (iv) the ease of mesh generation for complex geometries.
Thus, the proposed work introduces a new finite element framework that offers many advantages over the Q1/P0 and
Q1-F-bar elements, as tabulated in Table 1, for computing the numerical solutions of coupled electromechanical
problems.

5. Numerical examples: electro-elastostatics

To assess the accuracy and computational advantages of the proposed finite element framework and to
demonstrate its effectiveness as a promising numerical framework for the simulation of EAPs, we consider several
numerical examples in electro-elastostatics and electro-elastodynamics. These examples involve problems with
the analytical solution, simple bending behaviour in actuators, buckling instabilities in thin polymeric shells and
frequency-dependent external excitations. The accuracy and computational efficiency of the proposed framework
are demonstrated first using elastostatic examples in this section and then using elastodynamics examples in the

following section.
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Fig. 1. (a) Schematic depiction of the global matrix system for the BT2/BT1/BT2, P2/P1/P2 and Q2/Q1/Q2 elements and (b) sparse matrix
attern for the BT2/BT1/BT2 and P2/P1/P2 elements for the mesh in Fig. 11c for the spherical gripper example. Blue dots represent the
ntries corresponding to the Ku p , Kpu and Kpp matrices. The number of displacement and potential DOFs for this test case are 13 000

and 2727, respectively, and the number of pressure DOFs is 765, which is only 4.86% of the combined displacement and electric potential
DOFs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Comparison of some salient features of different element types considered in this work.

Properties Q1/P0 Q2/P1/Q2 Q2/Q1/Q2 P2/P1/P2 BT2/BT1/BT2
Q1-F-bar

Inf–sup stability No Yes Yes Yes Yes
Accuracy in displacement O(h2) O(h3) O(h3) O(h3) O(h3)
Accuracy in potential O(h2) O(h3) O(h3) O(h3) O(h3)
Accuracy in stresses O(h) O(h2) O(h2) O(h2) O(h2)
Truly incompressible models No No Yes Yes Yes
Ease of mesh generation No No No Yes Yes
Lumped masses Yes Yes Yes No Yes

The proposed framework is implemented in an in-house computer code using the object-oriented programming
oncepts in C++ and the Eigen library [128] for dense and sparse matrix operations. The coupled matrix systems
re solved using the sparse parallel direct solver PARDISO [129,130]. The finite element meshes used in the present
ork are generated using HyperMesh [131] and GMSH [132].
nits: Due to substantial variations in the magnitude of material parameters between the mechanical and electrical
elds, monolithic schemes for coupled electromechanical problems modelled in the SI units leads to matrix systems
hose non-zero coefficients vary by 14–20 orders of magnitude, leading to numerical truncation errors beyond the
achine precision. Such matrix systems pose serious challenges in obtaining numerical solutions. To overcome

uch numerical issues, we propose the practise of modelling with the units for the basic quantities as tabulated in
able 2. Using the units in Table 2, some important quantities such as permittivity of the free space and the shear
odulus become ε0 = 8.854 × 10−12 F

m = 8.854 g mm
kV2 s2 and µ = (•) Pa = (•) g

mm s2 , respectively. Thus, while the
numerical value of the shear modulus remains the same, the value of the permittivity of the free space is increased
by 1012, bringing its numerical value to within the range of the material parameters of the mechanical problem.
This results in matrix systems that are easier to solve when compared with those resulting from the use of base SI
units.
Computational cost: The computational cost of one Newton–Raphson iteration is approximately the same for the
Q1/P0, Q1-F-bar and the proposed elements for finite element models that consist of the same number of nodes.
Therefore, the numerical scheme that requires fewer iterations per load step and fewer load steps for completing
the simulation is considered to be computationally efficient.
13
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Table 2
Units used in the present work for fundamental quantities.

Variables Units

Length millimetres (mm)
Mass grams (g)
Time seconds (s)
Electric potential kilo Volts (kV)

Fig. 2. Analytical solution example: problem setup for (a) plane-strain model and (b) 3D model.

5.1. Verification with analytical solution

The accuracy of the proposed finite element formulation is at first verified by studying an example with
an analytical solution that has been previously studied in Hennan et al. [63], Liu et al. [133], Sharma and
Joglekar [52,53]. We consider a plane-strain model (2D) and a 3D model with the original side length L mm,
as shown in Fig. 2. The material model is the truly incompressible Gent one with a shear modulus µ = 1 Pa while
the relative permittivity is taken as εr = 1/8.854.

For the plane-strain model, the edges AB and AD are constrained from moving in the normal direction, and the
edge AB is held at a zero voltage while a positive voltage is applied on the edge CD. For the 3D model, faces
ADHE, ABFE, and ADCB are constrained from moving in the normal directions and a positive voltage is applied
on the face EHGF while the prescribed electric potential on the face ADCB is zero. Simulations are performed for
five different values of Im using the finite element meshes shown in Fig. 3.

The values of principal stretch (λ) obtained from the simulations are plotted in Figs. 4a and 4b, respectively,
for the plane-strain and 3D models, against the normalised potential (φ̄ =

φ

L

√
ε
µ

). As shown, the results obtained
from the proposed scheme are in excellent agreement with the analytical solution for both the plane-strain and 3D
models. The contour plots of principal stretch (λ) presented in Fig. 3 show a constant value throughout the domain.

5.2. Thin bi-layer bending actuator in plane-strain

In this example, we demonstrate the suitability and effectiveness of the proposed finite element framework for
electro-active polymeric actuators undergoing a bending deformation. For this purpose, we consider a thin bi-layer
actuator whose geometry and boundary conditions are as shown in Fig. 5a where the length of the beam is L = 20
mm and the thickness of each layer is t0 = 0.5 mm. The interface between the two layers is grounded and a positive

voltage of φ = 3 kV is applied on the top edge. The material model is taken as the Neo-Hookean model with a
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Fig. 3. Analytical solution example: original and deformed meshes along with the nodal contours of the principal stretch for Im = 7 for the
BT2/BT1/BT2 element.

Fig. 4. Analytical solution example: comparison of numerical values of principal stretch obtained with the BT2/BT1/BT2 element against
he analytical solution for (a) plane-strain model and (b) 3D model. The results are indistinguishable for the other higher-order elements.

hear modulus, µ = 104 Pa and a relative permittivity, εr = 5. Two different values of the bulk modulus, 107 Pa
nd 109 Pa are considered in order to demonstrate the computational advantages of the proposed framework.

Simulations are performed on five successively refined meshes starting with the discretisations shown in Fig. 5.
esults obtained with the different element types are assessed by studying the variation of vertical displacement of

he top right corner of the beam, point A in Fig. 5a, with respect to mesh refinement. As expected, the difference
n the displacement response obtained with two different values of the bulk modulus for all the element types
onsidered in this work is negligible.

The variation of the vertical displacement of point A obtained with different element types for κ = 109 Pa, as
presented in Fig. 6 illustrates that results obtained with the proposed scheme converge as the mesh is refined and that
the converged value matches well with the results obtained with the other formulations. From the graph, it can also
be observed that accurate results can be obtained with the proposed element as well as with the other higher-order
elements using coarse meshes: the result obtained with the coarsest mesh using the BT2/BT1/BT2 element is on
par with that obtained with the twice refined mesh with the Q1/P0 and Q1-F-bar elements, and the result obtained
with the second mesh using the BT2/BT1/BT2 element is already a converged value. Another noteworthy point
from this graph is that the Q2/P1/Q2 element is stiffer when compared with the Q2/Q1/Q2 element. Contour plots
of the nodal pressure presented in Fig. 7 illustrate that the pressure field obtained with Q1/P0 and BT2/BT1/BT2
elements is indistinguishable from each other.
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Fig. 5. Bending actuator in plane strain: (a) geometry and boundary conditions (b) (10 × 2) × 2 triangular mesh for the BT2-F-bar,
T2/BT1/BT2 and P2/P1/P2 elements, (c) 20 × 4 quadrilateral mesh for the Q1/P0 and Q1-F-bar elements, and (d) 10 × 2 quadrilateral
esh for the Q2/P1/Q2 and Q2/Q1/Q2 elements.

While the numerical results computed with all the element types converge to the same limit as the mesh is refined,
he distinction in different formulations lies in the amount of computing time required for the successful completion
f each simulation. As tabulated in Table 3, all the mixed elements, Q1/P0, P2/P1/P2, Q2/P1/Q2, Q2/Q1/Q2 and
T2/BT1/BT2, require only 10 load steps for both values of the bulk modulus while the number of load steps

equired with Q1-F-bar and BT2-F-bar elements is not only significantly higher but also increases with the increase
n the value of the bulk modulus. For example, for κ = 109 Pa, Q1-F-bar and BT2-F-bar elements require 100 load

steps which is 10 times more than that required with the mixed elements. Thus, the proposed framework results in
significant computational benefits due to its ability to compute accurate numerical results using coarse meshes and
fewer load steps.

5.3. Thin bi-layer bending actuator in 3D

This example is a three-dimensional extension of the bi-layer cantilever beam studied in the previous Section 5.2.
The dimensions of the beam are: length = 20 mm, thickness of each layer = 0.5 mm, and width = 4 mm. The
material is assumed to be Neo-Hookean with a shear modulus, µ = 104 Pa and a bulk modulus, κ = 109 Pa. The
relative permittivity (εr ) is taken as 5. The interface layer is held at a zero potential and a positive voltage of 3.2
kV is applied on the top surface, causing the beam to bend downwards.

Numerical simulations are carried out on successively refined four finite element meshes starting with the
discretisations shown in Fig. 8. The variation of Y-displacement of point A presented in Fig. 9 illustrates that
convergence behaviour is consistent with that observed in the plane-strain example. From the graph, it is also

clear that the third mesh using the proposed element already gives a converged solution while Q1/P0 and Q1-F-
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Fig. 6. Bending actuator in plane strain: variation of the absolute value of the vertical displacement of point A against the number of nodes
across the thickness using different element types for the case with κ = 109 Pa.

Fig. 7. Bending actuator in plane strain: nodal contours of pressure field obtained for κ = 109 Pa with (a) 80 × 16 mesh of Q1/P0 element
and (b) (40 × 8) × 2 mesh with BT2/BT1/BT2 element.

bar elements require further mesh refinement in order to achieve the converged value. Moreover, while the results
obtained with Q1/P0 and Q1-F-bar elements are almost identical, Q1-F-bar element requires 1000 load steps while
Q1/P0, BT2/BT1/BT2 and other mixed elements require only 10 load steps. We can also notice from the graph that
the Q2/P1/Q2 element is stiffer than the Q2/Q1/Q2 and BT2/BT1/BT2 elements. The difference in the displacement
obtained with the Q2/P1/Q2 and Q2/Q1/Q2 elements is more pronounced when compared with the results from the
plane-strain problem. Although the Q2/P1 element is inf–sup stable, it still yields inferior quality results when

compared with the other inf–sup stable elements because of the poor quality of the approximation for the pressure
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Table 3
Bending actuator in plane strain: number of uniform load steps required for the successful
completion of each simulation with ten or less number of Newton–Raphson iterations for each
load step. Mixed elements refer to the Q1/P0, Q2/Q1/Q2, Q2/P1/Q2, P2/P1/P2 and BT2/BT1/BT2
elements.

Number of nodes
across thickness

Mixed elements Q1-F-bar &
BT2-F-bar elements

κ = 107 Pa κ = 109 Pa κ = 107 Pa κ = 109 Pa

5 10 10 50 100
17 10 10 50 100
33 10 10 50 100
65 10 10 50 100

Fig. 8. Bending actuator in 3D: (a) (10 × 2 × 2) × 6 tetrahedral mesh for the BT2/BT1/BT2 and P2/P1/P2 elements, (b) 20 × 4 × 4
exahedral mesh for the Q1/P0 and Q1-F-bar elements and (c) 10 × 2 × 2 hexahedral mesh for the Q2/P1/Q2 and Q2/Q1/Q2 elements.

Fig. 9. Bending actuator in 3D: variation of the absolute value of the vertical displacement of point A against the number of nodes across
he thickness using different formulations.

eld within a Q2/P1 element. Such behaviour of the Q2/P1 element is characteristic of incompatible approximation
pace used for the pressure field.

Additionally, the contour plots of element-wise pressure presented in Fig. 10 indicate spurious modes in the
ressure field obtained with the Q1/P0 element whereas the same field obtained with the proposed element is free
rom oscillations. Therefore, accurate numerical results can be obtained with the proposed element using fewer
omputational resources when compared with the widely-used Q1/P0 and Q1-F-bar elements for computational
18
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Fig. 10. Bending actuator in 3D: contour plot of element-wise pressure obtained with different element types.

lectromechanics, without even considering the amount of resources wasted in the crashed simulations with the
1-F-bar elements when insufficient number of load steps are chosen. This computationally-appealing behaviour

of the proposed element is because of the use of second-order basis functions for the displacement field.

5.4. Spherical gripper

In this example, we demonstrate the suitability of the proposed finite element framework to accurately capture
arge deformation behaviour in real-world applications of electromechanical actuators. For this, we consider the
xample of a thin bi-layer spherical gripper previously studied in Ask et al. [134] and Bishara and Jabareen [81].
he gripper is made of 12 arms, as shown in Fig. 11a, with each arm made of two electro-active layers. The radius
f the sphere at the interface layer is 20 mm, and the thickness of each layer is 0.5 mm. The opening angle at the
op and bottom holes is 30◦. The mechanical boundary and loading conditions are such that the topmost face of

the gripper is fixed and the rest of the faces are traction free. For the electrical loading, the interface layer is held
at a zero voltage, and a positive voltage of 6 kV is applied on the inner side of the arm. Due to the symmetry of

boundary and loading conditions, only one half of the arm, as shown in Fig. 11b, is considered for the analysis.
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Fig. 11. Spherical gripper: (a) the gripper with 12 arms, (b) geometry description for a half portion of a single arm, (c) (50 × 4 × 2) × 6
mesh for the BT2/BT1/BT2 element, (d) 100 × 8 × 4 mesh for the Q1/P0 element and (e) 50 × 4 × 2 mesh for the Q2/P1/Q2 and
Q2/Q1/Q2 elements.

Fig. 12. Spherical gripper: variation of the displacement of point A obtained with different element types for κ = 2.6 × 107 Pa.

The finite element meshes used for this problem are shown in Figs. 11c, 11d and 11e; all the meshes consist of
4545 nodes.

The constitutive law is assumed to the Gent model with µ = 2.6×104 Pa and Im = 7, and the relative permittivity
is εr = 4.5. To demonstrate the advantages of the proposed framework over Q1/P0 and Q1-F-bar elements, we
consider two values of the bulk modulus, κ = 2.6×107 Pa and 2.6×109 Pa. The variation of displacement of point
A obtained with κ = 2.6 × 107 Pa with the BT2/BT1/BT2 element matches well with the values obtained with the
Q1/P0, Q1-F-bar and Q2/Q1/Q2 elements, as presented in Fig. 12. The relatively stiff behaviour of the Q2/P1/Q2
element when compared with the other elements, which is consistent with the response in the previous example, is
also evident from the graph. Deformed shapes at two different load steps are presented in Fig. 13 to illustrate the
superior quality of numerical results obtained with the BT2/BT1/BT2 element when compared with the Q2/P1/Q2
element. The deformed shapes of the gripper, post-processed for all the arms, are shown in Fig. 14 under different
applied voltages.
20



C. Kadapa and M. Hossain Computer Methods in Applied Mechanics and Engineering 372 (2020) 113443

B
w
t

m

Fig. 13. Spherical gripper: deformed shapes of the gripper at two different values of applied voltage. Green: Q2/Q1/Q2 element, Blue:
T2/BT1/BT2 element, and Orange: Q2/P1/Q2 element. Note that there is no significant difference between the deformed shapes obtained
ith Q2/Q1/Q2 (Green) and BT2/BT1/BT2 (Blue). (For interpretation of the references to colour in this figure legend, the reader is referred

o the web version of this article.)

Fig. 14. Spherical gripper: deformed shapes of the gripper at different values of applied voltage.

Although the displacement response obtained with different schemes is in good agreement with each other, the
ain differences are in terms of the computational cost. For κ = 2.6 × 107 Pa, all the mixed elements, Q1/P0,

Q2/P1/Q2 and Q2/Q1/Q2 and BT2/BT1/BT2, require only 50 load steps while the Q1-F-bar element requires 250
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Fig. 15. Spherical gripper: convergence of Newton–Raphson iterations for the last ten load steps for κ = 2.6 × 107 Pa.

Fig. 16. Spherical gripper: convergence of Newton–Raphson iterations for the last ten load steps for κ = 2.6 × 109 Pa. The convergence
talls and the simulation crashes at the 48th load step for the Q1P0 element.

oad steps. This behaviour of the Q1-F-bar element in requiring a significantly higher number of load steps is
onsistent with the observations made in the previous examples. Due to its substantial computational cost, the
1-F-bar element is discarded henceforth in this paper.
The convergence of Newton–Raphson iterations for the last 10 load steps for κ = 2.6 × 107 Pa shown in Fig. 15

llustrates that the proposed scheme achieves residual values that are two to three orders of magnitude lower than
hose of the Q1/P0 element for the same number of iterations at each load step. It is also observed that increasing
he value of the bulk modulus to 2.6 × 109 Pa does not affect the convergence of the proposed scheme while the
onvergence of iterations not only deteriorates but also stalls at the 48th load step for the Q1/P0 element, as shown
n Fig. 16. For the tolerance of 10−4, the simulation with Q1/P0 element crashes at the 48th load step. Hence, in
rder to achieve convergence, the tolerance has been lowered to 10−3, as shown in Fig. 17. It is also evident from
ig. 17 that, for the same number of iterations, the proposed scheme achieves residual values that are four orders
f magnitude lower. We highlight at this point that this unappealing convergence behaviour, which is symptomatic
f the elimination of pressure DOFs from the global system, is also common to the Q2/P1/Q2 element.

.5. Very thin bi-layer bending actuator

This example is concerned with the simulation of a very thin bi-layer bending actuator previously studied in

linkel et al. [76]. The cantilever beam is of length 100 mm, width 50 mm, and the thickness of each layer 0.5 mm.
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Fig. 17. Spherical gripper: convergence of Newton–Raphson iterations for the last ten load steps for κ = 2.6 × 109 Pa. The tolerance for
he Q1/P0 element has been lowered to achieve a successful convergence.

Fig. 18. Thin bi-layer bending actuator: finite element meshes used with (a) Q2/Q1/Q2 element and (b) BT2/BT1/BT2 element.

he interface layer is grounded and a positive voltage of 4.2 kV is applied on the top face, causing the beam to
end downwards. The material model is assumed to be a truly incompressible (ν = 0.5) Gent model with a shear

modulus, µ = 2.056 × 104 Pa and Im = 5, and the relative permittivity is taken as εr = 4.97.
The structured hexahedral and the unstructured tetrahedral meshes used for the simulations are shown in Fig. 18.

Only one element is considered across the thickness of each layer. The hexehedral mesh consists of 8925 nodes
and 850 elements while the tetrahedral mesh consists of 8635 nodes and 4932 elements. The simulations converge
in 50 and 54 load steps, respectively, for the Q2/Q1/Q2 and BT2/BT1/BT2 elements. The deformed configurations
of the bending actuator at different load steps obtained with the BT2/BT1/BT2 element are in good agreement
with those obtained with the Q2/Q1/Q2 element, as shown in Fig. 19. This example illustrates the capability of the
proposed work in successfully simulating the behaviour of very thin bending actuators using a single finite element
formulation.

6. Numerical examples: electro-elastodynamics

This section is concerned with the elastodynamics simulations of practical applications of electro-active polymers.
For the demonstration, first, we simulate a dielectric pump previously studied in Klassen [135]. Second, we consider
a thin helical actuator excited with different frequencies of the applied voltage. Finally, we simulate the instabilities
in thin dielectric polymers using thin semi-cylindrical and spherical shells. For all the examples in this section,
the spectral radius parameter for the fully-implicit time integration scheme is taken as ρ∞ = 0.5. From among all
the higher-order elements, only the BT2/BT1/BT2 element is considered hereafter for the ease of presentation of
results.
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Fig. 19. Thin bi-layer bending actuator: plots of deformed shapes of the actuator along with the contours of electric potential at various load
steps. Green: Q2/Q1/Q2 element and White: BT2/BT1/BT2 element. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 20. Dielectric pump: problem description.

6.1. Dielectric tubular pump

The pump is of cylindrical cross-section with a length = 50 mm, an inner radius = 9 mm and a thickness
1 mm. One pair of electrodes, each of length 10 mm, are attached to the inner and outer cylindrical surfaces
tarting from one end of the cylinder, as shown in Fig. 20. The material is assumed to follow the Neo-Hookean
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Fig. 21. Dielectric pump: finite element meshes used for the BT2/BT1/BT2 element.

Fig. 22. Dielectric pump: finite element meshes used for the Q1/P0 element.

model with a shear modulus µ = 7.3 × 104 Pa, a bulk modulus κ = 7.3 × 109 Pa and a density ρ0 = 0.0012
/mm3(= 1200 kg/m3). The relative permittivity is taken as εr = 4.7.

Simulations are performed for a fixed voltage difference of 20 kV using two different finite element meshes for
ach of the BT2/BT1/BT2 and Q1/P0 elements as shown, respectively, in Figs. 21 and 22. The dynamic response
f the pump is studied using the time evolution of Y-displacement of points A and B, see Fig. 20. The displacement
f point A obtained with all the four meshes is plotted in Fig. 23 and the corresponding plot for point B is shown
n Fig. 24.

It can be observed from Fig. 23 that there is no significant difference in the displacement response obtained with
he proposed element, i.e., meshes T1 and T2, indicating a clear convergence whereas the solution obtained with
he coarse hexahedral mesh (mesh H1) is noticeably different from that of the fine hexahedral mesh (mesh H2). The
isplacement response of point B presented in Fig. 24 shows a more pronounced difference in the solution obtained
ith the Q1/P0 element and the proposed BT2/BT1/BT2 element. While the solution obtained with mesh T1 matches
ell with that of mesh T2, the solutions obtained with the hexahedral meshes show significant differences. It is
25
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Fig. 23. Dielectric pump: the evolution of Y-displacement of point A obtained with different finite element meshes.

Fig. 24. Dielectric pump: the evolution of Y-displacement of point B obtained with different finite element meshes.

vident from Fig. 24 that the solution obtained with a coarse tetrahedral mesh (mesh T1) is significantly better than
hat obtained with the fine hexahedral mesh (mesh H2).

Such noticeable differences in the displacement response at a downstream point in a pumping device can have a
ignificant impact on the accuracy of computation of flow rate delivered by the pump in Multiphysics simulations.
o obtain accurate numerical solutions using the Q1/P0 element, very fine meshes need to be used, adding to a
ignificant computational cost, and this can be avoided by using coarse meshes with the proposed finite element
ramework. This increased accuracy of numerical results with the proposed framework is due to the fact that second-
rder elements resolve mode shapes more accurately than the first-order elements. Deformed shapes of the pump
long with the contour plots of element-wise pressure presented in Fig. 25 illustrate smooth pressure fields obtained
ith the proposed element as opposed to the pressure field with spurious modes obtained with the Q1/P0 element.

.2. Thin helical actuator

Inspired by the work of Li et al. [136], this example is concerned with the dynamic simulation of a thin helical
ctuator. The geometry and boundary conditions of the problem are shown in Fig. 26a. The diameter, pitch and
idth of the helical strip are 5 mm, and its thickness is 0.2 mm. The finite element mesh used for the analysis

hown in Fig. 26b consists of 13 789 nodes and 6541 (BT2/BT1/BT2) elements. The material model is assumed
o be the truly incompressible Arruda–Boyce model with a shear modulus of µ = 2.5 × 104 Pa, number of chain

segments, N = 2.8 and a relative permittivity of εr = 10.
Simulations are performed for a sinusoidally varying voltage φ(t) = 1 − cos(2.0π f ) kV, with two frequencies

f f = 0.1 Hz and f = 1.0 Hz, for ten cycles with 100 time steps for each cycle. The displacement response
f point A as shown in Fig. 27 illustrates that the response follows the applied voltage for f = 0.1 Hz while the

response involves a complex behaviour involving higher modes for f = 1.0 Hz. The differences in the deformed

shapes of the actuator for the different input frequencies are shown in Fig. 28. Thus, this example demonstrates
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Fig. 25. Dielectric pump: contour plots of element-wise pressure at four time instants.
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Fig. 26. Helical actuator: (a) geometry and boundary conditions and (b) finite element mesh. Point A is located at the corner of the outer
surface.

Fig. 27. Helical actuator: displacement response of point A for different frequencies. Here, T (= 1/ f ) s is the time period.

he applicability of the proposed framework for studying the dynamic response of thin electro-active polymeric
ctuators under different loading conditions.

.3. Buckling instabilities in dielectric elastomers

In the following examples, we demonstrate the ability of the proposed finite element framework to simulate the
requently observed instabilities in dielectric elastomers. For this purpose, we consider a thin semi-cylindrical shell
nd thin semi-spherical shell models. The material model is assumed to be the truly incompressible Arruda–Boyce
odel with a shear modulus, µ = 104 Pa, number of chain segments, N = 5 and a relative permittivity, εr = 5,

and the density of the material is taken as ρ0 = 1200 kg/m3.

.3.1. Semi cylindrical shell
The shell is of length 200 mm, mean radius 20 mm and thickness 0.5 mm, as shown in Fig. 29. Due to the

ymmetry of the geometry and boundary conditions, only one-fourth of the domain is considered for the analysis.
he quarter portion is discretised with an unstructured finite element mesh consisting of 21 005 nodes and 12 180

BT2/BT1/BT2) elements. The mechanical boundary conditions are such that

Symmerty BC: uz = 0 at Z = −100,

Symmerty BC: ux = 0 at X = 0,
Fixed BC: u = 0 at X = 19.75.
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Fig. 28. Helical actuator: deformed shapes of the actuator at eight different time instants. Here, T (= 1/ f ) s is the time period.
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Fig. 29. Cylindrical shell: (a) problem description together with the finite element mesh used for the simulations and (b) side view of the
finite element mesh as seen from the positive Z -axis.

Fig. 30. Cylindrical shell: (a) variation of the applied voltage with respect to time and (b) time evolution of Y-displacement of point B for
ifferent values of applied voltage.

or the electrical boundary conditions, the inner cylindrical surface is held at a zero voltage while a positive voltage
s applied on the outer cylindrical surface. To study the onset of instabilities and the dynamic buckling behaviour,
our different values of voltage, 2, 3, 4, 5 kV, are considered. The applied voltage is increased smoothly to the
aximum specified value over a period of one second and then held constant, as shown in Fig. 30a.
The evolution of Y-displacement of point B for different applied voltage values is shown in Fig. 30b and the

eformed shapes of the shell at different time instants are presented in Fig. 31. As shown, the shell does not
xperience any instabilities for the applied voltage of 2 kV while the instabilities are clearly evident for the other
alues, with the onset of instability appearing earlier with increasing the value of the applied voltage. The deformed
hapes illustrate that the complex deformations in dielectric elastomers can be simulated effectively using very coarse
eshes in the proposed framework. This superiority of the proposed scheme is due to the use of higher-order spatial

iscretisation for the solution variables when compared with that of the Q1/P0 element.

.3.2. Semi spherical shell
To further demonstrate the superior performance of the proposed framework over other FE frameworks in
apturing instabilities in thin polymeric shells, we consider a thin semi-spherical shell of mean radius 20 mm
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Fig. 31. Cylindrical shell: deformed shapes of the shell at different instants for the four different values of applied voltage.

nd thickness 0.5 mm, as shown in Fig. 32. The flat face of the shell is clamped from moving, and a maximum
oltage difference of 6 kV is applied across the thickness of the shell. Similar to the previous example, the applied
oltage is ramped smoothly to its maximum value over a period of one second and then is held constant. Due
o the symmetry boundary conditions, only a half portion is simulated using four finite element meshes displayed
n Fig. 33. Meshes T1, T2, H1 and H2 consist of 20 225, 77 425, 19 245, and 75 965 nodes, and 11 832, 45 852,
4 992, and 59 968 elements. For the Q1/P0 element, four different values of the bulk modulus are chosen to study
ts effects on the ability of the Q1/P0 element in capturing the instabilities.

Simulations are performed using two different time steps, ∆t = 0.01 and ∆t = 0.005 seconds. All the simulations
rash around 0.75 s due to severe mesh distortions. The evolution of X-displacement of highlighted nodes for the
1 and T2 meshes, as shown in Fig. 34, indicate clear spatial and temporal convergences of the proposed scheme
efore the onset of instabilities. Contour plots of pressure in Fig. 35 demonstrate smooth pressure fields obtained
ith the proposed element.
The deformed shapes of the shell in Figs. 36 and 37 illustrate that the proposed element with the coarse mesh

T1 mesh) produces exactly the same number of wrinkles as that of the fine mesh (T2 mesh) whereas the Q1/P0
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Fig. 32. Spherical shell: a schematic description of boundary conditions.

Fig. 33. Spherical shell: finite element meshes used for the analysis.

Fig. 34. Spherical shell: time evolution of X-displacement of nodes highlighted.
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Fig. 35. Spherical shell: contour plots of nodal pressure obtained using the T1 and T2 meshes with a time step of ∆t = 0.01 s.

Fig. 36. Spherical shell: deformed shapes for the T1 and T2 meshes using the proposed scheme. For a better visualisation, the deformation
is applied with a warp factor of two.

element with a coarse mesh (H1 mesh) fails to produce correct number of wrinkles; only the fine hexahedral mesh
(H2 mesh) with the time step of ∆t = 0.005 s produces the correct number of wrinkles. Moreover, our effort to
ensure the stronger imposition of the incompressibility constraint by using higher values of bulk modulus displays
a clear sensitivity of the Q1/P0 element with respect to the bulk modulus, as shown in Figs. 38 and 39.

From these results, it is evident that the proposed scheme produces accurate results using coarse meshes and
larger time steps while the Q1/P0 element requires finer meshes and smaller time steps for producing the accurate
numerical results, in addition to the fact that the numerical results obtained with the Q1/P0 element are highly
sensitive to the bulk modulus. This ability of the proposed framework to produce accurate numerical results using
coarse meshes and large steps while still maintaining the exact imposition of the incompressibility makes it an
accurate, robust and computationally efficient numerical framework for electromechanics.

7. Summary and conclusion

In this contribution, we have proposed a novel finite element framework for computational electromechanics at
finite strains. The novel contributions of the present work are the extension of a recently published two-field mixed
displacement–pressure formulation to coupled electromechanics and the use of higher-order Bézier and Lagrange
elements for the spatial discretisation. The proposed elements are named as BT2/BT1/BT2, P2/P1/P2 and Q2/Q1/Q2
for the ease of reference.
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Fig. 37. Spherical shell: deformed shapes for the H1 and H2 meshes using the Q1/P0 element. For a better visualisation, the deformation
s applied with a warp factor of two.

Fig. 38. Spherical shell: deformed shapes for the H1 mesh using the Q1/P0 element with different values of the bulk modulus. For a better
isualisation, the deformation is applied with a warp factor of two.

First, the accuracy of the proposed formulation and its ability to compute accurate numerical solutions using
oarse meshes is demonstrated by studying the examples of thin bi-layer beams in two and three dimensions. It
s observed that, among all the elements considered in this work, the Q2/Q1/Q2 element produces the best quality
esults for the coarsest mesh and that the differences between the results obtained with higher-order elements match
ell each other after one refinement. Then, the computational advantages of the proposed framework over the Q1/P0

nd Q1-F-bar elements are illustrated with the examples of a spherical gripper. Later, its capability in computing
ccurate numerical solutions for elastodynamics problems using coarse meshes is proven with the example of a
ielectric pump. Finally, the ability of the novel finite element framework to effectively simulate instabilities in
ielectric elastomers is illustrated with the examples of thin semi-cylindrical and semi-spherical shells.

The important characteristics of the proposed finite element framework are:

• Computational efficiency: The computational efficiency of the proposed framework results from the com-
bination of (a) two-field mixed formulation for the mechanical problem, (b) quadratic polynomials for the
displacement and electric potential, and a linear approximation for the pressure, (c) ability to compute accurate
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Fig. 39. Spherical shell: deformed shapes for the H1 mesh using the Q1/P0 element using different values of bulk modulus. For a better
visualisation, the deformation is applied with a warp factor of two.

numerical solutions using coarse meshes and (d) ability to complete the simulations using fewer load steps in
elastostatic problems and fewer time steps in elastodynamics problems.

• Robustness: The robustness of the proposed framework is due to the fact that it employs inf–sup stable
elements, as opposed to the Q1/P0 element, which is inf–sup unstable. Moreover, unlike the Q1/P0 element,
the convergence of iterations with the proposed element is not sensitive to changes in the value of the bulk
modulus.

• Complex geometries: The use of triangular and tetrahedral elements significantly eases the task of mesh
generation for the proposed framework, unlike the schemes based on the quadrilateral and hexahedral elements
for which mesh generation for complex geometries is quite cumbersome.

To conclude, the demonstrated advantages of the proposed framework prove that it is a very promising finite
element framework for the simulation of complex coupled interactions in electro-active polymers. Fundamental
computational advantages of this novel framework can be extended to develop robust, accurate, and computationally
efficient computational tools for the simulation of complex multiphysics phenomena of thermo-electro-mechanical
interactions as well as coupled fluid–structure interactions in electromechanical systems for applications in
biomedical engineering and energy harvesting. In forthcoming contributions, we will extend this framework to
capture visco-anisotropic as well as coupled thermo-electro-mechanical behaviour of electro-active polymers.
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Appendix A. First and second variations of the energy functions

The first variation of the strain energy function (Ψ ) and the perturbed Lagrangian (ΨPL) is

δ(Ψ + ΨPL) = δFi J P i J − δEI DI + δ J p + δp
[

J − 1 −
p ]

(A.1)

κ
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p̂

where

P i J =
∂Ψ

∂ Fi J
(A.2)

DI = −
∂Ψ

∂EI
. (A.3)

Using,

δFi J = δui,J = δui, j F j J (A.4)

δ J = J δui,i = J δui, j δi j (A.5)

DI = J F−1
I i di (A.6)

δEI = Fi I δei (A.7)

P i J = Fi I S I J (A.8)

δei = −δφ,i (A.9)

in (A.1) we obtain

δ(Ψ + ΨPL) = δui, j J σ i j + δφ,i J di + δui, j δi j p J + δp
[

J − 1 −
p
κ

]
= δui, j J σ̂i j + δφ,i J di + δp

[
J − 1 −

p
κ

]
(A.10)

where δi j is the Kronecker delta and σ̂i j is the effective Cauchy stress tensor for the mixed formulation. σ̂i j is given
by

σ̂i j = σ i j + p δi j . (A.11)

Now, the second variation of the energy functions is computed as the variation of (A.1) as,

d(δΨ ) = δFi J

[
∂ P i J

∂ FkL
d FkL +

∂ P i J

∂EK
dEK

]
− δEI

[
∂DI

∂ F j K
d F j K +

∂DI

∂EJ
dEJ

]
+ d(δ J ) p + δ J dp + δp d J −

1
κ

δp dp

= δui, j (J ei jkl) duk,l + δui, j (J pi jk) dφ,k + δφ,i (J p̂i jk) du j,k + δφ,i (J di j ) dφ, j

+ δui,i dp J + δp duk,k J −
1
κ

δp dp (A.12)

where d(•) denotes another variation of the variable (•), ei jkl is the material tangent tensor of order four; pi jk and
i jk are third-order coupling tensors; and di j is the electric permittivity tensor of order two, and they are given by

ei jkl =
1
J

F j J
∂ P i J

∂ FkL
Fl L + p [δi j δlk − δil δ jk] (A.13)

pi jk = −
1
J

F j J
∂ P i J

∂EK
FkK (A.14)

p̂i jk =
1
J

Fi I
∂DI

∂ F j K
FkK (A.15)

di j = −
1
J

Fi I
∂DI

∂EJ
F j J (A.16)

Appendix B. Index notation for gradient, divergence, strain and stress

The widely-used Voigt notation for transforming the strain measures, stress measures and tangent tensors into
vector and matrix forms leads to complications in transforming the fourth- and third-order tensors resulting from the
electrical and coupled energy functions. For the ease of computer implementation of the finite element formulation

for electromechanics, in this work, we use the full strain and stress tensors as vectors. Accordingly, the Cauchy
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stress tensor is represented as a column vector as,

σ = σi j =
[
σxx σyx σzx σxy σyy σzy σxz σyz σzz

]T

=
[
σ11 σ21 σ31 σ12 σ22 σ32 σ13 σ23 σ33

]T
. (B.1)

Analogously, the gradient of the displacement field is represented as

∇xu = ui, j =
[
ux,x u y,x uz,x ux,y u y,y uz,y ux,z u y,z uz,z

]T

=

[
∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z

]T

= Gu u (B.2)

here Gu is the gradient-displacement matrix which, for a single basis function, is given as

Gu =

⎡⎢⎣
∂ Nu
∂x 0 0 ∂ Nu

∂y 0 0 ∂ Nu
∂z 0 0

0 ∂ Nu
∂x 0 0 ∂ Nu

∂y 0 0 ∂ Nu
∂z 0

0 0 ∂ Nu
∂x 0 0 ∂ Nu

∂y 0 0 ∂ Nu
∂z

⎤⎥⎦
T

(B.3)

Similarly, the gradient of the electric potential in the current configuration is computed as

∇xφ = φ,i =

{
∂φ

∂x
∂φ

∂y
∂φ

∂z

}T
= Gφ φ (B.4)

with

Gφ =

[
∂ Nφ

∂x
∂ Nφ

∂y
∂ Nφ

∂z

]T
. (B.5)

For the derivation of stiffness matrices in this work, we introduce a divergence-displacement matrix, Du, for
representing the divergence of the displacement in the vector form as

∇x · u = ui,i =
∂ux

∂x
+

∂u y

∂y
+

∂uz

∂z
= Du u (B.6)

with Du for a single basis function as given by

Du =

[
∂ Nu
∂x

∂ Nu
∂y

∂ Nu
∂z

]
. (B.7)
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